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ABSTRACT
Indentation of ceramic materials with smooth indenters such as parabolae of

revolution and spheres can be conducted in the elastic regime to relatively high
loads. Ceramic single crystals thus provide excellent calibration media for load-
and depth-sensing indentation testing; however, they are generally anisotropic
and a complete elastic analysis is cumbersome. This study presents a simpli® ed
procedure for the determination of the stiŒness of contact for the indentation of
an anisotropic half-space by a rigid frictionless parabola of revolution which, to
® rst order, approximates spherical indentation. Using a similar approach, a new
procedure is developed for analysing conical indentation of anisotropic elastic
media. For both indenter shapes, the contact is found to be elliptical, and
equations are determined for the size, shape and orientation of the ellipse and
the indentation modulus.

} 1. INTRODUCTION
Techniques for measuring the mechanical properties by load- and depth-sensing

indentation are based on solutions to elastic contact problems (Pethica et al. 1983,

Loubet et al. 1984, Doerner and Nix 1986, Oliver and Pharr 1992). Although solu-
tions for isotropic media have been known for some time, the widespread use of

elastically anisotropic materials in ® lms, coatings, composites and microelectronics

devices has recently focused attention on anisotropic elastic contact (Vlassak and

Nix 1993, 1994). In addition, many hard ceramic materials can be indented entirely

in the elastic regime and are therefore potentially useful as calibration materials for
load- and depth-sensing indentation testing. However, these materials are generally

highly anisotropic, and their use in calibration procedures requires an analysis which

fully accounts for the anisotropy.

Using the Fourier transform technique, Willis (1966) determined the elastic solu-

tion for the indentation of an anisotropic half-space by a parabola of revolution.

This solution takes the form of six nonlinear integral equations, which are di� cult to
apply in practice, because they must be solved simultaneously. Using the surface
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Green’ s function for an anisotropic half-space (Barnett and Lothe 1975), Vlassak

and Nix (1993, 1994) derived simpli® ed expressions for the indentation parameters

for the cases of ¯ at punches of various shapes and for cases of indentation by a
parabola of revolution with material symmetries that produce circular contact. The

solution for a parabolic indenter on an elastic substrate was originally determined by

Hertz (1882), and the solution for a transversely isotropic half-space was given by

Elliott (1949).

The isotropic conical indentation problem was ® rst solved by Love (1939) and
more fully by Harding and Sneddon (1945). The ® rst solution for transversely iso-

tropic media was developed by Elliott (1949), but a solution for conical indentation

of a general anisotropic half-space has not been presented.

In this study, we apply the surface Green’ s function determined by Barnett and

Lothe (1975) to the indentation of an elastically anisotropic half-space by a parabola
of revolution. To ® rst order, this geometry also models spherical indentation. The

indentation parameters are expressed in the form of contour integrals that can be

evaluated directly in a manner more convenient than the procedure given by Willis.

The same technique is applied to conical indentation of an anisotropic half-

space. For conical indentation, the projected area of contact is also shown to be

elliptical. The solution determines expressions for the important indentation para-
meters.

To demonstrate the utility of these results, several examples of parabolic and

conical indentation in elastically anisotropic materials are presented. The indenta-

tion modulus for sapphire is examined in some detail so as to provide results that can

be used for the calibration of load- and depth-sensing testing using a sapphire sub-
strate. Results are also presented for several cubic materials over a wide range of

crystal orientations.

Extrapolation of these results to the case of an anisotropic indenter on an aniso-

tropic substrate is possible for certain symmetries. Approximations for general cases

of elastically anisotropic indenters and substrates are also discussed.

} 2. APPROACH
Similar methods are used to derive the important indentation parameters for

contact by a parabola of revolution and by a cone, but the steps are in a diŒerent

order. For the case of a parabola of revolution, many aspects of the solution are
already known. Therefore, we start with some known results and from these develop

additional formulae. For the case of a conical indenter, no previous solution exists.

We use the semi-inverse method starting from assumptions about the pressure dis-

tribution that develops from conical contact. From the assumed pressure distribu-

tion, a solution is developed which is shown to justify the assumptions.
The analysis begins by relating the stiŒness S of contact to the projected area A

of contact. The stiŒness of contact is an important parameter that is readily mea-

sured experimentally in indentation. Using the Fourier transform equations from

Willis (1966) for indentation of an anisotropic half-space by a rigid and frictionless

parabola of revolution, Vlassak and Nix (1993) showed that the contact stiŒness for
anisotropic materials can be written as

S ˆ
dP
d¯

ˆ
2

p1=2
MA1=2; …1†
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where P is the applied load, ¯ is the rigid-body displacement of the indenter relative

to the half-space, A is the projected area of contact and M is the indentation

modulus, which is a complicated function of the elastic moduli and, in general, is
dependent on the shape of the indenter. A simpli® ed formula for M will be

presented herein for conical and parabolic indenters. For axisymmetric indenters

and isotropic media, Pharr et al. (1992) have shown that equation (1) holds with

M ˆ E=…1 ¡ ¸2), independent of the indenter geometry. For the special case of

threefold or fourfold symmetry on the surface of the anisotropic half-space (which
produces a circular projected area of contact), Vlassak and Nix (1993) have shown

that M is the same for ¯ at circular punches and parabolic indenters. For the general

case, the projected area of contact is elliptical (Willis 1966), and M depends on the

shape of the contact ellipse.

For indentation by a parabola of revolution, the relation between load and the
displacement of the indenter, the pressure distribution and the projected area of

contact are all known (Willis 1966). The surface displacements are derived from

the surface Green’ s function (Barnett and Lothe 1975). Noting that the lateral sur-

face displacements must be zero at the center of contact, a simpli® ed procedure is

developed to determine the orientation of the elliptical projected area of contact

relative to the coordinate system used to de® ne the stiŒness tensor of the half-
space. Once the orientation of the contact ellipse is known, the eccentricity of the

ellipse is determined by again using the surface displacements. The surface displace-

ments are also used to determine the indentation modulus M.

For a conical indenter, the initial assumptions are proposed and a solution is

developed. In a manner similar to the previous case, the displacements of the surface
are determined based on the assumed pressure distribution. The determination of the

load± displacement relation, the indentation modulus and the orientation and eccen-

tricity of the projected area of contact follow. The assumptions are veri® ed by

checking the consistency of the results with the boundary conditions.

} 3. INDENTATION BY A PARABOLA OF REVOLUTION
For a rigid frictionless parabola of revolution initially resting on a general

anisotropic half-space, the relation between P and ¯ has been determined by

Willis (1966) as

P ˆ 4M

3µ1=2
¯3=2; …2†

where µ is the curvature at the tip of the indenter. The geometry of this problem is

shown in ® gure 1. From equations (1) and (2), the contact stiŒness for parabolic

indentation is given by

S ˆ dP
d¯

ˆ 2M

µ1=2
¯1=2: …3†

For parabolic indenters on anisotropic media, Willis (1966) has shown that the

projected area of contact is elliptical. Thus, the projected contact area is

A ˆ pa1a2, where a1 and a2 are the semiaxes of the contact ellipse. Equating equa-

tions (1) and (3) and substituting for A relates the indenter displacement to the

semiaxes of the contact ellipse as

¯ ˆ a1a2µ: …4†
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For isotropic media, Doerner and Nix (1986) and Oliver and Pharr (1992) have

shown that, even when plastic deformation occurs during indentation, the indenta-

tion modulus can still be determined experimentally from the elastic unloading

behaviour. In order to use the Oliver± Pharr method, the contact depth must ® rst
be determined. In general terms, the contact depth can be written as (Oliver and

Pharr 1992)

hc ˆ ¯ ¡ "
P
S

; …5†

where " depends on the shape of the indenter. For parabolic indentation of isotropic
media, " ˆ 0:75 (Oliver and Pharr 1992). For parabolic indentation of anisotropic

media, Vlassak and Nix (1993) have shown that the same value holds for the special

case of threefold or fourfold symmetry on the surface of the half-space, which results

in a circular projected contact area.

In general, the projected area of contact is elliptical, and the contact depth
depends on the location along the edge of contact. On the major (or minor) elliptical
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Figure 1. Geometry for indentation by a parabola of revolution.



axis, the contact depth will be µa2
1=2 while, on the minor (or major) axis, the contact

depth will be µa2
2=2: Therefore, a logical choice for hc is the mean value (averaged

over the perimeter of contact), which can be written using equation (4) as

hc ˆ
a1a2

2
µ ˆ ¯

2
: …6†

Substituting equations (2), (4) and (6) into equation (5) gives " ˆ 0:75 for elliptical

contact, in agreement with previous results for circular contact and isotropic media.

3.1. Surface deformation

The surface Green’s function for a half-space has been determined by Barnett

and Lothe (1975) using the Stroh formalism. The displacements at the free surface

(y3 ˆ 0† in the x i direction due to a unit force in the x j direction are given by

uij…y1; y2; 0† ˆ 1

2ºjyj B¡1
ij …y† ¡ 1

p

…p

0

B¡1
ik …t†Skj…t†

sin …® ¡ ®0† d®

Á !

; …7†

where B…t† and S…t† are two of the Barnett± Lothe tensors computed on a plane

whose normal lies in the y1y2 plane and makes an angle ®0 with the y1 axis and ®
is also measured from the y1 axis. These Barnett± Lothe tensors are de® ned as

(Barnett and Lothe 1975, Lothe and Barnett 1976)

B…t† ˆ
¡1

2p

…2p

0

‰…mn†…nn†¡1…nm† ¡ …mm†Š d’;

S…t† ˆ ¡1

2p

…2p

0

‰…nn†¡1…nm†Š d’;

…8†

where the vectors (t, m, n) form an orthogonal right-hand system and ’ is the angle

between m and an arbitrary ® xed datum in the plane normal to t. In the above
expression, the second-order tensors (ab) are de® ned by (ab†jk ˆ aiC ijklbl, where

C ijkl are the components of the Cartesian stiŒness tensor (the elastic moduli). Note

that the tensors B…t† and S…t† do not depend on the magnitude of t.

Since B is symmetric and positive de® nite and B¡1S is skew symmetric (Lothe

and Barnett 1976), the surface displacements due to a unit load in the x3 direction
reduce to (Vlassak and Nix 1993)

wi…y† ˆ 1

2pjyj B¡1
ij …y†a3j; …9†

where a3j are the direction cosines with the normal to the surface. Using this solution

as a Green’s function, the displacements of the surface for a pressure distribution

p…y† over a surface S are given by

u…y† ˆ
… …

S
p…y 0†w…y ¡ y 0† dy 0: …10†

For a rigid parabolic indenter in contact with an anisotropic elastic half-space,

Willis (1966) has shown that the projected contact area is an ellipse and that the

pressure distribution on the surface of the half-space is p…y1; y2† ˆ
p0‰1 ¡ …y1=a1†2 ¡ …y2=a2†2Š1=2. Substituting this expression and equation (9) into
equation (10) gives the surface displacements as
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uk…y† ˆ
1

2p

… …

S

p0‰1 ¡ …y 0
1=a1†

2 ¡ …y 0
2=a2†

2Š1=2

jy ¡ y 0j akjB
¡1
ij …y ¡ y 0†a3j dy 0: …11†

The displacement of the indenter, which initially rests on the surface of the half-

space, is equal to the surface displacement in the x3 direction at y ˆ 0, which is given

by equation (11) as

¯ ˆ 1

2p

… …

S

p0‰1 ¡ …y 0
1=a1†2 ¡ …y 0

2=a2†2Š1=2

jy 0j
a3iB

¡1
ij …y 0†a3j dy 0: …12†

Using the coordinate transformation » cos ® ˆ y 0
1=a1; » sin ® ˆ y 0

2=a2, this becomes

¯ ˆ p0…a1a2†1=2

2º

…2p

0

…1

0

…1 ¡ »2†1=2 a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d» d®

ˆ
p0…a1a2†

1=2

8

…2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …13†

Since the total applied force is P ˆ
„
S p…y† dy ˆ 2

3
pa1a2p0, equation (13) can be

written in the form

¯ ˆ 3P

16p…a1a2†1=2

…2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …14†

In order to proceed further, the ratio a1=a2 and the orientation ¿ (see ® gure 1) of the

ellipse relative to the chosen coordinate axes (which are implicit in the de® nition of

the elastic moduli) must be determined.

3.2. Determination of ¿
If the surface possesses mirror symmetry, one axis of the contact ellipse must lie

in the plane of symmetry. Otherwise, the orientation of the ellipse can be found by

again using the surface displacements. At y ˆ 0 the displacements in the direction of

the elliptical axes must be zero owing to symmetry. Therefore, the displacement in

any lateral direction must be zero at y ˆ 0. Thus, for the x1 direction, equation (11)
gives

u1…0† ˆ 0 ˆ 1

2p

… …

S

p0‰1 ¡ …y 0
1=a1†2 ¡ …y 0

2=a2†2Š1=2

jy 0j a1iB
¡1
ij …y 0†a3j dy 0: …15†

Using the same coordinate transformation as before, equation (15) can be reduced to

0 ˆ
…2p

0

a1iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …16†

When ¿ is oriented correctly, equation (16) is insensitive to the choice of a1=a2 owing

to symmetry. The above equation depends on the orientation of ¿ through the

de® nition of ® (see ® gure 1). Therefore, ¿ can be found by iteratively solving equa-

tion (16) for an arbitrary choice of a1=a2.

3.3. Determination of a1=a2

From the geometry of the problem, the de¯ ection of the surface in the x3 direc-
tion at the end of semiaxis a1 is ¯ ¡ µa2

1=2. Using equation (4), this can be written as
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¯…1 ¡ a1=2a2†: Another expression for the surface de¯ ection at y ˆ a1y1 can be found

from equation (11). Equating these two expressions gives

¯ 1 ¡ a1

2a2

³ ´
ˆ 1

2p

… …

S

p0‰1 ¡ …y 0
1=a1†2 ¡ …y 0

2=a2†2Š1=2

‰…a1 ¡ y 0
1†2 ‡ …y 0

2†
2Š1=2

a3iB
¡1
ij …a1y1 ¡ y 0†a3j dy 0: …17†

Transforming into polar coordinates about the point a1y1; » 0 cos ® 0 ˆ 1 ¡ y 0
1=a1;

» 0 sin ® 0 ˆ y 0
2=a2, equation (17) becomes

¯ 1 ¡
a1

2a2

³ ´
ˆ

p0…a1a2†1=2

2p

…p=2

¡p=2

…2 cos ® 0

0

£
‰2» 0 cos ® 0 ¡ …» 0†2Š1=2

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
a3iB

¡1
ij …® 0†a3j d» 0 d® 0: …18†

Performing the integration with respect to » 0 and substituting equation (13) for ¯
gives the ® nal form

1

2
1 ¡ a1

2a2

³ ´ …2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®

ˆ
…p=2

¡p=2

…cos2 ® 0†a3iB
¡1
ij …® 0†a3j

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
d® 0: …19†

The ratio a1=a2 can be found by iteratively solving the above equation. Thus the
parabolic indentation problem is reduced to three integral equations, which are

readily solvable one at a time in the order equations (16), (19) and (14).

3.4. Indentation modulus

From equations (1) and (2) and by diŒerentiating equation (14) with respect to ¯,

the contact stiŒness for the indentation of an anisotropic half-space by a parabola of

revolution can be written as

S ˆ
8p…¯=µ†1=2

…2p

0

fa3iB
¡1
ij …®†a3j=‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2g

d® : …20†

Thus, from equations (1), (4) and (20), the indentation modulus is derived as

M ˆ 4p
„ 2p
0

fa3iB¡1
ij …®†a3j=‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2g

d®: …21†

For circular contact, equation (21) reduces to the result found by Vlassak and Nix
(1993).

} 4. CONICAL INDENTATION
For indentation of an elastically anisotropic half-space by a rigid frictionless

cone, the contact area and pressure distribution are not known a priori. Willis

(1966) used the semi-inverse method for parabolic contact by assuming that the

contact is elliptical and that the pressure distribution is similar to that for the case

of an isotropic half-space. Hertz (1882) used the semi-inverse method for isotropic
media, as did Love (1939) for a conical punch on an isotropic half-space. Using the
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semi-inverse method for the current problem, the pressure distribution will be

assumed to be a modi® cation of the isotropic result acting over an elliptical region.

The resulting displacements will be checked to verify that they match the prescribed

boundary conditions. The geometry of this problem is shown in ® gure 2.

For conical indentation of an isotropic half-space, Love (1939) derived the pres-

sure distribution as

p…r† ˆ 1

2
M cot ¬ cosh¡1

³
a
r

´
; …22†

where ¬ is half the included angle of the cone, r is the radical coordinate and a is the

contact radius. For a contact ellipse with semi-axes a1 and a2, the assumed form of

the pressure distribution will be

p…y1; y2† ˆ p0 cosh¡1 1

‰…y1=a1†2 ‡ …y2=a2†2Š1=2

Á !

; …23†
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where p0 is a constant that depends on the load. Later, the surface displacements will

be calculated for this pressure distribution in order to verify the assumptions.

Again using the surface Green’ s function from Barnett and Lothe (1975), the
surface displacements for the pressure distribution in equation (23) are

uk…y† ˆ
1

2p

… …

S

p0 cosh¡1 f1=‰…y 0
1=a1†2 ‡ …y 0

2=a2†2Š1=2g
jy ¡ y 0j akiB1

ij…y ¡ y 0†a3j dy 0: …24†

The displacement of the indenter, which initially rests on the surface of the half-

space, is equal to the surface displacement in the x3 direction at y ˆ 0, which is given

by equation (24) as

¯ ˆ 1

2p

… …

S

p0 cosh¡1 f1=‰…y 0
1=a1†2 ‡ …y 0

2=a2†2Š1=2g
jy 0j

a3iB
¡1
ij …y 0†a3j dy 0: …25†

Using the coordinate transformation » cos ® ˆ y 0
1=a1; » sin ® ˆ y 0

2=a2, this becomes

¯ ˆ p0…a1a2†1=2

2p

…2p

0

…1

0

cosh¡1 1

»

³ ´
a3iB

¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d» d®

ˆ
p0…a1a2†1=2

4

…2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …26†

In terms of the total applied force P ˆ
„
S p…y† dy ˆ pa1a2p0, equation (26) can be

written as

¯ ˆ
P

4p…a1a2†1=2

…2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …27†

4.1. Indentation modulus

Since the projected area of contact is assumed to be elliptical, we can again make

use of the contact stiŒness relation (1). In order for conical indentation to be self-
similar, the contact depth must be linearly related to the indenter displacement ¯.

Therefore, the projected contact area A ˆ pa1a2 must be proportional to ¯2. Thus,

the contact stiŒness S is linear in ¯ and, by integration of equation (1),

P ˆ M

p1=2
¯A1=2: …28†

By comparison with equation (27), the indentation modulus is

M ˆ 4p
…2p

0

fa3iB
¡1
ij …®†a3j=‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2g d®

: …29†

Note that this is the same expression as equation (21), which was derived for a
parabolic indenter. However, the ratios a1=a2 will in general be diŒerent for the

two indenter shapes. (Note also that, using a similar procedure, the indentation

modulus for a ¯ at punch with an elliptical cross-section can be expressed in this

form.)

For an isotropic half-space, the indenter displacement can be related to the
radius a of contact as ¯ ˆ …p=2† a cot ¬ (Love 1939, Harding and Sneddon 1945).
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Elliott (1948) showed that this relation also holds for conical indentation normal to a

transversely isotropic half-space. The anisotropic result must be reducible to the

isotropic and transversely isotropic results which are independent of the elastic
moduli. For self-similar contact, the displacement ¯ must be linear in …a1a2†

1=2.

Therefore, the anisotropic relation can be written as

¯ ˆ p
2

…a1a2†1=2 cot ¬: …30†

The value of " (equation (5)) will be derived on the basis again of the mean contact
depth:

hc ˆ …a1a2†1=2 cot ¬: …31†

Using equations (3), (5) and (28), the contact depth can be written as

hc ˆ ¯ ¡ "
¯

2
: …32†

Combining equations (30), (31) and (32) gives

" ˆ
2

p
…p ¡ 2†; …33†

which is the same result as for the isotropic case (Oliver and Pharr 1992).

4.2. Determination of ¿
The orientation of the contact ellipse is found in the same manner as for para-

bolic indentation. From equation (24), the equation for the lateral displacements at

y ˆ 0 in polar coordinates becomes

0 ˆ p0…a1a2†1=2

2p

…2p

0

…1

0

cosh¡1 1

»

³ ´
a1iB

¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d» d®: …34†

After integration with respect to », equation (34) can be reduced to the same expres-

sion as equation (16). For the correct value of ¿, equation (16) is not sensitive to the
ratio a1=a2. Therefore, the orientations of the elliptical contact axes are the same for

parabolic and conical indentation.

4.3. Displacements at the edge of contact

Another coordinate transformation is utilized to simplify the expression for the

surface displacements at the edge of the applied pressure distribution. First, the

coordinate axes are aligned with the elliptical contact axes, which can be determined
from equation (16) or from a line of mirror symmetry on the surface if one exists.

The coordinate transformation ¹1 ˆ y1=a1; ¹2 ˆ y2=a2 then transforms the contact

ellipse into a circle in the n -plane (see ® gure 2). In this coordinate system, the

displacements can be written from equation (24) as

uk… n † ˆ p0…a1a2†1=2

2p

……

¼

cosh¡1 f1=‰…¹ 0
1†2 ‡ …¹ 0

2†2Š1=2g
‰…a1=a2†…¹1 ¡ ¹ 0

1†2 ‡ …a2=a1†…¹2 ¡ ¹ 0
2†

2Š1=2
akiB

¡1
ij … n ¡ n 0†a3j d n 0;

…35†

where ¼ is the unit circle in the n plane.

Next, a point on the edge of contact is chosen as the centre of a new coordinate
system. The line ® 0 ˆ 0 runs from the chosen new origin through the origin in the n
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coordinate system, as shown in ® gure 2. The radial coordinate » 0 is the distance from

the new origin, and ® 0 is the clockwise angle from the line ® 0 ˆ 0. In this coordinate

system, the surface displacements at the edge of contact become

uk…» 0 ˆ 0† ˆ p0…a1a2†1=2

2p

…p=2

¡p=2

…2 cos ® 0

0

cosh¡1 1

‰…1 ¡ » 0 cos ® 0†2 ‡ …» 0 sin ® 0†2Š1=2

Á !

£
akiB

¡1
ij …® 0†a3j

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
d» 0d® 0: …36†

After integration with respect to » 0, this reduces to

uk…» 0 ˆ 0† ˆ
p0…a1a2†1=2

2p

…p=2

¡p=2

…1 ¡ j sin ® 0j†
akiB

¡1
ij …® 0†a3j

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
d® 0:

…37†

Note that the location around the edge of contact is implicit in the de® nition of ® 0.
From equation (37), the displacement in the x3 direction at the edge of the

pressure distribution is

u3…» 0 ˆ 0† ˆ p0…a1a2†1=2

2p

…p=2

¡p=2

…1 ¡ j sin ® 0j†
a3iB

¡1
ij …® 0†a3j

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
d® 0:

…38†

These displacements, which result from the assumed pressure distribution (23), were

found numerically to agree with the boundary conditions for conical indentation for
several anisotropic cases. For a transversely isotropic half-space, equation (38)

reduces to the known result (Elliot 1949, Hanson 1992).

Note that the solution is an approximation of the same order as the isotropic

solution, that is the solution holds for angles ¬ close to 908. Using ® nite-element

analysis, Hay et al. (1999) have shown that, for ¬ ˆ 70:38, errors of 6% occur in the
indentation modulus of isotropic media with Poisson’s ratio equal to 0.25. This is

due to radial displacements of the surface. Accuracy similar to the isotropic case

would be expected for the anisotropic case. For incompressible transversely isotropic

media, the radial displacements are zero (Hanson 1992) and the solution is exact.

There is one more boundary condition which must be veri® ed; outside the region
of contact, the deformed surface must not penetrate the conical indenter.

Veri® cation of this boundary condition is presented in the appendix.

4.4. Determination of a1=a2

From equation (30), the de¯ ection of the surface in the x3 direction at the end of
the contact ellipse semiaxis a1 is

¯ ¡ a1 cot ¬ ˆ ¯ 1 ¡ 2

p
a1

a2

³ ´1=2
" #

: …39†

Another expression for this de¯ ection can be found from equation (38). Equating the
two and substituting equation (26) for ¯ give
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1

2

µ
1 ¡ 2

p
a1

a2

³ ´1=2¶ …2p

0

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®

ˆ
…p=2

¡p=2

…1 ¡ j sin ® 0j†
a3iB

¡1
ij …® 0†a3j

‰…a1=a2† cos2 ® 0 ‡ …a2=a1† sin2 ® 0Š1=2
d® 0: …40†

Once the orientation of the contact ellipse has been found from equation (16), the

ratio a1=a2 can be determined from equation (40) and the indentation modulus from

equation (29).

} 5. EXAMPLES
Two examples will be presented here to demonstrate the usefulness of this pro-

cedure. First, because it is potentially a useful calibration medium, both parabolic

and conical indentation of single-crystal sapphire will be discussed. Second, para-

metric results for the indentation of cubic materials will be presented, because they

represent a common class of anisotropic materials.
The procedures described above were used to determine the orientation of the

elliptical projected area of contact, the ratio of the elliptical axes and the indentation

modulus. Numerical integration was carried out in the same manner for all the

integrals. The contour was discretized into segments of even length, and integration

was performed by the third-order Newton± Cotes method. Convergence to within

0.01% was achieved using 120 segments.

5.1. Sapphire

Single-crystal sapphire is a readily obtainable material which is attractive for

calibration procedures for several reasons. Sapphire can be loaded elastically to

relatively high loads because of its high hardness. It can also be obtained in various
sizes and crystal orientations with optically smooth surfaces. The current drawback

to the use of sapphire as a calibration medium is that its indentation modulus is not

known for parabolic and conical indentation. Sapphire possesses trigonal symmetry

and thus has six independent elastic constants. Wachtman et al. (1960) determined

these elastic constants as …C1111 ; C1122 ; C1133 ; C1123 ; C3333 ; C2323† ˆ …496:72, 163.40,
110.73, ¡23:49, 497.98, 147.40) GPa, where the crystal a axis is oriented in the x1

direction, and the c axis in the x3 direction.

The indentation modulus of sapphire was determined for a range of orientations

of the surface. For this example, the axis of indentation was normal to the surface,

and the surface normal was aligned for a range of angles in one of three planes: the

a± c crystal plane or planes formed by the c axis and a line in the basal plane oriented
at (¿ ˆ† § 308 from the a1 axis (® gure 3). These latter two planes were shown by

Wachtman et al. (1960) to have the greatest variation in elastic moduli. The orienta-

tion of the contact ellipse was veri® ed by equation (16) to lie in the a± c plane when

the surface normal was in that plane. When the surface normal was in the ¿ ˆ 308 or

the ¿ ˆ ¡308 plane, one of the elliptical axes was oriented in the direction of the
projection in the plane of the surface of the a2 axis or the a3 axis respectively.

For spherical indentation, the ratio of the contact ellipse axes was determined

from equation (19) for surface normals making an angle with the basal plane varying

from 08 to 908. The a1=a2 values are shown in ® gure 4 (a). For conical indentation,

the a1=a2 ratio was determined from equation (40) for the same range of surface
normals. These results are shown in ® gure 4 (b). As expected for trigonal symmetry,
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the results for the three planes ¿ ˆ ¡308, 08, 308 converge to a1=a2 ˆ 1:0 for inden-
tation normal to the basal plane (parallel to the c axis; ¿ ˆ 908) for both indenter

geometries. Also, as expected, for indentation along a surface normal lying in the

basal plane (¿ ˆ 08), the a1=a2 ratio is independent of the orientation in the basal

plane. As shown in ® gure 4, the eccentricity of the contact ellipse is larger for conical
indentation than for parabolic indentation.

The indentation moduli for parabolic and conical indentation were determined

using equations (20) and (29) and the a1=a2 ratios shown in ® gure 4. The results for

the surface orientation discussed above are plotted in ® gure 5 for both indenter

geometries. For sapphire, the indentation modulus for conical indentation is within

0.1% of the value for parabolic indentation; so the results are not distinguished in
® gure 5. The indentation modulus of sapphire for conical and parabolic indentation

was also found to be within 0.2% of its indentation modulus with a ¯ at circular

punch. For indentation with surface normals in other planes (other values of ¿), the

indentation modulus was calculated at selected points and found to lie at the

expected locations in between the lines shown in ® gure 5. This regularity con® rms

the expectation based on the observations of Wachtman et al. (1960). Thus, the
results shown in ® gure 5 represent the extreme values for single-crystal sapphire,

and the indentation modulus for other surface orientations can be interpolated from

these results.

5.2. Cubic materials

Crystals with cubic symmetry make up a broad class of materials. The

three independent elastic moduli for this class can be normalized as two

parameters: Poisson’ s ratio ¸ ˆ C1122=…C111 ‡ C1122† and the anisotropy factor

F ˆ 2C1212=…C1111 ¡ C1122†. Results are presented for selected values of F and ¸
for indentation on a surface whose normal lies in the (110) plane, which starts

with the [110] direction, runs through the [111] direction and ends in the [001]

direction. For indentation in this plane, mirror symmetry exists. Therefore, the

direction of one of the contact ellipse’s axes is the intersection of the (110) plane

with the surface plane. For parabolic indentation over a range of surface normal
angles in this plane, the a1=a2 ratio is plotted in ® gure 6 (a). For conical indentation,
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Figure 3. Plane containing the surface normal, which is oriented an angle ¿ from the a1 axis.



a1=a2 results for the same range of surface normals are shown in ® gure 6 (b). As

expected, circular contact occurs for surfaces normal to the [111] and [001] directions

for all cases. Conical indentation causes greater eccentricity of the projected area of
contact than parabolic indentation.

For the surface orientations discussed above, ® gure 7 shows the indentation

modulus, normalized by the indentation modulus in the [001] direction. Only one
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Figure 4. Variation on the ratio of the elliptical contact axes with surface orientation for (a)
parabolic and (b) conical indentation of sapphire.



parabolic case (F ˆ 5; ¸ ˆ 0:1) is plotted. For the other cases studied, the indenta-

tion moduli for the two indenter geometries were within 1% of each other. For all

cases studied, the indentation modulus was found to be within 3% of the indentation

modulus for a ¯ at circular punch. For F ˆ 1, ® gures 6 and 7 show that the isotropic
result is recovered. For F > 1, the greatest indentation modulus is on the (111)

surface.

} 6. DISCUSSION
The results presented here for contact between a rigid parabolic indenter on a

half-space can be readily extended to the contact of two parabolae of revolution

provided one of them is rigid. The method is the same as that used by Hertz (1882)

for isotropic materials. The anisotropic extension is achieved by de® ning an eŒective

curvature as µ ˆ µ1 ‡ µ2, where µ1 and µ2 are the curvatures of the two parabolae.
The problem of two anisotropic materials in contact is of su� cient importance to

warrant special discussion. This problem frequently occurs in practice where inden-

ters are generally composed of elastically anisotropic materials, for example dia-

mond or sapphire. If both bodies possess threefold or fourfold symmetry on the

surfaces in contact, then the projected areas of contact will be circular and the total

compliance of contact will be the sum of the compliances for each body. Therefore,
for circular contact, the eŒective indentation modulus is

M * ˆ 1

M 1

‡ 1

M 2

³ ´¡1

; …41†

where M 1 and M 2 are the indentation moduli of the two bodies. This result can be
shown to hold for any indenter shape which gives circular contact.
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Figure 5. Variation in the indentation modulus with surface orientation for conical or para-
bolic indentation on a sapphire single-crystal half-space.



For cases where contact is not circular, the exact shape and orientation of the

projected area of contact must be calculated numerically. However, for a broad

range of anisotropic materials, it has been shown that the indentation modulus for
elliptical contact is within 3% of the indentation modulus for circular contact.

Therefore, if the indentation moduli for parabolic or conical indentation are close
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Figure 6. Variation in the ratio of the elliptical contact axes with surface orientation for (a)
parabolic and (b) conical indentation of cubic single crystals.



to the values for a circular punch, it is anticipated that equation (41) will be approxi-
mately correct for elliptical contact.

} 7. SUMMARY
The indentation of an anisotropic half-space by a rigid frictionless cone was

shown to produce an elliptical projected area of contact similar to the case for

indentation with a rigid frictionless parabola of revolution. The case of the parabolic

indenter was determined previously (Willis 1960), but the conical case is new.

Contour integral formulas were presented for the orientation and eccentricity of

the elliptical projected area of contact for each indenter geometry. The indentation

moduli for both geometries were found to be given by the same expression. However,

the actual indentation moduli were shown to be diŒerent owing to the diŒerent
contact areas for the two indenter geometries.

The indentation modulus of single-crystal sapphire was determined for the com-

plete range of surface orientations. The results can be used for many indentation

calibration procedures. For cubic materials, the indentation modulus was deter-

mined for a wide range of surface orientations and material properties.
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APPENDIX

The boundary condition that requires no interpretation of the conical indenter

and the half-space can be formulated in terms of the coordinates ¹1 ˆ y1=a1;
¹2 ˆ y2=a2, as

¯ ¡ u3…¹† 4 j n j cot ¬; j n j 5 1: …A 1†

For large values of jn j; u3…¹† ! 0 and equation (A 1) is satis® ed. In order to verify

equation (A 1) in the neighbourhood near jn j ˆ 1, it is su� cient to show that

¡ @u3… n †
@jn j 4 cot ¬: …A 2†

In the neighbourhood of …¹1; ¹2† ˆ …1; 0†, the expression for u3…1 ‡ "; 0† from equa-
tion (35) can be written in terms of the coordinates » cos ® ˆ 1 ¡ ¹1 and » sin ® ˆ ¹2

as

u3…1 ‡ "; 0† ˆ p0…a1=a2†
1=2

2p

…p=2

¡p=2

…2 cos ®

0

£ cosh¡1 1

‰…1 ¡ » cos ®†2 ‡ …» sin ®†2Š1=2

Á !

£
a3iB

¡1
ij … n ¡ n 0†a3j

‰…a1=a2†…» 0 cos ® 0 ‡ "†2 ‡ …a2=a1†…» 0 sin ® 0†2Š1=2
» d» d®; …A 3†

where ¹ 0
1 ˆ ¹1 ‡ "; ¹ 0

2 ˆ ¹2; » 0 cos ® 0 ˆ » cos ® ‡ " and » 0 sin ® 0 ˆ » sin ®. Then,

from equation (A 3),

¡ @u3… n †
@j n j

­­­­
…1;0†

ˆ ¡ lim
"!0‡

@u3

@"

³ ´

ˆ lim
"!0‡

µ
p0…a1a2†1=2

2p

…p=2

¡p=2

…2 cos ®

0

£ cosh¡1 1

‰…1 ¡ » cos ®†2 ‡ …» sin ®†2Š1=2

Á !

£
…a1=a2†…» 0 cos ® 0 ‡ "†a3iB

¡1
ij … n ¡ n 0†a3j

‰…a1=a2†…» 0 cos ® 0 ‡ "†2 ‡ …a2=a1†…» 0 sin ® 0†2Š3=2
» d» d®

¶
: …A 4†

Since the integral in equation (A 4) converges as " ! 0‡, the limit may be taken
inside the integral which gives:
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¡ @u3… n †
@jn j

­­­­
…1;0†

ˆ p0…a1a2†1=2

2p

…p=2

¡º=2

…2 cos ®

0

cosh¡1 1

‰…1 ¡ » cos ®†2 ‡ …» sin ®†2Š1=2

Á !

£
…a1=a2† …cos ®†a3iB

¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š3=2

1

»
d» d®; …A 5†

where the relations » ! » 0 and ® ! ® 0 as " ! 0‡ have been utilized.
The integration with respect to » in equation (A 5) is accomplished by using a

Taylor series expansion about 1:

I1 ˆ
…2 cos ®

0

cosh¡1 1

‰…1 ¡ » cos ®†2 ‡ …» sin ®†2Š1=2

Á !
1

»
d»

ˆ
…2 cos ®

0

X1

nˆ1

¡1n‡1…2 cos ® ¡ »†n=2

n
»n=2¡1 d»

¡ 1

2

…2 cos ®

0

X1

nˆ1

¡1n‡1…» ¡ 2 cos ®†n

n
»n¡1 d»: …A 6†

The above integration is simpli® ed by using the change of variable

» ˆ 2 cos ® sin2 ³. Upon integration, equation (A 6) becomes

I1 ˆ
X1

nˆ1

¡1n‡1G…n=2 ‡ 1†G…n=2†
nG…n ‡ 1† …2 cos ®†n ¡

X1

nˆ1

¡1n‡1G…n ‡ 1†G…n†
2nG…2n ‡ 1† …2 cos ®†2n:

…A 7†

Now equation (A 5) can be written as

¡ @u3… n †
@jn j

­­­­
…1;0†

4
p0…a1a2†1=2

2p

…p=2

¡p=2

I1

a3iB
¡1
ij …®†a3j

‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2
d®: …A 8†

Using equation (26), equation (A 8) can be written in terms of ¯ as

¡ @u3… n †
@jn j

­­­­
…1;0†

4

4
2¯

p

…p=2

¡p=2

I1fa3iB
¡1
ij …®†a3j=‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2g d®

…2p

0

fa3iB
¡1
ij …®†a3j=‰…a1=a2† cos2 ® ‡ …a2=a1† sin2 ®Š1=2g d®

ˆ 2¯

p
f ; …A 9†

where f is a constant. For the range of material properties presented in } 4, the value

of f was calculated numerically and found to be between 0.97 and 1.0.

In the n -coordinate system, a1a2 ˆ 1; and equation (30) becomes ¯ ˆ p cos …¬=2†.
Substituting this expression for ¯ into equation (A 9) gives the ® nal result

¡ @u3… n †
@jn j

­­­­
…1;0†

4 f cot ¬: …A 10†
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For …¹1; ¹2† ˆ …0; 1 ‡ "† ˆ …» cos ®; » sin ® ‡ "†, the factor …a1=a2† cos ® in equa-

tion (A 5) is replaced by the factor …a2=a1† sin ®, and the same equation (A 8) can be

derived. Therefore, evaluation of the slope of the surface at any location around the
edge of contact will yield equation (A 10), and the boundary condition is found to be

satis® ed around the periphery of contact for a broad range of material properties.
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