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Critical epitaxial film thickness for forming interface dislocations
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Abstract

The system of an epitaxial film on a semi-infinite substrate of a different material is considered and the critical thickness of the film to
form misfit interface dislocations is derived in the present study. The energy approach is used to predict the critical thickness and both
the self-energy of the dislocation and the interaction energy between the dislocation and the mismatch strain are analyzed. The elastic
stress field due to the interface dislocation is required in analyzing the energies and both the superposition principle and Fourier integral
are adopted to derive this elastic stress field. The predicted stress fields in the system satisfy both the free surface condition at the film
surface and the continuity condition at the interface. The predicted critical film thickness for forming interface dislocation decreases with
the increase in the shear modulus ratio of the film to the substrate. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many semiconductor devices and high temperature su-
perconducting films require high quality of crystalline films
grown epitaxially on substrates of different crystals. How-
ever, the film and the substrate generally have different lat-
tice parameters. As a result, the lattice mismatch exists at
the film/substrate interface and internal stresses are induced
in the system. These internal stresses provide a driving force
for the formation of interface dislocations [1–7] which, in
turn, degrades the device performance. Hence, the study of
the condition for the interface dislocation to form in the epi-
taxial film/substrate system is imperative in the materials
design. The existence of a critical epitaxial film thickness
for the interface dislocation to form was first proposed by
Frank and van der Merwe [4]. When the film is sufficiently
thin, the mismatch at the interface can be accommodated by
the distortion of the lattice spacing of both the film and the
substrate. As the film becomes thicker, there exists a criti-
cal thickness at which alignment between the film and the
substrate can no longer be maintained and interface disloca-
tions are formed. There have been many studies to analyze
this critical film thickness [1–9]. However, due to the com-
plexity of the problem, various simplifications in modeling
have been adopted in order to obtain the solutions.
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The purpose of the present study is to develop a better
analytical model with a closed-form solution for the critical
film thickness in forming the interface dislocation. First, the
existing models are reviewed. Then, a new analytical model
is presented in the present study. Finally, the critical film
thickness for the interface dislocation to form is predicted
and compared with existing solutions.

2. Summary of existing models

The major difficulty in analyzing the problem is the
derivation of the elastic stress field due to the interface
dislocation. This difficulty results from the following two
factors. First, the dislocation is located at the interface of
two different materials. Second, the stress field needs to sat-
isfy the free surface condition at both the film surface and
the substrate surface when both the film and the substrate
have finite thickness. In order to simplify the problem, the
early analyses made two assumptions: (1) the film and the
substrate are isotropic elastic materials and have the same
elastic constants and (2) the substrate is infinitely thick.
With these assumptions, two approaches have been adopted
to predict the critical film thickness for the interface dislo-
cation to form. The first one is the force approach developed
by Matthews and Blakeslee in which the force exerted by
the misfit strain and the approximate tension in the disloca-
tion line were considered [1]. The second one is the energy
approach, in which the work of forming the dislocation due
to the presence of internal stresses and the self-energy of
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the dislocation were analyzed. It has been noted that the
predicted critical film thickness based on a thick substrate
condition is too small to make it practical for device de-
velopment. Recently, interest has been directed to thin (i.e.
compliant) substrate to increase the critical film thickness.
The system of a film deposited on a substrate with a finite
thickness was first analyzed by Freund and Nix (FN) [2] us-
ing the energy approach; however, the film and the substrate
are still assumed to have the same isotropic elastic proper-
ties. When the substrate is infinitely thick, there is only one
free surface in the system and the ‘image dislocation’ tech-
nique can be used readily to derive the elastic stress field due
to an interface dislocation. However, when the substrate has
a finite thickness, there are two free surfaces in the system
which, in turn, results in the complex interaction between
the interface dislocation and free surfaces. A first order ap-
proximation was used by FN in analyzing the self-energy of
the dislocation. As a result, the free-surface condition was
not satisfied in the FN model. The FN model was recently
improved by Zhang et al. [3] using the superposition princi-
ple and Fourier transformation to derive a complete analysis
for the dislocation self-energy and to satisfy the free-surface
condition.

The analyses described above assumed that the film and
the substrate have the same elastic constants in order to
simplify the analysis. When the difference in elastic con-
stants between the film and the substrate is considered, the
problem becomes much more complex. First, the equilib-
rium position is not at the interface but at some interatomic
distances from the interface and inside the softer layer. This
equilibrium position has been solved by Yu and Romanov
[10] using the energy criterion. However, it is noted that the
movement of the dislocation to its equilibrium position after
its nucleation at the interface or at the harder phase depends
on the temperature and the friction force. Second, consider-
ing an interface dislocation, the problem has been analyzed
using Fourier transformation, however, the substrate was
assumed to be infinitely thick in existing models. Also,
other approximations were used in order to obtain the solu-
tions for the critical film thickness. Willis et al. derived the
stress field and energy arising from an array of dislocations
[6] and dislocation dipoles [7] distributed uniformly on the
perfectly bonded interface between an epitaxial film and
a semi-infinite substrate of different isotropic elastic con-
stants. Gosling and Willis [7] analyzed the energy of arrays
of dislocations located periodically at the perfectly bonded
interface between an epitaxial film and a semi-infinite sub-
strate of the same anisotropic elastic constants. It is noted
that the core energy was not included in the above analy-
ses [6,7]. Using Fourier transformation and superposition
proposed by Willis and co-workers [6,7], Zhang [8] studied
the critical thickness of an epitaxial film on a semi-infinite
substrate of different isotropic elastic constants. Following
Stroh’s approach of anisotropic elasticity, Zhang [9] also
obtained the critical thickness of an epitaxial film on a
semi-infinite substrate of different anisotropic elastic con-

stants. However, it is noted that the displacement and the
shear stress used in deriving the core energy in Zhang’s
analysis [8] did not satisfy the continuity condition at the
interface.

3. The present model

Considering a film deposited epitaxially on a semi-infinite
substrate with different isotropic elastic constants, the
present analysis refines Zhang’s analysis [8] to satisfy the
continuity condition at the interface. The formulations of
equations involved in deriving the present analytical solu-
tions are formidable, only the essential analytical proce-
dures are described here and the details will be published
elsewhere [11]. A film of thickness h deposited epitaxi-
ally on a semi-infinite substrate as shown in Fig. 1, where
µ and ν are shear modulus and Poisson’s ratio and the
subscripts f and s denote the film and the substrate, re-
spectively. The Cartesian coordinates, x1, x2 and x3 are
used with the x1-axis parallel to the in-plane interface, the
x2-axis perpendicular to the interface and the origin lo-
cated at the interface. A dislocation with a Burgers vector
b =b =b =[b1, b2, b3] is located at the origin and the energies
are calculated per unit length of the dislocation line or
per unit depth of the film/substrate system in the present
study. The formation energy Ef of the dislocation consists
of two components: Es the self-energy of the dislocation
and Eint the interaction energy between the dislocation and
mismatch strain. The energy components, Es and Eint can
be obtained by converting an area integral (with unit depth)
to a line integral using a divergence theory. The analyt-
ical procedures in deriving Es and Eint are described as
follows.

Fig. 1. A dislocation located at the perfectly bonded interface between
an epitaxial layer of thickness h and a semi-infinite substrate.
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3.1. The dislocation self-energy Es

Since the elastic stress field induced by a dislocation is not
valid in the core region, the integration path for Es is selected
as two contours Cr0 and C and an arbitrary cut (see Fig. 1)
where r0 is the core radius of the dislocation. Accordingly,
the self-energy of the dislocation Es can be decomposed into
two components: Ec the integration along the core contour
Cr0 (i.e. the dislocation core energy) and E0, the difference
between the self-energy and the core energy. It is noted
that the solution of the self-energy is contingent upon the
determination of the elastic stress field σa,ij arising from
the dislocation. However, due to the free surface condition
at x2 = h and the difference in elastic constants between the
film and the substrate, the derivation of the stress field σa,ij

is complex. Both the superposition principle [12] and Fourier
integral [13] are adopted in the present study to derive the
stress field σa,ij resulting from an edge dislocation and a
screw dislocation.

3.1.1. The stress field σa,ij due to an edge dislocation at
the interface

An edge dislocation of Burgers vector [b1, b2, 0] located
at the perfectly bonded interface between an epitaxial film
and a semi-infinite substrate (Fig. 1) is considered. The stress
field σa,ij due to the interface dislocation can be derived by
superposition of the following two stress components: (1)
σ 0

ij , stress due to an interface dislocation assuming the film
is also semi-infinite and (2) σ ∗

ij , the stress due to prescribed
tractions on the film surface which are the negative of those
calculated from the first stress component at x2 = h. Com-
bination of the stress fields from the above two cases re-
sults in a traction-free surface at x2 = h. While σ 0

ij has been
solved by Suo and Hutchinson [14], σ ∗

ij can be obtained us-
ing the Fourier transform method [13], in which the stresses
and the displacements can be related to two unknown po-
tentials. These two potentials can be represented by Fourier
integrals. By satisfying both the traction-free condition at
the free surface (i.e. at x2 = h) and the continuity conditions
at the interface (i.e. at x2 = 0), the unknown parameters in
Fourier integrals can be determined which, in turn, yields
the solution for σ ∗

ij .

3.1.2. The stress field σa,ij due to a screw dislocation at
the interface

A screw dislocation of Burgers vector [0, 0, b3] located
at the perfectly bounded interface of the film/substrate sys-
tem is considered. The procedure for analyzing the elastic
stress field is similar to that of an edge dislocation. That
is, the solution is the superposition of the two cases de-
scribed in Section 3.1.1. For a screw dislocation, σ 0

ij has
been solved by Weertman and Weertman [15]. The solu-
tion for σ ∗

ij can be obtained following the same analytical
procedures as those for an edge dislocation. However, only
one potential, which is antisymmetric with respect to x1, is
required.

3.1.3. The core energy Ec and strain energy E0
Because the core radius is much smaller than the film

thickness, the stress and the displacement fields due to two
semi-infinite medium can be used to calculate the core en-
ergy Ec. Using the polar coordinate system, the core energy
is

Ec = 1

2

∮
σ 0
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0
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= −1

2
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where θ0 is the cutting angle, u0
r , u

0
θ and σ 0

rr, σ
0
rθ are due

to the edge component and u0
z and σ 0

rz are due to the screw
component. Since σ rz arising from the screw component is
zero along the integration contour, only the edge component
contributes to core energy. While the stress and displacement
arising from an edge dislocation derived in Section 3.1.1 are
expressed in the Cartesian coordinates, conversion to the po-
lar coordinates is required before the integration of Eq. (1)
can be performed. The stress and displacement remain con-
tinuous at the interface after the coordinate transformation;
however, the displacement jumps at θ = π/2 where the cut
is made. It is noted that the coordinate conversion was not
performed properly in Zhang’s analysis and the continuity
condition at the interface is not satisfied in Zhang’s solution
[8].

The strain energy E0 can be obtained from the stress field
obtained from Sections 3.1.1 and 3.1.2 using the following
integral.

E0 = −1

2

∫ L

r0

σa,ijnjbi ds (2)

3.2. The interaction energy Eint

The derivation of the interaction energy Eint is straight-
forward. It can be obtained from the Burgers vector of the
interface dislocation and the stresses in both the film and the
substrate due to the lattice mismatch.

3.3. The criterion for forming interface dislocations

The dislocation could be generated if its formation en-
ergy is negative. The critical thickness h0 of the film for
the interface dislocation to form can be derived from zero
formation energy. Letting the formation energy equal zero,
the solution of h0 can be obtained by solving the following
equation.
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where ε0
m is the mismatch strain between the film and sub-

strate, and

kf = 3 − 4νf , ks = 3 − 4νs (4a)

α = µf(ks + 1) − µs(kf + 1)

µf(ks + 1) + µs(kf + 1)
,

β = µf(ks − 1) − µs(kf − 1)

µf(ks + 1) + µs(kf + 1)
(4b)

µeff = 2µsµf

(µs + µf)
(4c)

cf = (kf + 1)

µf
, cs = (ks + 1)

µs
(4d)

Λ1 = µs − µf

µf + kfµs
, Λ2 = µskf − µfks

µs + µfks
(4e)

E0,e1 , E0,e2 and E0,e3 are complicated functions of b1, b2,
α, β, cs, cf , µf and µs [11]. The first and second terms in
Eq. (3) arise, respectively, from the stress field σ 0

ij of the
edge and the screw components of the dislocation. The third
term in Eq. (3) corresponds to the stress field σ ∗

ij of the
screw component of dislocation calculated via the Fourier
integral. The summation of next three terms containing curly
braces is the core energy. The last three terms of left hand
side in Eq. (3) are induced by the stress field σ 0

ij of the edge
component of dislocation calculated via the Fourier integral.

When the film and the substrate have the same elastic
constants, Eq. (3) can be reduced to

µf

4π(1 − νf)
[b2

1 + b2
2 + (1 − νf)b

2
3] ln

(
2h0

r0

)
− µfb

2
2

4π(1 − νf)

= 2µf(1 + νf)

1 − νf
|ε0

mb1|h0 (5)

and the core energy containing the curly braces in Eq. (3)
is simplified as Ec = µf(b

2
1 − b2

2)/8π(1 − νf). If the core
energy is ignored, Eq. (5) becomes the same as that obtained
in the literature [3,6,7].

4. Results

The crystal structure of most semiconductor materials is
diamond or zincblende. The principal types of dislocations in

the strong Peierls potential of semiconductor crystals are the
60◦ dislocation and the screw dislocation lying in the 〈1 1 0〉
direction [16]. Because the screw dislocation does not con-
tribute the mismatch stress, the pure screw dislocation is not
considered in the present study. Instead, the 60◦ dislocation
along the [1̄10] direction lying in the [111̄] plane is analyzed,
and a possible Burgers vector is bbb = b[0, 1/

√
2, 1/

√
2].

Assume that an epitaxial layer of thickness h is grown on
semi-infinite substrate. Formation of the dislocation at the
interface is considered, the subsequent movement of the dis-
location to its minimum energy position in the soft layer is
not considered in the present study. A dislocation of Burg-
ers vector bbb = b[1/2, 1̄/

√
2, 1/2] is located at the origin of

interface as shown in Fig. 1 where x1, x2 and x3-axes are in
the [1 1 0], [0 0 1], and [1̄10] directions, respectively. Using
Eq. (1), and νf = νs = 0.3, the critical thickness of the film
h0 to form a dislocation as a function of the shear modulus
ratio µf /µs is plotted as the solid line in Fig. 2 at differ-
ent magnitudes of mismatch strain |ε0

m|. It is found that the
critical thickness decreases monotonically with increasing
shear modulus ratio of the film to the substrate µf /µs and
mismatch strain. The results from Zhang’s analysis are also
shown in Fig. 2 by the dashed lines. Comparing to Zhang’s
results [17], the present results predict a smaller critical film
thickness, however, the difference decreases with increasing
shear modulus ratio µf /µs. The formation energy as a func-
tion of film thickness with different core radius and mis-
match strain is plotted in Fig. 3 for µf/µs = 0.1. It is found
that the formation energy increases with decreasing core ra-
dius and increasing mismatch strain for given shear modulus
ratio and film thickness. The formation energy increases to
a maximum and then decreases with increasing film thick-
ness. The critical thickness increases with decreasing core

Fig. 2. The critical thickness as a function of shear modulus with mismatch
strain ε0

m.
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Fig. 3. The formation energy of interface dislocation as a function of film
thickness with parameters of mismatch strain and core radius.

radius and mismatch strain. Note that the minimum root of
formation energy is defined as the critical film thickness for
the interface dislocation to form.

5. Conclusions

The critical epitaxial film thickness for forming interface
dislocations is investigated. The energy approach is proposed
to predict the critical thickness. The total energy consists of
the self-energy of the dislocation and the interaction between
dislocation and mismatch strain. In order to yield the strain
energy, the stress field arising from the interface dislocation
is required that can be derived based on the superposition
principle and Fourier integral. The stress fields satisfy the

free surface condition and continuity at the interface. The
critical thickness decreases with increase of shear modulus
ratio of the film to the substrate, magnitude of mismatch
strain, and core radius.
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