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Effects of viscous flow on residual stresses in film Õsubstrate systems
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An analytical model is developed to analyze the effects of viscous flow on residual stresses in
film/substrate systems. This is achieved by utilizing the analogy between the governing field
equation of elasticity and the Laplace transform with respect to time of the viscoelastic field
equation. While viscous flow can occur in either the film or the substrate, analyses of how viscous
flow in the substrate relaxes residual stresses in the film have not been performed. Also, the film
thickness is often ignored in analyzing stress relaxation due to viscous flow in the film. The above
two issues are studied in the present analysis. For the case of viscous flow in the film, the stress
relaxation rate decreases with increasing film thickness. Conversely, for the case of viscous flow in
the substrate, the stress relaxation rate increases with increasing film thickness. Compared to viscous
flow in the film, viscous flow in the substrate results in slower stress relaxation in the system.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1445282#
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I. INTRODUCTION

Film/substrate systems have extensive applications
microelectronic, optical, and structural components.1–3 How-
ever, these systems are generally subjected to resi
stresses, which can result from~1! mismatch in the coeffi-
cients of thermal expansion between the film and
substrate,1–5 ~2! lattice mismatch at coherent interfaces f
single crystal materials,1,6–8and~3! phase transformation,9,10

oxidation,11 or densification12–14of the constituents. Becaus
the configuration of the system is asymmetric, the resid
stresses in the system are also asymmetric which, in t
results in bending of the system. Considerable effort
been devoted to analyzing residual stresses and bendin
film/substrate systems;4,5,15–18however, the analyses are ge
erally based on linear elasticity. It should be noted that v
cous flow in materials can occur at high temperatures
silicon semiconductor devices, high temperature treatm
are indispensable in fabrication processes. Therefore, un
standing of the deformation characteristics of film/substr
systems is essential. Viscous flow in film/substrate syste
has been documented. Observations of viscous flow in fi
include that in SiO2/Si,19,20 Pd–Si/Si,21 Mo–Si/Si,22 amor-
phous Si/crystalline Si,9,10 and polyimide/Ge;23 observations
of viscous flow in substrates include that in Si/Ge24,25 and
Si3N4/Si.26,27 In the presence of viscous flow, stress rela
ation occurs and both the residual stresses and the curv
in the system are modified.9,10,19–27While rigorous analytical
solutions have been obtained for elastic systems,4,5,16,17

analyses for viscous flow systems are few in number,
ementary, and often limited to the case of viscous flow i
thin film constrained by a rigid substrate.21,22,24,27 In this
case, the film thickness is ignored in the analyses and

a!Electronic mail: hsuehc@ornl.gov
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analytical model describing how viscous flow in substra
relaxes residual stresses in films has not yet been develo

The purpose of the present study is to develop an a
lytical model to analyze the effects of viscous flow on r
sidual stresses in film/substrate systems. This is achieve
circumventing the need to solve complex partial different
equations for the viscoelastic problem and by utilizing t
analogy between the governing field equation of elastic
and the Laplace transform with respect to time of the v
coelastic field equation.28–30 First, the elastic solutions fo
the residual stresses and bending in the system are der
Then, the elastic solutions are converted into viscoelastic
lutions via the Laplace~and the inverse Laplace! transform.
Finally, the present solutions are compared to existing so
tions and the difference between viscous flow in the film a
in the substrate is discussed.

II. ELASTIC SOLUTIONS

A cross section of a film/substrate system is schem
cally shown in Fig. 1~a!, where a film with thickness,hf , is
bonded to a substrate with thickness,hs . The system has
planar geometry, and the coordinate system is defined s
that the plane of the film/substrate system is normal to thz
axis and the interface between the film and the substrat
located atz50. In this case, the two free surfaces of t
system are located atz5hf and z52hs . The film is sub-
jected to mismatch strain,D«, relative to the substrate
which can result from thermal mismatch, lattice mismat
phase transformation, or other mechanisms. To determine
stress field induced by this mismatch strain in the system,
following logic is invoked. First, without being bonded at th
interface, the film is subjected to a unconstrained misma
strain,D«, while the strain in the substrate remains zero@Fig.
1~b!#. Then, because of bonding at the interface, displa
ment compatibility is required. To fulfill this, uniform tensil
0 © 2002 American Institute of Physics
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and compressive stresses are imposed on the individual
ers, such that the strain in the system is a constant,c, and the
total force on the system remains zero@Fig. 1~c!#. Finally, to
balance the bending moment induced by the asymme
stresses in the system, bending of the system occurs@Fig.
1~d!#.

Based on the logic described in Fig. 1, the strain in
system,«, can be decomposed into a uniform component a
a bending component. While the uniform component,c, is
described in Fig. 1~c!, the bending component is described
Fig. 1~d!. The bending component can be formulated ba
on classical beam bending theory.31 The neutral axis was
defined in classical beam bending theory such that it is
line in the cross section of the beam where the normal st
is zero.31 To avoid confusion with the neutral axis, a ne
term—the bending axis—is defined as the line in the cr
section where the bending strain component is zero. Th
based on classical beam bending theory, the bending s
component is proportional to the distance from the bend
axis and inversely proportional to the radius of curvature31

Hence, the total strain in the system can be formulated a

«5c1
z2b

r
~ for 2hs<z<hf !, ~1!

wherez5b indicates the location of the bending axis, andr
is the radius of curvature of the system. Whenb is negative,
the bending axis is located in the substrate.

Since the mismatch strain,D«, is a stress-free strain@i.e.,
stresses in Fig. 1~b! are zero#, the normal stresses in the film
and the substrate,s f andss , are related to strains by

s f5Bf~«2D«! ~ for 0<z<hf !, ~2a!

ss5Bs« ~ for 2hs<z<0!, ~2b!

FIG. 1. Schematics showing cross sections of a film/substrate system
jected to mismatch strain:~a! stress-free condition,~b! unconstrained con-
dition for the film subjected to mismatch strain,D«, ~c! constrained strain,
« f5«s5c, to maintain displacement compatibility, and~d! bending induced
by asymmetric stresses.
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where« is given by Eq.~1!, B is the biaxial modulus, and the
subscripts,f ands, denote the film and the substrate, resp
tively. The biaxial modulus is related to the Young’s mod
lus, E, and Poisson ratio,n, by

B5
E

12n
. ~3!

If the system is a strip instead of planar geometry, the bia
modulus in Eqs.~2a! and ~2b! should be replaced by th
Young’s modulus.

The strain/stress distributions in the system@i.e., Eqs.~1!
and ~2!# are contingent upon solutions of the three para
eters,c, b, andr, which can be determined from the follow
ing three boundary conditions. First, the resultant force d
to the uniform strain component@i.e., the total force in Fig.
1~c!# is zero:

Bf~c2D«!hf1Bschs50. ~4a!

Second, the resultant force due to the bending strain com
nent is zero:

E
0

hf Bf~z2b!

r
dz1E

2hs

0 Bs~z2b!

r
dz50. ~4b!

Third, the sum of bending moments is zero, such that

E
0

hf
s fzdz1E

2hs

0

sszd50. ~4c!

Solutions of Eqs.~1!, ~2!, and~4! yield

c5
BfhfD«

Bfhf1Bshs
, ~5a!

b5
Bfhf

22Bshs
2

2~Bfhf1Bshs!
, ~5b!

1

r
5

6BfBshfhs~hf1hs!D«

Bf
2hf

41Bs
2hs

412BfBshfhs~2hf
212hs

213hfhs!
.

~5c!

It should be noted that while both the uniform strain comp
nent, c, and the curvature, 1/r , are linearly proportional to
the mismatch strain,D«, the position of the bending axis i
independent ofD«.

The stress distribution in the system is nonuniform b
cause of bending, and conversion of elastic solutions to
coelastic solutions via the Laplace transform is very co
plex. However, this can be simplified if the average stress
the film is considered. This consideration is appropriate
cause the film is relatively thin and knowledge of the d
tailed stress distribution through the thickness is not ess
tial. The average film stress is defined by

s̄ f5
1

hf
E

0

hf
s fdz. ~6!

By combining Eqs.~1!, ~2a!, ~5!, and ~6!, the average film
stress is

b-
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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s̄ f5
2BfBshs~Bfhf

31Bshs
3!D«

Bf
2hf

41Bs
2hs

412BfBshfhs~2hf
212hs

213hfhs!
.

~7a!

Combined with Eq.~5c!, Eq. ~7a! can also be expressed a

s̄ f5
2~Bfhf

31Bshs
3!

6hf~hf1hs!r
. ~7b!

While s̄ f is expressed as a function of the mismatch stra
D«, in Eq. ~7a!, it is expressed as a function of the curvatu
1/r , in Eq.~7b!. Compared to Eq.~7a!, Eq.~7b! is sometimes
more desirable because the film stress can be obtained
the curvature measured without knowing the misma
strain. However, to obtain viscoelastic solutions from elas
solutions, Eq.~7a! should be used because the curvature
Eq. ~7b! is not a constant during viscous flow.

It should also be noted that the average film stress
scribed by Eq.~7a! is still complex for taking the inverse
Laplace transform to derive its corresponding viscoela
stress. Further simplification can be made because the fil
generally much thinner than the substrate. Whenhf!hs ,
Eqs.~7a! and ~7b! can be simplified and their first-order ap
proximations are, respectively,

s̄ f5
2BfBshsD«

4Bfhf1Bshs
~ for hf!hs!, ~8a!

s̄ f5
2Bshs

2

6hf~11 hf /hs!r
~ for hf!hs!. ~8b!

When a zero-order approximation is taken, Eqs.~7a! and
~7b! become

s̄ f52BfD« ~ for hf!hs!, ~9a!

s̄ f5
2Bshs

2

6hfr
~ for hf!hs!. ~9b!

Equation ~9b! is identical to the well-known Stoney’
equation15 but opposite in sign, which results from the di
ferent conventions for defining curvature. The positive c
vature is defined for a concave surface by Stoney’s equa
but is defined for a convex surface in the present study~e.g.,
D« and 1/r shown in Fig. 1 are positive!. Note that the zero-
order approximation, Eq.~9a!, contains no functional depen
dence on the film thickness. In order to examine how the fi
thickness influences stress relaxation due to viscous flow
the system, the first-order approximation, Eq.~8a!, is
adopted in Sec. III to derive viscoelastic solutions.

III. VISCOELASTIC SOLUTIONS

While the stress in an elastic material is related direc
to the strain, the stress in a viscous material depends on
strain rate. Hence, the constitutive equation describing
stress–strain relation for a viscoelastic material is a tim
dependent differential equation. When the stress in a
coelastic material has spatial variation, the solution for
position-dependent and time-dependent partial differen
Downloaded 24 Apr 2002 to 128.219.47.162. Redistribution subject to A
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equation becomes formidable. Fortunately, the Laplace tra
form, which is an integral transform, has been developed
help in solving differential equations.28–30

The Laplace transform converts a function oft, F(t), to
a function ofs and is defined by

L@F~ t !#5E
0

`

exp~2st!F~ t !dt, ~10!

whereL@F(t)# denotes the Laplace transform ofF(t), ands
is a transform parameter. It has been shown that the gov
ing field equation of elasticity and the Laplace transfo
with respect to time,t, of the viscoelastic field equation ar
analogous in form.28–30 Hence, knowing the stresses in a
elastic system@e.g., Eq.~8a!#, the Laplace transform of the
stresses in a corresponding viscoelastic system can be fo
lated. Then, by taking the inverse Laplace transform,
viscoelastic stresses can be obtained.

Adopting the usual assumptions that the viscoelastic
havior can be described by a Maxwell model, it was deriv
that the elastic constants in the elastic system have the
lowing transforms in formulating the Laplace transform
the stresses in a corresponding viscoelastic system.13,28

E→ 9KGhs

3K~G1hs!1Ghs
, ~11a!

n→ 3K~G1hs!22Ghs

6K~G1hs!12Ghs
, ~11b!

where K and G are the bulk modulus and shear modulu
respectively, andh is the Newtonian shear viscosity. Subs
tuting Eqs.~11a! and ~11b! into Eq. ~3!, the corresponding
transform of the biaxial modulus is

B→ 18KGhs

3K~G1hs!14Ghs
. ~11c!

Using the above transforms, the solutions for viscoela
film/elastic substrate and elastic film/viscoelastic substr
respectively, are derived as follows.

A. Viscoelastic film Õelastic substrate

The biaxial modulus of the film,Bf , in Eq. ~8a! is re-
placed by Eq.~11c! and the Laplace transform of the vis
coelastic stress in the film,L@s̄ f(t)#, becomes

L@s̄ f~ t !#5

S 218K fGfh fBshss

3K f~Gf1h fs!14Gfh fs
DL@D«~ t !#

S 72K fGfh fhfs

3K f~Gf1h fs!14Gfh fs
D 1Bshs

, ~12!

whereL@D«(t)# is the Laplace transform ofD«(t). The in-
verse Laplace transform of Eq.~12! gives the viscoelastic
stress in the film,s̄ f(t), such that

s̄ f~ t !5
2BfBshs

4Bfhf1Bshs
FD«0 expS 2BfBshst

6~4Bfhf1Bshs!h f
D

1E
0

t dD«

du
expS 2BfBshs~ t2u!

6~4Bfhf1Bshs!h f
DduG , ~13!
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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whereD«0 is D«(t) at t50. Equation~13! is a general equa
tion describing the time-dependent viscoelastic stress in
film. The limitation in applying this equation is that both th
biaxial modulus and the shear viscosity are constant.
nonconstant viscoelastic properties, complications arise
applying the inverse Laplace transform to Eq.~12!.

Depending upon the experimental conditions, Eq.~13!
can be simplified accordingly and two examples are given
follows. First, the system subjected to initial mismatch str
is kept at a constant temperature to allow viscous flow in
film. In this case, the mismatch strain is a constant~i.e.,
dD«/dt50), and Eq.~13! becomes

s̄ f~ t !5
2BfBshsD«0

4Bfhf1Bshs
expS 2BfBshst

6~4Bfhf1Bshs!h f
D . ~14!

Furthermore, if the zero-order approximation is taken, E
~14! can be simplified to

s̄ f~ t !52BfD«0 expS 2Bft

6h f
D . ~15!

Second, the system is initially stress free~i.e., D«050) and
oxidation of the film occurs at high temperatures. In th
case, the oxidation strain develops as a function of ti
while the stress is relaxed simultaneously due to viscous fl
at high temperatures and Eq.~13! becomes

s̄ f~ t !5
2BfBshs

4Bfhf1Bshs
E

0

t dD«

du
expS 2BfBshs~ t2u!

6~4Bfhf1Bshs!h f
Ddu.

~16!

An example of analyzing oxidation-induced stresses
been shown previously.11

We note that the stress relaxation in the film is acco
panied by stress relaxation in the substrate. Because the
no force applied to the system, the average stresses in
film and the substrate,s̄ f ands̄s , satisfy the following equi-
librium condition:

s̄ fhf1s̄shs50. ~17!

Hence,s̄s becomes relaxed ass̄ f relaxes.

B. Elastic film Õviscoelastic substrate

The analysis is similar to that in Sec. III B. In this cas
the biaxial modulus of the substrate,Bs , in Eq. ~8a! is re-
placed by Eq.~11c! and the Laplace transform of the vis
coelastic stress in the film,L@s̄ f(t)#, becomes

L@s̄ f~ t !#5

S 218KsGshsBfhss

3Ks~Gs1hss!14Gshss
D L@D«~ t !#

4Bfhf1 S 18KsGshshss

3Ks~Gs1hss!14Gshss
D . ~18!

The inverse Laplace transform of Eq.~18! gives the vis-
coelastic stress in the film,s̄ f(t), such that
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s̄ f~ t !5
2BfBshs

4Bfhf1Bshs
FD«0 expS 22BfBshf t

3~4Bfhf1Bshs!hs
D

1E
0

t dD«

du
expS 22BfBshf~ t2u!

3~4Bfhf1Bshs!hs
DduG . ~19!

If the mismatch strain is a constant, Eq.~19! becomes

s̄ f~ t !5
2BfBshsD«0

4Bfhf1Bshs
expS 22BfBshf t

3~4Bfhf1Bshs!hs
D . ~20!

Furthermore, ifhf is ignored, Eq.~20! can be simplified to

s̄ f~ t !52BfD«0 expS 22Bfhf t

3hshs
D . ~21!

Because of the factorhf /hs in the exponential term in Eq
~21!, stress relaxation is very slow whenhf is much smaller
thanhs .

IV. EXISTING SOLUTIONS

When viscous flow occurs in the film, the resulting d
ferential equation for stress relaxation in the film constrain
by a rigid substrate has been shown, such that21,22,24,27

1

B

ds

dt
1

s

6h
50, ~22!

wheres is the stress in the film. WhenB andh are constant,
the solution of Eq.~22! is

s~ t !5s0 expS 2
Bt

6h D , ~23!

wheres0 is s(t) at t50. Equations~15! and ~23! are iden-
tical when2BfD«0 in Eq. ~15! is considered as initial stress
s0 , in Eq. ~23!. To the best of the authors’ knowledge, th
film thickness is always considered to be infinitesimal a
has not been included in existing analyses. Also, an ana
cal equation describing how the viscous flow of the substr
relaxes stresses in the film has not been derived before. H
ever, a comprehensive analysis considering tempera
changes, volume changes, viscous flow, and anelastic re
ation~e.g., annihilation of free volume! during annealing of a
viscoelastic thin film constrained by a rigid substrate w
performed by Loopstraet al.22

V. RESULTS

The effects of viscous flow in the film and the substra
on the relaxation of film stresses are studied, respectiv
using Eqs.~14! and ~20!. The film stress,s̄ f , is normalized
by its initial stress,s̄ f(t50), and plotted as a function o
normalized time,Bft/h, to elucidate the essential trends. T
material properties of viscoelastic amorphous Si films
elastic crystalline Si substrates and elastic Si films on v
coelastic Ge substrates are used as examples. For amorp
Si/crystalline Si systems, the biaxial modulus ratio of am
phous Si to crystalline Si is 0.7.9 Using Bf /Bs50.7 and Eq.
~14!, the stress relaxation is shown in Fig. 2 for differe
relative film thicknesses,hf /hs . Whenhf /hs50, the solu-
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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tion is the same as Eq.~23!. It is shown in Fig. 2 that the rate
of stress relaxation decreases with an increase ofhf /hs .

For Si/Ge systems, the biaxial moduli areBf5107 GPa
and Bs5180 GPa~i.e., Bf /Bs50.6).24 Using Bf /Bs50.6
and Eq. ~20!, the stress relaxation is shown in Fig. 3 f
different relative film thicknesses,hf /hs . When hf /hs50,
the stress in the film cannot be relaxed; i.e.,s̄ f / s̄ f (t50)
51 in Fig. 3. This result can be visualized by examining E
~17!. In the limiting case ofhf /hs50, s̄s50 and hence vis-
cous flow in the substrate cannot relax stresses in the sy
at all. It is shown in Fig. 3 that the rate of stress relaxat
increases with an increase ofhf /hs . However, compared to
Fig. 2, Fig. 3 reveals slower stress relaxation. This can a
be visualized by comparing the exponential terms in E
~14! and ~20!. If we ignore the difference between the film
viscosity and the substrate viscosity, Eqs.~14! and~20! have
the same stress relaxation rate whenhf /hs50.25. For
hf /hs,0.25, viscous flow in the substrate gives slower str
relaxation than viscous flow in the film.

VI. CONCLUSIONS

Film/substrate systems are generally subjected to
sidual stresses that can be relaxed by viscous flow in the

FIG. 2. Normalized film stress,s̄ f /s̄ f (t50), as a function of the normal
ized time, Bf t/h f , at different film thicknesses,hf /hs , for viscoelastic
amorphous Si/elastic crystalline Si systems.

FIG. 3. Normalized film stress,s̄ f / s̄ f (t50), as a function of the normal
ized time, Bf t/hs , at different film thicknesses,hf /hs , for elastic Si/
viscoelastic Ge systems.
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or the substrate. In existing analyses, the stress relaxatio
generally obtained by solving a differential equation, whi
describes the stress–strain relation during viscoelastic de
mation@e.g., Eq.~22!#. To have a solvable differential equa
tion, many factors are ignored. To the best of the autho
knowledge, the film thickness has not been included in
analysis. Also, an analytical equation describing how visc
flow in the substrate relaxes stresses in the film has not b
derived. The above problems are resolved in the pres
study by utilizing the analogy between the governing fie
equation of elasticity and the Laplace transform with resp
to time of the viscoelastic field equation. The viscoelas
solution is obtained by~1! deriving the elastic solution,~2!
formulating the corresponding Laplace transform of the v
coelastic solution, and~3! inverting the Laplace transform
However, the analyses are complex and the following s
plifications are adopted:~1! a first-order approximation is
taken for average film stress,~2! the viscoelastic behavio
can be described by a Maxwell model, and~3! the viscoelas-
tic properties are assumed to be constant.

For the case of viscous flow in the film, the solutio
based on the zero-order approximation@Eq. ~15!# is identical
to the existing solution@Eq. ~23!# and the solution based o
first-order approximation@Eq. ~14!# shows the effects of the
film thickness. In this case, the stress relaxation rate in
film decreases with an increase in film thickness. Convers
in the case of viscous flow in the substrate, the stress re
ation rate in the film increases with an increase in film thic
ness@Eq. ~20!#. Compared to viscous flow in the film, vis
cous flow in the substrate results in slower stress relaxa
in the system.
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