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Noncollinear magnetism in substitutionally disordered
face-centered-cubic FeMn

T. C. Schulthess,a) W. H. Butler, and G. M. Stocks
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

S. Maat and G. J. Mankey
University of Alabama, Tuscaloosa, Alabama 35487-0209

We use first principles electronic structure techniques to study the magnetic structure ofg-FeMn
using the Korringa–Kohn–Rostocker multiple-scattering approach in conjunction with an extension
of the single site coherent potential approximation to noncollinear magnetic structures. Our results
show that the noncollinear 3Q and 2Q structures are both stable solutions with the former being
slightly lower in energy. The collinear solutions could only be converged in a traditional
spin-polarized calculation and are unstable in a noncollinear treatment. ©1999 American Institute
of Physics.@S0021-8979~99!59008-7#
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I. INTRODUCTION

The magnetic structure ing-FeMn has been the subje
of numerous studies over the last 4 decades. Three mo
for the spin structure have been proposed1 and are displayed
in Fig. 1. However, up to now, it has not been possible
unambiguously determine the ground state magnetic st
ture or even to exclude one of the three models. Neut
diffraction, the method that is usually used to determ
magnetic order, cannot distinguish between the noncollin
3Q states~see Fig. 1! and a collection of domains whic
individually are in a collinear 1Q state.1 Mössbauer trans
mission spectra indicate that the magnetic structure is ei
3Q or 2Q.2 Inelastic neutron scattering measurements, ho
ever, support the collinear 1Q spin model.3 The difficulty
common to all these experiments is the rather involved
indirect data evaluation. A better theoretical understand
of the magnetic structure in FeMn would therefore be de
able to clarify some the of these ambiguities.

The theoretical situation, however, is not much clear
Work by Cade and Young4 indicates that collinear spin struc
tures in g-Mn are unstable. Recent first principle
calculations5 for face-centered-cubic~fcc! Fe show that the
3Q state is the ground state for small lattice constants but
large volumes, such as the experimental one, the lowes
ergy states are collinear. For the alloy, Hirai and Jo6 argued
within the rigid band approximation, that the magnetic stru
ture should be collinear for Fe concentrations above 20 at

In the present article we report on a first principles
vestigation of g-FeMn. The calculations are performe
within the local spin density approximation to density fun
tional theory and we use the layer version of the Korring
Kohn–Rostoker multiple scattering approach~LKKR !.7 We
show how the spin-polarized version of the coherent pot
tial approximation~CPA!,8 which successfully reproduce
configurationally averaged quantities such as magnetic
ments in random binary alloys, can be extended to non
linear magnetic systems. The method is applied to solid

a!Electronic mail: schulthesstc@ornl.gov
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lution Fe–50 at. % Mn on an fcc lattice to investiga
stability and relative energies of the proposed magn
structures.

II. CPA FOR ARBITRARY MAGNETIC STRUCTURES

The essence of the KKR–CPA theory is the replacem
of the alloy by an effective material~CPA medium! with the
following property: If one of its atoms is replaced by eith
one to the alloy components, no further scattering occurs
average. While the substitutionally disordered alloy is n
periodic, the CPA medium is, which in turn reduces the co
putational complexity of the problem. Mathematically th
requires the solution of the following equations in spin a
angular-momentum representation,9

(
a

t i ,a~e!ci ,a5t i ,CPA~e!, ~1a!

t i ,a~e!5@t i ,CPA
21 ~e!1mi ,a~e!2mi ,CPA~e!#21, ~1b!

t i ,CPA~e!5
1

V E
V

@mi ,CPA~e!2G~k,e!#21dk, ~1c!

wherea andi label the species and the lattice site in the u
cell, respectively.m5t21 denotes the inverse single-sitet

FIG. 1. Three simplest antiferromagnetic configurations in an fcc lattic
2 © 1999 American Institute of Physics
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matrix, t is the scattering path operator, andG the usual
KKR structure constant.9 Note that, in contrast to the spin
polarized case, the general noncolliear treatment invo
operators in Eqs.~1a!–~1c! which are not block diagonal in
the spin indices. The underlying assumption for the treatm
of noncollinear magnets within the atomic sphe
approximation10 is that inside an atomic sphere the magne
zation direction is constant. A local frame of reference c
therefore be found, in which the charge density is block
agonal in the spin index. Thus, ifu(u,f) is the transforma-
tion in spin space that corresponds to the real space tran
mation between local and global frame of reference, we h

S r11 r12

r21 r22
D 5u~u,f!†S r↑8 0

0 r↓8
D u~u,f!,

where the prime denotes quantities in the local frame of
erence. We are now ready to formulate the procedure
calculating the electronic structure of substitutionally dis
dered alloys with possibly noncollinear orientation of ma
netic moments. We start with a set of local frames, de
mined by their polar angles (u i ,a ,f i ,a), and spherically
symmetric potentials given in these local frames as up-~↑!
and down-spin~↓! contributions,ui ,a8s5(↑,↓)(r ). With these
potentials the regular and irregular solutions,Zi ,a8s,l(r ) and
Ji ,a8s,l(r ), respectively, and the single-sitet matricest i ,a8s,l are
determined from the atomic Schroedinger equation in
local frame. Thet matrices are then transformed into th
global frame, in which Eqs.~1a!–~1c! are solved and the
resulting scattering path operators are transformed back
the local frames using

t i ,a8 5u~u i ,a ,f i ,a!t i ,au~u i ,a ,f i ,a!†.

Note that in generalt i ,a8 is not block diagonal in spin indices
The charge density is calculated in these local frames in
usual way, i.e., from the trace of the imaginary part of t
Green function,G(r ,e),

@r i ,a8 ~r !#s1 ,s2
52

1

p E
e
@Gi ,a8 ~r ,e!#s1 ,s2

de, ~2!

with

@Gi ,a8 ~r ,e!#s1 ,s2
52(

L
Zi ,a

8s1 ,L
~r ,e!Ji ,a

8s1 ,L
~r ,e!ds1 ,s2

1 (
L1 ,L2

$Zi ,a
8s1 ,L1~r ,e!

3@t i ,a8 ~e!#L1 ,s1 ,L2s2
Zi ,a

8s2 ,L2~r ,e!%,

where we have introducedL5( l ,m) and

Fi ,a
s,L~r ,e!5Fi ,a

s,l ~r ,e!* YL~r /r !

for F5Z andF5J, respectively.
The new averaged direction of the magnetization of s

ciesa on sitei is determined by the local moment,

mi ,a5E (
s1 ,s2

@r i ,a8 #s1 ,s2
ss1 ,s2

dr,
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wheres5(sx ,sy ,sz) are the Pauli matrices. This define
the angles of new local frames (u i ,a

new,f i ,a
new) in which the

charge density is taken to have the formr i ,a,s5(↑,↓)
new that al-

lows the determination of the new potential to start the n
iteration. This procedure can be repeated until se
consistency is attained, i.e., until the output potentials a
angles are equal to their respective input values.

Similarly to the case of pure systems, the procedure
scribed above implicitly assumes that the local moments
aligned with the local magnetic fields. The algorithm w
therefore only give correct answers for states in which
directions of the input potentials and the output charge d
sity coincide and is therefore only adequate to determ
fixed points in magnetic configuration as is the case in
states studied below.

III. RESULTS FOR fcc FeMn

With the method described in Sec. II, we are now in
position to investigate the different magnetic states that h
been proposed for fcc FeMn. The calculations are perform
at the experimental lattice constant (a53.63 Å). Within the
LKKR–CPA formalism which we use here, the magne
unit cell of the noncollinear 2Q and 3Q structures can be
composed from two~001! layers each having two sites in it
two-dimensional~2D! periodic unit cell. These layers ar
then repeated in the~001! direction using the layer doubling
algorithm described in Ref. 7. In order to determine ene
differences accurately, all calculations are performed w
the same basis.11

The first important result of the calculations is concern
with the stability of the self-consistent solutions. The colli
ear solution could only be converged in a conventional sp
polarized mode where the moments are actually constra
to be collinear. When the resulting self-consistent potent
are introduced into the noncollinear calculation, small dev
tion from the collinear alignment of the moments, caused
example by numerical noise, would drive the system aw
from its initial state into either the 3Q or the 2Q state. Both
noncollinear states, however, are stable in the sense tha
moment could be perturbed away from the orientation of
self-consistent field~SCF! solution and then would converg
back to the original state.

The magnetic moments and relative energy differen
between different magnetic configurations are summarize
Table I. Two collinear states could be converged. They dif
in the relative orientation of the average magnetic mome
per site, one being ferromagnetic while the other is antif

TABLE I. Magnetic moments inmB and energies in meV of FeMn in
different magnetic configurations. The minus sign ofmFe indicates that Fe
and Mn have opposite magnetic moments on the same sublattice. FM
AFM refers to, respectively, the ferro and antiferromagnetic alignmen
the average moments on different sites.

1Q-FM 1Q-AFM 2Q 3Q

mMn 1.80 1.58 1.85 1.91
mFe 21.23 21.48 2.00 2.05
Energy 73.7 85.2 5.6 0.0
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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romagnetic. The most important difference between collin
and noncollinear solutions with respect to the moments
that for both collinear states the Fe and Mn moments alig
opposite directions on the same sublattice while in the n
collinear states the Fe and Mn moments are parallel. N
that this is a result of the calculation, not a constraint, si
the noncollinear CPA formalism does not require mome
of different species on a given sublattice to be collinear.

Clearly the relative energy difference indicate that t
collinear solution is not the ground state. More importan
the issues of stability and the ferromagnetic alignment in
collinear state with lower energy indicate strongly that t
FeMn is in a noncollinear magnetic state. The energy diff
ence between the two noncollinear states is relatively sm
with the 3Q being more favorable. The difference, howev
which corresponds to'60 K, is small enough that the sys
tems may actually occupy both states. This would expl
why the Mössbauer study of Kennedy and Hicks2 could not
uniquely identify the ground state configuration.

IV. CONCLUSIONS

We have extended of the KKR–CPA method to nonc
linear magnetic systems. The application of the techniqu
FeMn clearly indicates the the magnetic ground state of
alloy is noncollinear. In fact, collinear states could only
found in a conventional spin-polarized calculations with t
lowest energy spin-polarized state having a finite aver
magnetization which clearly contradicts the experiment. T
stable noncollinear states are found, where the 3Q has
Downloaded 12 Mar 2002 to 128.219.47.178. Redistribution subject to A
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slightly lower energy than the 2Q. The energy difference is
however small enough so that at room temperature b
states may be occupied.
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