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Abstract. In the familiar Korringa–Kohn–Rostoker (KKR) or Green function method, wave
propagation between scattering sites is described by the so-called structure constants of the lattice
(KKR structure constants), where these quantities are treated as having infinite spatial extent. In
a recent development, it has been shown that the KKR method can be formulated in terms of
screened structure constants that are of finite range (the screened KKR method). Here, we present
an alternative formulation of the screened KKR method that is derived from simple manipulations
of the multiple-scattering equations. We carry out density-of-states and total-energy calculations
for spin-polarized and non-spin-polarized materials using the method. We point out possible
unphysical features of the method.

1. Introduction

The Korringa–Kohn–Rostoker (KKR) or, as it is alternatively referred to, the Green function
method has been used extensively in the study of materials properties connected to the electronic
structure. Among its most notable successes, the calculation of the electronic structure
of ordered elemental solids (the standard KKR method) [1, 2], substitutionally disordered
alloys, the KKR coherent potential approximation (KKR-CPA) [3, 4], and impurities [5]
can be mentioned. Based on the multiple-scattering theory (MST) [6], the KKR method
calculates the system Green function which leads directly to the calculation of observable
quantities such as the electron density and the ground-state energy of the system. Application
of MST relies heavily on the construction of the structure constants which describe free-particle
propagation between scattering sites. Even though these structure constants can be calculated
straightforwardly using Ewald’s method [7], they remain computationally cumbersome.

Therefore, it is sensible to search for the development of MST within a framework
that would keep intact its advantages while also reducing the difficulties associated with
the infinite extent of the structure constants of the lattice. Such a framework has been
proposed recently based on ideas originally put forth by Braspenning and Lodder [8, 9] for
developing multiple-scattering theory in the presence of a reference medium rather than free
space (see [10,11] and references therein). The formalism leads to the construction of screened
structure constants whose extent often does not reach beyond a few nearest neighbours (nn)
in a lattice. This formalism has been successfully applied not only to bulk materials but to
surfaces as well [10,12].

In this paper, we present an alternative formulation of the screened KKR method that is
more transparent than previous ones. We use the method to calculate self-consistently the
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electronic structure and the density of states (DOS) for the ordered paramagnetic materials,
fcc copper and bcc molybdenum, and the ferromagnetic bcc iron and fcc nickel. We compare
results with those obtained from the standard (k-space) Green function method and with
calculations from reference [12]. We also point out unphysical behaviour that may arise in
such calculations. The remainder of the paper takes the following form. In section 2, we
present the derivation of the screened KKR equations. In section 3, we illustrate the formal
expressions derived in section 2 by means of numerical examples. Spin-polarized calculations
are presented in section 4. A final discussion containing our conclusions is given in section 5.

2. Formulation of the screened KKR method

The formal equations leading to effective, short-ranged structure constants for use within the
Green function method can be derived from simple manipulations of the multiple-scattering
equations.

The site-diagonal elements of the Green function can be written as [13]

G(r, r′) =
∑
L,L′

ZnL(r)τ
nn
LL′Z

n
L′(r

′)−
∑

ZnL′(r)J
n
L′(r

′) (1)

where the functionsZnL(r) andJ nL(r) are solutions of the Schrödinger equation in thenth
Wigner–Seitz cell. The pointsr andr′ are in that cell. The superscripts on the elements of
the scattering path operator [14],τ ijLL′ , refer to the cells centred at the lattice sitesRi andRj ,
and the subscripts are the angular momentum indices. Theτ

ij

LL′ depend on the energy, and are
obtained from the inverse of the matrix

M = m − g. (2)

The non-zero elements ofm are blocksmi corresponding toi = j . The matrixmi is the
inverse of the scatteringt-matrix for the atom on sitei, and, for the special case of muffin-tin
potentials, is given by

miLL′ = (t iLL′)−1 = (−κ cotηil + iκ)δLL′ (3)

whereκ = √ε and theηil are the scattering phase shifts. The elements ofg are the propagators
for electrons in free space, which are

g
ij

LL′ = −4πκ i l−l
′+1
∑

i l
′′
CL

′′
LL′h

+(κ|Rij |)YL′′(Rij ) (4)

whereRij = Rj −Ri , and theCL
′′

LL′ are Gaunt factors. Note that the matrix elementsg
ij

LL′ are
defined to be zero fori = j . It is standard to truncate the angular momentum expansions at some
lmax . If there areN atoms in the crystal, the dimensions ofM areN(lmax + 1)2×N(lmax + 1)2.
The matrix elementsτ ijLL′ are theij, LL′ elements ofM−1, i.e., τ = M−1. Since the number
of atoms in the crystal is infinite,M is an infinite matrix and taking the inverse is not a well-
defined operation.

For the special case in which all of the atoms are the same,m has a set of identical
(lmax +1)2× (lmax +1)2 scattering matrices on the diagonal. Using the matrixU, with elements

U
ij

LL′ = (1/
√
N) exp(−iRi · kj )δLL′ (5)

g can be transformed into block-diagonal form:

[U†gU]ijLL′ = gLL′(k)δij =
N∑
j=1

exp(ik ·R0j )g
0j
LL′ (6)



Application of the screened KKR method 5507

which defines the(lmax + 1)2 × (lmax + 1)2 matricesg(k). It is easy to take the inverse of the
transformed matrix one block at a time, and the result, after allowingN to approach infinity,
is the standard one [13]:

τ ij = �

(2π)3

∫
exp(−ik ·Rij )[m − g(k)]−1 dk (7)

where� is the volume of the unit cell.
When the atoms in the crystal are not all the same, the block matrices on the diagonal of

m,mi , are different and findingM−1 is not as straightforward. A method for dealing with this
problem is to write

m = ms + (m −ms). (8)

The matrixms is chosen to have identical blocks on the diagonal, as was the case with the
ordered crystal. It follows that

τ = τ s − τ s(m −ms)τ = [1 + τ s(m −ms)]−1τ s (9)

with

τ s = [Ms ]−1 = (ms − g)−1. (10)

One way to calculateτ s,ij is to use (7) withms replacingm.
This method for calculating the scattering path operator has been used frequently in

multiple-scattering theory. For one impurity atom embedded in a perfect lattice, the blocks
ms describe the scattering from the host atoms,m −ms has only one non-zero block, and (9)
leads to a simple formula forτ ij . For a cluster ofn impurities,n of the blocks inm −ms are
non-zero, and it is only slightly more complicated to calculateτ ij [15].

For an arbitrary collection of atoms in the crystal, it is useful to define the scattering
matricesms such that the scattering path operatorsτ s,ij are essentially zero when|Rj −Ri | >
Rmax . For instance, calculating theτ nn needed for the evaluation of the Green’s function in
(1), truncated matricesτ s ,m, andms are obtained from the ones defined above by setting the
blocks corresponding to sites for which|Rj −Ri | > Rmax equal to zero. Thenτ nn is the nn
block of the finite matrix

τ = [1 + τ s(m −ms)]−1τ s. (11)

Note that the advantage in transforming the scattering path operator matrix instead of the
structure constants, as stated in equation (9) in reference [11], is that the present derivation leads
directly to the scattering path operator of the real system from which the physical properties
are calculated as will be shown in the next section. Furthermore, it is easy to fitτ s as a function
of energy as opposed to the screened structure constants in reference [11].

The experience gained in the research on the screened structure constants described in
references [10–12] suggests a convenient scattering potential to use in the calculation of the
ms . The potential is a positive constantvs within the muffin-tin sphere of each cell in the
crystal, and zero in the interstitial region. The phase shifts can be calculated quite easily
for this potential, andms is obtained from (3). The matrixτ s is calculated from a truncated
version of the matrix defined in (10), rather than using thek-space formula in (7). A complete
real-space calculation of the total energy can be carried out using theτ nn from (11). The
ramifications of this approach will be considered elsewhere. In the present paper, we calculate
the scattering path operatorτ s in real space and then use it to obtain the total energy and DOS
from k-space integration. The details of these calculations are given in the next section.
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3. Calculations

We perform total-energy and DOS calculations for real materials employing the screened KKR
method. We compare results of these calculations with those that are obtained using the usual
KKR method in which the KKR structure constants are obtained using the Ewald procedure [7].
For the screened KKR method we calculate the screened scattering path matrix(τ s) in real
space, whilst calculation of the scattering path matrix for the system is carried out ink-space.

The screening medium is constructed by placing the same constant repulsive muffin-tin
potential of heightvs on all of the sites of the underlying lattice. AnN -site cluster, comprised
of the central site (denoted by 0) and itsN − 1 neighbouring sites, is used to approximate
scattering processes within this medium. The calculation ofτ s is performed by inverting the
matrix Ms for the cluster using (10), wherems is the inverse of thet-matrix corresponding to
the screening potentialvs .

Theτ 00 block of the scattering path matrix for the system is obtained using

τ 00(ε) = (1/�BZ)
∫
�BZ

[1 + τ s(k)(m −ms)]−1τ s(k) dk (12)

and the Green function is obtained using (1).
In (12),τ s(k) is the lattice Fourier transform ofτ s,ij and is given by

τ s(k) =
N∑
j=0

exp(ik ·R0j )τ
s,0j . (13)

It should be noted that, unlike the corresponding equations for the free-particle propagator (6),
this lattice Fourier transform contains a contribution from the origin sinceτ s,00 6= 0.

Because we have obtained the elementsτ s,ij using a finite cluster in real space, we must
choose the ones to use in the lattice Fourier transform (13). The point is that the use of a finite
cluster breaks the translational invariance that exists between elementsτ s,ij andτ s,mn when
the pair of sitesi, j andm, n have the same positional relationship to one another. We use
the matrix elementsτ s,0j (j = 1, N) connecting the central site to its neighbours on the basis
that they are better approximation to those of the infinite array ofvss than are general matrix
elementsτ s,ij (i 6= 0) connecting sites on the periphery of the cluster.

Once the Green function is determined, the charge density,ρ(r), and the DOS,n(r), are
calculated using

ρ(r) = −(1/π) Im
∫ εF

−∞
G(r, r, ε) dε (14)

and

n(ε) = −(1/π) Im
∫
�ws

G(r, r, ε) dr (15)

respectively. In the above,εF is the Fermi energy.
It should be apparent that the parameters controlling the convergence of the screened KKR

method are the usual truncation of the angular momentum atlmax used to calculate the Green
function from (1), the number of sites in the clusterN , the angular momentum cut-off,lscr
(lmax 6 lscr ), retained in the cluster used to calculateτ s,ij , and the height of the screening
potential,vs .

In carrying out calculations, we make extensive use of the complex-energy plane. When
performing total-energy calculations, integrations over energy are carried out in the complex-
energy plane using a semi-circular contour. In calculations of the density of states, used for
display purposes, the energy contour is parallel to the real-energy axis with a small imaginary
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part (typically Imε ∼ 0.001 Ryd). The self-consistent-field (SCF) total-energy calculations
use the local density approximation for the exchange–correlation potential and are carried out at
zero temperature. We use the muffin-tin approximation for magnetic Fe and Ni, and the atomic
sphere approximation for Cu and Mo. This is to test the method for the most commonly used
approximations for the atomic potentials. The BZ integration required in (12) is performed
using the direction (prism) method [16].

In figure 1 we show the DOS obtained with the screened KKR for fcc Cu with lattice
parametera = 6.83 Bohr radii. The dashed curve corresponds to SCF potentials obtained
using the screened KKR, and the solid curve to the standard KKR method. Figure 1 also
shows the error in the DOS (in Ryd) that is obtained by taking the difference between the DOS
calculated at each energy point using the two methods. Figure 2 shows similar results obtained
for bcc Mo with lattice constanta = 5.80 Bohr radii.
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Figure 1. Comparison of KKR (solid curve) and screened KKR (dashed curve) DOS for fcc Cu.
The error in the DOS with respect to the standard KKR is also shown.

It can be seen from figures 1 and 2 that for both Cu and Mo the densities of states obtained
using the different techniques are essentially identical. The corresponding total energies differ
by 0.03 and 0.006 mRyd respectively. In the calculation of the screened structure constants,
we usedlscr = 3 andvs = 4.0 Ryd for both structures. For the fcc structure we usedN = 87
(six nn shells), while for bcc we usedN = 89 (seven nn shells). In both cases,lmax = 3 was
used in the KKR calculations. Clearly, for these parameters the screened structure constants
are converged.
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Figure 2. A comparison of the DOS of bcc Mo. The KKR DOS is represented by the solid curve
and the screened KKR DOS is shown by the dashed curve. The error in the DOS with respect to
the standard KKR is also shown.

In table 1 we show the effect of truncation of the cluster size on the total energy. The
screened structure constants were calculated with fixed values oflscr = 3 andvs = 4.0 Ryd.
Again, lmax = 3 was used in the KKR calculations. Columns 2 and 3 show the errors in
the total energy using the screened KKR method with clusters containing various numbers of

Table 1. Calculated errors in total energy at different numbers of nn shells used in the calculation
of the screened structure constants. The table is for fcc Cu and bcc Mo at the respective lattice
parametersa = 6.83,a = 5.80 Bohr radii,lscr = lmax = 3, andvs = 4.0 Ryd.

Cu Mo
error in error in
energy (mRyd) energy (mRyd)

1 nn shell −2.95 *
2 nn shells 0.75 *
3 nn shells 0.26 −0.400
4 nn shells −0.02 *
5 nn shells 0.03 −0.100
6 nn shells 0.03 −0.002
7 nn shells −0.006
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nearest-neighbour shells. The errors are measured with respect to total energies obtained using
the standard KKR method. For Cu, an accuracy of∼0.03 mRyd is obtained for five nn shells.
For bcc Mo, an accuracy of 0.002 is attained for six nn shells. An asterisk in the table indicates
that no SCF solution was obtained using the above parameters. Adjusting the height of the
screened potential tovs = 1.0 Ryd, we were able to obtain a SCF total energy for Mo with
one nn shell that differs from the KKR result by 8 mRyd. For two nn shells, adjustment of the
screening potential tovs = 8.0 Ryd resulted in a SCF total energy with an error of 0.5 mRyd.
Adjustment of thevs did not yield a SCF total energy in the case of four nn shells. It is not
clear why, in some instances, adjustment of the height ofvs led to self-consistency and in other
instances it did not. It is not surprising that an approximation to the Green function using
screened structure constants that are not fully converged may result in a non-analytic Green
function.

There are differences between the calculations in this paper and those reported by Zeller
in reference [12]. For example, he uses direct sampling for the BZ integrations, the exchange–
correlation potential of Alder and Ceperley, and the full-potential MST. The calculated errors
in the total energy for fcc Cu listed in table 1 above show the same trend as those listed in
table I of reference [12]. The reason is that the differences in the total energies cancel out.
The primary difference between the calculations described here and those in reference [12] is
that Zeller calculates the total energy and the DOS at finite electron temperature. This enables
him to avoid problems that arise in zero-temperature calculations, which will be discussed.

Next, we show the effect that the height of the screened potentialvs has on the total energy
as a function of the number of shells used in the calculation of the screened structure constants.
In figure 3, we plot the error in total energy of fcc Cu with lattice parametera = 6.83 versus
the number of nearest-neighbour shells. The screened KKR calculations were done at two
different screening potentialsvs = 4 and 8 Ryd, withlscr = lmax = 3.
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Figure 3. The errors in total energy calculated at two values ofvs are plotted as functions of
the number of nearest-neighbour shells used to calculate the screened structure constants. The
calculations were done atlscr = lmax = 3.
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From figure 3, it is evident that for four and more nn shells, the strength of the screened
potential has essentially no effect on the total energy. Empty-lattice DOS calculations using
the screened KKR method are reported in reference [12]. These, however, do not address the
problems that arise in DOS calculations for real materials.

In figure 4 we show the calculated DOS of Cu atlscr = lmax = 2 andvs = 2.0 Ryd where
only one nn shell has been used in the calculation of the screened structure constants.
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Figure 4. The screened KKR DOS for fcc Cu for one nn shell. The calculations were done at
lscr = lmax = 2, andvs = 2.0 Ryd. The solid curve is the DOS calculated along a contour parallel
to the real axis that is 0.001 Ryd off in the complex plane. The dashed curve represents the DOS
calculated along a similar contour 0.005 Ryd off in the complex plane.

It can be seen that, for the above parameters, the DOS (solid curve) is negative in the
middle of the d bands. This is indicative of a non-analytic Green function. Recall that when
we perform SCF calculations we determineεF and calculate the charge density by integrating
over a contour in the complex-energy plane. Thus, any non-analytic behaviour in the Green
function will give rise to spurious results. The solid curve represents the DOS calculated along
a contour parallel to the real axis that is 0.001 Ryd off in the complex plane (Imε = 0.001 Ryd).
The negative DOS are indicative of a spurious pole (or cut) in the Green function that is further
off in the complex plane than this. The density of states calculated along a contour for which
Im ε = 0.005 Ryd (dashed curve) does not exhibit unphysical behaviour. Thus the effect of
this non-analytic behaviour will not be seen if calculations are performed at finite electron
temperature,T > 700 K.

From the above studies it is clear that the screened KKR produces results that are essentially
identical to the standard KKR ones if six (seven) nn shells are used for fcc (bcc) structures, but
truncation of the inversion to include64 nn shells may lead to unreliable DOS, and, in some
instances, can lead to non-analytic behaviour.
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4. Spin-polarized calculations

It is interesting to apply the screened KKR method to magnetic materials and investigate the
validity of the method in such calculations. We present total-energy calculations for bcc Fe
and fcc Ni in the ferromagnetic state using the screened KKR method. In the standard KKR
calculations used as a reference, the structure constants are obtained from a polynomial fit rather
than the Ewald method. In these calculations, we obtain the screened structure constants at
lscr = 3 andvs = 4.0 Ryd. As before, the KKR calculations were done withlmax = 3. Figures
5 and 6 show total energies as functions of lattice parameters. The screened KKR calculations
for Ni were done withN = 13 (one nn shell), and those for Fe withN = 27 (three nn shells).

-0 .649

-0 .648

-0 .647

-0 .646

-0 .645

-0 .644

-0 .643

-0 .642

-0 .641

6 . 4 5 6 . 5 6 . 5 5 6 . 6 6 . 6 5

KKR
1 nn-shell

to
ta

l 
E

ne
rg

y 
+

 3
01

1 
(R

y)

lattice constant (Bohr)

fcc Ni
l

scr
= l

max
= 3

vs=4.0 Ry

Figure 5. The total energy of fcc Ni as a function of the lattice parameter is shown. The solid
curve represents the standard KKR and the dashed curve the screened KKR total energies. The
calculations were done atlscr = lmax = 3, andvs = 4.0 Ryd. Only one nn shell was included in
the cluster to calculate the screened structure constants.

The total energies were fitted to a third-degree polynomial to obtain the equilibrium lattice
constanta0, total energyE0, and bulk modulusB0. Table 2 shows the results.

Table 2. The equilibrium lattice constanta0, total energyE0, and bulk modulusB0 were obtained
for nickel and iron atlscr = lmax = 3 andvs = 4.0 Ryd.N = 13 for nickel and 27 for iron. The
corresponding standard KKR values are also listed. The zero of energy for Ni is−3011 and that
of Fe is−2522 Ryd.

fcc Ni bcc Fe

Standard Screened Standard Screened
KKR KKR KKR KKR

(N = 13) (N = 27)

a0 (Bohr radii) 6.572 6.573 5.281 5.280
E0 (Ryd) −0.64803 −0.64307 −0.82884 −0.82924
B0 (Mbar) 2.20 2.29 2.21 2.16
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Figure 6. The total energy of bcc Fe is shown for five lattice parameters. The screened KKR
calculations were done atN = 27, lscr = lmax = 3, andvs = 4.0 Ryd.

From table 2, the equilibrium lattice constants and bulk moduli agree well with the
corresponding KKR values. The equilibrium total energies differ from the standard KKR
values by about−5.0 mRyd for Ni and 0.4 mRyd for Fe. Also, magnetic moments calculated
for the two systems using the screened KKR method yield values that are different from those
obtained from the standard KKR calculations by−0.002 Bohr magneton (µB) for Ni and
0.005µB for Fe. Errors in the total energy and magnetic moment reduce considerably when
the number of sitesN used in the calculation of the screened structure constants is increased.
For nickel ata = 6.65 Bohr radii,N = 55 (four nn shells for fcc structure) and iron ata = 5.27
Bohr radii,N = 65 (six nn shells for bcc structure), the errors in the total energy are about
0.004 and 0.03 mRyd respectively. The corresponding errors in the magnetic moment are
−0.0003 and 0.000 07µB.

5. Conclusions

We have presented an alternative formulation of the screened KKR method that is derived
from simple manipulations of the multiple-scattering equations. The derivation focuses
on transformation of the scatteringτ -matrix rather than the Green function, and leads to
an expression for theτ -matrix for the system that is more transparent than previous ones.
To illustrate how the formalism works in practice, we performed total-energy and DOS
calculations for copper and nickel in fcc phases and molybdenum and iron in bcc phases.
It was found that the method yields total energies that are within tens ofµRyd of the standard
KKR results. The high degree of accuracy is obtained only when the screened structure
constants are calculated with>5 nearest-neighbour shells of repulsive scatterers. The effect
of the height of the repulsive potentials on the total energy was shown to be minimal using
converged screened structure constants. However, when the screened structure constants are
not converged, the total energy is more sensitive to variations in the strength of the screening
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potential. We have demonstrated unphysical features (negative DOS) that may arise in the
calculations when the maximum angular momentum, the number of neighbouring shells, and
the height of repulsive potentials are not chosen properly. The negative DOS, we believe, are
mainly due to spurious poles in the Green function. The poles appear at energies close to the
real axis (Imε ∼ 0.001 Ryd), when the system’s Green function is obtained from the screened
structure constants that are not converged. We also pointed out that non-analytic behaviour is
not seen when calculations are done at finite electron temperature,T > 700 K.

The equilibrium total energies calculated for Fe and Ni with63 nn shells were shown to
be in reasonable agreement with their standard KKR counterparts (a few mRyd). For these
systems the magnetic moments differ by only a few thousandths ofµB from the standard KKR
results. We pointed out that the total energy and the magnetic moment improve considerably as
more sites are used in the calculation of the screened structure constants. The method may be
used for tight-binding and near-tight-binding purposes to obtain accurate magnetic moments,
and good equilibrium lattice constants and bulk moduli.
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