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Abstract

A crack intersecting an interface between two dissimilar material layers may advance by either deflecting along or penetrating through the
interface. The criterion of deflection versus penetration can be established by the comparison of two ratios, the energy release rate ratio and
the fracture energy ratio, of deflection to penetration. The effects of: (1) a finite length of the branch crack emanating from the main crack tip;
and (2) a finite width of the layer subjected to crack penetration were examined in the present study. The results reveal that the above two
factors have profound effects on the criterion of deflection versus penetration for a wedge-loaded crack.q 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

In an earlier paper by He and Hutchinson [1], a study was
made on the tendency of a wedge-loaded crack meeting a
bimaterial interface to either deflect along the interface or
penetrate through the interface into the next layer. The
analysis was conducted in terms of the energy release rate
ratio of crack deflecting into the interface,Gd, to crack
penetrating through the interface,Gp. The criterion of
deflection versus penetration was then established depend-
ing on whetherGd=Gp was greater or less than the ratio of
the fracture energy of the interfaceG i to that of the adjoining
layer, G f. This criterion has been adopted extensively to
predict interfacial debonding versus reinforcement fracture
for fiber- (whisker- and self-) reinforced ceramic compo-
sites. However, due to the assumptions made in the asymp-
totic analysis, in which integral equation methods were
used, two limitations should be noted before the criterion
is applied. First, the results were obtained based on the

condition that the branch crack emanating from the main
crack tip was very small compared with all other lengths in
the problem; including the length of the main crack itself.
Second, the analysis was for two semi-infinite elastic
materials bonded at the interface. For the crack initiation
problem, the branch crack can be treated as an infinitely
small crack; therefore, these two assumptions are satisfied.
However, in some cases (e.g. for a wedge-loaded crack, or
in the presence of residual stresses), the length of the branch
crack becomes an important parameter, and these two
conditions are not satisfied. The effects of the finite
branch-crack length may well be significant.

Recently, the bonding strength at the whisker/glass inter-
face in a model composite of oxynitride glass matrix
containing 5 vol%b-Si3N4 whiskers has been evaluated
by an indentation-induced crack-deflection method [2,3].
A cube-corner indenter was used to generate a crack in
the glass. When the crack intersects the whisker, it will
either deflect at the interface propagating a finite length
and then kinking into the whisker or penetrate the whisker.
In this case, the branch crack has a finite length and the
whisker subjected to crack penetration has a finite width.

As an initial attempt to analyze the indentation-induced
crack-deflection problem in the whisker/glass system and as
a complement to the previous study [1], the present study
sought to examine effects of: (1) a finite length of the branch
crack emanating from the main crack tip; and (2) a finite
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width of the adjoining layer subjected to crack penetration
on the criterion of crack deflection versus penetration. To
achieve this, integral equation methods were not feasible
because of the complication of the problem and the finite
element method was hence adopted. First, to verify the
accuracy of the finite element method, solutions were
compared to those obtained from Muskhelishvili’s method
[4] and integral equation methods [1], respectively, for two
special cases. Then, using the finite element method, the
effects of the branch-crack length and the penetrated-layer
width were examined. It is noted that the related problems
with different geometries have been examined by a number
of researchers. For example, the tendency of a crack to
deflect or penetrate at an interface between two dissimilar
elastic materials in a double-edged notch specimen [5] and
the effect of flaws [6] have been investigated using the
boundary element method. Recently Bush [7] studied the
effects of a pre-existing flaw on the interface of a particle
on the crack propagation.

2. The system

Schematic drawings of crack penetration and deflection
for an oblique wedge-loaded crack used in the previous
study [1] are shown in Fig. 1a and b, respectively. Two
semi-infinite elastic materials, material 1 and material 2,
are bonded at the interface. The main crack in material 2
is subjected to wedge opening loads,P, at a distance,L,
from the interface along the crack line. The crack intersects
the interface at an oblique angle,v2, and can either
penetrate across the interface into material 1 or deflect at
the interface. The resultant branch crack has a lengtha. For
the case of a penetrating crack (Fig. 1a), the angle between

the branch crack and the interface isv1. To examine the
effects of a finite length of the branch crack, the problems
were solved for finite values ofa=L: To examine the effects
of a finite width of material 1, a layer of material 1 with a
width, h, sandwiched between two semi-infinite material 2
was considered, and the schematic drawings for crack
penetration and deflection are shown, respectively, in Fig.
1c and d.

For the plane-strain bimaterial problem, the solution
variables of interest depend on two non-dimensional elastic
mismatch parameters; i.e. the Dundurs’ parameters [8]
which are

a � � �E1 2 �E2�=� �E1 1 �E2� �1�

b � 1
2 �m1�1 2 2n2�2 m2�1 2 2n1��=�m1�1 2 n2�
1 m2�1 2 n1�� �2�

whereE, m andn are Young’s modulus, shear modulus and
Poisson’s ratio, respectively,�E � E=�1 2 n 2�; and the
subscripts 1 and 2 denote materials 1 and 2, respectively.
Since experience with related problems suggests thata is
the much more important one of the two parameters, the role
of a is emphasized andb � 0 is taken in the present study.

3. Analyses

The finite element method was used in the present study
to analyze: (1) the energy release rates for a deflected crack
and a penetrating crack; and (2) the stress intensity factors
and, hence, the mode mixity for a deflected crack. While the
comparison of the energy release rate ratio to the fracture
energy ratio of a deflected crack to a penetrating crack
defines the criterion of crack deflection versus penetration,
the mode mixity of a deflected crack characterizes the
tendency for the deflected crack to kink into the adjoining
layer.

3.1. The energy release rates and stress intensity factors

The solutions for the stress intensity factors for the
problem of a penetrating crack depicted by Fig. 1a can be
written as [1]

KI 1 iKII � c�a;v1;v2;a=L�PL21=2 �3�
where i� ����

21
p

; andc is a dimensionless complex-valued
function of the arguments indicated. The corresponding
energy release rate,Gp, is

Gp � �1 2 n1�
2m1

ucu2
P2

L
�4�

It is noted thatGp is a function ofv1, and the maximum
value ofGp with respect tov1 for a fixeda=L is denoted by
Gp

max.
The stress intensity factors for a deflected crack (Fig. 1b)
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Fig. 1. Schematic drawings showing: (a) a penetrating crack; and (b) a
deflected crack for two semi-infinite dissimilar materials bonded at the
interface; and (c) a penetrating crack; and (d) a deflected crack for material
1 with a width,h, sandwiched between two semi-infinite material 2.



can be expressed by [1]

K1 1 iK2 � d�a;v2; a=L�PL21=2 �5�
whered is a dimensionless complex-valued function of the
arguments indicated. The corresponding energy release rate
of the deflected crack,Gd, is given by

Gd � 1
�Ep

udu2P2
=L �6�

where �Ep is given by

1
�Ep
� 1

�E1
1

1
�E2

� �
1 2 b2

2
;

1 2 b2

�1 2 a� �E1
�7�

The ratio of the competing energy release rates is hence

Gd

Gmax
p
� udu2

�1 2 a�ucu2
�8�

3.2. The finite element method and convergence studies

The numerical results presented in this paper were
computed using a finite element code,Abaqus (Version
5.5) [9], with eight-node isoparametric elements. A quarter-
point crack tip element served to model the inverse square
root stress singularity at the crack tip. The model employed
in the finite element calculation was a circular region with a
radiusRand its origin located at the intersection of the main
crack and the interface (Fig. 2). In order to obtain the
asymptotic solution,R should be much larger than both
the length of the branch crack,a, and the distance from

the wedge load to the crack tip,L. A refined mesh was
used, and the detailed discussion of the finite element
mesh can be found in the Appendix of Ref. [10]. For
example, the mesh for the deflected crack contained 2499
eight-node isoparametric elements and 9339 nodes.

Two techniques were employed to calculate strain energy
release rates. In the first, theJ-integral was calculated by the
domain integral method [11] for ten contours. In the second,
the stress intensity factorsK1 andK2 were obtained from the
crack opening displacements,d y andd x, in accordance with
(for b � 0�

K1 � lim
r!0

E1
��
p
p

dy

4
���
2r
p �9a�

K2 � lim
r!0

E1
��
p
p

dx

4
���
2r
p �9b�

The mode mixity,c , was then obtained, such that

c � tan21�K2=K1� �10�
It was found that the energy release rates obtained by these
two methods were in very good agreement. The results for
the energy release rate presented in this paper were obtained
by J-integral, and the results for the mode mixity were
obtained by the stress intensity factor method.

To ensure the convergence of the finite element solutions,
results were compared to those obtained from Muskhelish-
vili’s method and integral equation methods, respectively,
for two special cases shown as follows.

3.2.1. Comparison to Muskhelishvili’s method
For an infinite plane containing a semi-infinite crack,

which is subjected to a point load,P, at a distanceL from
the crack tip, the exact analytical solution for the stress
intensity at the crack tip,K1, has been derived using
Muskhelishvili’s method, such that [12]

K1 � p������
2pL
p �11a�

The corresponding strain energy release rate,G, is hence

G� p2�1 2 n2�
2pLE

�11b�

Comparison of the finite element analysis using different
ratios of R=L to the exact analytical solution (Eq. (11b))
is shown in Table 1. The results indicate that the ratio
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Fig. 2. A schematic drawing of the circular region adopted in the finite
element calculation.

Table 1
Errors of the strain energy release rate from the finite element solutions for
meshing a circular region with a radiusR for the system of an infinite plane
containing a semi-infinite crack subjected to a point load at a distanceL
from the crack tip

R=L 200 400 1000 2500 5000
Error (%) 5.43 2.63 1.06 0.32 0.14

Table 2
Comparison of energy release rate ratioGd=G

max
p between finite element

solutions and integral equation solutions�a=L � 0:1 andv2 � 458�

a Gd=G
max
p

Finite element Integral equation

20.5 0.637 0.639
20.1 0.686 0.688
0.1 0.754 0.759
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Fig. 3. The normalized energy release rate,Gd
�EpL=P2

; as a function of the relative debonding length,a=L; (a) forv2 � 308; (b) forv2 � 458; (c) forv2 � 608:



R=L � 1000 is sufficient to obtain the asymptotic solutions.
Hence,R=L ratios $1000 were used in the present finite
element analysis.

3.2.2. Comparison to integral equation methods
For a penetrating crack (Fig. 1a), the energy release rate

ratio Gd=G
max
p as a function ofa has been calculated using

integral equation methods fora=L � 0:1 andv2 � 458 [1].
Using finite element analyses in the present study, results
were also obtained and excellent agreement was found when
comparing these values to those obtained from integral
equation methods (see Table 2).

4. Results

In glass matrix containing whiskers, a deflected crack is

found to propagate a finite length along the interface before
it kinks into the whisker [2,3]. In the following, the effects of
the debond length on the energy release rate and the mode
mixity of a deflected crack were examined first. Then, the
effects of both a finite length of the branch crack emanating
from the main crack tip and a finite width of the adjoining
layer subjected to crack penetration on the criterion of crack
deflection versus penetration were studied.

4.1. Effects of the debond length on the energy release rate
and mode mixity of a deflected crack

For the geometry depicted in Fig. 1a, the normalized
energy release rate of a deflected crack,Gd

�EpL=P2 � udu2;
as a function of the relative debond length,a=L; is plotted in
Fig. 3a–c, respectively, forv2 � 30; 45 and 608 at different
values ofa . The energy release rate,Gd, decreases as the

M.Y. He et al. / Composites: Part B 31 (2000) 299–308 303

Fig. 4. The mode mixity,c , of the deflected crack as a function of the relative debonding length,a=L; for a � 0:5:

Fig. 5. The energy release rate ratio,Gd=G
max
p ; as a function of the Dundurs’ parameter,a , at different lengths of the branch crack forv2 � 458:
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Fig. 6. The energy release rate ratio,Gd=G
max
p ; as a function of the Dundurs’ parameter,a , at different oblique angles,v2: (a) fora=L � 0:2; (b) for a=L � 0:5;

(c) for a=L � 1:



debond length,a, increases. However, the elastic mismatch
parameter,a , has only a secondary effect on the normalized
energy release rate. The associated mode mixity,c , of the
deflected crack as a function of the relative debond length,
a=L; is given in Fig. 4 fora � 0:5 at different oblique angles,
v2. The results show that the mode mixity,c , increases with
increase in both the debond length and the oblique angle.
Hence, based on Figs. 3 and 4, the energy release rateGd

(and henceGd=G
max
p � decreases and the mode mixityc

increases as the deflected crack grows which, in turn,
make it more likely that the deflected crack in the interface
will kink into material 1. These results agree with experi-
mental observations [2,3]. However, to quantitatively
characterize the bonding strength at the whisker/glass inter-
face from the deflected crack length,Gp

max for a deflected
crack to kink into material 1 should also be calculated.
This involves two stress singularities in the finite element
analysis and will be done in the future.

4.2. Effects of the branch-crack length on the energy release
rate ratio, Gd=G

max
p

Using the geometries depicted in Fig. 1a and b, the energy
release rate ratio,Gd=G

max
p ; as a function ofa is plotted in

Fig. 5 at different lengths of the branch crack (froma=L �
0:01 to 0.5) forv2 � 458: It can be seen that the relative
branch-crack length,a=L; has significant effects on the
energy release rate ratio.

While Gd=G
max
p as a function ofa (i.e. the criterion of

crack deflection versus penetration) in an earlier work [1]
was established fora=L � 0:1; curves ofGd=G

max
p as a func-

tion ofa for v2 � 30; 45 and 608 are shown in Fig. 6a–c for
a=L � 0:2; 0.5 and 1.0, respectively. Curves ofGd=G

max
p as a

function ofv2 at different ratios ofa=L are shown in Fig. 7a
and b, respectively, fora � 20:5 and 0.5. The energy
release rate ratio,Gd=G

max
p ; decreases with the increase in

the oblique angle,v2. It can also be seen that effects of the

M.Y. He et al. / Composites: Part B 31 (2000) 299–308 305

Fig. 7. The energy release rate ratio,Gd=G
max
p ; as a function of the oblique angle,v2: (a) for a � 20:5; (b) for a � 0:5:



branch-crack length on the energy release rate ratio depend
on a . Fora � 20:5 the ratio increases with the increasing
branch-crack length (Fig. 7a). On the other hand, fora �
0:5; the ratio decreases with the increasing crack length (Fig.
7b).

4.3. Effects of a finite width of material 1

For ceramic composites, the reinforcement embedded in
the matrix has a finite width. To examine the effects of the
reinforcement width on the criterion of crack deflection
versus penetration, simplified geometries depicted by Fig.
1c and d were adopted in the present study. The energy
release rate ratio,Gd=G

max
p ; as a function ofa is plotted

in Fig. 8 at different widths of the sandwiched layer (i.e.
material 1) forv2 � 30; 45, 60 and 758 anda=L � 0:01: The
curve forL=h� 0 (i.e. h! ∞� is also included which was
the result presented in the earlier work [1]. The results in
Fig. 8 show that the curve becomes flatter as the width of
material 1 decreases (i.e.L=h increases).

The results forv2 � 45 and 608 in Fig. 8 are, respec-
tively, replotted in Fig. 9a and b, in whichGd=G

max
p as a

function of the main crack length to sandwiched layer
width ratio, L=h; is plotted at different values ofa . When
a � 0 (i.e. materials 1 and 2 are the same),Gd=G

max
p is

independent of the width of material 1. Whena . 0 and
a , 0; the calculatedGd=G

max
p decreases and increases,

respectively, as the width of material 1 decreases (i.e.L=h
increases).

5. Concluding remarks

By considering two semi-infinite elastic materials bonded
at the interface, specific crack propagation problems have
been previously analyzed [1]. When a crack reaches the

interface, the crack either deflects along the interface or
penetrates into the next layer depending upon the ratio of
energy release rate due to debonding to that due to crack
penetration. This criterion has been used extensively to
predict interfacial debonding versus reinforcement fracture
for a crack propagating in fiber- (whisker- and self-)
reinforced ceramic composites. However, two limitations
should be noted before the criterion is applied. First, the
results were obtained based on the condition that the branch
crack emanating from the main crack tip was very small
compared with the main-crack length. Second, the fiber
has a finite width and is not semi-infinite in a two-
dimensional sense.

The present study examined effects of: (1) a finite branch-
crack length; and (2) a finite penetrated-layer width on the
criterion of crack deflection versus penetration, and the
following results were concluded.

1. For a deflected crack (Fig. 1b), the energy release rate
decreases (Fig. 3) and the mode mixity,c , increases (Fig.
4) as the deflected crack grows. This would make it more
favorable for the deflected crack in the interface to kink
into the adjoining layer as the deflected crack grows
longer.

2. The branch-crack length has effects on the energy release
rate ratio of crack deflection to penetration,Gd=G

max
p

(Figs. 5 and 6). The energy release rate ratio,Gd=G
max
p ;

can increase or decrease with the increase in the branch-
crack length depending on the Dundurs’ parameter,a
(Fig. 7a and b).

3. The penetrated-layer width has significant effects on the
energy release rate ratio of crack deflection to penetra-
tion, Gd=G

max
p : The diagram of crack deflection versus

penetration (i.e.Gd=G
max
p as a function ofa ) is shown

in Fig. 8. Specifically,Gd=G
max
p is independent of the

width of the penetrated-layer only whena � 0 (Fig. 9),
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Fig. 8. The energy release rate ratio,Gd=G
max
p ; as a function of the Dundurs’ parameter,a , for a=L � 0:01 at different values ofL=h andv2.



and the curve in Fig. 8 becomes flatter as the width of the
penetrated-layer (i.e. material 1 in Fig. 1c and d)
decreases.

The present analysis is two-dimensional and is applicable
to the layered materials. It should be noted that the crack
propagation problem in fiber-reinforced composites is three-
dimensional. For an embedded fiber of a finite radius, there
are three options when a matrix crack reaches the interface:
the interface can debond, the fiber can fracture, or the crack
can circumvent the fiber. The present study considered a
simplified geometry of material 1 with a finite width sand-
wiched between two semi-infinite material 2 (Fig. 1c and d),
and hence focused on the case that the matrix crack does not
circumvent the fiber. However, when the matrix crack
circumvents the fiber, the crack is bridged by intact fibers,
and the bridging-fiber (or fiber-pullout) geometry [13–15]

can be used as a representative volume element for this case.
Considering a bridging fiber behind the crack tip,Gd=G

max
p

as a function ofa (for v2 � 908) has been derived else-
where [16]. It is found that this ratio decreases with the
increase in the Dundurs’ parameter,a . Also, the curve in
the diagram of interfacial debonding versus fiber fracture
becomes flatter as the fiber radius decreases [16].
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Fig. 9. The energy release rate ratio,Gd=G
max
p ; as a function of the main crack length to penetrated-layer width ratio,L=h; at different values ofa : (a) for

v2 � 458; (b) for v2 � 608:
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