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Abstract

The phase stability and elastic moduli of Cr2Nb are investigated by ®rst-principles calculations. Heats of formation are calculated
and compared for the three Laves phases (C15, C14, and C36). It is found that the C15 phase is the ground-state structure with the

lowest energy and the C36 phase is an intermediate state between C15 and C14. These three phases, however, are very close in
energy, indicating low stacking fault energies in this system. For the ground-state C15 phase, we calculate three elastic constants
from which the shear and Young's moduli are obtained. It is found that these calculated moduli are smaller than the experimental
values obtained from polycrystals. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

High-temperature structural materials [1] are criti-
cally needed for improving the thermal e�ciency and
reliability of energy conversion systems and advanced
engine systems. Of the potential candidate systems,
Laves phases are the most abundant yet least utilized
intermetallic phases. Because of some unique properties,
including high-melting temperatures, high-elevated
temperature strengths, reasonable oxidation resistance,
and excellent creep properties, Laves phases have an
unusual potential for a wide variety of structural applica-
tions. Unfortunately, this potential has not been exploi-
ted, largely because of their tendency for low temperature
brittleness, which is a common disadvantage of these
materials. At present, only limited scienti®c e�orts have
been focused on understanding and improving their brittle
fracture behavior.

Laves phases include the face-centered cubic (fcc) C15
(MgCu2), hexagonal C14 (MgZn2) and C36 (MgNi2)
structures [2]. Among the three Laves phases, the C15
structure is expected to show better deformability than
the other two phases because more independent slip
systems are allowed in its fcc-based structure [3]. Of
many C15 materials, Cr2Nb appears to be very promis-
ing as shown in the experimental studies [4,5].

Using ®rst-principles calculations, a fundamental
understanding of the electronic and mechanical proper-
ties of Laves phases is of paramount importance,
because such an understanding is essential for deriving
the scienti®c principles to improve their physical and
mechanical properties and for broadening the potential
structural applications of these intermetallics. As a ®rst
step to achieve this goal, we perform the total-energy
calculations to investigate their structural and elastic
properties. In Section 2, a brief description on the cal-
culational method and Laves structures is given. Results
and discussion are given in Section 3.

2. Calculation method and Laves structures

We performed total-energy calculations for the three
Laves phase structures of Cr2Nb using the full-potential
linearized augmented plane-wave (FLAPW) method [6]
within the local-density approximation (LDA). The
FLAPW method solves the local-density-functional
equations without any shape approximation to the
potential or charge density. The methodology has been
described previously [7]. The atomic positions are
relaxed by calculating Hellmann±Feynman forces acting
on the atoms.

In order to calculate heats of formation, we calcu-
lated the bulk properties of Nb and Cr. For bcc Nb, we
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obtained a lattice constant of 3.24 AÊ and a bulk mod-
ulus of 169GPa, in good agreement with the experi-
mental values of 3.30 AÊ and 170.2GPa, respectively.
For bcc Cr, a lattice constant of 2.79 AÊ was obtained
which is in fair agreement with the experimental value
of 2.88 AÊ .

The C15 structure of Cr2Nb is a fcc-based structure
containing six atoms (2 formula units) in the primitive
unit cell. It belongs to the space group Fd�3m-number
227 and Pearson symbol cF24 [8]. The C14 and C36
structures are hexagonal structures containing 12 and 24
atoms in the primitive unit cell, respectively. Both C14
and C36 structures belong to the same space group P63/
mmc-number 194, although they are di�erent in struc-
ture type and in Pearson symbol: C14 (MgZn2) is hP12
and C36 (MgNi2) is hP24 [8]. The C15, C14, and C36
structures may be considered as having three di�erent
kinds of stacking sequences: basically, C15 is ABC
stacking along the h111i direction, and C14 is AB
stacking along the h0001i direction, and C36 is ABAC
stacking along the h0001i direction, in the topologically
close-packed structure [3].

3. Results and discussion

3.1. Bulk properties

The results for the total energy as a function of unit
cell volume are presented in Fig. 1. From these results,
the equilibrium lattice constants, bulk moduli, and heats
of formation are obtained.

For the bulk fcc C15 (open circle in Fig. 1), we
obtained a lattice constant of 6.822 AÊ and a bulk mod-
ulus of 252GPa, in fairly good agreement with the
experimental values of 6.991 AÊ [4] and 229.4GPa [9],
respectively. These results for structural properties are
shown in Table 1 along with those of the C14 and C36
phases. Also, the results from an earlier study using the
full-potential linear mu�n-tin orbital (LMTO) method
[3] are shown.

For the C14 phase, by using the experimental c=a
ratio (being equal to 1.6336) [4], we ®rst obtained a lat-
tice constant of a=4.823 AÊ (thus c=7.879 AÊ ), and a
bulk modulus of 252GPa. We then varied the c=a ratio
at this theoretical volume to get the theoretical c=a
ratio. Using this theoretical c=a ratio, the total energy
was again calculated as a function of volume, which is
shown as open squares in Fig. 1. We obtained the lattice
constant of a=4.829AÊ , c=a=1.6288 (thus c=7.865 AÊ )
and a bulk modulus of 249GPa. The lattice constants
are to be compared with the experimental lattice con-
stants of arc-cast alloys, which have a range of a=4.97
AÊ and c=8.12 AÊ for Nb-rich Cr2Nb, and a=4.94 AÊ and
c=8.07 AÊ for Cr-rich Cr2Nb [4].

For the C36 phase, we varied the c=a ratio at the
volume of four times theoretical volume of fcc C15 and
obtained c=a=3.2730, and then varied the volume at
this c=a ratio. From this calculation (open diamond in
Fig. 1), we obtained the lattice constants of a=4.819 AÊ

(thus c=15.77 AÊ ) and a bulk modulus of 250GPa. Note
that for C14 and C36 the energy minimization has been
achieved with respect to both the c=a ratio and unit cell
volume.

Also, for both C14 and C36 phases, the atomic posi-
tions are optimized by calculating Hellmann±Feynman

Table 1

Structural properties and heats of formation of the three Laves phases

of Cr2Nb

C15 C14 C36

Lattice constant This work 6.82 4.83 4.82

a(AÊ ) LMTOa 6.83b Ð Ð

Experimentc 6.991 4.94 Ð

Lattice constant This work Ð 7.87 15.77

c(AÊ ) Experimentc Ð 8.07 Ð

c=a This work Ð 1.6288 3.2730

Experimentc Ð 1.6336 Ð

Bulk modulus This work 252 249 250

B(GPa) LMTOa 259 256 Ð

Experimentd 229.4 Ð Ð

Heat of formation This work ÿ77 ÿ19 ÿ58
(meV) LMTOa ÿ72.9 Ð Ð

a Ref. [3].
b This lattice constant a is recalculated from the volume error

ÿ6.82% in Ref. [3].
c Ref. [4].
d Ref. [9].

Fig. 1. The total energy as a function of unit formula volume for the

C15 (circle), C14 (square) and C36 (diamond) structures of Cr2Nb.

The total energy for each phase is drawn as the heat of formation after

subtraction of the sum of the total energies of the constituents: that is,

the heat of formation is given by ECr2Nbÿ2ECrÿENb per formula unit.

The symbols are connected by a smooth curve which is obtained by

®tting the data by a third-order polynomial.
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forces acting on the atoms. For the C15 phase, the ideal
atomic positions are not relaxed due to the symmetry
constraint. The optimized atomic positions for the C14
and C36 phases are given in Tables 2 and 3. The coor-
dinates are given in terms of lattice vectors:
r=x1a1+x2a2+x3a3, where a1=(a/2)x̂ÿ( ���

3
p

a/2)ŷ, a2=
(a/2)x̂+(

���
3
p

a/2)ŷ, and a3=cẑ.
It is shown in Fig. 1 that the equilibrium volume per

formula unit is almost the same for each of C15, C14
and C36 structures: the lattice constant a of C15 is
larger than those of C14 and C36 by almost a factor of���
2
p

, and the c=a ratio of C36 is almost twice that of
C14. The theoretical volume change from C15 to C14 is
about 0.06%, which is consistent with the measured
volume change (0.03%) associated with the C14-to-C15
transformation for Cr2Nb [10]. Also, the bulk moduli of
three phases are almost identical, shown in Table 1.

For Cr2Nb, the heat of formation is given by
ECr2Nbÿ2ECrÿENb per formula unit, where ECr2Nb, ECr,
and ENb are the total energy of Cr2Nb, bulk Cr, and
bulk Nb, respectively. The heats of formation of C15,
C14, and C36 are found to be ÿ77, ÿ19, and ÿ58meV
per formula unit, respectively. That is, the C15 phase is
lower in energy than C14 by about 58meV, and is also
lower than C36 by about 19meV per formula unit. We
emphasize that these three phases are very close in
energy. The calculated heats of formation are shown in
Table 1 along with those using the LMTO method [3].
We see that C15 is a ground-state phase of Cr2Nb and
C36 is an intermediate phase with energy between those
of C15 and C14 phases. Previously, Thoma and Per-
epezko [4] pointed out from X-ray di�raction measure-
ments that the C36 phase may be an intermediate phase
between the C15 and C14 phases although a complete
analysis of the C36 phase was not given. Our theoretical
calculations for structural stability supports their
predictions.

3.2. Elastic properties

For the C15 structure of Cr2Nb, we evaluated the
elastic constants. The new orthogonal lattice axes a0i are
related to the original ones aj by a0i=(1+"ij)aj, where
i,j=x; y; z and

"ij �
e1 e6=2 e5=2
e6=2 e2 e4=2
e5=2 e4=2 e3

0@ 1A �1�

is the strain tensor, and ei's are the strain components.
The elastic strain energy density is given by

U � 1

2

X6
i�1

X6
j�1

~Cijeiej �2�

where Cij=
1
2 (

~Cij+ ~Cji) and Cij's are the elastic constants
[11]. The cubic structure has only three independent
elastic constants C11, C12, and C44. To determine three
elastic constants, we need three relations, which can be
obtained, for example, by considering the following
three strain tensors: (i) e1=e2�e and e3=ÿ2e, that is,
tetragonal distortion at ®xed volume, (ii) e1=e2�e, and
(iii) e6=e, where the unspeci®ed strain components are

Table 2

Optimized atomic positions in C14. Cr1 and Cr2 in this table are two

di�erent types of Cr atoms having di�erent local symmetry. See text

for details of coordinates xi

Atom type Coordinates

x1 x2 x3

Cr1 0.0 0.0 0.0

0.0 0.0 0.5

Cr2 0.3390 0.1695 1/4

0.8305 0.1695 1/4

0.8305 0.6610 1/4

0.1695 0.8305 3/4

0.1695 0.3390 3/4

0.6610 0.8305 3/4

Nb 1/3 2/3 0.061

1/3 2/3 0.439

2/3 1/3 0.561

2/3 1/3 0.939

Table 3

Optimized atomic positions in C36

Atom type Coordinates

x1 x2 x3

Cr1 1/3 2/3 0.1246

1/3 2/3 0.3754

2/3 1/3 0.6246

2/3 1/3 0.8754

Cr2 1/2 0 0

1/2 1/2 0

0 1/2 0

1/2 0 1/2

0 1/2 1/2

1/2 1/2 1/2

Cr3 0.16365 0.83635 1/4

0.67270 0.83635 1/4

0.16365 0.32730 1/4

0.83635 0.67270 3/4

0.83635 0.16365 3/4

0.32730 0.16365 3/4

Nb1 0 0 0.0942

0 0 0.4058

0 0 0.5942

0 0 0.9058

Nb2 2/3 1/3 0.1561

2/3 1/3 0.3439

1/3 2/3 0.6561

1/3 2/3 0.8439
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zero for each of these cases. Therefore, three relations (i)
U=3(C11ÿC12)e

2, (ii) U=(C11+C12)e
2, and (iii)

U=1
2C44e

2 are obtained. We calculated the total ener-
gies according to the above three kinds of lattice dis-
tortions and ®tted the calculated values to third-order
polynomials to get the elastic constants. We obtained
C11=316GPa, C12=216GPa, and C44=71GPa at the
theoretical lattice constant, which are shown in Table 4.
To our knowledge, there have been no experimental
measurements on the single crystal elastic constants of
C15 Cr2Nb so far. We should therefore consider the
elastic moduli such as bulk, shear and Young's moduli,
for comparison with experimental results.

From the results of the elastic constants, we obtained
the elastic anisotropy ratio A,

A � 2C44

C11 ÿ C12
�3�

bulk modulus B, Young's modulus E, shear modulus G,
and Poisson's ratio �. In the Voigt average [12], the
Young's and shear moduli in the cubic systems are given
by

EV � �C11 ÿ C12 � 3C44��C11 � 2C12�
2C11 � 3C12 � C44

�4�

GV � 1

5
�C11 ÿ C12 � 3C44� �5�

while in the Reuss average [12] they are given by

ER � 5=�3S11 � 2S12 � S44� �6�

GR � 5=�4S11 ÿ 4S12 � 3S44� �7�

with the relations C44=1/S44, C11ÿC12= (S11ÿS12)
ÿ1,

and C11+2C12=(S11+2S12)
ÿ1 in the cubic systems.

Knowing E and G, the bulk modulus B and the Poisson's
ratio � can be calculated from the isotropic relations

� � E

2G
ÿ 1 �8�

B � EG

3�3Gÿ E� �
1

3
�C11 � 2C12� �9�

Note that the bulk modulus is the same in both Voigt
and Reuss averages in cubic systems. These results are
shown in Table 5 along with the experimental values
measured from the resonant ultrasound spectroscopy
for polycrystals [9]. Note that the bulk modulus
obtained from the relation (9) is very close to that of
252GPa calculated directly from energy vs volume
curve shown in Fig. 1.

While the calculated bulk modulus is larger by 9±10%
than the experimental values, the calculated shear and
Young's moduli are smaller than the experimental
values by about 23 and 21%, respectively. Usually, the
calculated elastic moduli are larger than the experi-
mental values. It is because the calculation is for the
ground-state properties and the calculated LDA lattice
constants are always smaller than the experimental ones
by about 2%. For the present case, however, the calcu-
lated shear and Young's moduli are smaller than the
measured values obtained from polycrystals. The reason
for this is unclear at this point.

So far we have mentioned the elastic properties at the
theoretical volume. In fact, we have also examined the
elastic constants at the experimental lattice constant.
The calculational procedures are identical to those used
for the theoretical lattice constant. The total energies as
a function of lattice strains are then ®tted to third-order
polynomials. From the coe�cients of the quadratic
terms, we obtained the elastic constants: C11=250GPa,
C12=170GPa, and C44=58GPa, which are also shown
in Table 4. These elastic constants give smaller elastic
moduli than those at the theoretical lattice constant
(Table 5). As a result, the calculated bulk modulus,

Table 4

Three calculated elastic constants (in units of GPa) at both theoretical

and experimental volumes for C15 Cr2Nb

C11 C12 C44

Theoretical volume 316 216 71

Experimental volume 250 170 58

Table 5

Elastic moduli derived from three elastic constants at both theoretical and experimental volumes are compared with the experimental values

A B(GPa) E(GPa) G(GPa) �

Theoretical volume Theory (Voigt average) 1.41 249 (252) 173 62 0.384

Theory (Reuss average) Ð 249 (252) 168 61 0.387

Experimental volume Theory (Voigt average) 1.45 197 140 51 0.381

Theory (Reuss average) Ð 197 136 49 0.385

Experiment (Ref. 9) Ð 229.4 214.1 79.6 0.34

A, B, E, G, and � represent elastic anisotropy ratio, bulk modulus, Young's modulus, shear modulus and Poisson's ratio, respectively. The bulk

modulus in the parenthesis was calculated directly from the energy versus volume curve shown in Fig. 1.
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shear and Young's moduli at the experimental volume
are smaller than the measured elastic moduli by about
14, 38 and 36%, respectively.

4. Conclusion

We performed the total-energy calculations to inves-
tigate the phase stability of Cr2Nb. The calculation
includes lattice constants, bulk moduli, and heats of
formation. The results are in good agreement with
available experiments. From these, it is found that C15
is a ground-state structure of Cr2Nb, and C36 is an
intermediate state between C15 and C14. They are very
close in energy, so the stacking fault energies should be
very small. The results on the stacking fault energy will
be published elsewhere. For the C15 Cr2Nb, we calculated
the elastic constants. The calculated shear and Young's
moduli are smaller than the experimental values.
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