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Abstract

To examine the importance of thermal expansion mismatch on cracking in two-phase Cr–Cr2X (X=Hf, Nb, Ta, Zr) alloys, we

have calculated the coefficients of thermal expansion (CTE) of Cr and Laves-phase Cr2X alloys by local-density-functional
approach. A Debye model is used to approximate the phonon contribution through the elastic acoustic response. The sound velo-
cities are determined by the calculated elastic constants and associated anharmonicity. The calculation shows that the CTE of Cr at
high temperatures is notably larger than those of Cr2X. If the difference in CTE between Cr and Cr2X is a primary source of crack

initiation, our results fail to explain the experimental observation that, among these four Cr–Cr2X alloy systems, the ingot cracking
is present mainly in Cr–Cr2Nb. We suggest that for the cracking to occur,the presence of thermal mismatch stresses are retained by
a hard and supersaturated Cr matrix (e.g. due to the relatively high solubility of Nb in Cr in the case of Cr–Cr2Nb). On the other

hand, the softer Cr matrix can accommodate thermal misfit dislocations plastically even though the CTE difference between Cr and
Cr2X is large. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since single-phase Laves phase alloys are quite brittle,
alloy development has been focused on Cr–Cr2X
(X=Hf, Nb, Ta or Zr) two-phase alloy [1–5]. The bin-
ary Cr–X phase diagrams [6] show a eutectic reaction,
making it possible to produce two-phase alloys of the
type Cr–Cr2X. In the two-phase region comprising Cr–
Cr2X, eutectic composition results in the occurrence of
the phases with a fibrous/rod morphology, and in the
hypoeutectic alloys the primary phase is Cr solid solu-
tion. At temperatures below the eutectic temperature,
the Cr solid solution decomposes to provide secondary
Cr2X precipitates. The Cr phase provides a soft and
ductile matrix, resulting in a strong and tough two-
phase alloy.
Recently, Kumar and Liu [4] examined the micro-

structure of a Cr–Cr2Nb two-phase alloy in the as-cast
and annealed conditions using optical and electron
microscopy techniques. They found ingot cracking in this
system as temperature decreases. Such ingot cracking,

however, was not observed in Cr–Hf [3], Cr–Ta [5] and
Cr–Zr [5] systems.
In this paper, we investigate if thermal mismatch is a

major cause for ingot cracking in these two-phase
alloys. To examine the effect of thermal expansion mis-
match on cracking, we calculate the coefficients of ther-
mal expansion (CTEs) of Cr and Cr2X. In Section 2, we
outline the theory to calculate the CTE of cubic sys-
tems. In Section 3, we present the calculated results
which also include the second-order and third-order
elastic constants of Cr and Cr2X. In Section 4, a dis-
cussion on the possible cause of ingot cracking is given
in terms of the calculated CTEs. This work is summar-
ized in the final section.

2. Theory: thermal expansion coefficient

The coefficient of thermal expansion a for a cubic
crystal is given by [7]
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where p is the pressure and B is the bulk modulus.
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Nonzero value of CTE results from the anharmoni-
city of the crystal, i.e. the volume dependence of phonon
frequencies. In quasi-harmonic approximation, the free
energy F of the crystal is given by

F V;Tð Þ ¼ E Vð Þ þ Fph V;Tð Þ; ð2Þ

Fph V;Tð Þ ¼ kBT
X
ks

ln 2 sinh

h!s kð Þ

2kBT

� �� �
; ð3Þ

where E is the static contribution to the free energy, and
Fph is the free energy from phonon modes !s(k). Here,
os(k) is the angular frequency of the normal mode with
wave vector k in branch s.
From the pressure, we obtain
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where gks is the Grüneisen parameter for the normal
mode (ks) given by

�ks ¼ �
@ ln!s kð Þð Þ

@ lnVð Þ
; ð5Þ

and cvs(k) is the contribution of the mode (ks) to the
specific heat cv ¼ �kscvs kð Þ.
Since the thermal expansion is dominated by low

energy excitations, we use a Debye model to describe
the vibrating lattice. In the Debye model, the phonon
contribution is approximated through the elastic acous-
tic response. Since all the normal-mode frequencies
scale linearly with the cutoff frequency !D in the Debye
model, we can write

�ks � �
@ ln!Dð Þ

@ lnVð Þ
¼ �: ð6Þ

Also, within the Debye model, @p
@T

� �
V
is equal to �cv, so

a can be written in a simple form:
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�cv
3B Tð Þ

ð7Þ

The temperature dependence of the bulk modulus is
obtained from

B Tð Þ ¼ V
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Using the relation kB�D ¼ 
h!D, Eq. (6) becomes
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where the Debye temperature �D is given by

�D ¼

h

kB
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Here, vm denotes the mean sound velocity of the pro-
pagation of elastic waves in the continuum. The propa-
gation velocities vis are the solutions of the cubic
equation (Christoffel equation) in v2 [8,9]:

�ik � 	ik
v
2

�� �� ¼ 0 ð11Þ

where �ik (i,k=1,2,3) are the Christoffel stiffnesses,
subject to the condition �ik=�ki. For cubic systems, if
a1, a2, a3 are the direction cosines of the normal to the
wave front, the six Christoffel stiffnesses are given in
terms of three independent elastic constants C11, C12,
C44:

�11 ¼ C11a
2
1 þ C44 a22 þ a23

� �
ð12Þ

�12 ¼ C12 þ C44ð Þa1a2 ð13Þ

�13 ¼ C12 þ C44ð Þa1a3 ð14Þ

�22 ¼ C11a
2
2 þ C44 a21 þ a23

� �
ð15Þ

�23 ¼ C12 þ C44ð Þa2a3 ð16Þ

�22 ¼ C11a
2
3 þ C44 a21 þ a22

� �
ð17Þ

Therefore, the information of elastic constants at sev-
eral volumes enables us to determine Debye tempera-
ture, Grüneisen parameter, bulk modulus, and thus the
coefficient of thermal expansion.

3. Results

3.1. Elastic constants

We performed total-energy calculations using the full-
potential linearized augmented plane-wave (FLAPW)
method within the local-density approximation. The
FLAPW method solves the local-density-functional
equations without any shape approximation to the
potential or charge density. The atomic positions are
relaxed by calculating Hellmann–Feynman forces acting
on the atoms.
First, we obtained the theoretical equilibrium lattice

constants. For bcc Cr, a lattice constant of 2.79 Å was
obtained which is in fair agreement with the experi-
mental value of 2.88 Å. The theoretical lattice constants
of Laves phases Cr2X are 6.947 Å (X=Hf), 6.822 Å
(X=Nb), 6.809 Å (X=Ta), and 6.990 Å (X=Zr), which
are smaller than the experimental lattice constants 7.157
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[10], 6.991 [2], 6.985 [4], 7.208 [10] Å, respectively, by 2–
3%.
To determine the Debye temperatures, we evaluated

the elastic constants (and from which the sound velo-
cities are obtained by averaging over at least 100 direc-
tions). Under elastic strains, the new orthogonal lattice
axes ai

0 are related to the original ones aj by
a0i ¼ 1þ "ij

� �
aj, where i,j=x, y, z and

"ij ¼
e1 e6=2 e5=2
e6=2 e2 e4=2
e5=2 e4=2 e3

0
@

1
A ð18Þ

is the strain tensor, and eis are the strain components.
The elastic strain energy density U is given by

U ¼
1

2
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where Cij=
1
2

eCCij þ eCCji

� �
and Cijs are the elastic con-

stants. The cubic structure has only three independent
elastic constants C11, C12, and C44. These elastic con-
stants were determined from three relations (i) U=(C11-
C12) e2 for e1=�e2�e, (ii) U=(C11+C12)e

2 for e1=
e2¼e,and (iii) U ¼ 1

2C44e
2 for e6=e, where the unspeci-

fied strain components are zero for each of these cases.
The total energy was calculated as a function of strains
(up to 3–4%) for each of these deformation. The elastic
constants are then obtained from the curvature of total
energy-strain curves by fitting the calculated values to
third-order polynomials [11].
The second-order elastic constants were calculated at

three different lattice constants in the vicinity of the
experimental lattice constant. The volume dependence
of these second-order elastic constants gives rise to the
higher-order elastic constants. The results of elastic
constants at experimental volume for Cr and Cr2X are
given in Table 1.
Note that bulk Cr displays a long-wavelength spin-

density wave with a short-range antiferromagnetic
ordering below the Néel temperature of TN=311 K.
Therefore, we calculated the elastic constants of Cr for
both antiferromagnetic and paramagnetic cases. The cal-
culated values of antiferromagnetic Cr in Table 1 should
be compared with the experimental elastic constants
C11=391, C12=89.6, and C44=103 GPa of Cr mea-
sured at 77 K [12].
For Cr2X, no single crystal data are available. How-

ever, the Hill’s averages [8] of Young’s and shear moduli
of Cr2X always give smaller values than those of
experimental measurements [14]. An independent calcu-
lation by Ormeci et al. [15] for Cr2Nb also showed a
similar trend as found in our result. The reasons for this
discrepancy remain unclear. (The calculated elastic
constants at the theoretical lattice parameter should be

higher than the measured values, since the theoretical
lattice parameters are usually 2–3% smaller than the
experimental lattic parameters. The present calculations,
however, show opposite trend). The calculated elastic
constants at different volumes are shown in Figs. 1 and
2. As expected, the elastic constants increase with
increasing unit cell volume. Furthermore, all the calcu-
lated elastic constants of Cr and Cr2X show a linear
dependence on volume within the volume range we have
considered, which indicates that third-order elastic con-
stants are dominant in the elastic anharmonicity.
By writing the third-order contribution to the elastic

energy density U as

U 3ð Þ ¼
1

3!

X
�v


C�v
e�eve
; ð20Þ

the slopes of lines shown in Figs. 1 and 2 are related to
the third-order elastic constants through the following
expressions:

C11 ¼ C11ð Þ0þ
1

3
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3
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C44 ¼ C44ð Þ0þ
1

3
C144 þ 2C166ð Þ

	V

V
; ð23Þ

where (C11)0, (C12)0 and (C44)0 are second-order elastic
constants at a reference volume, e.g. the experimental
volume. Since so far we have considered only three inde-
pendent deformations, the slopes of lines shown in Figs. 1
and 2 can only give the linear combinations of C111+2C112
and C123+2C112, and C144+2C166. These values are
tabulated in Table 2, where the negative values are due
to the fact that the elastic constants decrease linearly with
increasing lattice parameter. To obtain the third-order
elastic constants individually, independent deformations
are required. This can be achieved, for example, by setting
e1=e as the only non-zero strain component in Eq. (18).
We then have

Table 1

Calculated elastic constants (in units of GPa) at experimental volumes

for Cr and Cr2X (X=Hf, Nb, Ta, Zr)
a

C11 C12 C44

Cr (antiferro) 373 (391, 350) 65 (89.6, 57.8) 81 (103, 101)

Cr (para) 393 122 68

Cr2Hf 225 126 58

Cr2Nb 250 170 58

Cr2Ta 281 173 73

Cr2Zr 201 126 46

a The two numbers in each parenthesis for Cr (antiferro) are the

experimental value obtained at low temperature of 77 K [12] and that

from Ref. [13], respectively.
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C11 ¼ C11ð Þ0þC111e: ð24Þ

For the present purpose, however, the combinations
of third-order terms are sufficient for our discussion.
We note that, among these Cr2X compounds, the

magnitudes of the third-order elastic constants are the
lowest for Cr2Zr, indicating a low CTE value for this
compound (see next section).

3.2. Coefficient of thermal expansion

The solutions of the Christoffel equation give rise to
the mean sound velocity, from which the Debye tem-
perature is obtained. Since �D scales linearly with

volume, which is confirmed with a direct calculation, we
approximate @�D

@V � ��D

�V . This enables us to obtain g at
given volumes with � � � V

�D

��D

�V . The mean sound
velocity vm, Debye temperature �D, Grüneisen para-
meter g, Bulk modulus B0, and the CTE at high tem-
peratures (e.g. 1000 K) a* are given for Cr and Cr2X at
their experimental volumes in Tables 3 and 4 .
The CTE as a function of temperature is shown in

Fig. 3. The discontinuity of CTE for Cr shown in Fig. 3
is due to the magnetic phase transition at Néel tempera-
ture of 311 K, below which Cr has antiferromagnetic
ordering and above which Cr becomes paramagnetic. In
this calculation, the magnetic entropy due to the mag-
netic fluctuations is not included. Even without the

Fig. 1. Calculated elastic constants (in units of GPa) at all three volumes mentioned in text for (a) antiferromagnetic and (b) paramagnetic Cr. Each

line is a linear fit of three data points of C11 (circle), C12 (square), and C44 (diamond).

Fig. 2. Calculated elastic constants (in units of GPa) at all three volumes mentioned in text for (a) Cr2Hf, (b) Cr2Nb, (c) Cr2Ta, and (d) Cr2Zr. Each

line is a linear fit of three data points of C11 (circle), C12 (square), and C44 (diamond).
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magnetic entropy, the CTE of Cr gives a very good
agreement with experimental measurements at low tem-
peratures (<200 K) and at high temperatures [16]. Since
we focus on the high-temperature behaviors in this
paper, a further investigation on the effect of magnetic

entropy around Néel temperature will be considered
elsewhere.
For Cr2X alloys, we found that: (i) the CTE of Cr at

high temperatures is notably larger than those of Cr2X;
in particular, the CTE of Cr is about twice of that of
Cr2Zr, and (ii) the CTEs of Cr2Hf and Cr2Ta are nearly
equal and are very close with that of Cr2Nb.
An estimation of CTE from experimental data [4,17]

of Cr and Cr2Nb gives 11–12	10
�6/K and 
8	10�6/K

around 1000 K, respectively. For both Cr and Cr2Nb,
we found a good agreement between theory and experi-
ment at high temperatures [see Fig. 4(a) for Cr2Nb].
Experimentally [18], the CTE of Cr2Ta is 6–10	10

�6/K
in going from 300 K to 1500 K. Fig. 4(b) shows the
comparison between theory and experiment for Cr2Ta.
The theoretical CTE agrees reasonably well with
experiment in magnitude.

4. Discussion

Now, we can discuss if thermal mismatch is a major
cause for ingot cracking in these Laves two-phase alloys
by examining the difference in CTE between Cr and
Cr2X. As mentioned already, among these Cr-based two
phase alloys Cr–Cr2X (X=Hf, Nb, Ta, Zr), the ingot
cracking is present mainly in Cr–Cr2Nb system. If the
difference in CTE between Cr and Cr2X is a primary
measure on the occurrence of crack, our results fail to
explain the experimental observation. This is because
the CTE of Cr is notably larger than those of Cr2X
considered here, in particular than that of Cr2Zr. Thus,
we suggest that the mismatch due to the difference in
CTEs is not a major source for ingot cracking in these
two-phase alloys; other sources may play important
roles in crack initiation.
It was suggested by Kumar and Liu [4], that the pre-

sence of appreciable (
6 at.%) Nb solubility in the Cr
matrix at the eutectic temperature and the difficulty in
precipitating the Nb out as Cr2Nb during cooling can be
a source contributing to the cracking. (For the mea-
sured solubility of X in the Cr matrix, see Table 5.) In
contrast, for Cr–Hf system, there is negligible Hf solu-
bility in the Cr matrix at the eutectic temperature and so
matrix supersaturation is not evident, which would ren-
der the matrix softer and more tolerant to cracking.
Similarly, this is also the case for Cr–Zr system since the
Zr solubility in the Cr matrix is negligible (<0.6%). For
the Cr–Ta system, there is a small amount of Ta solu-
bility in the Cr matrix at the eutectic temperature and so
matrix supersaturation, if any, will be less dominant
than in the Cr–Nb system. On the other hand, the CTE
of Cr2Ta is closer to that of Cr than Cr2Nb and Cr2Zr.
In addition to the solid solution hardening contributing

to cracking in the case of Cr–Nb system, the presence of
appreciable second element in solid solution may also

Table 2

Calculated third-order elastic constants (in units of GPa) for Cr and

Cr2X (X=Hf, Nb, Ta, Zr)

(C111+2C112)/3 (C123+2C112)/3 (C144+2C166)/3

Cr (antiferro) �1372 �905 �237

Cr (para) �1315 �395 �366

Cr2Hf �724 �431 �200

Cr2Nb �938 �661 �186

Cr2Ta �1052 �615 �276

Cr2Zr �605 �411 �90

Table 3

Calculated thermoelastic quantities of Cr at experimental volume: the

mean sound velocity (vm), the Debye temperature (�D), the Grüneisen

parameter (�), the bulk modulus (B); the coefficient of thermal expan-
sion at 1000 K is denoted as �*

vm (m/s) �D (K) � B (GPa) �* (10�6/K)

Cr (af) 4186 545 1.10 168 –

Cr (para) 3907 509 2.02 212 12.26

Table 4

Calculated thermoelastic quantities of Cr2X (X=Hf, Nb, Ta, Zr) at

their experimental volumes

vm (m/s) �D (K) � B (GPa) �* (10�6/K)

Cr2Hf 2590 311 1.39 159 8.53

Cr2Nb 2881 354 1.44 197 7.66

Cr2Ta 2713 334 1.70 209 8.59

Cr2Zr 2788 332 0.91 151 5.56

Fig. 3. The calculated coefficient of thermal expansion of Cr and Cr2X

(X=Hf, Nb, Ta, Zr) as a function of temperature. Note discontinuity

of Cr due to the phase transitionat Neel temperature (311 K).
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increase the ductile/brittle transition temperature of the
matrix Cr. Thus, due to the presence of Nb, there is not
only a decrease in ductility of the Cr matrix but also a
larger temperature range over which it has to accom-
modate the mismatch in a brittle state.
Thus, we suggest that for the crack to occur, the pre-

sence of thermal mismatch stresses are retained by a
hard and supersaturated Cr matrix (e.g. in the case of
Cr–Cr2Nb). On the other hand, a soft Cr matrix can
accommodate thermal misfit dislocations plastically
even though the CTE difference between Cr and Cr2X is
large (e.g. in the case of Cr–Cr2Zr and Cr–Cr2Hf).

5. Summary

The thermoelastic properties of Cr and Laves phases
Cr2X (X=Hf, Nb, Ta, Zr) alloys were presented. The
calculated results were used to explain the experimental
observation that the ingot cracking occurs mainly in the
Cr–Cr2Nb two-phase alloy sytem. The calculated CTEs
are in reasonably good agreement with available

experiments for Cr2Nb and Cr2Ta. We also found that
the CTE of Cr is much higher than those of Cr2X.
Therefore, if the difference in CTE between Cr and Cr2X
is a primary source of crack initiation, our results failed
to explain the experimental fact that, among these Cr–
Cr2X alloys, the ingot cracking is present mainly in Cr–
Cr2Nb. We suggested that, for the cracks to occur, the
presence of thermal mismatch stresses are retained by a
hard and supersaturated Cr matrix as in the case of Cr–
Cr2Nb. On the other hand, the softer Cr matrix can
accommodate thermal misfit dislocations plastically
even though the CTE difference between Cr and Cr2X is
large.
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