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Effects of viscous flow on residual stresses in film /substrate systems
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An analytical model is developed to analyze the effects of viscous flow on residual stresses in
film/substrate systems. This is achieved by utilizing the analogy between the governing field
equation of elasticity and the Laplace transform with respect to time of the viscoelastic field
equation. While viscous flow can occur in either the film or the substrate, analyses of how viscous
flow in the substrate relaxes residual stresses in the film have not been performed. Also, the film
thickness is often ignored in analyzing stress relaxation due to viscous flow in the film. The above
two issues are studied in the present analysis. For the case of viscous flow in the film, the stress
relaxation rate decreases with increasing film thickness. Conversely, for the case of viscous flow in
the substrate, the stress relaxation rate increases with increasing film thickness. Compared to viscous
flow in the film, viscous flow in the substrate results in slower stress relaxation in the system.
© 2002 American Institute of Physic§DOI: 10.1063/1.1445282

I. INTRODUCTION analytical model describing how viscous flow in substrates
relaxes residual stresses in films has not yet been developed.
Film/substrate systems have extensive applications as The purpose of the present study is to develop an ana-
microelectronic, optical, and structural componéntsHow- Iytical model to analyze the effects of viscous flow on re-
ever, these systems are generally subjected to residualdual stresses in film/substrate systems. This is achieved by
stresses, which can result frof) mismatch in the coeffi- circumventing the need to solve complex partial differential
cients of thermal expansion between the film and theequations for the viscoelastic problem and by utilizing the
substraté;® (2) lattice mismatch at coherent interfaces for analogy between the governing field equation of elasticity
single crystal materia®~8and(3) phase transformatioh’®  and the Laplace transform with respect to time of the vis-
oxidation™ or densificatio®®4of the constituents. Because Coelastic field equatioff.—*° First, the elastic solutions for
the configuration of the system is asymmetric, the residualhe residual stresses and bending in the system are derived.
stresses in the system are also asymmetric which, in turr,hen, the elastic solutions are converted into viscoelastic so-
results in bending of the system. Considerable effort haditions via the Laplacéand the inverse Laplag¢ransform.

been devoted to analyzing residual stresses and bending fnally; the present solutions are compared to existing solu-
film/substrate systerf&15~18however, the analyses are gen- iONs and the difference between viscous flow in the film and

erally based on linear elasticity. It should be noted that vis!N the substrate is discussed.

cous flow in materials can occur at high temperatures. In

silicon semiconductor devices, high temperature treatments, ELASTIC SOLUTIONS

are indispensable in fabrication processes. Therefore, under- ) ) ) )
standing of the deformation characteristics of film/substrate A €ross section of a film/substrate system is schemati-
systems is essential. Viscous flow in film/substrate systemg:a"y shown in Fig. 1a), where a film with thicknesd);, is

has been documented. Observations of viscous flow in f”onnded to a substrate with thiqkneshg,. The _syster_n has
include that in SiQ/Si, 12 Pd—Si/SP* Mo—Si/Si?? amor- planar geometry, and the coordinate system is defined such

phous Si/crystalline St1°and polyimide/Gé&? observations that the plane of the film/substrate system is normal tazthe
of viscous flow in substrates include that in SiF&Z and axis and the interface between the film and the substrate is

Si3N4/Si.26'27 In the presence of viscous flow, stress relax_Iocated atz=0. In this case, the two free surfaces of the

: . system are located a=h; and z= —hg. The film is sub-
ation occurs and both the residual stresses and the curvatur . ; .

. T T R VU . jected to mismatch strainde, relative to the substrate,
in the system are modifiet! While rigorous analytical

. : . 17 which can result from thermal mismatch, lattice mismatch,
solutions havg been obtained for elastic §ystéﬁ1’§; phase transformation, or other mechanisms. To determine the
analyses for wscous_flgw systems are few n number,_ eI'stress field induced by this mismatch strain in the system, the
er.nen.tary, and of_ten limited tf) .the case ofzvzlgi:gys ﬂOW n afollowing logic is invoked. First, without being bonded at the
thin film constrained by a rigid supstra’tb. “In thisinterface, the film is subjected to a unconstrained mismatch
case, the film thickness is ignored in the analyses and ag4in A¢, while the strain in the substrate remains Zéi.
1(b)]. Then, because of bonding at the interface, displace-
dElectronic mail: hsuehc@ornl.gov ment compatibility is required. To fulfill this, uniform tensile
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z \|/ whereg is given by Eq(1), B is the biaxial modulus, and the
(@) —— ! % 2=hy subscriptsf ands, denote the film and the substrate, respec-
7N z=0 tively. The biaxial modulus is related to the Young’s modu-
substrate hs lus, E, and Poisson ratioy, by
N z=-hg
(b) E
[ T=AE ] B= 15 3
Eg=
If the system is a strip instead of planar geometry, the biaxial
©) modulus in Egs.(2a) and (2b) should be replaced by the
~Jp! Ef=C -— Young’s modulus.
- ee=c . The strain/strgss distributions in the systerm., Eqs.(1)
and (2)] are contingent upon solutions of the three param-

eters,c, b, andr, which can be determined from the follow-
ing three boundary conditions. First, the resultant force due
to the uniform strain componefite., the total force in Fig.
1(c)] is zero:

(@

Bf(C_AS)hf"r‘BSChS:O. (4a)

FIG. 1. Schematics showing cross sections of a film/substrate system suksacond. the resultant force due to the bending strain compo-
jected to mismatch strair(@) stress-free conditionb) unconstrained con- ’

dition for the film subjected to mismatch straifag, (c) constrained strain, nentis zero:
g¢=g¢=C, to maintain displacement compatibility, afd) bending induced
i hiB¢(z—b) 0 Bg(z—b)
by asymmetric stresses. fDf s
yasy f —dz+f fdz=0. (4b)
0 —hg

) ) S Third, the sum of bending moments is zero, such that
and compressive stresses are imposed on the individual lay-

ers, such that the strain in the system is a constaafyd the ht 0
total force on the system remains z¢Fag. 1(c)]. Finally, to f ‘TdeZ+J
balance the bending moment induced by the asymmetric

stresses in the system, bending of the system oddtigs  Solutions of Eqs(1), (2), and(4) yield
1(d)].

oszd=0. (40

S

Based on the logic described in Fig. 1, the strain in the _ BihiAe (53
systemg, can be decomposed into a uniform component and B¢h¢+ Bghg’
a bending component. While the uniform componemntis ) 5
described in Fig. (), the bending component is described in _ Bthi—Bshg 5p
Fig. 1(d). The bending component can be formulated based ~ 2(Bth¢+Bghy)’ (5b)
on classical beam bending thedfyThe neutral axis was
defined in classical beam bending theory such that it is the 1 6B:Bshshy(hs+hg)Ae
line in the cross section of the beam where the normal stress = 52,4, o2,.4 2 2 :
is zero®! To avoid confusion with the neutral axis, a new r Bihi+Bshs+2BBdhehy(2ht+2hs+3hehy) (50

term—the bending axis—is defined as the line in the cross
section where the bending strain component is zero. Thent should be noted that while both the uniform strain compo-
based on classical beam bending theory, the bending strairent, c, and the curvature, d/ are linearly proportional to
component is proportional to the distance from the bendinghe mismatch strainAe, the position of the bending axis is
axis and inversely proportional to the radius of curvafiire. independent of\e.
Hence, the total strain in the system can be formulated as The stress distribution in the system is nonuniform be-
cause of bending, and conversion of elastic solutions to vis-
e=c+ il (for —he=<z=<h), (1) coelastic solutions via the Laplace transform is very com-
r plex. However, this can be simplified if the average stress in
the film is considered. This consideration is appropriate be-
cause the film is relatively thin and knowledge of the de-
tailed stress distribution through the thickness is not essen-
tial. The average film stress is defined by

wherez=b indicates the location of the bending axis, and
is the radius of curvature of the system. WHeis negative,
the bending axis is located in the substrate.

Since the mismatch straifg, is a stress-free strafne.,
stresses in Fig.(b) are zerd, the normal stresses in the film 1 [y
and the substrater; and o, are related to strains by of=h—f fo oidz (6)

oi=Bf(e—Ag) (for 0=z=<hy), (2a)

By combining Egs(1), (2a), (5), and(6), the average film
o0s=Bge (for —hg=z=<0), (2b)  stress is
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. _ BfBShS(thfer Bshg)As equation becomes formidable. Fortunately, the Laplace trans-
0= 52 > 5 . form, which is an integral transform, has been developed to
Bthi +Bshs+ 2B¢Bsh¢hs(2ht + 2hg+ 3h¢hy) help in solving differential equatiorf§-3°
(7a) The Laplace transform converts a functiontoF (t), to
Combined with Eq(50), Eq. (7a) can also be expressed as a function ofs and is defined by
—  —(Bh{+Bh) _ f :
““W (7b) L{F(t)] . exp(—st)F(t)dt, (10

While o is expressed as a function of the mismatch strainWhereL[F(t)] denotes the Laplace transformfeft), ands

Ae, in Eq.(7a), it is expressed as a function of the curvature,is a transform parameter. It has been shown that the govern-
1/r, in Eq.(7b). Compared to Eq7a), Eq.(7b) is sometimes  ing field equation of elasticity and the Laplace transform
more desirable because the film stress can be obtained frowith respect to timet, of the viscoelastic field equation are
the curvature measured without knowing the mismatctanalogous in forni®=*° Hence, knowing the stresses in an
strain. However, to obtain viscoelastic solutions from elasticelastic systenje.g., Eq.(8a)], the Laplace transform of the
solutions, Eq.(7a) should be used because the curvature irStresses in a corresponding viscoelastic system can be formu-

Eq. (7b) is not a constant during viscous flow. lated. Then, by taking the inverse Laplace transform, the
It should also be noted that the average film stress deviscoelastic stresses can be obtained. _ _
scribed by Eq.(7a) is still complex for taking the inverse Adopting the usual assumptions that the viscoelastic be-

Laplace transform to derive its corresponding viscoelastidavior can be described by a Maxwell model, it was derived
stress. Further simplification can be made because the film f§at the elastic constants in the elastic system have the fol-
generally much thinner than the substrate. Wlhgreh,, lowing transforms in formulating the Laplace transform of
Egs.(7a and (7b) can be simplified and their first-order ap- the stresses in a corresponding viscoelastic systéf.
proximations are, respectively,

E 9KG s 1
_ —B{BhAe T 3K(G+ 75)+ Gy’ (113
oi==1—an (for hi<hg), (8a)
4B;h;+ B.h,
3K(G+ 5s)—2G7ns (11b
_ —Bh? Y7 BK(G+ 75)+2G 7S’
o s (for hy<hy). (8b) 6K(G+ns)+2G7s

Bhe(1+he/ho)r whereK and G are the bulk modulus and shear modulus,

When a zero-order approximation is taken, E¢&) and  respectively, andy is the Newtonian shear viscosity. Substi-

(7b) become tuting Egs.(11a@ and (11b) into Eq. (3), the corresponding
_ transform of the biaxial modulus is
O'f:_BfAS (for hf<hs), (93)
) B 18KG7s (110
— —Bgh — . (o
o= (for hy<hy). (9b) 3K(G+7s)+4G7s
f

Using the above transforms, the solutions for viscoelastic

Equation (9b) is identical to the well-known Stoney's fiim/elastic substrate and elastic film/viscoelastic substrate,
equatior® but opposite in sign, which results from the dif- respectively, are derived as follows.

ferent conventions for defining curvature. The positive cur- ) o )

vature is defined for a concave surface by Stoney’s equatioft- Viscoelastic film /elastic substrate

but is defined for a convex surface in the present stedy., The biaxial modulus of the filmB;, in Eq. (8a) is re-
Ae and 1f shown in Fig. 1 are positiyeNote that the zero- placed by Eq.(11¢ and the Laplace transform of the vis-

order approximation, Eq9a), contains no functional depen- coelastic stress in the filn[ o;(t)], becomes
dence on the film thickness. In order to examine how the film

thickness influences stress relaxation due to viscous flow in —18K;G¢7¢Bshss Ll Ae(t
the system, the first-order approximation, E(®a), is — 3K (Gi+ 5s) + 4G 7S [As(D]
adopted in Sec. Ill to derive viscoelastic solutions. Llow(t)]= , (12)
72Kfo’)7fhfS +B.h
3Kf(Gf+ 77fS)+4Gf7]fS ss
1. VISCOELASTIC SOLUTIONS whereL[Ag(t)] is the Laplace transform afe(t). The in-

verse Laplace transform of Eq12) gives the viscoelastic
While the stress in an elastic material is related directlystress in the filmg(t), such that
to the strain, the stress in a viscous material depends on the

strain rate. Hence, the constitutive equation describing the -/ _ —BiBshs Ae ex;{ —BiBshit )
stress—strain relation for a viscoelastic material is a time- f 4B¢h¢+Bghg 0 6(4B¢h;+ Bghg) 7
dependent differential equation. When the stress in a vis-

coelastic material has spatial variation, the solution for the N tdae exp{ —B¢Bshs(t—u) )du 13
position-dependent and time-dependent partial differential o du 6(4B¢hi+Bshg) e |’
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A — 2BBchyt
#0 ®XA 3(4B;hy + Bohg) 74

whereAg, is Ag(t) att=0. Equation(13) is a general equa- _ —B¢Bghs
tion describing the time-dependent viscoelastic stress in the o(t)= 2B.h.+B.h.
film. The limitation in applying this equation is that both the P sl
biaxial modulus and the shear viscosity are constant. For tdAe —2B¢Bghs(t—u)
nonconstant viscoelastic properties, complications arise in + o du exr{ 3(4B;h;+ B.hy) 773) du
applying the inverse Laplace transform to E#2).

Depending upon the experimental conditions, E)  If the mismatch strain is a constant, E49) becomes
can be sir_nplified accordingly_and two g)ga_lmplgs are given as —BBhAe, —2BBhit
follows. First, the system subjected to initial mismatch strain = o¢(t)= IB.h-1B.h ex;{3 4B;h, +B.hy) ) (20
is kept at a constant temperature to allow viscous flow in the feT =slls (4B¢hr+Bshs) 75
film. In this case, the mismatch strain is a constérg.,  Furthermore, ifh; is ignored, Eq(20) can be simplified to
dAe/dt=0), and Eq.(13) becomes —Zthft)

3hgns

Because of the factdn; /hg in the exponential term in Eq.
(21), stress relaxation is very slow whén is much smaller
thanhg.

. (19

oi(t)= —Bngoexp< (21)

ai(t)=

- BfBShSASO r{ - BfBShSt (14)

4B;h;+B.h, P 6(4Bh+Bhy) 7,

Furthermore, if the zero-order approximation is taken, Eq
(14) can be simplified to

()= — B As, exp( - Bft)_ (15 V. EXISTING SOLUTIONS

67s
When viscous flow occurs in the film, the resulting dif-

Second, the system is initially stress frieée., Ae;=0) and ferential equation for stress relaxation in the film constrained
oxidation of the film occurs at high temperatures. In thisby a rigid substrate has been shown, such’tifat*>’
case, the oxidation strain develops as a function of time ;4

while the stress is relaxed simultaneously due to viscous flow — —+ 7 =0, (22)
at high temperatures and E@.3) becomes B dt 67
whereo is the stress in the film. Whe and » are constant,

— .. —BiBshs [tdAe —B¢Bshs(t—u) the solution of Eq(22) is
710= 2B+ Boh, Jo du ex"( 6(4Bh;+Bhy) 7¢ Bt

(16) a(t)=oy exp( - a) , (23
An example of analyzing oxidation-induced stresses haghere o, is o(t) att=0. Equations15) and (23) are iden-
been shown previousfy. tical when—B;Ae, in Eq.(15) is considered as initial stress,

We note that the stress relaxation in the film is accom-; . in Eq. (23). To the best of the authors’ knowledge, the
panied by stress relaxation in the substrate. Because theresjg, thickness is always considered to be infinitesimal and
no force applied to the system, the average stresses in thiys not been included in existing analyses. Also, an analyti-
film and the substrater; ando, satisfy the following equi-  cal equation describing how the viscous flow of the substrate

librium condition: relaxes stresses in the film has not been derived before. How-
. . ever, a comprehensive analysis considering temperature
oihi+oshg=0. 17 changes, volume changes, viscous flow, and anelastic relax-
. o ation(e.g., annihilation of free volumeluring annealing of a
Hence,os becomes relaxed as; relaxes. viscoelastic thin film constrained by a rigid substrate was

performed by Loopstrat al??

B. Elastic film /viscoelastic substrate V. RESULTS

The analysis is similar to that in Sec. Il B. In this case,
the biaxial modulus of the substratg,, in Eq. (83 is re-
placed by Eq.(11¢ and the Laplace transform of the vis-

coelastic stress in the filnk[ o¢(t)], becomes

The effects of viscous flow in the film and the substrate
on the relaxation of film stresses are studied, respectively,

using Egs.(14) and(20). The film stressgy , is normalized
by its initial stress,o;(t=0), and plotted as a function of

— 18K G¢7:Bih.s norme}lized timel_Bft/n, to.elucidat(.e the essential trgnQS. The

B <3K (Gt 75) + 4G s) L[Ae(t)] mate_nal properties .of viscoelastic amorp_hou_s _S| films on

L[o¢(t)]= s\ 25T Ts s7s . (1)  elastic crystalline Si substrates and elastic Si films on vis-
4B,h,+ 18KsGsnshss ) coelastic Ge substrates are used as examples. For amorphous

3K(Ggt 758) + 4G 7S Si/crystalline Si systems, the biaxial modulus ratio of amor-

. . _ phous Si to crystalline Si is 0¥%Using B; /B;=0.7 and Eq.
The inverse Laplace transform of E(L8) gives the vis- (14, the stress relaxation is shown in Fig. 2 for different
coelastic stress in the film;(t), such that relative film thicknessedy; /hg. Whenh; /hg=0, the solu-
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O or the substrate. In existing analyses, the stress relaxation is
- B#/B,=0.7

generally obtained by solving a differential equation, which
describes the stress—strain relation during viscoelastic defor-
mation[e.g., Eq.(22)]. To have a solvable differential equa-
tion, many factors are ignored. To the best of the authors’
knowledge, the film thickness has not been included in the
analysis. Also, an analytical equation describing how viscous
flow in the substrate relaxes stresses in the film has not been
derived. The above problems are resolved in the present
study by utilizing the analogy between the governing field
equation of elasticity and the Laplace transform with respect
to time of the viscoelastic field equation. The viscoelastic
solution is obtained byl) deriving the elastic solution2)
formulating the corresponding Laplace transform of the vis-
coelastic solution, and3) inverting the Laplace transform.
However, the analyses are complex and the following sim-
plifications are adopted(l) a first-order approximation is
taken for average film stres§?) the viscoelastic behavior
can be described by a Maxwell model, a3l the viscoelas-

tic properties are assumed to be constant.

=0)

hyh=0.2

(= (=1
=) 0

(=4
£

LI L NS LR B LR N I L
ool g a o by

Normalized film stress, G Gt
=)
o

<o

o
W

10 15
Normalized time, B¢t n¢

FIG. 2. Normalized film stressﬂ /;f (t=0), as a function of the normal-
ized time, B; t/7;, at different film thicknessedy; /hg, for viscoelastic
amorphous Si/elastic crystalline Si systems.

tion is the same as E3). It is shown in Fig. 2 that the rate
of stress relaxation decreases with an increade; t .

For Si/Ge systems, the biaxial moduli éBe=107 GPa
and B,=180 GPa(i.e., B;/Bs=0.6).2* Using B;/B;=0.6

For the case of viscous flow in the film, the solution
based on the zero-order approximatj&y. (15)] is identical

and Ed.(20), the stress relaxation is shown in Fig. 3 for to the existing solutiofiEq. (23)] and the solution based on

different relative film thicknessesy; /hg. Wﬂenmlhsz 0,
the stress in the film cannot be relaxed; i@,/ o (t=0)

first-order approximatiofEq. (14)] shows the effects of the
film thickness. In this case, the stress relaxation rate in the

=1 in Fig. 3. This result can be visualized by examining Eq.film decreases with an increase in film thickness. Conversely,
(17). In the limiting case oh; /hg=0, ;szo and hence vis- in the case of viscous flow in the substrate, the stress relax-
cous flow in the substrate cannot relax stresses in the systeation rate in the film increases with an increase in film thick-
at all. It is shown in Fig. 3 that the rate of stress relaxationn€ss[Eq. (20)]. Compared to viscous flow in the film, vis-
increases with an increase k[)f/hS However, Compared to COus flow in the substrate results in slower stress relaxation
Fig. 2, Fig. 3 reveals slower stress relaxation. This can als# the system.

be visualized by comparing the exponential terms in Egs.

(14) and (20). If we ignore the difference between the film
viscosity and the substrate viscosity, E(s?) and(20) have
the same stress relaxation rate whbp/hg=0.25. For The authors thank Dr. P. F. Becher, Dr. R. D. Carneim,
h¢ /hg<<0.25, viscous flow in the substrate gives slower stresand Dr. M. J. Lance for reviewing this article. This research
relaxation than viscous flow in the film. was sponsored by the Division of Materials Sciences and
Engineering, U.S. Department of Energy, under Contract No.
DE-AC05-000R22725 with UT—Battelle.
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