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Solution to the Boltzmann equation for layered systems for current
perpendicular to the planes

W. H. Butler and X.-G. Zhang
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

J. M. MacLaren
Tulane University, New Orleans, Louisiana 70018

Present theories of giant magnetoresistance~GMR! for current perpendicular to the planes~CPP! are
based on an extremely restricted solution to the Boltzmann equation that assumes a single free
electron band structure for all layers and all spin channels. Within this model only the scattering rate
changes from one layer to the next. This model leads to the remarkable result that the resistance of
a layered material is simply the sum of the resistances of each layer. We present a solution to the
Boltzmann equation for CPP for the case in which the electronic structure can be different for
different layers. The problem of matching boundary conditions between layers is much more
complicated than in the current in the planes~CIP! geometry because it is necessary to include the
scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term
couples different values of the momentum parallel to the planes. When the electronic structure is
different in different layers there is an interface resistance even in the absence of intermixing of the
layers. The size of this interface resistance is affected by the electronic structure, scattering rates,
and thicknesses of nearby layers. For Co–Cu, the calculated interface resistance and its spin
asymmetry is comparable to that measured at low temperature in sputtered samples. ©2000
American Institute of Physics.@S0021-8979~00!71908-6#
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I. INTRODUCTION

Although most studies of GMR are for the case of a
plied electric fields and hence net current in the plane of
film ~CIP geometry!, there has been considerable experim
tal and theoretical work on the current perpendicular to
plane~CPP! geometry. Gijs and Bauer have provided a u
ful review1 of recent work on CPP GMR. Camblong, Zhan
and Levy2 presented a simple model for the CPP cond
tance for a single spin channel in the case of identical f
electron band structure in all layers, with the only differen
between layers being possible differences in the scatte
rates. Valet and Fert, in a classic paper,3 generalized this
model to include scattering processes that connect the
spin channels. The Michigan State group and co-worke4,5

measured GMR for numerous systems for the CPP geom
and found that many of their results could be fit with t
Camblong–Levy or Valet–Fert models.

In this paper, we present a solution to the Boltzma
equation for the case in which the electronic structure can
different for different layers and different spin channels. W
compare our results to the ‘‘standard’’ theory.2,3

II. BOLTZMANN EQUATION FOR CPP TRANSPORT

Although it is not necessary in our approach, in order
make contact with the standard approach, we shall ass
that the scattering probability is isotropic. Then, within
single layer in which we can assume thatvz

s(k) is indepen-
dent ofz, the Boltzmann equation can be written3 in terms of
the anisotropic function,gs(z,k),
5170021-8979/2000/87(9)/5173/3/$17.00
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s ]gs~z,k!

]z
1

gs~z,k!

ts
5vz

s ]m̄s~z!

]z
, ~1!

where we have definedm̄s(z)5m(z)2eV(z). The ‘‘stan-
dard’’ treatment of CPP transport2,3 is obtained by using this
equation for all layers, thereby implicitly assuming that the
is no change in electronic structure from layer to layer. T
reason for this assumption, of course, is the difficulty in so
ing the CPP Boltzmann equation for an inhomogeneous
tem. This difficulty arises from the requirement thatgs(z,k)
be anisotropic, i.e., that

(
k

] f 0~Ek
s2m0!

]Ek
s gs~z,k![0. ~2!

This requirement arises from the definition ofgs(z,k),

gs~z,k!5ms~z!2hs~z,k!, ~3!

where the chemical potentialm(z) is defined as the averag
of the distribution function,ms(z)5^hs(z,k)&, and the angu-
lar brackets indicate a Fermi surface average. The requ
ment thatgs(z,k) satisfy Eq.~2! is equivalent to including
the scattering-in term of the usual form of the Boltzma
equation and is necessary for current conservation.

In Eq. ~1!, the scattering rate, 1/ts , can be allowed to
vary with z without significantly complicating the solution
Thus it is easy to show that for homogeneous electro
structure but varying scattering rate, the CPP resistance
pends only on the averaged scattering rate,

RsA5

* dz
1

ts~z!

e2ns^~vz
s!2&

5E dzrs~z!, ~4!
3 © 2000 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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whereA is the area of the film perpendicular to the directi
of the current,ns is the Fermi energy density of electron
states,rs(z) is a local resistivity of free electrons and th
angular brackets denote an average over the Fermi sur
The second expression in Eq.~4! is often assumed to be th
proper generalization of the free electron formulas to gen
electron dispersion. In the following we shall refer to th
result as the ‘‘standard’’ expression for CPP resistance.

In order to treat a system in which the electronic stru
ture is different in successive layers, it is necessary to ma
the solutions to the Boltzmann equation obtained for e
layer across the interfaces between the layers. The proce
for performing this matching is relatively straightforward6

but involves the full distribution function,hs(z,k), not just
the anisotropic part,

hi 11
1, j ~zi

1 ,ki!5 (
j 8,ki8

NR

Ti
12~ j ki , j 8ki8!hi 11

2, j 8~zi
1 ,ki8!

1 (
j 8,ki8

NL

Ti
11~ j ki , j 8ki8!hi

1, j 8~zi
2 ,ki8!

hi
2, j~zi

2 ,ki!5 (
j 8,ki8

NL

Ti
21~ j ki , j 8ki8!hi

1, j 8~zi
2 ,ki8!

1 (
j 8,ki8

NR

Ti
22~ j ki , j 8ki8!hi 11

2, j 8~zi
1 ,ki8!. ~5!

Here NL and NR denote the number of states on the left
right of the interface, respectively, for a given value ofki8 .

In order to properly match the distribution functions
the boundaries of the layers, it is necessary to utilize
general solution to Eq.~1! and to admit exponentially vary
ing solutions that could be omitted for the homogeneo
case. Thus, it can be verified that the anisotropic distribu
function for spins in layer i can be written as

gs~z,k!

5
Js

ssi
evz

si~k!tsi2Fsi~k!e~2z/vz
si

~k!tsi!

1K Fsi~k8!e~2z/vz
si

~k8!tsi!

vz
si~k!2vz

si~k8!

vz
si~k!

K vz
si~k!

vz
si~k!2vz

si~k8!L
k

L
k8

,

~6!

m̄~z!5a isJs2
Js

ssi
ez1K Fsi~k8!e~2z/vz

si
~k8!tsi!

K vz
si~k!

vz
si~k!2vz

si~k8!L
k

L
k8

. ~7!

Here,Js is the current density for spin-channels andssi is
the bulk conductivity for spins of the material in layeri,

ssi52
e2

V (
k

~vz
si~k!!2tsid~Ek2EF!, ~8!
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anda is andFsi(k) are parameters determined by the matc
ing conditions at the boundaries, Eq.~5!.

If the distribution function, Eq.~6!, is used to calculate
the current density, the first term yieldsJs and the contribu-
tions of the other two terms cancel. The second term wo
have been expected from the general solution to the
case. The third term is made necessary by the requirem
that g(z,k) be purely anisotropic.

III. TRANSPORT FOR CURRENT PERPENDICULAR
TO THE PLANES

The layer Korringa–Kohn–Rostoker approach7 was
used to calculate the self-consistent electronic structure
cobalt, copper, and cobalt–copper interfaces. These w
used to evaluate the transmission (T11,T22) and reflection
probabilities~T12 andT21! for Bloch electrons impinging
on the interfaces. The Boltzmann equation, including
boundary matching equations, was then solved using an
erative procedure. In the calculations presented here, it
assumed that the interfaces were epitaxial and that there
no additional disorder in the vicinity of the interface.

Figures 1 and 2 show the calculated electrochemical
tential, m̄, for the majority and minority channels in the v

FIG. 1. Chemical potential divided by current density for copper–cob
majority interface.

FIG. 2. Chemical potential divided by current density for copper–cob
minority interface.
o AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.
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cinity of a copper–cobalt interface. The electrochemical
tential has been divided by the current density so that
plots yield* dzrs(z). For the standard theory this is simp
a straight line for each layer. The actual solution to the Bo
zmann equation differs in two ways:~1! There is a disconti-
nuity in the chemical potential at the interface which
equivalent to an interfacial resistance. This interfacial re
tance is not due to intermixing or additional scattering at
interface~although this effect can be included in the mode
desired! but to the mismatch of the bands across the interf
which causes some of the electrons incident on the inter
to be reflected.~2! There are exponential terms in the ele
trochemical potential in the vicinity of the interface that d
cay at a rate comparable to the component of the mean
path perpendicular to the layers. The effect of these te
can be included as an additional interfacial resistance th
added to the discontinuous contribution just described, a
indicated in the dotted lines of Figs. 1 and 2. If this is don
however, it must be taken into consideration that this ad
tional contribution depends on the environment of the int
face, e.g., the proximity of other interfaces and the bulk sc
tering rates. The calculated interfacial resistances can be
off the figures~0.21 and 1.2f Vm2 for majority and minor-
ity, respectively! and are comparable to those deduced fr
low-temperature measurements5 on cobalt–copper multilay-
ers. This indicates that much of the interfacial resistance
viously attributed to disorder at the interface may equa
well arise from reflection.

Figures 3 and 4 show that both the discontinuous in
facial resistance and the interfacial resistance arising f
the exponential terms can depend on the type and thickne
of neighboring layers. In Fig. 3, for example, it can be se
that the discontinuous interfacial resistance on both side
the Co–Cu–Co~majority! spin valve increase with the thick
ness of the copper spacer layer. The exponential contr
tions also increase with copper layer thickness. For the c

FIG. 3. Chemical potential divided by current density for the majority ch
nel of a cobalt–copper–cobalt spin valve for various thicknesses of
copper layer.
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of antiparallel alignment shown in Fig. 4, however, the d
continuous contribution increases slightly with spacer la
thickness on the minority side butdecreaseswith thickness
on the majority side.

Recently, Chienet al.8 used a tight-binding based quan
tum model to calculate CPP transport through Co–Cu m
tilayers. They pointed out the necessity of including vert
corrections which are equivalent to the scattering-in term
the Boltzmann equation in the semiclassical limit. Very r
cently, Penn and Stiles9 reported calculations of the interfac
resistance for free electrons incident on a model interfac
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FIG. 4. Chemical potential divided by current density for a cobalt–cop
spin valve with cobalt moments aligned antiparallel.
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