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Constrained density functional theory for first principles spin dynamics
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Constrained density functional theory is used to formulate a theory of general noncollinear spin
systems which makes it possible to implement first principles spin dynamics in a manner that is
firmly grounded in density functional theory. At each time step, local constraining fields are
calculated from a self-consistent algorithm. In addition to discussing the conceptual basis of the
resulting constrained local moment model we illustrate the theory by explicit calculations for the
relative rotation of the corner and body center moments of bcc iron. ©1999 American Institute of
Physics.@S0021-8979~99!58508-3#
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I. INTRODUCTION

In a recent publication Antropovet al.1 proposed first
principles spin dynamics~SD! as a general theory of th
dynamics of individual magnetic moments in itinerant ma
nets. In SD nonequilibriumlocal momentsin a magnetic sys-
tem ~e.g., magnets above the Curie temperatureTc), evolve
from one time step to the next according to a classical eq
tion of motion. The instantaneous states, between which
classical Landau–Lifshitz equation evolves the system,
the effective field which drives their motion, are describ
by local spin density approximation~LSDA!.2 Thus, SD is
the analog, for the magnetic moment orientational degree
freedom, of first principles molecular dynamics for th
nuclear positional degrees of freedom.

Unfortunately, there is a fundamental problem with t
current formulation of SD. This results from the fact th
standard LSDA is a theory of the ground state and, for sp
polarized systems, there are typically only a few magne
configurations that are extrema of LSDA. These corresp
to highly ordered moment configurations, e.g., ferromagn
and antiferromagnetic. An arbitrary noncollinear state, s
as may be encountered during a simulation of the param
netic state, does not generally correspond to a LSDA ex
mum and is therefore not well defined.

II. THE CONSTRAINED LOCAL MOMENT MODEL

First principles SD is based on the adiabatic approxim
tion for the transverse spin degree of freedom1,3 to define a
magnetic moment on each lattice site, which points in
directionei when averaged over times long compared to
intersite hopping time.4 A distribution of such moments de
fines an orientational configuration$ei%, which is the instan-
taneous states of spin dynamics. These then evolve from
time step to the next according to a Landau–Lifsh
equation.2

a!Electronic mail: v6f@gmsis.ms.ornl.gov
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In general, the distribution of moments at a particular S
time step will be noncollinear. For example, a noncolline
state in which the distribution of moments is more-or-le
random may be appropriate to Fe well above it’s Curie te
perature. As already mentioned, the problem is that th
states are not extrema of LSDA.6 However, they can be
made so by using constrained density functional theor5,6

and the introduction of local, cell dependent, constrain
field the purpose of which is to force the local moments
point along the specific directions appropriate to the curr
time step of SD. The resulting constrained local mom
~CLM! states now form a proper basis for SD. The proble
at hand now is to find a sufficiently general algorithm
calculate the constraining fields.

For a noncollinear system the Kohn–Sham equati
take the form

F S \

2m
¹21e D 1̂2V̂effGĜ~r ,r 8;e!51̂d~r2r 8!, ~1!

r̂~r !52
1

pE2`

`

deĜ~r ,r ;e! f ~e2m!, ~2!

V̂eff5S Vext1e2E dr 8
r~r 8!

ur2r 8u
1

dExc

dr~r !D 1̂

1S Bext1
dExc

dM ~r ! D •ŝ. ~3!

In Eq. ~2! r̂(r ) is the density matrix from which the charg
r(r )5Tr r̂(r ) and magnetizationM (r )5Tr ŝr̂(r ) can be
readily calculated. In these equationsÔ signifies a matrix in
232 spin space and Tr denotes a trace over spin. Fo
recent review of LSDA techniques as applied to noncollin
magnetic states see Sandratskii.7

To properly formulate SD within density functiona
theory, it is necessary to solve the LSDA equations subjec
an appropriate constraint
4 © 1999 American Institute of Physics
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E
V i

M i~r !3eidr50; ; i , ~4!

that ensures that the local magnetization has no compon
normal to the directions prescribed by$ei%. Such a constrain
can be introduced into LSDA by the method of Lagran
multipliers.5 A full description of how we introduce the con
straints and a derivation of a self-consistent algorithm
finding them will be described in a forthcoming article. He
we present a brief summary of the resulting CLM model t
highlights the important points and necessary formulas.

In the CLM model the specific orientational configur
tion is maintained by localtransverseconstraining fields tha
are obtained self-consistently. The generalized energy fu
tional in the presence of the constraining field takes the fo

Econ@r~r !;M ~r !;Bcon~r !#5Eint@r~r !;M ~r !;Bcon~r !#

1E dr M ~r !•Bcon~r !. ~5!

Here Eint is the internal total energy to be identified wi
E($ei%). The constraining fields are obtained from the co
dition

dEcon@r~r !;M ~r !;Bcon~r !#

dei
50, ; i . ~6!

Since the constraint in Eq.~4! is an integrated one, we hav
the luxury of choosing a functional form forBcon(r ) such
that

Bcon
i ~r !5ciBxc

i ~r !, ~7!

whereci is transverse to the local orientationci . Equations
~4!–~6! result in a practical formula for the constrainin
fields as follows. Let us assume we make an initial gues
the constraining fieldcin

i . Let us also assume the size of th
moment has already converged. Equation~6! then provides
us with the following iterative algorithm for finding an im
proved ~new! guess of the constraining field to be put in
the next iteration:

cnew
i 5cin

i 2~cin
i
•ei !ei2@eout

i 2~eout
i
•ei !ei #. ~8!

Thus, aseout
i converges to the constrained orientationei , cin

i

also converges toci , thereby determining the constrainin
field, Eq. ~7!.

III. CONSTRAINED LOCAL MOMENT STATES OF BCC
FE

In this section we investigate the nature of CLM sta
discussed above for a simple test case, namely, the rel
rotation of the moments associated with the corner and b
center sites in bcc Fe. Results are based on the locally
consistent multiple scattering~LSMS!8 method with an LIZ
of three-neighbor shells. While this is insufficient to giv
results that are fully converged with respect to LIZ size it
sufficient to illustrate the CLM model. The three-neighb
shell however becomes increasingly insufficient after 90°
rotation. The constraining field was iterated to se
consistency, along with the charge and magnetization d
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sity, using Eq.~8!. Converged charge and magnetization de
sities for ferromagnetic~collinear! Fe were used to initialize
the calculations and the constraining field was initialized
zero. We found that the constraining field converged rapi
@;10 self-consistent field~SCF! iterations#.

In Fig. 1 we show the dependence of the magnitude
the constraining field~top! and the total energy and magnet
moment~bottom! on the relative angleu in between the two
moments. The constraining field is zero for the ferromagne
configuration; this is expected since this corresponds t
unconstrained extrema. Close to the ferromagnetic stateBcon

shows a linear dependence onu in . This is consistent with Fe
being a ‘‘good’’ moment, quasi-Heisenberg, system close
the allowed ground states. The magnetic moment chan
little as a function ofu in and the total energy is quadratic fo
substantial deviations (;40°), again consistent with ap
proximate Heisenberg behavior.

Although the constraint imposed through Eqs.~4! and
~7! is an integral one it is profitable to examine the extent
which the local moment rotates rigidly. Clearly, if it doe
not, this brings into question the efficacy of the SD approa
Rigid rotation implies that the constraint implicit in Eq.~4!
appliesr point by r point, which in turn implies that, in a

FIG. 1. ~Top! Dependence of SCF constraining field on the angle betw
corner and body center moments (u in). ~Bottom! Dependence of the tota
energy and magnetic moment onu in .
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



i

n
e
f t

th
c

ar
rin-
ned
lgo-
or
ra-
ol-
xist.
tes

nd

or-
ov
p-
of
l
nd

-
po-
ak

ates
al
du-

n,
n-
ag.
ag-

the

4826 J. Appl. Phys., Vol. 85, No. 8, 15 April 1999 Újfalussy et al.
local frame of reference in which the axis of quantization
alongei , the x andy components of the magnetization (Mx

andM y) vanishr point by r point.
In Fig. 2 we show, for a 10° rotation, the radial depe

dence ofMx , M y andMz for a constraining field close to th
self-consistent one. Clearly the transverse components o
magnetization are small for allr . This is a further illustration
of the fact that Fe is a good moment system. Close to
nucleus we observe a small negative contribution to the lo
magnetizationMz which we believe is~antiparallel! s,p spin
polarization induced by the rotatedd spin polarization.

FIG. 2. Radial dependence of thex, y andz components~upper! andx and
y ~lower! of the magnetization appropriate to a relative rotation of 10° of
corner and body centered moments of bcc iron.
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IV. CONCLUSIONS

We have outlined a CLM model of general noncolline
spin systems which makes it possible to implement first p
ciples spin dynamics in a manner grounded in constrai
density functional theory. We have presented a general a
rithm for finding the local constraining fields responsible f
maintaining general noncollinear orientational configu
tions. We have presented results for nonequilibrium nonc
linear states in bcc Fe that demonstrate that CLM states e
Although not shown here, we have also obtained CLM sta
in large unit cell~up to 1024 atom! calculations of Fe having
randomly oriented moments. Similar calculations for Ni a
Co are ongoing.
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