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Abstract

Young's modulus of a unidirectional discontinuous-®bre composite is derived in the present study by the use of a modi®ed shear-
lag model. To achieve this, correct determination of the stress transfer at the ®bre ends and selection of the representative volume
element in the analytical model are required. The present predicted stress distribution along the ®bre length during uniaxial loading

of the composite is in excellent agreement with that obtained from a ®nite-element analysis. Also, by a judicious choice of the
representative volume element for the modi®ed shear-lag model, the predicted Young's modulus of the composite is in excellent
agreement with those predicted from the HalpinÿTsai semi-empirical equation, the Eshelby model, and numerical analyses. Com-

parison is also made with experimental measurements of Young's moduli of aligned particulate- or whisker-reinforced SiC/alumi-
num-alloy composites, and good agreement is obtained. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Substantial reinforcement can be achieved by incor-
porating aligned ®bres in the matrix with the ®bre axis
parallel to the loading direction, and there has been a
rapid growth in the use of short-®bre composites
because of their great versatility, high performance, and
ease of fabrication [1ÿ7]. There has been extensive study
of the mechanical properties of these composites, and a
comprehensive review of predictions of the elastic con-
stants of these composites has been performed recently
by Tucker and Liang [8]. Among the elastic constants,
the longitudinal Young's modulus is the most funda-
mental. Theoretical analyses of Young's modulus can be
classi®ed into four types: the HalpinÿTsai semi-empiri-
cal equation [9], the Eshelby model [10ÿ13], the shear-
lag model [13ÿ17], and numerical methods [8,18].
Among the four types of analyses, the shear lag model is
considered to be the least accurate one on account of its

crude approximation in the analysis [13]. However,
among the analytical models, the stress-transfer
mechanism between the ®bre and the matrix during
loading of the composite can only be derived with the
shear-lag model. Hence, a question is raised. Can the
shear-lag model be improved to allow better prediction
of the Young's modulus of the composite?
The purpose of the present study is to improve the

prediction of Young's modulus of an aligned short-®bre
composite by the shear-lag model and the stress-transfer
mechanism. To achieve this, a newly developed mod-
i®ed shear-lag model [19,20] is adopted. First, both the
HalpinÿTsai semi-empirical equation and the Eshelby
model are summarized. Second, the essence of the
modi®ed shear-lag model is presented, and its solutions
are then extended to derive the Young's modulus of the
composite. Third, the predicted stress-transfer phenom-
ena is compared to the results obtain from a ®nite-ele-
ment analysis (FEA) [21]. Fourth, the predicted
Young's modulus of the composite is compared to those
predicted from the HalpinÿTsai equation and the
Eshelby model. Comparison is also made with experi-
mental measurements of the Young's moduli of parti-
culate- or whisker-reinforced SiC/aluminum-alloy
composites [22ÿ24]. It is noted that the results derived
from the shear-lag model are a�ected by the selection of
the representative volume element (RVE) in modeling,
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and a simple method is developed in the present study
to determine the RVE. Finally, the analytical solutions
for the Young's modulus of the composite are com-
pared to those obtained from ®nite-di�erence [18] and
®nite-element [8] analyses.

2. HalpinÿTsai semi-empirical equation and Eshelby
model

Both the HalpinÿTsai semi-empirical equation and
the Eshelby model can predict the longitudinal Young's
modulus of an aligned short-®bre composite quite well,
and they are summarized as follows while a more thor-
ough review can be found elsewhere [8,25].

2.1. HalpinÿTsai semi-empirical equation

The HalpinÿTsai semi-empirical equation has been
adopted extensively because of its simple formulation.
The longitudinal Young's modulus of an aligned short-
®bre composite, Eo, can be described by [9]

Eo

Em
� 1� ��f

1ÿ �f �1�

where f is the volume fraction of ®bres, and � is given by

� � Ef=Em� � ÿ 1

Ef=Em� � � � �2�

The subscripts, f and m, denote the ®bre and the
matrix, respectively. The parameter, �, is obtained by
curve-®tting of the predicted Eo with experimental
results, and it represents a measure of the ®bre geo-
metry, the packing geometry, and the loading condition.
Good agreement between Eo and experimental mea-
surements has been obtained by letting � equal twice the
aspect ratio of the ®bre [9].

2.2. Eshelby model

The Eshelby model was originally derived for the case
of loading of an in®nite matrix containing an ellipsoidal
inclusion [10]. It was then modi®ed by Mori and
Tanaka to include the e�ect of a ®nite volume fraction
of inclusions [11], and has been applied to the case of
uniaxial loading of an aligned short-®bre composite
[12,26]. Whereas the stress in an ellipsoidal inclusion is
uniform on account of the nature of its geometry, the
stress in an embedded short ®bre is non-uniform. Hence,
the Eshelby model cannot be used to predict the stress-
transfer phenomenon, which is a local property, in a
short-®bre composite. However, in analyzing Young's
modulus, which is a global property, of a short-®bre

composite, the Eshelby model gives a good approach
and it is summarized as follows.
The Cartesian coordinates, X1, X2, and X3, are used,

and X3 is the axis of symmetry of the ellipsoidal inclu-
sion. A stress, �o, is applied to the composite in the X3

direction. In this case, the remote applied strains, "a
ij,

become

"a
11 � "a

22 �
ÿ�m�o

Em
�3a�

"a
33 �

�o

Em
�3b�

where � is Poisson's ratio. In the absence of the inclu-
sion, the deformation throughout the system is uniform;
i.e., the applied strain "a

ij. However, because of the pre-
sence of the inclusion, the deformation in the inclusion
is perturbed, and the strain due to this perturbation is
de®ned as the constrained strain, "c

ij. To solve this pro-
blem, the true inclusion is replaced by an equivalent
inclusion, which has the same elastic constants as the
matrix and undergoes an equivalent transformation
strain, "t

ij. However, this replacement is subjected to the
requirement that the displacement and the stress within
the true and the equivalent inclusions are identical, such
that [10]

Ke "
c � "a� � � Km "c � "a ÿ "t

ÿ � �4a�

Ge
0"c
ij �0 "a

ij

� �
� Gm

0"c
ij �0 "a

ij ÿ0 "t
ij

� �
�4b�

where K and G are the bulk modulus and the shear
modulus, the subscript, e, denotes the ellipsoidal inclu-
sion, and " and 0"ij are the dilatational and the devia-
toric strains, respectively.
When the volume fraction of inclusions is ®nite, the

constrained strain in the inclusion consists of two com-
ponents, such that [11]

"c
ij � "c

ij
0 � "c

ij
00 �5�

where "c
ij
0 is the constrained strain component when a

single inclusion is embedded in an in®nite matrix, and it
can be related to the transformation strain by [10]

"c
ij
0 � Sijkl"

t
kl �6�

where Sijkl is the Eshelby tensor and is a function of the
aspect ratio of the inclusion and Poisson's ratio of the
matrix. The second constrained strain component, "c

ij
00,

is introduced to account for the e�ect of the presence of
other inclusions on an inclusion, and can be related to
the transformation strain by [11]
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1ÿ f� �"c00
ij � f "c

ij ÿ "t
ij

� �
� 0 �7�

The solutions of the strain components, "c
ij and "

t
ij, can

be obtained by solving Eqs. (3)±(7).
The stress in the ellipsoidal inclusion in the loading

direction, �e, can be derived from the stress/strain rela-
tionship, such that [10]

�e � �eEe "
c � "a� �

1� �e� � 1ÿ 2�e� � �
Ee "

c
33 � "a

33

ÿ �
1� �e

�8�

The e�ective Young's modulus of the composite
along the loading direction, Eo, can be obtained by
dividing the applied stress with the average strain in the
composite in the loading direction, such that [27]

Eo � �o

"a
33 � f"t

33

�9�

It is noted that formulations of the solutions of "c
ij and

"t
ij (and hence �e and Eo) are lengthy and have been
obtained by Tandon and Weng [12]. Only the results are
presented in the present study.

3. The modi®ed shear-lag model

The RVE adopted in the shear-lag model is shown in
Fig. 1. A discontinuous ®bre with a radius a and a
length 2l is embedded at the centre of a coaxial cylind-
rical matrix with a radius b and a length 2l0, such that
a2l=b2l0 corresponds to the volume fraction of ®bres in
the composite, f.1 The cylindrical coordinates, r, �, and
z, are used. A tensile stress, �o, is applied to the RVE in
the z direction. The ®bre is bonded to the matrix at both
the interface (i.e. at r � a) and the ends (i.e., at z � �1).
The stress is transferred from the matrix to the ®bre
through both the interface and the ®bre ends. The geo-
metry in Fig. 1 is symmetric, and only the region z50
needs to be considered.
In the classical shear-lag model [14], the ®bre is

assumed to sustain only the axial load, the matrix is
assumed to transmit only the shear stress, and no load is
transferred through the ®bre ends (i.e. the ®bre ends are
debonded from the matrix). It is noted that, in the case
of an embedded ®bre with bonded ®bre ends, the stress
at the bonded ends has a ®nite value, and this stress is
required as a boundary condition in order to derive the
stress distribution in the ®bre. However, this ®nite stress
is not a predetermined value, which, in turn, results in
di�culties in using the classical shear-lag model. Various

assumptions of this ®nite stress have been made to solve
the stress-transfer problem [16,17].
In the modi®ed shear-lag model [19,20], the radial

dependence of the axial stress in the matrix is included
in the analysis, the axial-stress distribution in the RVE
is in equilibrium with the applied load, the shear-stress
distribution in the matrix satis®es the free surface con-
dition at r � b, and the boundary condition at the bon-
ded ®bre ends is de®ned by the continuity condition at
z � �l. In order to satisfy this continuity condition, a
technique of adding imaginary ®bres to the shear-lag
model has been developed [19,20]. The matrix connect-
ing the ®bre ends to the surface of the RVE (see the area
between the dash lines in Fig. 1) is treated as two ima-
ginary ®bres, which have the matrix properties. Hence,
the stress-transfer problem depicted by Fig. 1 can be
solved using two shear-lag models: one for 04z4l and
one for l4z4l0. Although the stress at the ®bre end is
unknown, the two shear-lag models are jointed at z � l
with the continuity condition, which, in turn, deter-
mines the stress at the ®bre end. Incidentally, a techni-
que developed earlier by Fukuda and Chou [28] by
introducing a partially axial load into the matrix in the
classical shear-lag model is found to be similar to the
``imaginary ®bre'' technique. Using the methodology
described above, the stress transfer problem has been
analyzed previously by also including Poisson's e�ect
and residual thermal stresses [20]. The predicted stress

Fig. 1. A schematic showing the representative volume element in the

shear-lag model for aligned short-®bre composites. The imaginary

®bres are added to analyze the stress transfer at the bonded ®bre ends.

1 In the classical shear-lag model, the matrix radius, b, is de®ned by

the ®bre packing arrangement [8], and the formulation of the ®bre

volume fraction is di�erent from that de®ned in the present study.
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distribution along the ®bre length is in a good agree-
ment with the ¯uorescence spectroscopy measurement
performed on a soda-lime-silicate (SLS) glass matrix
containing a single embedded PRD-166 alumina/zirco-
nia ®bre subjected to thermo-mechanical loading [20]. It
is noted that whereas Poisson's e�ect is important when
the interface at r � a is debonded and frictional [29], it
can be ignored when the interface is bonded, in analyz-
ing the stress-transfer problem [30]. Also, the primary
interest in the present study is Young's modulus of the
composite. Hence, in order to simplify the equations,
both Poisson's e�ect and residual thermal stress are
removed from the analysis in Ref. [20], and the axial-
stress distributions in the ®bre and the imaginary ®bre,
� and �0f , become:

�f � b2Ef�o

a2Ef � b2 ÿ a2� �Em
� A exp �z� � � exp ÿ�z� �� �

for 04z4l� � �10a�

�f
0 � �o � A0 exp �0z� � ÿ exp �0 2l0 ÿ z� �� �� 	
for l4z4l0� �

�10b�

where

� � 1

a

�
a2 � b2 ÿ a2

ÿ �Em

Ef

b2
b2

b2 ÿ a2
ln

b

a

� �
ÿ 3b2 ÿ a2

4b2

� �
1� �m� �

8>><>>:
9>>=>>;

1=2

�11a�

�0 � 1

a

1

b2

b2 ÿ a2
ln

b

a

� �
ÿ 3b2 ÿ a2

4b2

� �
1� �m� �

8>><>>:
9>>=>>;

1=2

�11b�

A � b2 ÿ a2
ÿ �

Em ÿ Ef� ��o

a2Ef � b2 ÿ a2� �Em

� exp �l� � � exp ÿ�l� � ÿ

� exp �l� �ÿexp ÿ�l� �� �
� exp �0l� � ÿ exp �0 2l0 ÿ l� �� �� 	
�0 exp �0l� � � exp �0 2l0ÿl� �� �� 	

8>>>><>>>>:

9>>>>=>>>>;

ÿ1

�12a�

A0 � � exp �l� � ÿ exp ÿ�l� �� �A
�0 exp �0l� � � exp �0 2l0 ÿ l� �� �� 	 �12b�

It is noted that although the modi®ed shear-lag model
is much more rigorous than the classical shear-lag
model, it is not exact and approximations are adopted
in deriving the axial stress in the matrix. Also, the axial
displacement is non-uniform on the faces of the RVE.
In this case, the e�ective Young's modulus of the RVE
in the axial direction is dictated by the average axial
displacement at z � l0 under the axial loading stress, �o.
The average axial displacement at z � l is

w � 2

b2

�a
0

r

�l
0

�f

Ef
dzdr�

�b
a

r

�l
0

�m

Em
dzdr

� �
�13�

where �m is the axial stress in the matrix. It is noted that
whereas the radial dependence of �f is ignored in both
the classical and the modi®ed shear-lag models as a
result of the relatively small ®bre radius, the radial
dependence of �m is considered in the modi®ed shear-
lag model [i.e. �f z� � and �m r; z� � are considered in the
analysis]. However, the explicit expression of �m is not
required in Eq. (13) in order to solve w. This is because
the mechanical equilibrium condition requires

2

�a
0

r�fdr� 2

�b
a

r�mdr � b2�o �14�

The combination of Eqs. (13) and (14) yields

w � l�o

Em
� a2

b2
1

Ef
ÿ 1

Em

� ��l
0

�fdz �15�

Substitution of Eq. (10a) into Eq. (15) gives

w � l�o

Em
� a2

b2
1

Ef
ÿ 1

Em

� �
� lb2Ef�o

a2Ef � b2 ÿ a2� �Em
� A

�
exp �l� � ÿ exp ÿ�l� �� �

� �
�16�

Similarly, the average axial displacement at z � l0

relative to z � l can be derived from

w0 � 2

b2

�a
0

r

�l0
l

�0f
Em

dzdr�
�b
a

r

�l0
l

�m

Em
dzdr

� �
�17�

such that

w0 � l0 ÿ l� ��o

Em
�18�
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Hence, the average axial displacement at z � l0,
wo � w� w0� �, is

wo � l0�o

Em
� a2

b2
1

Ef
ÿ 1

Em

� �
� lb2Ef�o

a2Ef � b2 ÿ a2� �Em
� A

�
exp �l� � ÿ exp ÿ�l� �� �

� �
�19�

The e�ective Young's modulus of the RVE in the
axial direction, Eo, can be related to the loading stress,
the average axial displacement at z � l0, and the length
of the RVE, such that

Eo � l0�o

wo
�20�

A closed-form solution for Eo is hence obtained.
However, it is noted that while the elastic constants
other than Eo can also be calculated using the Halpin±
Tsai equation and the Eshelby model, they cannot be
obtained from the shear-lag model.

4. Results

The present predicted stress distribution along the
®bre length during uniaxial loading of the composite is
compared to that obtained from a FEA. Also, the pre-
sent analytical solution of longitudinal Young's mod-
ulus of an aligned short-®bre composite is compared to
the results obtained from the Halpin±Tsai semi-empiri-
cal equation, the Eshelby model, experimental mea-
surements, the ®nite-di�erence analysis, and the FEA.

4.1. Comparison of stress transfer with ®nite-element
analysis

The stress-transfer problem for the con®guration
depicted in Fig. 1 has been analyzed using a ®nite-ele-
ment analysis, ABAQUS, in which an eight-node,
biquadratic axisymmetry solid element is adopted [21].
The material properties used in the FEA are those per-
tinent to a PRD-166/SLS composite, such that Ef � 380
GPa, Em � 74 GPa, �f � 0:27, �m � 0:3. The dimen-
sions adopted in the FEA are: b=a � 20, l=a � 30, and
l0=a � 60, and the solutions of the ®bre-axial stress are
taken from the ®bre elements next to the interface. The
results of ®bre-axial stress along the loading direction
normalized by the loading stress are shown in Fig. 2.
The present predicted results of �f=�o and �0f=�o are also
shown. It is noted that the ®bre-axial stress de®ned in
the modi®ed shear-lag model is the average value with
respect to the ®bre cross-section [19,20] which is di�er-
ent from that de®ned in the FEA. However, as a result

of the small ®bre radius, the di�erence in de®ning the
®bre axial stress between the modi®ed shear-lag model
and the FEA is expected to be small. Good agreement
between the present analytical results and the FEA
results is obtained in Fig. 2. It is also noted that the
comparison is based on the solutions obtained from the
RVE containing only one ®bre. In the case of compo-
sites containing multiple ®bres, the solutions also
depend on the ®bre packing arrangement [8].

4.2. Comparison with the Halpin±Tsai equation, the
Eshelby model, and experiments

Aluminum alloys reinforced with SiC particles or
whiskers have extensive applications in aircraft engines
and aerospace structures. The composite is commonly
made by extrusion, and the SiC reinforcement is gen-
erally oriented in the extrusion direction. Unless noted
otherwise, the material properties of the SiC/Al compo-
site, Ef � 450 GPa, Em � 72 GPa, �f � 0:2, and
�m � 0:3, are adopted in the present study to predict
Young's modulus of the composite in the extrusion
direction. It is noted that with the above material prop-
erties, only the aspect ratio and the volume fraction of
the reinforcement are needed in using the Halpin±Tsai
equation or the Eshelby model to predict the Young's
modulus of the composite. However, the speci®c
dimensions of the RVE (i.e. b and l0 in Fig. 1) are also
required in using the modi®ed shear-lag model because
di�erent combinations of b and l0 can give the same
volume of the RVE. In the literature, two di�erent geo-
metries have been found in choosing a RVE to model a
unidirectional discontinuous ®bre composite: the RVE
scaling with the ®bre (i.e. l0=b � l=a) [31], and the RVE
and the ®bre having the same length (i.e. l0 � l)
[13,16,17,32]. It has been noted that l0 � l is a good
assumption for the case of long embedded ®bres and

Fig. 2. Comparison of distributions of the normalized axial stress,

�f=�o and �f 0=�o, along the axial loading direction between the mod-

i®ed shear-lag model and the ®nite-element solutions.
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would induce signi®cant errors for the case of short
embedded ®bres [13]. The present calculated results
using the above two geometries are presented as follows.
To summarize the above two geometries, the radius of

the RVE, b, can be related to the ®bre radius, a, by

b � afÿp �21�

where p � 1=3 when l 0=b � l=a, and p � 1=2 when l0 � l.
Using these two geometries, the predicted e�ective
Young's modulus, Eo, as a function of the ®bre-aspect
ratio, l=a, is shown in Fig. 3 for f � 0:2. The results
from the Halpin±Tsai equation and the Eshelby model
are also shown. It can be see that the present results are
in excellent agreement with the Halpin±Tsai equation
for small ®bre-aspect ratios (l=a <� 2) when l0=b � l=a
is used, and are in excellent agreement with both the
Halpin±Tsai equation and the Eshelby model for large
®bre-aspect ratios (l=a >� 10) when l0 � l is used. This
trend agrees with the statement that l0 � l can only be
used for the case of long embedded ®bres. Based on the
above trend (Fig. 3), a logical selection of the RVE
would have p in Eq. (21) increase from 1/3 at small ®bre
aspect ratios and approach 1/2 as the ®bre-aspect ratio
increases. A simple equation describing p adopted in the
present study is

p � 1

2
ÿ 1

6
exp
ÿl
5a

� �
�22�

The numerical factor in the exponential term in Eq.
(22) (i.e. 5) can be varied to adjust how fast p approa-
ches 1/2 as l=a increase. Using Eq. (22), the parameter,
p, as a function of the ®bre-aspect ratio, l=a, is shown in
Fig. 4. Using Eqs. (21) and (22), l0 can be obtained by
satisfying a2l=b2l0 � f, such that

l0 � lf2pÿ1 �23�

Using Eqs. (21)±(23) to de®ne the RVE, the predicted
results of Eo for f � 0:2 are shown in Fig. 5a, and
excellent agreement with both the Halpin±Tsai equation
and the Eshelby model is obtained. The results for f �
0:1 and 0.3 are shown in Fig. 5b and c, respectively, and
excellent agreement is also obtained.
Using l 0=b � l=a, l 0 � l, and Eq. (23) in the modi®ed

shear-lag model, the normalized axial stress distribu-
tions, �f=�o and �0f=�o, along the axial loading direction
are shown in Fig. 6 for l=a � 3 and f � 0:2. The stress at
the loading surface is �o (i.e. �0f=�o � 1 at z � l0). When
l0 � l, the stress at the ®bre end is the loading stress, �o

(Fig. 6). The normalized uniform stress in the ellipsoidal
inclusion based on the Eshelby model, �e=�o, is also
shown in Fig. 6. While the stress distribution along the
®bre length (and hence the stress-transfer phenomena)
can be obtained from the modi®ed shear-lag model
depending on the RVE selected, the uniform stress in
the ellipsoidal inclusion is obtained from the Eshelby
model. In the following comparison, Eqs. (21)±(23) are
used to de®ne the RVE for the modi®ed shear-lag
model.
Experimental measurements of Young's moduli of

particulate- or whisker-reinforced SiC/aluminum alloy
composites in the extrusion direction, Eo, have been
performed. Depending on the composition and the
treatment of the aluminum alloy, its Young's modulus
can be varied. The material properties of SiC/2124 (T4)
[22], SiC/6061 (T6) [23], and SiC/8090 (T6) [24] listed in
Table 1 are used for theoretical calculations. The pre-
dicted Young's modulus, Eo, based on the modi®ed
shear-lag model, the Halpin±Tsai equation, and the
Eshelby model are shown in Fig. 7a±c for SiC/2124,
SiC/6061, and SiC/8090 composites, respectively. The
experimental data [22-24] are also shown, and good

Fig. 4. The parameter, p, in determining the geometry of the repre-

sentative volume element for aligned short-®bre composites as a func-

tion of ®bre-aspect ratio, l=a.

Fig. 3. Longitudinal Young's modulus of SiC/Al composite, Eo, as a

function of ®bre-aspect ratio, l=a, for f � 0:2. The results from the

modi®ed shear lag model (assuming l0=b � l=a and l0 � l), the Halpin±

Tsai equation, and the Eshelby model are shown.

2676 C.-H. Hsueh /Composites Science and Technology 60 (2000) 2671±2680



agreement between the three predictions and measure-
ments is obtained.

4.3. Comparison with numerical analyses

Young's modulus of an aligned short-®bre composite
has been analyzed numerically using a ®nite-di�erence

method [18]. However, in order to simplify the analysis,
cubic lattices were adopted for both the ®bre and the
matrix in the ®nite-di�erence analysis. Hence, instead of
the cylindrical geometry depicted by Fig. 1, the geo-
metry considered in the ®nite-di�erence analysis is a
rectangular parallelepiped. Also, a multiple-®bre com-
posite was adopted in the ®nite di�erence analysis. The
di�erence in geometry between the modi®ed shear-lag
model and the ®nite-di�erence model would result in
di�erences in the magnitude of the calculated results.
However, since Young's modulus of the composite, Eo,
is a global property, the di�erence in its prediction as a
result of di�erent geometries is expected to be small.
The mechanical properties used in the ®nite-di�erence
analysis are: Ef=Em � 20 and �f � �m � 0:3, and the
results were calculated for l=a � 2 and 10, respectively,
at di�erent ®bre-volume fractions. The ®nite-di�erence
results of Eo=Em as a function of the ®bre-volume frac-
tion, f, are shown in Fig. 8. The predictions based on the
modi®ed shear-lag model, the Halpin±Tsai equation,
and the Eshelby model are also shown, and good
agreement is obtained. It is noted that the results from
the modi®ed shear lag model almost overlap with those

Fig. 5. Longitudinal Young's modulus of SiC/Al composite, Eo, as a

function of ®bre-aspect ratio, l=a, for (a) f � 0:2, (b) f � 0:1, and (c)

f � 0:3. The results from the modi®ed shear-lag model, the Halpin±

Tsai equation, and the Eshelby model are shown.

Fig. 6. The normalized axial stress distributions, �f=�o and �f 0=�o,

from the modi®ed shear lag model using l0=b � l=a, l0 � l, and Eq. (22),

and the uniform normalized stress, �e=�o, in the ellipsoidal inclusion in

the loading direction based on the Eshelby model. The results are

shown for SiC/Al composites with l=a � 3 and f � 0:2.

Table 1

Properties of particulate- or whisker-reinforced SiC/aluminum alloy

composites

Composite Reinforcement Ee or Ef

(GPa)

Em

(GPa)

�e �m Aspect

ratio,

l=a

SiC/2124 (T4)a Particulate 450 72 0.2 0.3 1.6

SiC/6061 (T6)a Particulate 450 71.7 0.2 0.3 3

SiC/8090 (T6) Whisker 480 78.2 0.2 0.3 4

a T4; room temperature aged; T6; heat treated.
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from Eshelby model when l=a � 10, and they can hardly
be distinguished in Fig. 8.
Young's modulus of an aligned short-®bre composite

has also been analyzed using a FEA [8]. Two types of
®bre packing arrangements and two types of periodic,
three-dimensional arrays of ®bres are considered in
de®ning the RVE for the FEA which, in turn, result in

four di�erent geometries for the RVE. The two ®bre
packing arrangements are square and hexagonal, and
the two ®bre arrays are regular and stagger [8]. The
material properties used in the FEA are those pertinent
to ®bre-reinforced engineering thermoplastics, such that
Ef=Em � 30, �f � 0:2, �m � 0:38. The volume fraction of
®bres adopted is 0.2, and di�erent ®bre-aspect ratios are
used to calculate the e�ective Young's modulus, Eo, of
the RVE. The calculated results of Eo=Em as a function
of the ®bre-aspect ratio, l=a, are shown in Fig. 9. The
di�erent ®bre packing/arrays create scatter in the ®nite
element results. The scatter is small for l=a58, but it is
signi®cant for l=a44. It is believed that the lower ®nite-
element values are more representative of the actual
packing and the actual sti�ness of composites with very
short ®bres [8]. The predictions based on the modi®ed
shear-lag model, the Halpin±Tsai equation, and the

Fig. 7. Longitudinal Young's modulus, Eo, as a function of ®bre-

volume fraction, f, for (a) SiC/2124, (b) SiC/6061, and (c) SiC/8090

composites. The results from the modi®ed shear lag model, the Hal-

pin±Tsai equation, the Eshelby model, and experimental measure-

ments are shown.

Fig. 8. Longitudinal Young's modulus of aligned short-®bre compo-

sites, Eo, as a function of ®bre-volume fraction, f, for l=a � 2 and 10.

The results from the modi®ed shear-lag model, the Halpin±Tsai equa-

tion, the Eshelby model, and the ®nite-di�erence analysis are shown.

Fig. 9. Normalized longitudinal Young's modulus of aligned short

®bre composites, Eo=Em, as a function of ®bre aspect ratio, l=a, for
f � 0:2. The results from the modi®ed shear-lag model, the Halpin±

Tsai equation, the Eshelby model, and the ®nite-element analysis are

shown.
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Eshelby model are also shown in Fig. 9, and good
agreement is obtained between the predictions and the
lower ®nite-element values.

5. Conclusions

The Young's modulus of an aligned short-®bre com-
posite is of interest. The theoretical prediction of this
value from a shear-lag model is known to be less
accurate than those predicted from the Halpin±Tsai
semi-empirical equation and the Eshelby model. This is
a result of the crude approximation adopted in the
shear-lag model. It is noted that the shear-lag model
was originally developed to address the stress-transfer
problem between the ®bre and the matrix. However,
whereas the Halpin±Tsai equation and the Eshelby
model o�er a good prediction of the Young's modulus,
they cannot be used to analyze the stress transfer pro-
blem for an aligned short-®bre composite. The present
study aims at improving the shear-lag model to give
better predictions of both Young's modulus and the
stress-transfer phenomena in the composite. To achieve
this, a rigorous modi®ed shear-lag model is required.
This modi®ed shear-lag model has been developed
[19,20], and it is then used in the present study to derive
the Young's modulus of the composite. However, an
inherent problem in the shear-lag model remains in the
modi®ed shear lag model; i.e. a representative volume
element (RVE) is required in modelling. To resolve this
problem, a simple criterion for selecting the RVE is
established in the present study [see Eqs. (21)±(23)]. The
present predicted stress distribution along the ®bre
length during uniaxial loading of the composite (Fig. 1)
is compared to that obtained from a ®nite-element ana-
lysis, and excellent agreement is obtained (Fig. 2). Also,
by a judicious choice of the representative volume ele-
ment for the modi®ed shear-lag model, the predicted
Young's modulus of the composite is in excellent
agreement with those predicted from the Halpin±Tsai
semi-empirical equation, the Eshelby model, and the
numerical analyses (Figs. 5, 8, and 9). Comparison is
also made with experimental measurements of Young's
moduli of particulate- or whisker-reinforced SiC/alumi-
num alloy composites, and good agreement is obtained
(Fig. 7a±c).
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