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Abstract

The e�ect of substrate modulus di�erence on dislocation formation in an epitaxial ®lm is derived in the present study.

The analysis is based on the energy approach, in which the self-energy of the dislocation and the interaction energy

between the dislocation and the mismatch strain are calculated. The elastic stress ®eld due to the interface dislocation is

derived by superposition of the elastic stress ®elds of the ®lm/substrate system with the following two con®gurations: (i)

a dislocation at the interface assuming the ®lm is also semi-in®nite, and (ii) prescribed traction on the ®lm surface which

are the negative of those calculated from the ®rst con®guration at the location equivalent to the ®lm surface in the

second con®guration. The results show that the critical ®lm thickness for forming interface dislocation increases with

the decrease in the shear modulus ratio of the ®lm to the substrate. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The performance of many electronic devices and high temperature superconducting ®lms depends on the
quality of crystalline ®lms grown epitaxially on substrates of di�erent crystals. Because of the di�erence in
lattice parameter between the ®lm and the substrate, the lattice mismatch exists at the ®lm/substrate in-
terface which, in turn, induces internal stresses in the system. These internal stresses could be relaxed by the
formation of mis®t dislocations at the interface (Frank and van der Merwe, 1949; Freund, 1990, 1993;
Freund and Nix, 1996; Gosling and Willis, 1994; Mattews and Blakeslee, 1974; Willis et al., 1990, 1991;
Zhang, 1996; Zhang et al., 1999). However, the interface dislocations inevitably degrade the device per-
formance. Hence, the study of the condition for the interface dislocation to form in the epitaxial ®lm/
substrate system becomes crucial in the materials design. Due to the complexity of the problem, the early
analyses assumed that the ®lm and the substrate are isotropic elastic materials and have the same elastic
constants. Matthews and Blakeslee (MB) (1974) considered a thin epitaxial ®lm on an semi-in®nitely thick

Mechanics of Materials 33 (2001) 105±120
www.elsevier.com/locate/mechmat

* Corresponding author. Tel.: +886-35-719-677; fax: +886-35-722-366.

E-mail address: sblee@mse.nthu.edu.tw (S. Lee).

0167-6636/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 1 6 7 - 6 6 3 6 ( 0 0 ) 0 0 0 5 8 - 2



substrate, analyzed the force exerted by the mismatch strain and the approximate tension in the dislocation
line, and used the force approach to predict the critical thickness of the ®lm for the interface dislocation to
form. The MB model was subsequently improved by others using the energy approach, in which the work
of forming the dislocation due to the presence of internal stresses and the self-energy of the dislocation were
analyzed. Recently, the MB criterion for a ®lm on an semi-in®nitely thick substrate was generalized by
Freund and Nix (FN) (1996) using the energy approach to the case of a ®lm deposited on a substrate with a
®nite thickness. Because of the complexity of the interaction between the interface dislocation and the two
free surfaces, a ®rst-order approximation was used in analyzing the self-energy of the dislocation and the
free-surface condition was not satis®ed in the FN model. The FN model was further improved by Zhang
et al. (1999) using the superposition principle and Fourier transformation to derive a complete analysis for
the dislocation self-energy and to satisfy the free-surface condition.

The analyses described above assumed the ®lm and the substrate having the same isotropic elastic
constants in order to simplify the analysis. Considering the di�erence in elastic constants between the ®lm
and the substrate or the elastic anisotropy of the constituents, the analyses have also been performed using
Fourier transformation; however, the solutions were approximate. For example, the stress ®eld and energy
arising from an array of dislocations (Willis et al., 1991) and dislocation dipoles (Gosling and Willis, 1994)
distributed uniformly on the perfectly bonded interface between an epitaxial ®lm and a semi-in®nite sub-
strate of di�erent isotropic elastic constants were derived. Gosling and Willis (1994) analyzed the energy of
arrays of dislocations located periodically at the perfectly bonded interface between an epitaxial ®lm and a
semi-in®nite substrate of the same anisotropic elastic constants. It is noted that the core energy was not
included in the above analyses (Willis et al., 1991; Gosling and Willis, 1994). Including the core energy, the
critical thickness of an epitaxial ®lm on a semi-in®nite substrate of di�erent isotropic elastic constants was
analyzed by Zhang (1995). However, it is noted that the displacement and the shear stress used in deriving
the core energy in Zhang's analysis (Zhang, 1995) did not satisfy the continuity condition at the interface.

The purpose of the present study is to re®ne Zhang's analysis (Zhang, 1995) of the epitaxial ®lm de-
posited on a semi-in®nite substrate with di�erent isotropic elastic constants to satisfy the continuity con-
dition at the interface. To achieve this, the stress ®eld due to the interface dislocation was derived by
superposition of (1) the stress due to two semi-in®nite medium and (2) the stress due to the prescribed
traction on the ®lm surface which were the negative of those calculated from the ®rst component at ®lm
surface. This stress ®eld satis®es the free-surface condition and the stress continuity condition at the ®lm/
substrate interface. Then, the predicted stress ®elds due to an edge and a screw dislocations are presented,
respectively. Also, the critical ®lm thickness for the interface dislocation to form is predicted and compared
with existing solutions. Finally, it is noted that depending on the temperature and friction force, the dis-
location will move from the hard medium to soft medium through the interface (Gutkin and Romanov,
1992) after it nucleates in the hard medium or at the interface. However, it is beyond the scope of the
present study.

2. Analysis

The present model considers a ®lm of thickness h deposited epitaxially on a semi-in®nite substrate as
shown in Fig. 1. Both shear modulus and Poisson's ratio of the ®lm and the substrate are lf , mf and ls, ms,
respectively. The Cartesian coordinates, x1, x2, and x3 are used with the x1-axis parallel to the in-plane
interface, the x2-axis perpendicular to the interface and the origin located at the interface. A dislocation
with a Burgers vector b � �b1; b2; b3� is located at the origin. In the following analyses, the energies are
calculated per unit length of the dislocation line or per unit depth of the ®lm/substrate system. The for-
mation energy, Ef , of the dislocation consists of two components: Es, the self-energy of the dislocation and
Eint, the interaction energy between the dislocation and mismatch strain, such that
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Ef � Es � Eint: �1�
The energy components, Es and Eint, can be obtained by converting an area integral (with unit depth) to a
line integral using a divergence theory. Since the elastic stress ®eld induced by a dislocation is not valid in
the core region, the integration path for Es is selected as two contours Cr0

and C1 and an arbitrary cut (see
Fig. 1) where r0 is the core radius of the dislocation. Accordingly, the self-energy of the dislocation, Es, can
be decomposed into two components: Ec, the integration along the core contour Cr0

(i.e., the dislocation
core energy), and E0, the di�erence between the self-energy and the core energy. For convenience, the
arbitrary cut is usually made along the x2-axis. Using the traction-free condition along the surface, x2 � h,
and the vanishing remote stresses of the dislocation stress ®eld, it can be derived that (Zhang et al., 1999)

Es � E0 � Ec; E0 � ÿ 1

2

Z L

r0

ra;ijnjbi ds;

Ec � 1

2

I
cr0

ra;ijnjua;i ds; Eint � ÿ
Z L

0

rm;ijnjbi ds;
�2�

where r is the stress, the subscripts, a and m, denote the dislocation and the mismatch, respectively. i and j
can be either 1, 2, or 3 for the Cartesian coordinates, ni is a unit vector normal to the integral contour, and
L is the length of the cut.

The solution of the self-energy is contingent upon the determination of the elastic stress ®eld, ra;ij, arising
from the dislocation. However, due to the free surface condition at x2 � h and the di�erence in elastic
constants between the ®lm and the substrate, the derivation of the stress ®eld is complex. Both the su-
perposition principle (Suo and Hutchinson, 1990) and Fourier integral (Civelek, 1985) are adopted in the
present study to derive the stress ®eld. The stress ®eld, ra;ij, due to the interface dislocation can be derived
by superposition of the following two stress components: (1) r0

ij, the stress due to the interface dislocation
assuming the ®lm is also semi-in®nite, and (2) r�ij, the stress due to prescribed traction on the ®lm surface
which are the negative of those calculated from the ®rst stress component at x2 � h. That is

ra;ij � r0
ij � r�ij �3�

and the stress-free condition at x2 � h for ra;ij is hence satis®ed. The detailed derivations of r0
ij and r�ij are

given in Appendices A and B for an edge dislocation and a screw dislocation, respectively.

Fig. 1. A dislocation located at the perfectly bonded interface between an epilayer of thickness h and a semi-in®nite substrate.
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The mismatch stress and strain ®elds, r and e, in the ®lm and substrate can be derived from the force
balance condition, and the compatibility condition.

Considering a semi-in®nite substrate and using Eq. (2), the mismatch strain energy can be obtained, such
that

Eint � Me0
mb1h; �4�

where M � 2l�1� m�=�1ÿ m� is the biaxial modulus, e0
m � �as ÿ af�=af is the unrelaxed mismatch strain,

and as and af are the stress-free lattice parameters of the substrate and the ®lm, respectively.
The strain energy, E0, obtained from Eq. (2) and the stress ®elds, r0

ij and r�ij, shown in Appendices A and
B with the assumption of the core radius much smaller than the ®lm thickness is

E0 �
�1� a� b2

1 � b2
2

ÿ �
pcs�1ÿ b2�

"
� leffb

2
3

4p

#
ln

h
r0

� �
� leff b

2
3

4p
ln�2�
"

�
X1
n�1

l1 ÿ l2

l1 � l2

� �n

ln
1� n

n

� �#
� E0;e1

� E0;e2
� E0;e3

; �5�
where

E0;e1
� ÿ 1� a
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X1
n�0
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p�0

d�0
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ÿ B21b2
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2
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d3 � �lf ÿ ls�2 ÿ lfls�lf ÿ ls�cs; �6k�

d4 � ÿ�lf ÿ ls�2 ÿ lfls�lf ÿ ls��cf ÿ cs�; �6l�

f � 2q; �6m�

c1 � 2�n� p � 2�; c2 � 2�n� p ÿ q� 2�; �6n�

cf � �kf � 1�=lf ; cs � �ks � 1�=ls: �6o�

The ®rst term in Eq. (5) arises from the stress ®eld, r0
ij, of the dislocation. The second term in Eq. (5)

corresponds to the stress ®eld, r�ij, of the screw component of dislocation calculated via the Fourier integral
(see Appendix B). The last three terms in Eq. (5) are induced by the stress ®eld, r�ij, of the edge component
of dislocation calculated via the Fourier integral (see Appendix A for details). It can be seen from Eqs. (5),
(6a)±(6o) that only the ®rst term be related to the ®lm thickness.

When the cut is along the x2-axis, strain energy, Ec, due to the core traction derived from Eq. (2) is (see
Appendix C)

Ec � ÿ 1

4pc2
f

2�b2
1

(
� b2

2�
1� K1� �2

lf

"
ÿ �1� K2�2

ls

#
� �b2

1 ÿ b2
2�
�1� K1�

lf

kf�h
�

ÿ 1�K1 � 2K2 ÿ 3ÿ 3kfi

� �1� K2�
ls

2K1h � �ks ÿ 1�K2 � 1� ksi
�)

; �7�

where

K1 � ls ÿ lf

lf � kfls

; K2 � lskf ÿ lfks

ls � lfks

: �8�

Combining Eqs. (4), (5) and (7), the formation energy, Ef , for the isolated interface dislocation can be
obtained. The critical thickness, h0, of the ®lm for the interface dislocation to form can be derived from zero
formation energy, such that

b2
1 � b2
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pcs 1ÿ b2
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� E0;e1
� E0;e2

� E0;e3
� 2lf�1� mf�

1ÿ mf

�0
mb1

�� ��h0: �9�

When the ®lm and the substrate have the same elastic constants, Eq. (9) can be reduced to

lf

4p�1ÿ mf� b2
1

� � b2
2 � �1ÿ mf�b2

3

�
ln

2h0

r0

� �
ÿ lf b

2
2

4p�1ÿ mf� �
2lf�1� mf�

1ÿ mf

�0
mb1

�� ��h0: �10�
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Furthermore, when the core energy, Ec � lf�b2
1 ÿ b2

2�=8p�1ÿ mf�, is ignored, Eq. (10) becomes the same as
that obtained in the literature (Freund, 1993; Zhang, 1996; Zhang et al., 1999).

3. Results

In order to verify the free-surface condition and the continuity condition at the interface, the contours of
predicted stress ®elds near an edge dislocation and a screw dislocation located at the origin on the interface
(see Fig. 1) are shown, respectively. The predicted critical ®lm thickness for the interface dislocation to form
is then presented and compared with that from Zhang's analysis (Zhang, 1995).

3.1. Stress ®elds

To plot the stress ®elds, ls � 2lf , mf � 0:25, and ms � 0:3 are used in the present study to elucidate the
essential trend. The contours of stress ®elds r22 and r12 arising from an edge dislocation with Burgers vector
along the x1 direction are plotted in Figs. 2(a) and (b), respectively. It can be seen from Figs. 2(a) and (b)
that r22 and r12 are traction-free at the free surface x2 � h and continuous at the interface x2 � 0. The stress
®elds, r22 and r12 are symmetric and anti-symmetric with respect to x1, respectively. For the same stress
level, the size of r12 contour is greater in the ®lm than in the substrate because the ®lm is softer than the
substrate.

The contours of stress ®elds r22 and r12 produced by an edge dislocation with a Burgers vector along the
x2 direction are plotted in Figs. 3(a) and (b), respectively. Again, r22 and r12 satisfy the traction-free
condition at the free surface and the continuity condition at the interface. The stress ®elds, r22 and r12, are
anti-symmetric and symmetric with respect to x1, respectively. In addition to contours passing the origin,
two sets of symmetric close contours appear in the upper left and upper right regions for stress ®eld, r12.

The stress ®eld r23 resulting from a screw dislocation with its Burgers vector along the x3 direction is
shown in Fig. 4. It can be seen from Fig. 4 that r23 is zero at x2 � h and is continuous at x2 � 0. The stress
®eld, r23, is anti-symmetric with respect to x1. The contours are more closely spaced in the ®lm than in the
substrate.

Fig. 2. The stress contours of an edge dislocation with a Burgers vector b1 along the x1 direction showing (a) r22 and (b) r12. The unit

of stress is 2�1� a�b1=pcs�1ÿ b2�h.
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3.2. The critical ®lm thickness and comparison

The crystal structure of most semiconductor materials is diamond or zincblende. The principal types of
dislocations in the strong Peierls potential of semiconductor crystals are the 60° dislocation and the screw
dislocation lying in the h110i direction (Alexander, 1986). Because the screw dislocation does not
contribute to the mismatch stress, the pure screw dislocation is not considered in the present study. Instead,
the 60° dislocation lying in the f1 11g plane is analyzed, and a possible Burgers vector is
b � b�0; 1= ���

2
p

; 1=
���
2
p �. Assume that a dislocation of Burgers vector b � b�1=2; 1=

���
2
p

; 1=2� is located at the
origin of interface as shown in Fig. 1, where x1, x2 and x3 are in the �110�, �001� and �110� directions,
respectively. Using Eq. (9), and mf � ms � 0:25 and r0 � 0:25b, the critical thickness of the ®lm, h0, to form a
dislocation as a function of the shear modulus ratio, lf=ls, is plotted as the solid line in Fig. 5 at di�erent
magnitudes of mismatch strain, je0

mj. It is found that the critical thickness decreases monotonically with
increasing shear modulus ratio of the ®lm to the substrate, lf=ls, and mismatch strain. The results from
Zhang's analysis are also shown (see the dashed line in Fig. 5). Comparing to Zhang's results (Zhang, 1995),
the present results predict a smaller critical ®lm thickness; however, the di�erence decreases with increasing
shear modulus ratio, lf=ls.

Fig. 3. The stress contours of an edge dislocation with a Burgers vector b2 along the x2 direction showing (a) r22 and (b) r12. The unit

of stress is 2�1� a�b2=pcs�1ÿ b2�h.

Fig. 4. The stress contours of a screw dislocation with a Burgers vector b3 along the x3 direction showing r23. The unit of stress is

lf b3=2ph.
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4. Conclusions

The e�ect of substrate modulus di�erence on dislocation formation in an epitaxial ®lm is analyzed in the
present study. The energy approach is used to study the critical ®lm thickness for the interface dislocation
to form. The self-energy of the dislocation and the interaction energy between the dislocation and the
mismatch strain are calculated. However, in order to calculate these energies, the elastic stress ®elds re-
sulting from an interface dislocation (i.e., ra;ij) and from the lattice mismatch between the ®lm and the
substrate (i.e., rm;ij) are required. Whereas rm;ij can be readily derived from the force balance condition, the
derivation of ra;ij is complicated by both the free surface condition at the ®lm surface and the di�erence in
elastic constants between the ®lm and the substrate. Both the superposition principle and Fourier integral
are adopted in the present study to derive ra;ij. The elastic stress ®eld, ra;ij, can be obtained by superposition
of the elastic stress ®elds of the ®lm/substrate system with the following two con®gurations: (i) a dislocation
at the interface assuming the ®lm is also semi-in®nite, and (ii) prescribed traction on the ®lm surface which
are the negative of those calculated from the ®rst con®guration at the location equivalent to the ®lm surface
in the second con®guration.

The elastic stress ®elds in the ®lm/substrate system with an edge dislocation (Figs. 2 and 3) and a screw
dislocation (Fig. 4) at the interface are analyzed, respectively. The predicted stress contours satisfy both the
free-surface condition at the ®lm surface and the continuity condition at the interface. The critical thickness
of an epitaxial ®lm to form a dislocation at the interface is calculated (Fig. 5). The results show that for a
given shear modulus ratio of the ®lm to the substrate (i.e., lf=ls), the critical ®lm thickness decreases with
increasing mismatch strain magnitude and core radius. For a given mismatch strain, the critical ®lm
thickness decreases with increasing lf=ls.
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Appendix A. The stress ®eld, ra;ij , due to an edge dislocation at the interface

For an isotropically elastic problem, in-plane and anti-plane elastic deformation can be solved sepa-
rately. An edge dislocation of Burgers vector �b1; b2; 0� is located at the perfectly bonded interface between
an epitaxial ®lm of thickness h and a semi-in®nite substrate as shown in Fig. 1. This problem can be solved
by superposition of (1) a dislocation at the ®lm/substrate interface assuming the ®lm is also semi-in®nite
and (2) the actual ®lm/substrate system without dislocations but with traction prescribed along the ®lm
surface as the negative of those calculated along x2 � h in case (1). Combination of the stress ®elds from the
above two cases results in a traction-free surface at x2 � h.

The case (1) has been solved by Suo and Hutchinson (1989), such that

r0
22 � ir0

12 � B
2x1

q2

�
� i

2b�x2

q2

�
� B�1� b�� 4x1x2

2

q4

�
� i

2x2

q2

�
ÿ 4x3

2

q4

��
for x2 6� 0

� B
2

x1

�
� i2pbd x1� �

�
for x2 � 0; �A:1a�

r0
11 � r0

22 �
2�1� b��

q2
B�x1

� ÿ ix2� � B�x1 � ix2�
�
; �A:1b�

where

q2 � x2
1 � x2

2; �A:2a�

B � �1� a� b1 � ib2� �
ipcs 1ÿ b2

ÿ � ; �A:2b�

b� � b for x2 > 0;

b� � ÿb for x2 < 0;
�A:2c�

where a and cs are de®ned by Eqs. (6e) and (6o), and d is the Dirac delta function.
The solutions for case (2) can be obtained using the Fourier transform method (Civelek, 1985). Two

potentials, U�x1; x2� and v�x1; x2�, are used which satisfy:

D2U � 0; Dv � 0;
o2v

ox1 ox2

� 1

4
DU ; �A:2c�

where D � o2=ox2
1 � o2=ox2

2. The stresses and the displacements can be obtained from U�x1; x2� and v�x1; x2�,
such that

r�11 �
o2U
ox2

2

; r�22 �
o2U
ox2

1

; r�12 �
ÿo2U
ox1ox2

; �A:4a�

2lu�1 � ÿ
oU
ox1

� k� � 1� ov
ox2

; 2lu2 � ÿ oU
ox2

� k� � 1� ov
ox1

; �A:4b�

where k is expressed in Eq. (6d). The solutions of stresses and displacements from Eq. (A.4a) and (A.4b) are
contingent upon the solutions of the two potentials, U�x1; x2� and v�x1; x2�.

It is noted that the solution of U�x1; x2� can be separated into two parts: one is symmetric and the other is
antisymmetric in changing x1 to ÿx1. The stress ®eld due to an edge dislocation with a Burgers vector b1

along the x1 direction is an example resulting from U�x1; x2� of the symmetric part. In this case, the two
potentials can be represented by Fourier integrals, such that
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U1 �
Z 1

0

B1

x2

��
� B2

x
x2

�
eÿxx2 � B3

x2

�
� B4

x
x2

�
exx2

�
cos xx1� � dx; �A:5a�

v1 �
Z 1

0

1

2x2
�B2eÿxx2 � B4exx2� sin�xx1� dx �A:5b�

for h P x2 P 0 and

U2 �
Z 1

0

B5

x2

�
� B6

x
x2

�
exx2 cos xx1� � dx; �A:5c�

v2 �
Z 1

0

B6

2x2
exx2 sin xx1� � dx �A:5d�

for x26 0 where the coe�cients, Bi �i � 1; 2; 3; 4; 5; 6�, are determined by the boundary conditions. Using
the traction-free condition at the free surface and the continuity conditions for the stress, r12 and r22, and
the displacements, u1 and u2, at the interface, solutions of Bi �i � 1; 2; 3; 4; 5; 6� are:

Bi � 2ik1

D
Bi1

� � Bi2

ÿ � hxBi3 � h2x2Bi4

�
e2hx

	
; �A:6a�

D � d1e4hx ÿ �2d2 � 4d3x
2h2�e2hx ÿ d4; �A:6b�

where

ik1 � �1� a�b1

pcs 1ÿ b2
ÿ � ; �A:7�

B11 � ÿb�lf ÿ ls� lf� ÿ ls � �cf ÿ cs�lfls�; �A:8a�

B12 � ÿ�1ÿ b�cflfls lf

�
ÿ ls �

cf ÿ cs� �
2

lfls

�
� b�lf ÿ ls� lf� ÿ ls ÿ cslfls�; �A:8b�

B13 � �1� b�cflfls 2�lf� ÿ ls� � cf� ÿ cs�lfls� � 2b�lf ÿ ls� lf� ÿ ls ÿ cslfls�; �A:8c�

B14 � 2�1� b��lf ÿ ls� lf� ÿ ls ÿ cslfls�; �A:8d�

B21 � ÿ�1� b��lf ÿ ls� lf� ÿ ls � cf� ÿ cs�lfls�; �A:8e�

2B22 � ÿ 1� b
1ÿ b

B23 � B24

2
� 2 1� b� �

1ÿ b
B41 � B14; �A:8f�

B31 � B13=2; �A:8g�

B32 � ÿb�lf ÿ ls � cflfls��lf ÿ ls ÿ cslfls�; �A:8h�

B33 � 2B32 � b
1� b

B34 � 2b
1ÿ b

B42 � ÿb
1� b

B43; �A:8i�
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B44 � B64 � 0; �A:8j�

B51 � cflfls

2
�2�lf ÿ ls� � �1� b��cf ÿ cs�lfls�; �A:8k�

B52 � cflfls

2
� ÿ 2�lf ÿ ls� ÿ �cf ÿ cs�lfls � blfls�cf � cs��; �A:8l�

B53 � cflfls�2�lf ÿ ls� � �1� b�cflfls ÿ �1ÿ b�cslfls�; �A:8m�

B54 � ÿ2�1� b�cflfls�lf ÿ ls ÿ cslfls�; �A:8n�

B61 � ÿ�1ÿ b�cflfls�lf ÿ ls�; �A:8o�

B62 � �1ÿ b�cflfls�lf ÿ ls � cflfls�; �A:8p�

B63 � ÿ 2�1� b�
1ÿ b

B62: �A:8q�

The stress ®eld due to an edge dislocation with a Burgers vector b2 along the x2 direction is an example
resulting from U�x1; x2� of the antisymmetric part. In this case, the two potentials used are:

U3 �
Z 1

0

A1

x2

��
� A2x2

x

�
eÿxx2 � A3

x2

�
� A4x2

x

�
exx2

�
sin�xx1� dx; �A:9a�

v3 �
Z 1

0

ÿ 1

2x2
�A2eÿxx2 � A4exx2� cos�xx1� dx �A:9b�

for h P x2 P 0 and

U4 �
Z 1

0

A5

x2

�
� A6

x
x2

�
exx2 sin�xx1� dx �A:9c�

v4 � ÿ
1

2

Z 1

0

A6

x2
exx2 cos�xx1� dx �A:9d�

for x26 0. Using the traction-free conditions at the free surface and the continuity conditions at the in-
terface, solutions of Ai �i � 1; 2; 3; 4; 5; 6� are

Ai � 2k2

D
Ai1

� � Ai2

ÿ � hxAi3 � h2x2Ai4

�
e2hx

	
; �A:10�

where

k2 � �1� a�b2

pcs�1ÿ b2� ; �A:11�

A11 � A21=�1� b� � ÿB11=b; �A:12a�

116 S.-D. Wang et al. / Mechanics of Materials 33 (2001) 105±120



A12 � ÿ�lf ÿ ls�2 ÿ �cf ÿ cs�lfls�lf ÿ ls� ÿ
�1ÿ b�

2
cf�cf ÿ cs�l2

f l
2
s � bcflfls�lf ÿ ls�; �A:12b�

A13 � ÿ2�lf ÿ ls�2 ÿ 2�cf ÿ cs�lfls�lf ÿ ls� ÿ �1� b�cf�cf ÿ cs�l2
f l

2
s ÿ 2bcflfls�lf ÿ ls�; �A:12c�

A14 � ÿ2�1� b��lf ÿ ls�2 � 2�1� b�cslfls�lf ÿ ls�; �A:12d�

2A22 � 1� b
1ÿ b

A23 � A24

2
� ÿ 2�1� b�

�1ÿ b� A41 � A14; �A:12e�

A31 � A13=2; �A:12f�

A32 � A11 ÿ cfcsl
2
f l

2
s ; �A:12g�

A33

2
� A34

2�1� b� �
A42

bÿ 1
� ÿ A43

2�1� b� � A32; �A:12h�

A44 � A64 � 0; �A:12i�

A51 � ÿbcflfls�lf ÿ ls� ÿ
1� b

2
cf�cf ÿ cs�l2

f l
2
s ; �A:12j�

A52 � bcflfls�lf ÿ ls� �
b
2

cf�cf ÿ cs�l2
f l

2
s ÿ

cf

2
�cf � cs�l2

f l
2
s ; �A:12k�

A53 � ÿ2bcflfls�lf ÿ ls� ÿ cf�cf � cs�l2
f l

2
s ÿ bcf�cf ÿ cs�l2

f l
2
s ; �A:12l�

A54 � 2�1� b� cflfls�lf

� ÿ ls� ÿ cfcsl
2
f l

2
s

�
; �A:12m�

A61 � �bÿ 1�cflfls�lf ÿ ls�; �A:12n�

A62 � �1ÿ b� cflfls�lf

� ÿ ls� � c2
f l

2
f l

2
s

�
; �A:12o�

A63 � 2�1� b�
�1ÿ b� A62: �A:12p�

The stress ®eld, r�ij, can be obtained by combining Eqs. (A.4a),(A.5a)±(A.5d), (A.8a)±(A.8q), (A.9a)±(A.9d),
(A.12a)±(A.12p).

Appendix B. The stress ®eld, ra;ij , due to a screw dislocation at the interface

A screw dislocation of Burgers vector �0 0 b3� located at the perfectly bounded interface of the ®lm/
substrate system is considered. The procedure for analyzing the elastic stress ®eld is similar to that of an
edge dislocation. Alternatively, the solutions can also be obtained by reducing Chou's solutions (Chou,
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1966), in which a screw dislocation in a three-phase medium is considered. Hence, without listing the
derivation procedures, the stress components, r�23 and r�13, are summarized as follows:

r�23 �
leffb3x1

2p

X1
n�1

ln
fs

x2
1 � �x2 � 2nh�2

"
ÿ lnÿ1

fs

x2
1 � �x2 ÿ 2nh�2

#
; �B:1a�

r�13 �
leffb3

2p

X1
n�1

lnÿ1
fs �x2 ÿ 2nh�

x2
1 � �x2 ÿ 2nh�2

"
ÿ ln

fs�x2 � 2nh�
x2

1 � �x2 � 2nh�2
#

�B:1b�

for h P x2 P 0, and

r�23 � ÿ
l2

effb3x1

2plf

X1
n�1

lnÿ1
fs

x2
1 � �x2 ÿ 2nh�2

( )
; �B:1c�

r�13 �
l2

effb3

2plf

X1
n�1

lnÿ1
fs �x2 ÿ 2nh�

x2
1 � �x2 ÿ 2nh�2 �B:1d�

for x26 0, where

lfs �
lf ÿ ls

lf � ls

: �B:1e�

Appendix C. The core energy

The stress and displacement ®elds due to two semi-in®nite medium are used to calculate the core energy,
Ec. The core energy in polar coordinate system is expressed as

Ec � 1

2

I
r0

ijnju0
i ds � ÿ 1

2

Z h0�2p

h0

r0
rru

0
r

ÿ � r0
rhu0

h � r0
rzu

0
z

�
r0 dh; �C:1�

where h0 is the cutting angle. u0
r , u0

h and r0
rr, r0

rh are due to the edge component, and u0
z and r0

rz are due to the
screw component. Since r0

rz arising from the screw component is zero along the circle of dislocation core,
only the edge component contributes to the core energy. Assume that the Burgers vector of edge component
in complex form is

be � b1 � ib2: �C:2�

The stress and displacements arising from the edge component in the polar coordinate system are obtained
from the Cartesian coordinate as

r0
rr ÿ ir0

rh � ÿ
i2�1� K1�bee

ÿih

pcfr0

ÿ i�K2 ÿ K1�bee
ih

pcfr0

; �C:3a�

2p�kf � 1��u1 � iu2� � i ln�r0��1� K2 ÿ kf�1� K1��be � hbe�1� K2 � �1� K1�kf �
� i�1� K1�be�1ÿ ei2h� ÿ 2pbe�kfK1 � K2� � h0be�K2 ÿ 1� kf�K1 ÿ 1�� �C:3b�
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for h06 h < p,

r0
rr ÿ ir0

rh � ÿ
i2�1� K2�bee

ÿih

pcfr0

� i�K2 ÿ K1�bee
ih

pcfr0

; �C:3c�

2p�1� kf��u1 � iu2� � lf

ls

i ln�r0�be 1�� � K1 ÿ ks�1� K2�� � �hÿ h0�be 1� � K2 � �1� K1�kf �

� ibe�1� K2��1ÿ ei2h�	 �C:3d�
for p6 h < 2p, and

2p�kf � 1� u0
1

ÿ � iu0
2

� � i ln�r0�be 1� � K2 ÿ kf�1� K1�� � hbe 1� � K2 � �1� K1�kf �
� i�1� K1�be�1ÿ ei2h� ÿ 4pbe�kfK1 � K2� � h0be K2� ÿ 1� kf�K1 ÿ 1�� �C:3e�

for 2p6 h < 2p� h0. be is the complex conjugate of be. The expression of �r0
rr ÿ ir0

rh� in 2p6 h < 2p� h0 is
the same as that in h06 h < p shown in Eq. (C.3a). The displacement in the polar coordinate system can be
obtained from the Cartesian coordinate as

u0
r � iu0

h � u0
1

ÿ � iu0
2

�
eÿih: �C:4�

Note that the displacement and stress are continuous at the interface and displacement jump is located at
h � h0. These conditions were not satis®ed in Zhang's analysis (Zhang, 1995). After lengthy calculation, the
core energy is

Ec � ÿ 1

4plf c
2
f

4�1
(

� kf��1� K1�b1b2 sin�2h0� � �1� K1� b2
1

ÿ ÿ b2
2

�
2�1� � kf� cos 2h0 � kfK1

� K2 ÿ kf ÿ 1� ÿ 1

4pc2
f

2 b2
1

ÿ � b2
2

� �1� K1�2
lf

"
ÿ �1� K2�2

ls

#

� b2
1

ÿ ÿ b2
2

� �1� K2�
ls

ks�1� � K2� � 1� K1� � b2
1

ÿ ÿ b2
2

�
K2� ÿ K1� 1� K1

lf

�
ÿ 1� K2

ls

�)
: �C:5�

If the cutting path is along h0 � p=2, then Eq. (C.5) is reduced to Eq. (7).

References

Alexander, H., 1986. Dislocations in covalent crystals. In: Nabarro, F.R.N. (Ed.), Dislocations in Solids, vol. 7. Elsevier Science,

Amsterdam, pp. 115±234.

Chou, Y.T., 1966. Screw dislocations in and near lamellar inclusions. Phys. Stat. Sol. 17, 509±516.

Civelek, M.B., 1985. Stress intensity factor for a system crack in an in®nite strip. In: Kanninen M.F., Hopper, A.T. (Eds.), Fracture

Mechanics: Sixteenth Symposium, ASTM STP 868. pp. 1±28.

Frank, F.C., Merwe, J.H., 1949. One dimensional dislocations: I. Static theory. Proc. R. Soc. Lond., A 198, 205±216.

Freund, L.B., 1990. The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. J. Mech. Phys.

Solids 38, 657±679.

Freund, L.B., 1993. The mechanics of dislocations in strained-layer semiconductor materials. Adv. Appl. Mech. 30, 1±66.

Freund, L.B., Nix, W.D., 1996. A critical thickness condition for a strained complaint substrate/epitaxial ®lm system. Appl. Phys. Lett.

69, 173±175.

Gosling, T.J., Willis, J.R., 1994. The energy of an array of dislocations in an anisotropic half-space. Philos. Mag. A 69, 65±90.

Gutkin, M.Yu., Romanov, A.E., 1992. Screw dislocations in a thin-phase heteroepitaxial plate. Phys. Stat. Sol. 129, 117±126.

Mattews, J.W., Blakeslee, J.W., 1974. Defects in epitaxial multilayers. J. Cryst. Growth 27, 118±125.

S.-D. Wang et al. / Mechanics of Materials 33 (2001) 105±120 119



Suo, Z., Hutchinson, J.W., 1989. Steady state cracking in brittle substrates beneath adherent ®lms. Int. J. Solids Struct. 25, 1337±1353.

Suo, Z., Hutchinson, J.W., 1990. Interface crack between two elastic layers. Int. J. Fract. 43, 1±18.

Willis, J.R., Jain, S.C., Bullough, R., 1990. The energy of an array of dislocations: implications for strain relaxation in semiconductor

heterostructures. Philos. Mag. A 62, 115±129.

Willis, J.R., Jain, S.C., Bullough, R., 1991. The energy of an array of dislocations: II. Consideration of a capped epitaxial layer. Philos.

Mag. A 64, 629±640.

Zhang, T.Y., 1995. E�ect of elastic constants on the critical thickness of an epilayer. Phys. Stat. Sol. (a) 152, 415±429.

Zhang, T.Y., 1996. Isotropic and anisotropic elasticity studies of mismatch dislocations, critical thickness and work hardening in

epilayers. Defect and Di�usion Forum 136&137, 61±106.

Zhang, T.Y., Lee, S., Guido, L.J., Hsueh, C.H., 1999. Criteria for formation of interface dislocations in a ®nite thickness epilayer

deposited on a substrate. J. Appl. Phys. 85, 7579±7586.

120 S.-D. Wang et al. / Mechanics of Materials 33 (2001) 105±120


