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Abstract

An integration scheme is presented for modeling the texture evolution and stressÐstrain
response of elasto!viscoplastic polycrystalline materials[ Single crystal kinematics based on a
multiplicative decomposition of the deformation gradient is used to obtain an evolution equa!
tion for the crystal elastic deformation gradient[ An implicit scheme to integrate this equation
is presented which is stable and e.cient[ The reorientation of the crystal as well as the elastic
strain can then be obtained from a polar decomposition of the elastic deformation gradient[
Numerical studies are presented using material parameters for aluminum "FCC crystals# and
zircaloy "HCP crystals# to demonstrate the general nature of the model[ Predictions of the
model are also compared with those obtained using a rigid!viscoplastic polycrystal model which
neglects the elastic response[ Retaining the elastic response makes the model useful for large
deformation analyses where both anisotropy due to texture as well as elastic e}ects such as
springback and residual stresses are important[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] B[ Constitutive behavior^ Crystal plasticity^ ElasticÐviscoplastic material^ Polycrystalline
material^ C[ Numerical algorithms

0[ Introduction

Metals have a polycrystalline microstructure\ and over a broad range of processing
conditions these polycrystals deform by shearing on crystallographic slip systems[
Due to the limited number of available slip systems\ a crystal accommodates an
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arbitrary deformation through a combination of slip and rotation[ The preferential
reorientation of crystals leads to texture\ which is the main cause of anisotropy in the
properties of the material "Kocks\ 0876#[

Simulating texture development and its impact on subsequent deformation requires
material models which are capable of treating the distribution of crystal orientations
and its evolution[ Polycrystal models using the discrete aggregate representation of
texture provide an e}ective means to address this challenge "e[g[ Asaro and Needle!
man\ 0874^ Mathur and Dawson\ 0878#[ Each material point is typically associated
with a collection of single crystals\ characterized by their orientations and slip system
critical resolved shear stress "hardness# values[ The material behavior is described by
the collective response of the aggregate[ By placing such an aggregate at each inte!
gration point of the _nite element discretization of a deforming workpiece\ it has been
possible to model texture development during bulk deformation processes such as
rolling\ forging\ sheet forming\ etc[ "Mathur and Dawson\ 0878^ Kalidindi et al[\ 0881^
Beaudoin et al[\ 0883^ Balasubramanian and Anand\ 0885#[

Two main modeling assumptions are required in the application of polycrystal
models to predict the material behavior[ The _rst is a relationship between the
polycrystal and single crystal values of stress and:or strain[ Various assumptions have
been used for this purpose\ the most common of which is the Taylor "0827# model\
which assumes the deformation of each crystal to be homogeneous and equal to the
macroscopic deformation[ The model has been extended by Asaro and Needleman
"0874# to accommodate rate dependent plasticity[ The strict compatibility requirement
of the Taylor assumption violates equilibrium at crystal boundaries[ Nevertheless\ it
has been shown to give reasonably good texture predictions\ especially for metals
with high crystal symmetry and low rate sensitivity[ Various other models have been
proposed which relax and strict kinematic requirements of the Taylor hypothesis\
such as the Sachs "0817# model\ {relaxed| constraints approach "Kocks and Canova\
0870#\ and equilibrium!based theories "Chastel and Dawson\ 0882#[ These models
treat crystals as independent entities which do not interact with each other[ E}orts to
incorporate interaction among crystals have led to the {e}ective cluster| model "Kocks
et al[\ 0875#\ the modi_ed Sachs model "Pederson and Le}ers\ 0876#\ and the {neigh!
borhood compliance| model "Sarma and Dawson\ 0885b#[

The second main ingredient in polycrystal models is a constitutive description of
the single crystal mechanical response[ Some simulations of deformation processes
have neglected the elastic response of the material\ since the focus has been the
prediction of texture development at large plastic strains "Mathur et al[\ 0889^ Beau!
doin et al[\ 0883#\ while others have included elasticity\ with di}erent approaches to
the choice of integration schemes and variables "Peirce et al[\ 0872^ Kalidindi et al[\
0881^ Maniatty et al[\ 0881#[ These various models are based on a multiplicative
decomposition of the deformation gradient into a plastic part which embodies iso!
choric plastic deformation by slip\ and an elastic component which includes any rigid
rotation of the lattice[ The constitutive relations for elastic and plastic response are
expressed in the intermediate con_guration obtained after plastic deformation[ Peirce
et al[ "0872# used a hypoelastic description of elasticity along with an explicit update
of the slip increments on each slip system[ This model has also been used by Becker
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"0880a# to study deformation of single crystal and polycrystalline aluminum alloys[
Kalidindi et al[ "0881# have used an implicit integration scheme to model texture
evolution during shear\ torsion and forging of copper[ Their integration procedure is
based on updating the stress measure expressed in the intermediate con_guration[
Maniatty et al[ "0881# have followed a similar approach based on a hyperelastic law
which proceeds by integrating the plastic deformation gradient[

In this paper\ we present an alternate and novel numerical scheme for integrating
the constitutive equations for elasto!viscoplastic crystals that works directly with the
evolution equation for the elastic deformation gradient[ The motivation for choosing
the elastic deformation gradient as the integration variable comes from the fact that
it is the basis for de_ning both the elastic strain "which in turn is used to compute the
stress# and the rigid rotation "which speci_es the texture#[ In addition\ the form of
the evolution equation is well suited for problems where the deformation history of a
material point is given in terms of its velocity gradient[ This form of the equation is
especially useful in a velocity based _nite element formulation for simulating poly!
crystal deformation[ The kinematic quantities are written in rate form\ with the
known or estimated velocity _eld being used to compute the velocity gradient at each
integration point[ One of the objectives for developing the elasto!viscoplastic model
is its application to the study of residual stresses in polycrystalline materials using the
_nite element method[ The choice of the elastic deformation gradient as the variable
for integration results in a direct and simple method which is also quite general
since it makes no simplifying assumptions[ In the following sections\ the constitutive
assumptions based on single crystal kinematics are recalled\ and the implicit inte!
gration scheme is described[ Predictions of texture evolution and stressÐstrain response
using the model for materials with FCC and HCP crystal structure are then presented[

In addition to the simulations of bulk deformation processes mentioned earlier\
polycrystal models have also been applied at much smaller length scales "Dawson et
al[\ 0883# for detailed studies of polycrystal deformations[ In these applications "e[g[
Becker\ 0880b^ Bronkhorst et al[\ 0881^ Sarma and Dawson\ 0885a^ Beaudoin et al[\
0885#\ the _nite element discretization is at the aggregate level\ with several elements
comprising each crystal[ These simulations capture the inhomogeneities in defor!
mation\ not only across di}erent crystals\ but also within each crystal "Sarma et
al[\ 0887#[ Use of the model presented here with such detailed simulations at the
microstructural scale will allow the computation of internal residual stresses in the
polycrystal due to single crystal anisotropy and neighbor constraints[

A description of the notation used in the paper follows[ Bold face lower and upper
case letters indicate vectors "e[g[ b# and second!order tensors "e[g[ L#\ respectively[
Fourth!order tensors are denoted by upper case bold calligraphic letters "e[g[ L#[ A
superimposed dot denotes material time derivative of that quantity[ A superscript −0
indicates the inverse of a tensor\ superscript T indicates its transpose\ and superscript
−T indicates the transpose of its inverse[ The inner product of two tensors is expressed
as A =B and equals AijBij\ with summation implied over repeated indices[ The dyadic
product of two tensors is expressed as A&B and results in a fourth!order tensor
whose ijkl component is given by AijBkl[ The product of two tensors A and B is
denoted by AB\ with ij component AikBkj[ The result of a fourth!order tensor L
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operating on a second order tensor A is indicated by LðAŁ\ and leads to a second!
order tensor with ij component LijklAkj[ The second!order identity tensor is written
as 0\ with ij component given by the Kronecker delta dij[ The symmetric fourth!order
identity tensor is written as I\ with ijkl component 0

1
"dikdjl¦djkdil#[

1[ Description of constitutive model

Consider _rst the kinematics of a single crystal deforming from initial "or reference#
con_guration B9 to deformed con_guration B\ as shown in Fig[ 0[ Following the
approach of Lee "0858# and other researchers "Rice\ 0860^ Peirce et al[\ 0872^ Maniatty
et al[\ 0881^ Kalidindi et al[\ 0881# the deformation gradient F is written using a
multiplicative decomposition as\

F�F�Fp\ detFp � 0\ detF�× 9\ "0#

where Fp is the plastic deformation gradient due to shearing along crystallographic
slip planes\ and F� is the elastic deformation gradient which includes any rigid rotation
of the lattice[ The plastic deformation by slip is assumed to occur at constant volume\

Fig[ 0[ Schematic of single crystal kinematics showing multiplicative decomposition[
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with the orientation of the lattice remaining unchanged[ Rewriting eqn "0# in rate
form leads to the following expression for the velocity gradient\

L�FþF−0 �Fþ�F�−0¦F�FþpFp−0F�−0 "1#

The plastic part of the deformation gradient F p is used to de_ne a plastic velocity
gradient L	p\ which is written relative to the intermediate con_guration B	 as

L	p �FþpFp−0 �s
a

g¾a"s½a
&m½ a# �s

a

g¾aP	a "2#

The plastic velocity gradient is expressed as a linear combination of the slip system
shearing rates g¾a[ The dyadic product of the slip direction s½a with the slip plane normal
vector m½ a gives the Schmidt orientation tensor P	a in the intermediate con_guration[

Constitutive assumptions must now be prescribed for the elastic and plastic defor!
mation of the material[ The elastic behavior is modeled using a constitutive law
written in the intermediate con_guration\

T��LðE�Ł "3#

where L is a fourth!order elasticity tensor[ The strain measure is given by the Green
strain tensor E�\ de_ned in terms of the elastic deformation gradient F� and the
second!order identity 0 as

E�� 0
1
"F�TF�−0# "4#

The corresponding stress measure which is elastic work conjugate to the Green strain
is the second PiolaÐKircho} stress T�\ given in terms of the Cauchy stress T by

T�� "detF�#F�−0TF�−T "5#

The plastic deformation is modeled using a viscoplastic constitutive law to relate
the shearing rate on each slip system g¾a to its resolved shear stress ta[ The use of a rate
dependent model avoids the di.culty with possible non!uniqueness in choosing the
active slip systems "Pan and Rice\ 0872^ Asaro and Needleman\ 0874#[ The shearing
rate is given by "Hutchinson\ 0865^ Pan and Rice\ 0872#

g¾a � g¾9 b
ta

t¼a b
0
m

sign "ta# "6#

where m is the rate sensitivity parameter\ g¾9 is a reference rate of shearing\ and t¼a is
the critical resolved shear stress "hardness# on the slip system[ The resolved shear
stress is the component of the traction along the direction of slip\ and is related to the
Cauchy stress through the Schmidt tensor as

ta � "Tma# = sa �T = "sa
&ma# "7#

It is advantageous to rewrite the resolved shear stress in terms of the Schmidt tensor
in the intermediate con_guration as
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ta � "F�TF�T�# = "s½a
&m½ a# � "C�T�# =P	a "8#

The elastic deformation gradient tensor F� contains information related to the
reorientation of the crystal lattice as well as the elastic strain[ Equations "1# and "2#
can be combined to provide an expression for the evolution of F�\

Fþ��LF�−F�L	p "09#

The slip system hardness values are assumed to evolve with deformation according
to a modi_ed Voce!type hardening law "Kocks\ 0865^ Mathur and Dawson\ 0878#

t¼= a �H9 6
t¼s"g¾�#−t¼a

t¼s"g¾�#−t¼a
i 7 g¾� "00#

where the hardening rate H9 and the initial hardness t¼a
i are material parameters\ and

g¾� is the net shearing rate on all the slip systems\

g¾��s
a

=g¾a = "01#

The saturation value of the hardness t¼s based on the current slip system state is given
by

t¼s"g¾�# � t¼s9 0
g¾�
g¾s1

m?

"02#

where t¼s9
\ g¾s and m? are material parameters[

2[ Integration procedure

Given a deformation history in the form of the velocity gradient L\ the task now is to
integrate the evolution equations "09# and "00#\ in order to determine the orientation\
hardness\ strain and stress in the crystal at any time[ The deformation history is
discretized into a number of time increments[ The problem can be stated as follows]

Knowing F� and t¼a at time t\ and given L at time t¦Dt\ _nd F� and t¼a at time
t¦Dt[

The small values of rate sensitivity typical for metals make the evolution equation
"09# highly non!linear[ An implicit scheme is used in the computation of F�"t¦Dt#\
while keeping the value of t¼a _xed at its current value[ This is expressed as

F�t¦Dt �F�t¦DtLt¦DtF�t¦Dt−DtF�t¦Dt 0sa g¾a
t¦DtP	a1 "03#

The known quantities in eqn "03# are F�t\ Lt¦Dt and P	a[ Using eqn "6#\ the slip system
shearing rates are given by
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g¾a
t¦Dt � g¾9 0

ta
t¦Dt

t¼a
t 1 b

ta
t¦Dt

t¼a
t b

0
m

−0

"04#

It is noted again that the hardness is assumed to remain constant over the time
increment\ and hence its value at time t is used in the above equation[ The resolved
shear stress is obtained from eqn "8#\

ta
t¦Dt � "C�t¦DtT�t¦Dt# =P	a "05#

where C�t¦Dt and T�t¦Dt can be expressed in terms of the unknown F�t¦Dt using eqns "8#\
"4# and "3#\

C�t¦Dt �F�T
t¦DtF�t¦Dt

E�t¦Dt �
0
1
"C�t¦Dt−0#

T�t¦Dt �LðE�t¦DtŁ "06#

The use of an implicit method ensures stability\ but requires an iterative approach
to solve for F�t¦Dt using eqn "03#[ A NewtonÐRaphson scheme was deemed to be the
most e.cient method for this purpose[ Equation "03# is rewritten in the form of a
residual\ which at the kth iteration is given by

Rk �F�k−F�t−DtLF�k¦DtF�k 0sa g¾a
kP	a1 "07#

Note here that the subscript k has been introduced for quantities which change with
iterations\ and the subscript t¦Dt has been dropped from all variables for
convenience[ The value of F�k¦0 is then computed based on the Newton method as

DRk"F�k#ðDF�kŁ �−Rk "08#

F�k¦0 �F�k¦DF�k "19#

Here DRk"F�k# is a fourth!order tensor representing the derivative of Rk with respect
to F�k[ This derivative is rather complicated to evaluate\ and it is more convenient to
compute the directional derivative resulting from DRk"F�k# operating on DF�k[ The
details of this derivation are given in Appendix A\ with the result that

DRk"F�k#ðDF�kŁ �DF�k−DtLDF�k¦DtDF�k 0sa g¾a
kP	a1¦DtF�kDG�k "10#

DG�k �Sk ðDT�kŁ "11#

Sk �s
a

dg¾a
k

dta
k

"P	a
&P	a# "12#

DT�k � "DF�T
kF�k¦F�T

kDF�k#T�k¦C�kLðDF�T
kF�kŁ "13#
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Combining eqns "08# and "10#Ð"13# provides a system of equations for the nine
unknown components of DF�k[ The complete expressions for the Jacobian matrix and
the residual are given in Appendix B[ Knowing DF�k\ one can compute the next
approximation F�k¦0\ and repeat this procedure until the L1!norm of the residual >Rk>
becomes smaller than some prescribed tolerance[ The initial guess for F� is taken to
be its value at the beginning of the time step[ During the course of the Newton
iterations\ it is possible for the method to diverge\ especially with larger time steps[
Following the approach used by Maniatty et al[ "0881#\ a scheme to limit the change
in F�k whenever >Rk> increases relative to the previous iteration is employed to aid
convergence[ The steps used by each iteration of the Newton method are as follows]

0[ Compute residual Rk

1[ Compute >Rk>
2[ If >Rk>³ tolerance\ exit the loop

If >Rk>× >Rk−0> and k× 0\ scale back F�k

F�k � 0
1
"F�k¦F�k−0#

and go back to step 0
If >Rk>³ >Rk−0> or k�0\ continue

3[ Compute Jacobian and solve for DF�k
4[ Compute F�k¦0 �F�k¦DF�k

The above procedure does not automatically ensure that the determinant of F� equals
that of the deformation gradient F[ For this reason\ it was necessary to scale the
components of F�[ The evolution equation for the determinant of F� is given by

d
dt

"ln J# � tr "L# "14#

where J�det "F# and L is the velocity gradient[ This equation is integrated using a
fourth!order RungeÐKutta scheme "Press et al[\ 0889# to compute the value of ln J\
and hence det "F#[ To perform the scaling\ the converged value of F� is multiplied by
the cube root of the ratio det "F#:det "F�#[

Upon obtaining F�t¦Dt\ the hardness is updated using eqn "00#\

t¼a
t¦Dt � t¼a

t ¦H9 6
t¼s"g¾�t¦Dt#−t¼a

t

t¼s"g¾�t¦Dt#−t¼a
i 7 g¾�t¦Dt "15#

with t¼s"g¾�t¦Dt# being computed according to eqn "02#[
Once F� has been determined\ its polar decomposition is used to compute the

rotation R� of the crystal lattice during the deformation\

F��R�U� "16#

In the integration scheme discussed above\ only the integration of F� is carried out
using an implicit method[ The hardness is kept constant through the Newton iter!
ations\ and is updated using an explicit step upon convergence of F�[ While this is the
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procedure used for all the results shown in the next section\ a scheme involving fully
implicit integration of both F� and t¼a has also been tested[ In this method\ _rst t¼a is
kept _xed at its best estimate while solving for F�\ followed by implicit integration of
t¼a with the updated value of F�[ These iterations are repeated until both F� and t¼a

converge to the required tolerance[ It was found that the results from this fully implicit
method were not signi_cantly di}erent from those obtained with explicit update of
the hardness[ Since several sets of iterations are required by the fully implicit scheme\
the simulation time for the two level iterative scheme was quite large while the
corresponding gain in accuracy was minimal[

3[ Numerical results

The integration procedure described in the previous section has been used to
simulate the texture evolution and stressÐstrain response of an aggregate of 0999
crystals with initially uniform distribution of orientations[ The initial texture is
depicted in Fig[ 1 in the form of ð099Ł and ð000Ł pole _gures[ Crystal orientations
in the form of Euler angles "Kocks\ 0877# were processed using the DIOR program
of popLA "Kallend et al[\ 0880#\ and the resulting contours were subjected to 4>
Gaussian smoothing in order to generate the pole _gures[ The velocity gradient of
each crystal was assumed to be the same as the applied velocity gradient under the
extended Taylor hypothesis "Taylor\ 0827^ Asaro and Needleman\ 0874#[ The average
of the crystal stresses was taken to be the stress in the polycrystalline aggregate[

Numerical simulations were carried out with two di}erent crystal structures[ For
the _rst set of runs\ the crystals were assumed to be face centered cubic\ deforming
on the "000# ð009Ł slip systems\ with material parameters for 0099 aluminum "Mathur

Fig[ 1[ ð099Ł and ð000Ł pole _gures in equal area projection showing initial texture of the crystals[ Contour
levels represent multiples of random texture intensity[
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and Dawson\ 0878# shown in Table 0[ The tolerance for convergence of the Newton
iterations was taken to be 09−01[ The elastic response was assumed to be isotropic\ so
that the elasticity tensor takes the form

L� 1mI¦l"0& 0#

where m and l are Lame�|s constants\ and I and 0 are the symmetric fourth!order and
second!order identity tensors\ respectively[

The e}ect of the time step was examined _rst by deforming the crystals in tension
with a velocity gradient "in s−0# given by

ðLŁ � &
0[9 9[9 9[9

9[9 −9[4 9[9

9[9 9[9 −9[4'
using three di}erent time increments[ Deformation to a strain of 1[9 was simulated
using time steps of 9[94\ 9[0 and 9[990[ Figure 2 shows the von Mises e}ective stress
normalized by the initial slip system hardness as a function of e}ective strain for the
three time steps[ It is seen that the stressÐstrain response predicted for the two smaller
time increments is very similar\ with the largest time step leading to greater deviation[
The di}erence between the curves is larger at smaller values of strain\ but becomes
minimal as the stress reaches its saturation value due to the nature of the evolution
equation for the hardness "Maniatty et al[\ 0881#[ The textures predicted using di}er!
ent time steps are all very similar\ as illustrated in Fig[ 3[ The ð099Ł pole _gures in a
projection normal to the tensile axis obtained using Dt�9[990 and 9[94 show very
little di}erence[

The model presented here has been compared with a rigid!viscoplastic model based
on the Taylor hypothesis "Mathur and Dawson\ 0878#\ in which the elastic response
of the material is neglected[ The stressÐstrain response from the two models is shown
in Fig[ 4\ with very similar predictions by the two models[ The elasto!viscoplastic
model predicts the initial elastic response\ whereas the rigid!viscoplastic starts from a

Table 0
Parameters for the polycrystal simulations with FCC material

Parameter Value Units

m 14[2 GPa
l 43[3 GPa
m 9[94
g¾9 0[9 s−0

H9 47[30 MPa
t¼a

i 16[06 MPa
ts9

50[7 MPa
g¾s 4[9×0909 s−0

m? 9[994
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Fig[ 2[ E}ective stress normalized by initial hardness plotted against e}ective strain for tensile deformation
simulated using di}erent time increments[

Fig[ 3[ ð099Ł pole _gures in equal area projection showing texture after tensile deformation predicted using
di}erent time increments[
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Fig[ 4[ E}ective stress normalized by initial hardness plotted against e}ective strain for tensile deformation
simulated using two di}erent models[

non!zero stress in response to the instantaneous applied strain rate[ The textures from
the two models are compared in Fig[ 5\ and the di}erences between the ð099Ł pole
_gures are negligible[

Fig[ 5[ ð099Ł pole _gures in equal area projection showing texture after tensile deformation predicted using
two di}erent models[
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The polycrystalline aggregate was also deformed in plane strain compression using
a velocity gradient "in s−0#

ðLŁ � 9[7559143 &
0[9 9[9 9[9

9[9 9[9 9[9

9[9 9[9 −0[9'
with the leading factor chosen to give a unit e}ective strain rate[ Deformation to a
strain of 1[9 was simulated using a time increment of 9[90[ The stressÐstrain response
from the elasto!viscoplastic and rigid!viscoplastic models showed results similar to
the case of deformation in tension[ The texture predictions in the form of ð000Ł pole
_gures in a projection normal to the compression axis are plotted in Fig[ 6\ and show
typical rolling texture components predicted by a Taylor simulation "Hirsch and
Lu�cke\ 0877^ Sarma and Dawson\ 0885b#[

In order to highlight the capability of the model to capture elastic e}ects\ the model
has been used to simulate a process where the aggregate of crystals is deformed _rst
in tension to a strain of 9[0\ at which point the velocity gradient is instantaneously
reversed[ When the strain becomes 9[91\ the deformation is again reversed to tension[
The resulting stressÐstrain response is shown in Fig[ 7\ and clearly indicates the elastic
unloading and the subsequent plastic deformation during load reversal[ The increase
in yield stress due to hardening of slip systems is also apparent[

The results presented so far have been for a material with FCC crystal structure[
Applicability of the elasto!viscoplastic model to other crystal types is demonstrated
through an example using HCP crystals[ Single crystal of zirconium with di}erent
initial orientations were deformed in plane strain compression to a strain of 1)[
Deformation was assumed to occur on the three "090Þ9#ð01Þ09Ł prismatic and twelve
"090Þ0# ð001Þ2Ł pyramidal slip systems "Turner et al[\ 0884#[ The slip system hardness
values were assumed to remain constant at 009 MPa and 199 MPa for the prismatic
and pyramidal systems\ respectively\ since the total strain is small[ Rate sensitivity m

Fig[ 6[ ð000Ł pole _gures in equal area projection showing texture after plane strain compression predicted
using two di}erent models[
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Fig[ 7[ Deviatoric stress along tensile:compressive axis normalized by initial hardness plotted against
e}ective strain from simulation of reverse loading[

was taken to be 9[94[ Five elastic constants are needed to describe the elastic response
of hexagonal crystals "Hertzberg\ 0878#[ The anisotropic elastic response of zirconium
was modeled using the constants shown in Table 1 "Fisher and Renken\ 0850#[ The
resulting stressÐstrain curves for three crystals are shown in Fig[ 8[ The e}ect of
anisotropy in the elastic response is clearly seen from the slopes of the linear portion[
The anisotropy in properties will have signi_cant in~uence on the residual stress

Table 1
Elastic constants for zirconium

Parameter Value Units

c00 032[4 GPa
c01 61[4 GPa
c02 54[3 GPa
c22 053[8 GPa
c33 21[0 GPa
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Fig[ 8[ E}ective stress normalized by initial hardness plotted against e}ective strain for three zirconium
crystals at di}erent orientations assuming anisotropic elasticity[

distribution in a polycrystalline aggregate[ In contrast\ the stressÐstrain response
obtained assuming isotropic elasticity "with m�21[0 GPa and l�61[4 GPa# is
plotted in Fig[ 09 and shows similar behavior for the three crystals up to the yield
point[

4[ Conclusions

A novel integration scheme for modeling the elasto!viscoplastic response of poly!
crystalline materials is presented and applied to model texture evolution and stressÐ
strain response[ The model is based on multiplicative decomposition of the crystal
deformation gradient into plastic and elastic parts[ The elastic deformation gradient
also incorporates the rigid rotation of the crystal[ It is shown that prescribing the
deformation of the crystal in terms of its velocity gradient leads to an expression for
the evolution of the elastic deformation gradient[ This form is well!suited for use in a
velocity based _nite element formulation\ where the velocity gradient at each inte!
gration point is known\ and the stress must be evaluated[ The form of the equation
is simple and direct\ since the integration of this equation provides information about
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Fig[ 09[ E}ective stress normalized by initial hardness plotted against e}ective strain for three zirconium
crystals at di}erent orientations assuming isotropic elasticity[

the elastic strain as well as the reorientation of the crystal[ An implicit scheme to
integrate the evolution equation for the elastic deformation gradient has been
described[ The backward Euler update utilizes the NewtonÐRaphson method to allow
for stable and e.cient integration even with large time steps[

Numerical examples have been presented to demonstrate the general nature of the
model and its applicability to various crystal types[ The texture predictions using the
elasto!viscoplastic model do not di}er signi_cantly from those obtained using a rigid!
viscoplastic model which ignores elasticity[ This is as expected\ since the reorientation
of crystals is a consequence of plastic deformation[ The stressÐstrain behavior also
shows little di}erence except in the initial elastic portion[ If the interest is in large
strain texture and stress response\ then ignoring the elastic component is a valid
assumption[ However\ in situations which require the elastic component\ such as
prediction of residual stresses or springback during sheet forming applications\ the
model presented here would prove to be a useful tool[
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Appendix A] Direction derivative

The residual at the kth iteration of the Newton method is given by eqn "07#[
Expressing Rk¦0 about F�k¦0 in a Taylor series\ and neglecting higher order terms
yields

Rk¦0 �Rk¦DRk"F�k#ðF�k¦0−F�kŁ "17#

Setting the left!hand!side to zero leads to eqn "08#[ Applying the rules of tensor
di}erentiation "Gurtin\ 0870#\ and recognizing that F�t\ L and P	a are independent of
F�k\ the directional derivative is given by

DRk ðDF�kŁ �DF�k−DtLDF�k¦DtDF�k 0sa g¾a
kP	a1¦DtF�k 0sa P	aDg¾a

k ðDF�kŁ1 "18#

Using eqn "04#\ the last term in the above expression involving the derivative of g¾a
k

may be written as

DG�k �s
a

P	aDg¾a
k ðDF�kŁ

�s
a

P	a
dg¾a

k

dta
k

Dta
k ðDF�kŁ

�s
a

P	a
g¾9

mt¼a
t b

ta
k

t¼a
t b

0
m

−0

Dta
k ðDF�kŁ "29#

The derivative with respect to the resolved shear stress can be obtained from eqns
"05# and "06#[ Writing ta

k as a function of F�k\

ta
k � ""F�T

kF�k#Lð" 0
1
#"F�T

kF�k−0#Ł# =P	a "20#

where L is the fourth!order elasticity tensor\ the directional derivative is computed
to be

Dta
k ðDF�kŁ � ""DF�T

kF�k¦F�T
kDF�k#Lð" 0

1
#"F�T

kF�k−0#Ł# =P	a

¦""F�T
kF�k#Lð" 0

1
#"DF�T

kF�k¦F�T
kDF�k#Ł# =P	a
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Making use of eqns "3# and "4#\ and the symmetries of the elasticity tensor L\ the
above directional derivative can be rewritten as

Dta
k ðDF�kŁ �DT�k =P	a "21#

where

DT�k � "DF�T
kF�k¦F�T

kDF�k#T�k¦F�T
kF�kLðDF�T

kF�kŁ "22#

Substituting eqn "21# into eqn "29# provides a compact expression for DG�k\

DG�k �s
a

P	a
dg¾a

k

dta
k

"DT�k =P	a# "23#

which can be rewritten as

DG�k � 6sa
dg¾a

k

dta
k

P	a
&P	a7 ðDT�kŁ �Sk ðDT�kŁ "24#

where DT�k is de_ned in eqn "22#[

Appendix B] Jacobian for the NewtonÐRaphson method

In order to set up a system of equations for computing the nine components of
DF�k\ it is necessary to form a Jacobian matrix of coe.cients[ To this end\ it is desirable
to rewrite eqn "08# in indicial notation as

DijklDF�kl �−Rij "25#

where the subscript k no longer denotes iteration number\ but ranges from 0Ð2 along
with the other indices[ From eqn "10#\

DijklDF�kl �DF�ij−DtLimDF�mj¦DtDF�imL	p
mj¦DtF�imDG�mj "26#

The contribution from the _rst three terms on the right!hand!side of the above
equation can be written as

D9
ijklDF�kl �DF�ij−DtLimDF�mj¦DtDF�imL	p

mj "27#

� dikdjlDF�kl−DtLikdjlDF�kl¦DtDF�klL	
p
ljdik "28#

so that

D9
ijkl � dikdjl−DtLikdjl¦DtdikL	

p
lj "39#

Contribution from the last term on the right!hand!side of eqn "26# is given by

DtF�ipDG�pj �DtF�ipSpjlnDT�ln

From eqn "13#\ it is seen that the contribution from DT�k can be separated into three
terms[ Taking each term in turn\
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D0
ijklDF�kl �DtF�ipSpjlnDF�klF�ktT�tn "30#

D1
ijklDF�kl �DtF�ipSpjmnF�kmDF�klT�ln "31#

D2
ijklDF�kl �DtF�ipSpjmnC�mqLqnlsDF�klF�ks "32#

Finally\ the components of the Jacobian are obtained using eqns "39#Ð"32# by the
following addition

Dijkl �D9
ijkl¦D0

ijkl¦D1
ijkl¦D2

ijkl "33#
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