
Finite element simulations of cold deformation at the
mesoscale

G.B. Sarma *, B. Radhakrishnan, T. Zacharia

Computational Materials Science Group, Oak Ridge National Laboratory, P.O. Box 2008 MS 6140, Oak Ridge, TN 37831-6140, USA

Received 6 April 1998; accepted 1 July 1998

Abstract

The deformation of polycrystalline aggregates is modeled using the ®nite element method. Explicit discretization at

the single crystal level is employed to study the inhomogeneous deformations of individual crystals. Plastic deformation

by crystallographic slip is treated using a constitutive model based on crystal plasticity. The formulation is used to

predict the non-uniform nature of strain hardening and texture evolution in the crystals subjected to plane strain

compression. The capability of the simulations to capture the inhomogeneous deformation of individual grains during

plastic deformation of polycrystals is demonstrated. The hardness and orientation values of elements from the same

grain evolve to di�erent ®nal values due to local inhomogeneities and interactions with neighbors. The simulations

provide a means to obtain quantitative information on the inhomogeneous distributions of stored energy and orien-

tations among the di�erent crystals comprising the microstructure. Ó 1998 Published by Elsevier Science B.V. All

rights reserved.
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1. Introduction

In metals deformed under cold working conditions, the increase in dislocation density causes a portion
of the work done to be retained as stored energy of deformation. The stored energy is released during
subsequent annealing by the processes of recovery and recrystallization [1]. During recovery, the disloca-
tions rearrange themselves into con®gurations of lower energy and form low angle boundaries. During
recrystallization, strain-free nuclei with high angle grain boundaries form and grow, leading to further
decrease in stored energy. These phenomena are of particular signi®cance in metals and alloys subjected to
thermo-mechanical processing, since the resulting microstructure is determined by the processing variables.
Predicting the microstructure resulting from processing has been the subject of much research, but the
models used for this purpose do not incorporate all the parameters necessary for a complete quantitative
description. Modeling the kinetics and the evolution of the grain structure and texture during recrystalli-
zation requires knowledge of the non-uniform distributions of stored energy and orientations in the cold
worked material.
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In this article, a novel ®nite element formulation is presented for modeling the microstructural evo-
lution during cold deformation of metals, that generates quantitative information on the stored energy
and orientation distributions in the deformed microstructure. By means of explicit discretization of grains
at the microstructural level, the ®nite element analysis permits modeling the inhomogeneous deformation
of the grains to predict changes in grain shape, orientation and the non-uniform stored energy distri-
bution.

In recent years, there have been several studies at the microstructural length scales, where the defor-
mation of polycrystals has been simulated using the ®nite element method [2±7]. These simulations proceed
by discretizing an aggregate of grains and applying boundary conditions corresponding to a homogeneous
macroscopic deformation to the mesh. The inhomogeneous deformation of the aggregate is in¯uenced by
the interactions at grain boundaries, in addition to the di�erences in properties among individual grains.
By placing numerous elements in a single grain, it is possible to capture the non-uniform deformation
within a grain. By making use of a crystal plasticity model for the constitutive response, these studies have
been able to model the evolution of grain orientation, and hence the development of crystallographic
texture.

Harren and Asaro [2] studied a model two-dimensional polycrystal made up of rate dependent planar
crystals. Deformations of 27 crystals discretized with 40� 56 quadrilateral elements in tension, compres-
sion and simple shear were simulated and compared with predictions using a Taylor-type [8] model. The
results of their simulations showed the formation of macroscopic shear bands and sub-grains. Localized
shearing and non-uniform deformations occurred due to the nature of deformation by crystallographic slip,
and the in¯uence of grain interactions.

Becker [4] conducted a similar study using an idealized two-dimensional geometric model deformed in
plane strain compression. However, the material behavior in each element was determined assuming an
FCC crystal structure using a rate dependent constitutive model. A mesh containing 60� 24 quadrilateral
elements was employed. The results of the analyses reveal complex deformation patterns arising from grain
interactions, with both the overall texture and the spread of orientations within a grain being in¯uenced not
only by the orientations of the neighboring grains, but also by the constraints provided by grains located
several grains away.

Bronkhorst et al. [5] simulated the deformation of FCC polycrystals in a manner similar to Becker [4].
Tension and compression were simulated using cubic mesh with seven brick elements along each side, while
a planar mesh of 20� 20 elements was used for plane strain compression and simple shear. The predicted
textures using the ®nite element approach matched experimental data better than a Taylor-like model.
Anand and Kalidindi [6] used the same approach to examine the e�ect of crystallographic texture on the
formation of shear bands during plane strain compression.

Becker and Panchanadeeswaran [7] conducted simulations of a planar section of polycrystalline alu-
minum deformed in channel-die compression. Their results showed the in¯uence of grain interaction on
local deformation and texture evolution.

While the above simulations were restricted to planar microstructures and relatively coarse discretiza-
tions, with the help of parallel computing methods, some recent e�orts have been able to treat fairly large
three-dimensional meshes [9±11]. Beaudoin et al. [9] employed a hybrid ®nite element formulation to study
the deformation of a polycrystal under plane strain compression. The simulation used a 16� 16� 16 mesh
of eight-noded brick elements with one FCC crystal per element. The resulting texture evolution was
compared with other models and experimental data. It was shown that the ®nite element calculation leads
to better match with experiment, for both the intensities and the locations of texture components. Based on
the same formulation, Sarma and Dawson [10] simulated deformations of FCC polycrystals to examine the
distribution of deformation among the individual crystals. The results of the study showed that interac-
tions among crystals play a dominant role in the determining the spread of the applied deformation among
them.
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Recently, Beaudoin et al. [11] examined the origin of possible nucleation sites for recrystallization by
simulating plane strain compression of model polycrystals. These simulations employed fairly large three-
dimensional meshes to study the heterogeneous deformation of the individual crystals, and found that some
of the elements rotated to near cube orientations after heavy reductions.

The objectives of the current e�ort are two-fold. The ®rst is to apply the ®nite element deformation
model to a realistic microstructure. Previous e�orts using this approach have been restricted to 2-D mic-
rostructures or 3-D models with special con®gurations. This work constitutes the ®rst attempt at simulating
a fully three-dimensional microstructure with discretization of individual grains. The second objective of
this work is to combine the deformation model with a recovery and recrystallization model. Previous work
at the microstructural length scale has focused on one or the other aspect of processing. In this work, the
deformation model is used to provide more realistic initial data to the recrystallization model. The coupling
of results from this study to model recovery and recrystallization phenomena is described elsewhere [12].

In the following section, the ®nite element formulation and the constitutive assumptions used in the
present study are described. In Section 3, the application of the method to simulate cold deformation to
di�erent strains is discussed, and some results on the stored energy and orientation distributions are pre-
sented. This is followed by some closing remarks in Section 4.

2. Finite element formulation

The details of the ®nite element formulation used for simulating the cold deformation are available
elsewhere [9], and only the main features are recalled here. It is assumed that elastic deformations are
negligibly small, and that deformation occurs by slip dominated plastic ¯ow of the material. Due to the
limited modes of deformation available through slip, the crystals must rotate to accommodate arbitrary
deformations. The preferred reorientation of crystals leads to texture development, and is modeled using a
constitutive law based on crystal plasticity.

A viscoplastic constitutive law relates the rate of shearing _c�a� to the resolved shear stress s�a� on each slip
system �a� [13±16]:

_c�a� � _c0

s�a�

ŝ

���� ����1=m

sign�s�a��; �1�

where m is the rate sensitivity parameter, and _c0 is a reference rate of shearing. ŝ is a hardness parameter
which represents resistance to plastic deformation due to interactions among dislocations. The resolved
shear stress is the component of the traction along the slip direction, and is obtained from the crystal
deviatoric Cauchy stress r0c using the Schmid tensor (dyadic product of the slip direction s�a� and the slip
plane normal n�a� vectors),

s�a� � r0cn
�a� � s�a� � r0c � T�a� � r0c � P�a�: �2�

In the above expression, P�a� is the symmetric portion of the Schmid tensor T�a�, and is used to express the
crystal rate of deformation Dc as a linear combination of the slip system shearing rates,

Dc �
X

a

_c�a�P�a�: �3�

The crystal rate of deformation is the symmetric part of the crystal velocity gradient, and prescribes the rate
of shearing of slip planes. The skew-symmetric part of the crystal velocity gradient Wc controls the rotation
of the crystal, and contains contributions from both the spin associated with the plastic ¯ow, and the rigid
rotation R� of the crystal lattice necessary to maintain compatibility with neighboring crystals,
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Wc � _R�R�
T �

X
a

_c�a�Q�a�; �4�

where Q�a� is the skew-symmetric part of the Schmid tensor T�a�. Rewriting Eq. (4) results in the crystal
reorientation rate _R�, given by the di�erence between the crystal spin and the plastic spin due to slip,

_R� � Wc ÿ
X

a

_c�a�Q�a�
 !

R�: �5�

Eliminating _c�a� between Eqs. (1) and (3), and substituting Eq. (2) for s�a� leads to an expression for the
crystal deformation rate in terms of the deviatoric stress,

Dc �
X

a

_c0

ŝ
s�a�

ŝ

���� �����1=m�ÿ1

P�a� 
 P�a�
" #

r0c; �6�

or

Dc �Sc r0c; �7�
where Sc is the crystal ``compliance'' tensor. The rate dependence of Eq. (1) permits inversion of Eq. (6),
and expression of the crystal deviatoric stress under a given deformation rate as

r0c � Sÿ1
c Dc: �8�

The non-linear nature of the crystal constitutive Eq. (8) requires an iterative method to compute the de-
viatoric stress for a given rate of deformation. The anisotropic response due to the crystal orientation is
re¯ected in the crystal compliance.

The plastic deformation of the material is modeled in incremental fashion, by solving the boundary value
problem for material motion at each strain increment. Balance laws for equilibrium and mass conservation
are applied in conjunction with the constitutive assumptions discussed above. Following the approach of
Beaudoin et al. [9], a hybrid ®nite element formulation is employed for this purpose. Instead of developing
the equilibrium statement from balance of momentum at the global level, here it is written as a balance of
tractions at the inter-element boundaries. Weighted residuals are formed on the equilibrium statement and
the constitutive relation. A third residual on the conservation of mass (which for the case of incompressible
plastic deformation reduces to a divergence-free velocity ®eld) completes the formulation. Interpolation
functions are introduced for the nodal velocities, element stress components and the pressure. A proper
choice of the shape functions for the stress permits elimination of the stress degrees of freedom at the el-
ement level. The result is a system of equations for the discretized velocity ®eld, which is solved assuming
®xed material state and geometry.

Upon obtaining a converged velocity solution, the material state and geometry are updated. The ma-
terial is characterized by the orientation of the crystal and the hardness parameter. The reorientation rate
given by Eq. (5) is used to update the orientation, while the hardness is evolved using a modi®ed Voce type
law [16±18],

_̂s � H0

ŝs ÿ ŝ
ŝs ÿ ŝi

 !
_c�; �9�

where hardening rate H0 and initial hardness ŝi are material parameters. _c� is a measure of the net shearing
rate on all the slip systems,

_c� �
X

a

j _c�a�j: �10�
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The saturation hardness ŝs based on the current slip system state is given by

ŝs � ŝs0

_c�

_cs

 !m0

; �11�

where ŝs0
, _cs and m0 are material parameters.

A few comments on the implementation of this formulation are in order. Development of the material
response entails solution of the non-linear crystal constitutive relation for each element, and must be
performed during each iteration for the velocity ®eld at a given strain increment. In this respect, the
methodology described above proves to be computationally demanding. Use of the hybrid approach leads
to introduction of additional degrees of freedom for the crystal stresses, thereby adding to the computa-
tional burden associated with the sti�ness calculations. The advantage of using this approach is the
smoothness in the stress ®eld, due to the enforcement of traction balance at the element interfaces in an
approximate sense [9]. This proves particularly useful for situations where there are abrupt changes in
material properties, as in the case of boundaries between grains. In the ®nite element context, the numerical
integration required for computing the sti�ness matrix can be performed concurrently for all elements. The
choice of piecewise discontinuous interpolation functions for the stress is a key feature of the formulation,
which enables computation of the sti�ness matrices in concurrent fashion for all elements [9]. In turn, this
feature enables exploitation of parallel computing technologies in order to greatly improve the feasibility of
treating large three-dimensional discretizations.

While the sti�ness computations are relatively straightforward to implement in a parallel environment,
the solution of the resulting system of equations poses a greater challenge. Since direct solvers are di�cult
to optimize on a parallel machine, it is advantageous to use an iterative procedure, such as the conjugate
gradient (CG) method [19]. In this context, enforcing the incompressibility constraint requires special at-
tention, since it degrades the numerical condition of the resulting system of equations. In the current
formulation, incompressibility is enforced using a modi®ed consistent penalty approach, which seeks to
decouple the solution for the pressure ®eld from the CG method, as discussed by Beaudoin et al. [20]. A
detailed discussion of the development of a parallel version of the formulation using High Performance
Fortran (HPF) for the Intel PARAGON computer is available elsewhere [21].

2.1. Computation of stored energy and orientation data

The ®nite element simulations make use of the orientation information of the crystals in the form of
Euler angles (w; h;u) using the convention of Kocks [22]. At the end of the deformation, the resulting Euler
angles of the elements were transformed to axis-angle pairs for subsequent use in the Monte Carlo simu-
lations of recovery and recrystallization [12]. The stored energy values were calculated based on the
hardness parameters in each element. The evolution of the hardness parameter and orientation of each
element based on the deformation rate in that element was computed using the equations discussed above.

It has been mentioned earlier that the hardness parameter ŝ represents resistance to plastic deformation.
It is hence taken to be proportional to the square root of the dislocation density [23],

ŝ � 1
2
Gbq1=2; �12�

where G is the shear modulus of the material and b is the magnitude of the Burgers vector. The stored
energy (per unit volume) is given by the relation

H � 1
2
qGb2: �13�

Eqs. (12) and (13) can be combined to write the stored energy in terms of the hardness and the shear
modulus as
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H � 2ŝ2

G
: �14�

For the Monte Carlo simulations, it was advantageous to compute the natural invariants (axis-angle
pair) of the orientation of each element. The invariants are the axis of rotation c and the angle of rotation
x about it. While Euler angles have been traditionally used for representing crystal orientations, the re-
sulting space of orientations has certain undesirable properties [24]. Instead, the natural invariants can be
combined to construct a class of ``Neo-Eulerian'' parameterizations to describe an orientation [24],

r � f �x� c; �15�
by scaling the axis of rotation by a function of the angle. In particular, f �x� � tan�x=2� results in Rod-
rigues' parameters [24,25],

�rx; ry ; rz� � �cx; cy ; cz� tan
x
2
;

where �cx; cy ; cz� are the components of a unit vector corresponding to the axis of rotation c. The choice of
f �x� � sin�x=2� leads to the vector part of a quaternion, with cos�x=2� forming the fourth component,

�q0; q1; q2; q3� � cos
x
2
; cx sin

x
2
; cy sin

x
2
; cz sin

x
2

� �
:

The components in Rodrigues' space are easily obtained from the quaternions by dividing the last three
components by q0.

The space of Rodrigues' parameters is unbounded for arbitrary orientations, but di�erent points in the
space can be the maps to symmetrically equivalent orientations. Considerations of symmetry under rotation
permit the reduction of the space of interest to a fundamental sub-region, which is typically obtained by
choosing the equivalent orientations nearest to the origin of the space. The task of computing the Rod-
rigues' parameters for an orientation given in terms of Euler angles is readily accomplished using qua-
ternions [26]. However, this calculation does not always result in the quaternions in the fundamental sub-
region. Under cubic crystal symmetry, there are 24 equivalent orientations [27,24]. In order to determine the
equivalent set of quaternions lying in the fundamental sub-region, it is only necessary to compute cos�x=2�
for all 24 quaternions, to check which one has the largest absolute value (for the smallest angle of rotation).
The other three components can then be calculated only for that quaternion [25]. Further details on these
calculations are given in Appendix A.

3. Application to simulate cold deformation

The ®nite element formulation discussed in the previous section has been used to simulate cold defor-
mation corresponding to di�erent strains under plane strain compression. The intent was to model the
deformation conditions near the center of a sheet during cold rolling. Reductions in thickness of 50% and
66 2

3
%, corresponding to compressive true strains of e � 0:7 and e � 1:1, respectively, were simulated using

appropriate discretizations. In order to capture the inhomogeneous deformation of the grains, each grain
was discretized with a fairly large number of eight-noded brick elements. Material properties based on
mechanical test data for 1100 aluminum [16] were used for the simulation, and are listed in Table 1.

A Monte-Carlo grain growth algorithm [28] was used for obtaining the initial microstructure for the
®nite element calculations. A grid of 200� 200� 200 points, each with a di�erent starting orientation
number, was used in the three-dimensional grain growth simulation. The simulation was run until a ®nal
average grain size of about 10 was obtained. The microstructures for use in the ®nite element simulations
were obtained by taking suitable subsets of points from the large grid. For the case of e � 0:7, a mesh of
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15� 30� 60 elements was initialized with random orientations using a one-to-one correspondence between
the elements and the grid points after grain growth. Grid points with the same number were part of the
same grain, and thus elements corresponding to these points received the same initial orientation. In a
similar fashion, the e � 1:1 case was simulated using a ®nite element mesh of size 10� 30� 90. The initial
mesh in both cases was made up of elements which were cubes, so that the uniform spacing between them in
each direction could be preserved as in the Monte-Carlo grid used for grain growth. The overall domain
was a parallelepiped with sides in the same proportion as the number of elements in each direction, as
illustrated in Fig. 1 for the case of e � 0:7. Also shown in Fig. 1 is the microstructure indicating the dis-
cretization of each grain with a large number of elements. The colors used to depict the microstructure have
no signi®cance other than to distinguish the di�erent grains.

Boundary conditions were applied to the mesh such that the material deformed by compression along
the Z-axis and extension along the X-axis, with Y being the constrained direction. The normal velocities of
nodes on the faces normal to ÿX and ÿZ were prescribed to be zero. On the opposite faces, the normal
velocity components were prescribed such that a constant unit rate of deformation was maintained. When
the element distortion became too severe, the mesh was reconstructed using regular elements with the
proper aspect ratio based on the amount of strain. After deformation to the appropriate ®nal strain, the
aspect ratio of the overall mesh became 1:1:1, due to the choice of the initial mesh dimensions. The indi-
vidual elements, which initially were cubes, elongated in the X-direction and reduced in length along the
Z-direction. The aspect ratio of the elements on average in the X to Z-directions became the same as the
ratio of elements in the Z to X-directions. Fig. 2 shows the deformed mesh and microstructure after a
compressive strain of e � 0:7. Examination of the deformed mesh clearly shows the non-uniform defor-
mation of the microstructure. Individual elements undergo varying amounts of shear in addition to the
extension along X and compression along Z.

After deformation to the appropriate strain, the hardness parameters for the elements were used to
compute the stored energy of deformation using the procedure described in the Section 2.1. The stored
energy distribution is hence a re¯ection of the hardening behavior of the microstructure. Shown in Fig. 3
are the initial and deformed microstructures, and the stored energy distribution, for a section of the mi-
crostructure taken normal to the constrained (Y) direction. It is seen that the stored energy has a non-
uniform distribution both within a single grain and among the di�erent grains. It is observed that the stored
energy is higher close to some of the prior grain boundaries, as indicated in Fig. 3(c). However, it is im-
portant to note that not all grain boundaries develop high stored energy values. There are also regions
within some of the bigger grains which show high stored energy, as in the grain at the bottom left corner.
The stored energy enhancement at the grain boundaries compared to the grain interior depends on the local
environment of the boundaries. If a grain is oriented favorably to accommodate the applied deformation,
but is situated next to an unfavorably oriented grain, its boundary will be constrained by the second grain,
leading to greater deformation in the interior.

The orientations of all elements which were part of the same grain were initialized with the same set of
Euler angles. During deformation, the orientations of these elements evolved in accordance with the local
velocity gradient. The ®nal orientations were converted from Euler angles to axis-angle pairs, and Fig. 4
shows orientations before and after deformation in terms of the angles of the axis-angle pairs. Note that the
initial angles have been depicted with the deformed mesh, to indicate the non-uniform reorientation of
individual grains. The initial orientations of all elements in a grain are the same, so they all map to the same

Table 1

Material parameters for the polycrystal simulations

m _c0 H0 ŝi ss0 _cs m0

0.05 1.0 sÿ1 58.41 MPa 27.17 MPa 61.80 MPa 5:0� 1010 sÿ1 0.005

G.B. Sarma et al. / Computational Materials Science 12 (1998) 105±123 111



Fig. 1. Initial mesh of 15� 30� 60 elements (left) and the microstructure (right) for the case of deformation to e � 0:7.

Fig. 2. Mesh (left) and microstructure (right) after deformation to compressive strain of e � 0:7.
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Fig. 3. (a) Initial microstructure, (b) deformed microstructure, and (c) stored energy distribution for a section taken normal to the

constrained (Y) direction for deformation to e � 0:7.

Fig. 4. Map of the angles from the axis-angle representation for the initial (left) and ®nal (right) orientations for the case of defor-

mation to e � 0:7.
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color. After deformation to the appropriate strain, elements which are part of the same grain show di�erent
angles, indicating breakup of the grains. It must be mentioned here that the axis of rotation has not been
included in the plot, and hence the orientation information is incomplete. Nevertheless, it clearly indicates
the capability of the simulation method to capture the non-uniform orientation distribution.

The distribution of orientations is shown in Fig. 5 for a section taken normal to the constrained (Y)
direction. The original microstructure shows the grains before deformation, and the deformed micro-
structure shows the angles from the axis-angle representations of the initial and ®nal orientations. Since
there is clearly a non-uniform pattern in the reorientation of the grains, a plot of the average misorientation
of each element with its neighbors was constructed, as shown in Fig. 6. For computing the average mis-
orientation, ®rst the misorientation of the element in question with each ®rst nearest neighbor was de-
termined using the procedure described in Appendix A. The average of all the angles (ignoring the axes)
considering only the elements which were part of the same grain according to the original microstructure
was then computed to obtain the average misorientation. Thus, the result of this calculation using the
starting orientations would lead to zero misorientation for all the elements. The intent was to avoid
neighboring elements if they were part of a di�erent grain, so that the misorientation would be a measure of
deviations in reorientation in the same grain. As seen from Fig. 6, there are some bands of elements with a
high average misorientation with ®rst nearest neighbors. While most of the bands correlate well with prior
grain boundaries, some of these bands pass right through the middle of a grain, indicating di�erent de-
formation paths for elements on either side. An instance of such a band is indicated by the elements

Fig. 5. (a) Initial microstructure, (b) angles from initial orientations mapped to the deformed microstructure, and (c) angles from ®nal

orientations for a section taken normal to the constrained (Y) direction after strain of e � 0:7.
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numbered 458 and 1358 on either side of the band. It is seen from Fig. 6 that the shearing of these adjacent
elements is in opposite directions, and leads to high misorientation values. Fig. 7 shows the deformed
microstructure and the average misorientation for a section taken in the X-Z plane for the case of e � 1:1.

Fig. 6. Deformed microstructure showing the mesh (left) and the average misorientation of the elements with nearest neighbors (right)

for a section taken normal to the constrained (Y) direction after strain of e � 0:7.

Fig. 7. Deformed microstructure (left) and the average misorientation of the elements with nearest neighbors (right) for a section taken

normal to the constrained (Y) direction after strain of e � 1:1.
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Once again, there are high misorientation regions near grain boundaries as well as in the interior of some
large grains.

The distribution of average misorientations computed for all the elements is shown in Fig. 8 in the form
of histograms. For the case of 50% reduction, the majority of misorientations are rather small, and the drop
is fairly steep, with maximum values around 25�. At the higher deformation level, the spread is wider with
less number of elements having low misorientations, and the maximum misorientation angle is about 35�.
These results correlate quite well with the experimental data reported by Juul Jensen [29]. Even though the
measurements are carried out at a much smaller length scale than the simulations, the qualitative and
quantitative match between the two is quite remarkable.

3.1. Texture evolution

The Euler angles used to initialize the orientations of the elements for the polycrystal simulations were
obtained by a random sampling of Euler space. Fig. 9 shows the pole ®gures from the initial orientations
used for the deformation to e � 0:7 in the form of a point plot. The same set of orientations is also shown in
Fig. 10, but now the orientations are weighted by the number of elements used to discretize a grain at that
orientation in the ®nite element mesh, leading to a non-random texture. The orientations were processed
using the DIOR program from popLA [30] with cubic crystal symmetry, followed by a Gaussian smoothing
operation, to generate the pole ®gures shown in equal area projection. The initial texture for the orien-

Fig. 8. Histograms showing the distributions of average misorientations for deformation to e � 0:7 and 1.1.

Fig. 9. Pole ®gures showing the initial orientations used for the case of deformation to e � 0:7.

116 G.B. Sarma et al. / Computational Materials Science 12 (1998) 105±123



tations used in the e � 1:1 case are shown in Fig. 11. Note that the choice of the mesh sizes leads to di�erent
microstructures for the two cases, and hence di�erent initial textures.

After deformation to compressive strains of e � 0:7 and 1.1, respectively, each element had a di�erent
orientation. Since there were 27,000 elements in the mesh for each case, the resulting orientations were
again processed using the DIOR program, with the application of cubic crystal symmetry and orthotropic
sample symmetry. The textures after the two strains are shown in Figs. 12 and 13, respectively. Defor-
mation by plane strain compression leads to development of texture components typically observed after
cold rolling [31,32], such as f1 1 2gh1 1 1i copper, f1 2 3gh6 3 4i S and f0 1 1gh2 1 1i brass orientations
(shown in Fig. 14). However, the initial texture plays a signi®cant role in the relative intensities of these
components. The texture for deformation to e � 0:7 shows a strong f1 2 3gh6 3 4i S component and a
weaker f1 1 2gh1 1 1i copper component, whereas the opposite is true for the texture after deformation to
e � 1:1. The di�erent ®nal textures are a result of the di�erent initial microstructures, indicating the in-
¯uence of the starting orientations.

The development of deformation bands in the grains due to the inhomogeneous straining has been
discussed earlier. Fig. 15 shows the evolution of the orientations of two adjacent elements which started
with identical orientations, but evolved in di�erent directions. These two elements are marked by their

Fig. 10. Pole ®gures in equal area projection representing the initial texture used for the case of deformation to e � 0:7. Contour levels

represent multiples of random texture intensity on a logarithmic scale.

Fig. 11. Pole ®gures in equal area projection representing the initial texture used for the case of deformation to e � 1:1. Contour levels

represent multiples of random texture intensity on a logarithmic scale.
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Fig. 12. Pole ®gures in equal area projection showing the texture after deformation to e � 0:7. Contour levels represent multiples of

random texture intensity on a logarithmic scale.

Fig. 13. Pole ®gures in equal area projection showing the texture after deformation to e � 1:1. Contour levels represent multiples of

random texture intensity on a logarithmic scale.

Fig. 14. h1 1 1i pole ®gure in equal area projection showing some ideal orientations commonly found in rolling textures.
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numbers in Fig. 6, and are seen to undergo shear deformation in opposite directions. The orientations of
these two elements are indicated in the pole ®gures in Fig. 15 at strain increments of every 10% in the form
of ®lled (element 458) and open circles (element 1358), showing the reorientation in di�erent directions.
These orientation gradients play a signi®cant role in the nucleation of strain-free grains during subsequent
annealing [12].

4. Conclusions

The deformation of polycrystals has been simulated by making use of the ®nite element method. By
means of discretization at the level of individual grains, it was possible to monitor the non-uniform de-
formations of the grains. A constitutive model based on crystal plasticity was used to track the orientation
and hardness values of the elements. The anisotropic material response due to the limited deformation
modes available through crystallographic slip was included in the formulation through this approach.

Two di�erent meshes were constructed to simulate deformation in plane strain compression of a material
with FCC crystal structure to di�erent ®nal strains. The results demonstrate the capability of the formu-
lation to capture the inhomogeneous deformation of grains during the plastic deformation of polycrystals.
The stored energy of deformation related to increased dislocation density was computed from the hardness
of the elements, and the orientation data were transformed to an axis-angle representation. It was observed
that the enhancement of the stored energy at the boundaries relative to the interior of a grain depends on
the local orientations of the neighboring grains, which dictate how much deformation is accommodated by
the boundary regions. While some boundaries show higher stored energy values, others show lower values
than interior regions. It is known that such regions are the possible sites for nucleation of recrystallized
grains. In a similar fashion, the orientations of the elements showed non-uniform distributions, with ele-
ments which received the same initial orientations as part of the same grain evolving to di�erent ®nal
orientations. There was clearly an e�ect of the neighboring grains on the deformation of each grain, with
the resulting constraints leading to di�erent degrees of inhomogeneity.

It must be noted here that development of the ®nite element formulation for massively parallel com-
puters is a key feature which enabled the use of large three-dimensional discretizations. In studying the
deformation of polycrystals, it is necessary to choose a representative sample consisting of a reasonable
number of grains. Capturing the gradients within individual grains requires placing a large number of
elements in each grain. This leads to a re®ned discretization with thousands of elements. If one now adds

Fig. 15. Evolution of orientations of two adjacent elements in the same grain shown as pole ®gures in equal area projection. The

elements are marked in Fig. 6 as 458 (shown here with �) and 1358 (shown here with �).
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the complexity of the constitutive response due to the nature of the crystal plasticity model, and the de-
gradation in the condition of the system due to the incompressibility constraint, the computational expense
is so large that it is only feasible on a parallel architecture.

The strength of the simulation technique lies in its ability to provide quantitative information on the
distributions of stored energy and orientations among the elements. The data from these simulations have
been used for modeling the process of static recrystallization using the Monte Carlo method [12]. By
providing quantitative information on the orientation and stored energy distributions in the cold worked
microstructure, the current simulations have enabled the modeling of nucleation phenomena during re-
crystallization, in turn leading to the prediciton of recrystallization textures. Such detailed simulations at
the microstructural length scales provide information on the deformation of polycrystals which can then be
used for developing better models for use in simulations of bulk deformation at the continuum scales.
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Appendix A. Computation of natural invariants

Given the Euler angles �w; h;u� to describe the orientation of a crystal [22], it is of interest to compute
the natural invariants, i.e., an axis-angle pair, to represent the orientation. For this purpose, it is convenient
to ®rst convert the angles to a rotation matrix. While this is not a necessary step for a single orientation, it is
useful for computing the misorientation between two crystals. The rotation matrix is given by

�R� �
ÿ sin w sin uÿ cos wcos hcos u sin wcos uÿ cos wcos h sin u cos w sin h

cos w sin uÿ sin wcos hcos u ÿcos wcos uÿ sin wcos h sin u sin w sin h

sin hcos u sin h sin u cos h

264
375:

The angle of rotation x, and the components of a unit vector corresponding to the axis of rotation c, are
then obtained as [25,27]

x � arccos �1
2

Tr�R� ÿ 1� ��;
cx � R32 ÿ R23

2 sin x
;

cy � R13 ÿ R31

2 sin x
;

cz � R21 ÿ R12

2 sin x
:

In computing the angle and axis using the above expressions, care must be taken for angles close to the
limits of 0� or 180� to avoid numerical di�culties.

For the case of crystals with symmetries under rotation, it is possible for di�erent orientations to be
symmetrically equivalent, e.g., a rotation of 90� about the h1 0 0i axes for a cubic crystal. Under such
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conditions, the three-dimensional space of orientations can be reduced to a fundamental sub-region, within
which all possible orientations can be found. While there are clearly an in®nite number of choices for such a
sub-region, it is common to consider a sub-region obtained by choosing the equivalent orientation which
gives the smallest angle of rotation. In this sub-region, each point represents a unique orientation. For any
point outside the sub-region, an equivalent orientation which lies inside the sub-region can be found by a
symmetry operation.

For cubic crystals, there are 24 symmetrically equivalent orientations [27,24]. The task of ®nding the
orientation with the smallest angle is accomplished by making use of quaternions. The quaternions for the
axis-angle pair �c;x� are given by [27]

�q0; q1; q2; q3� � cos
x
2
; cx sin

x
2
; cy sin

x
2
; cz sin

x
2

� �
:

It is clear that the smallest angle corresponds to the largest q0. Hence, ®nding the quaternion which lies in
the fundamental region requires computing the value of q0 for all 24 quaternions, and choosing the one
which has the largest absolute value. Calculation of the value of q0 for the symmetrically equivalent
quaternions under cubic symmetry is performed using

q00 � q0s0 ÿ q1s1 ÿ q2s2 ÿ q3s3;

where the values of �s0; s1; s2; s3� are listed in Table 2 for cubic symmetry [27].
Once the quaternion with the maximum q00 is determined, then the other components for that equivalent

set of quaternions are computed using the rules of quaternion algebra [26,25] as

Table 2

Quaternions which are equivalent under cubic symmetry

s0 s1 s2 s3

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1=
���
2
p

1=
���
2
p

0 0

6 1=
���
2
p

0 1=
���
2
p

0

7 1=
���
2
p

0 0 1=
���
2
p

8 1=
���
2
p ÿ1=

���
2
p

0 0

9 1=
���
2
p

0 ÿ1=
���
2
p

0

10 1=
���
2
p

0 0 ÿ1=
���
2
p

11 0 1=
���
2
p

1=
���
2
p

0

12 0 1=
���
2
p

0 1=
���
2
p

13 0 0 1=
���
2
p

1=
���
2
p

14 0 1=
���
2
p ÿ1=

���
2
p

0

15 0 1=
���
2
p

0 ÿ1=
���
2
p

16 0 0 1=
���
2
p ÿ1=

���
2
p

17 1=2 1/2 1/2 1/2

18 1/2 1/2 1/2 ÿ1/2

19 1/2 1/2 ÿ1/2 1/2

20 1/2 ÿ1/2 1/2 1/2

21 1/2 1/2 ÿ1/2 ÿ1/2

22 1/2 ÿ1/2 1/2 ÿ1/2

23 1/2 ÿ1/2 ÿ1/2 1/2

24 1/2 ÿ1/2 ÿ1/2 ÿ1/2
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q00 � q0s0 ÿ q1s1 ÿ q2s2 ÿ q3s3;

q01 � q0s1 � q1s0 � q2s3 ÿ q3s2;

q02 � q0s2 ÿ q1s3 � q2s0 � q3s1;

q03 � q0s3 � q1s2 ÿ q2s1 � q3s0:

Having determined the quaternions corresponding to the smallest angle, the axis and angle can then be
computed using

x � 2 arccos�q00�;
cx � q01 sin

x
2

.
;

cy � q02 sin
x
2

.
;

cz � q03 sin
x
2

.
Computing the misorientation between two crystals with di�erent orientations can follow the procedure

outlined above, once the matrix corresponding to the rotation from orientation 1 to 2 is determined,

�R� � �R2��R1�T;
where the subscripts refer to the two orientations. The axis and angle pair describing the misorientation
between the two crystals is then determined.
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