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A new experimental technique is presented for making measurements of biaxial
residual stress using load and depth sensing indentation (nanoindentation). The
technique is based on spherical indentation, which, in certain deformation regimes,
can be much more sensitive to residual stress than indentation with sharp pyramidal
indenters like the Berkovich. Two different methods of analysis were developed: one
requiring an independent measure of the material’s yield strength and the other a
reference specimen in the unstressed state or other known reference condition.
Experiments conducted on aluminum alloys to which controlled biaxial bending
stresses were applied showed that the methods are capable of measuring the residual
stress to within 10 –20% of the specimen yield stress. Because the methods do not
require imaging of the hardness impressions, they are potentially useful for making
localized measurements of residual stress, as in thin films or small volumes, or for
characterization of point-to-point spatial variations of the surface stress.

I. INTRODUCTION
The effects of residual stress on hardness measurement

were first demonstrated in 1932 independently by
Kokubo1 and Kostron.2,3 Twenty years later, Sines and
Carlson suggested that these effects could be used to
locally measure the residual stresses in the surface of a
metal.4 Numerous studies have since been conducted to
examine the relationship between hardness measurement
and residual stress.5–12 In general, hardness decreases
with tensile stress and increases with compressive stress,
although the effects of compression are often not as large
as tension and sometimes not observed. These phenom-
ena are qualitatively explained by simple principles of
plasticity. Since the principal stress of greatest magni-
tude imposed by indentation is compressive and directed
normal to the surface of the specimen, a residual tensile
stress parallel to the surface increases the magnitude
of the local Mises stress, thereby enhancing plastic de-
formation and reducing the hardness.4,13 Conversely, if
the material is stressed compressively parallel to the sur-
face, the Mises stress is reduced and the hardness is
increased.

To date, the development of hardness testing as a tool
for measuring residual stress has been based largely
on conventional Rockwell testing and Vickers micro-
hardness testing. In these methods, the hardness is
deduced either directly from optical measurement of
the size of hardness impression or indirectly from the
total depth of penetration and the known geometry of
the indenter. In contrast, much attention has recently fo-
cused on load- and depth-sensing indentation, commonly
referred to as nanoindentation, in which properties are
deduced from analyses of indentation load–displacement
data. Nanoindentation has proven particularly useful in
probing the properties of thin films since indentations
as shallow as a few nanometers can be used to make
measurements. Since thin films are often subjected to
large residual stresses, it is natural to ask whether na-
noindentation techniques can be developed to measure
these stresses. Nanoindentation could also be useful in
materials in which point-to-point spatial variations of
the surface stress are of interest, e.g., in small second
phase particles or in the heat-affected zone of a weld
or braze.
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A study of the influences of sample stress on nanoin-
dentation hardness measurement with a sharp Berkovich
triangular pyramidal diamond indenter was recently re-
ported by Tsuiet al.13 The study revealed that the hard-
ness determined by standard nanoindentation techniques
is indeed affected by stress, increasing in compression
and decreasing in tension in a manner much like that
observed in Rockwell and Vickers testing. However,
subsequent finite element simulations revealed that the
changes in hardness are not real, but rather a testing
artifact caused by changes in contact area induced by
variations in the pileup geometry, which are not ac-
counted for in the nanoindentation data analysis proce-
dures.14 Moreover, it was found that the magnitudes
of the apparent hardness changes are too small to be of
practical use in the measurement of residual stress (hard-
ness changes of less than approximately 10%) and are
limited to materials in which pileup is large, i.e., soft
metals that do not appreciably work harden.15

A theoretical foundation for these observations has
recently been proposed by Suresh and Giannakopoulos.16

Based on their theory, the authors outline a simple method
for measuring residual stress with sharp geometrically
similar indenters like the Berkovich. The proposed
method is based on the difference in contact area of
stressed and unstressed materials indented to the same
depth, which in principle can be determined by imaging
the contact impression or through measurement of the
contact stiffness from the indentation load–displacement
data (since the contact area is related to the contact stiff-
ness by a simple expression involving the elastic modu-
lus.) However, because the influence of residual stress on
the contact area is relatively small, it is not clear that the
method can be practically applied except when the re-
sidual stress is near the yield stress. No experimental
verification of the method was provided.

Taljat and Pharr have recently suggested that much
larger effects from residual stress can be measured using
nanoindentation with blunt, spherical indenters.17 Spe-
cifically, they have reported the results of a finite element
study showing that indentation load–displacement be-
havior in the transition regime between elastic contact at
small loads and fully developed plastic contact at large
loads (the so-called elastic–plastic transition) is affected
by residual stress in a potentially measurable way.17 Rel-
evant results of the study are shown in Figs. 1 and 2. In
these plots, the horizontal axis is a measure of the extent
of indenter penetration into the sample as characterized
by the contact radiusa normalized in a nondimensional
form involving the effective elastic modulusEe 4 E/(1 −
n2) (E is Young’s modulus andn is Poisson’s ratio), the
yield stresssy, and the radius of the rigid spherical in-
denter R. The nondimensional parameterEeasyR has
been used for plotting because Johnson proposed that it
would yield an approximately universal curve.18,19 For

large-scale contacts, Taljat and Pharr17 found that the
parameter 2Eehc/sya, wherehc is the contact depth, pro-
duced a more universal curve, but we use Johnson’s
suggestion for simpler comparison to earlier work, since
the difference between the two parameters is small
for the small scale contacts (a < 0.15 R) investigated
herein. The plots in Figs. 1 and 2 include simulation re-
sults for three different levels of applied biaxial stress: a
large tensionsR 4 0.9sy, a large compressionsR 4
−0.9sy, and a stress-free conditionsR 4 0.

Figure 1 shows how the mean contact pressurepm is
influenced by the biaxial residual stress. Note that for
both very small and very large contacts (or loads),pm

is essentially independent of the stress. Small-scale con-
tact is not affected by residual stress because deforma-
tion is in the Hertzian elastic regime, and large scale
contact is unaffected because plasticity is fully developed
and deformation is dominated by the large plastic strains
around the indenter. However, in the intervening elastic–
plastic transition, the indentation behavior depends on
both the magnitude and the sign of the residual stress.

FIG. 1. FEA prediction of the effect of residual stress on mean pres-
sure (from Ref. 17).

FIG. 2. FEA prediction of the effect of residual stress on the elastic
recovery parameterhf /hmax (from Ref. 17).
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Tensile stresses reduce the mean pressure because they
promote yielding and plastic flow by increasing the local
Mises stress, whereas compressive stresses have the op-
posite effect.

Figure 2 demonstrates the effect of biaxial stress on
the indentation load–displacement behavior as charac-
terized by the ratio of the final depth of penetrationhf

to the maximum depth of penetrationhmax. The param-
eterhf /hmax, which varies in the range 0ø hf /hmax ø 1,
is an experimentally accessible measure of the relative
amount of elastic and plastic deformation during con-
tact. Whenhf /hmax 4 0, deformation is fully elas-
tic, whereas when fully plastic contact is achieved,
hf /hmax approaches a value slightly less than 1 (note
that hf /hmax 4 1 only when there is no elastic deforma-
tion in the material, i.e. for a rigid-plastic solid). The
point on the abscissa at whichhf /hmax first increases
above zero represents initial yielding in the specimen.
The plot shows that initial yielding is significantly af-
fected by residual stress, as would be expected based on
the reduction or enhancement of the Mises stress. The
results also show thathf /hmax is affected by residual
stress well into the elastic–plastic transition regime and
may thus serve as a convenient experimental parameter
for measuring the residual stress.

Based on these observations and the principles under-
lying them, techniques for measuring residual stress from
nanoindentation load–displacement data obtained with
spherical indenters are presented in this paper. Two sepa-
rate methods are developed that can be used in different
circumstances depending on what information is inde-
pendently available to the investigator. The first method
requires that the yield strength of the material be known,
while the second method requires the testing of a speci-
men in a known reference state of stress, e.g., stress free.
The measurement capabilities of the methods are as-
sessed by nanoindentation experiments conducted on
aluminum alloys to which controlled biaxial stresses
could be applied by axisymmetric bending of circular
disks. The experiments show that measurements of re-
sidual stress to within ±10–20% of the yield stress are
possible.

II. THEORY

The methods developed in this work rely heavily on
mathematical expressions describing deformation in the
elastic–plastic transition during spherical indentation,
particularly those relating the mean contact pressure to
the size and/or depth of the contact. The most important
of these equations are now briefly reviewed.

Initial contact between a spherical indenter and an iso-
tropic elastic–plastic material occurs at low stress in
the elastic regime. As long as the radius of the contacta
is small compared to the radius of the indenterR the

classical theory developed by Hertz can be used to
describe the deformation behavior up to the load at which
yielding first occurs.20 The equation relating the total
depth of penetrationh to the contact radiusa for Hertzian
contact is

h =
a2

R
, (1)

for which the contact geometry is detailed in Fig. 3. The
total applied loadP is related toh by

P = 4⁄3 EeR
1/2h3/2 , (2)

whereEe is the effective elastic modulus given by

Ee = S1 − ni
2

Ei
+

1 − ns
2

Es
D−1

. (3)

In Eq. (3), Ei and ni are the elastic modulus and Pois-
son’s ratio, respectively, of the indenter, andEs and ns

are the same quantities for the material. From Eqs. (1)
and (2), the mean contact pressure,pm under the indenter
during elastic deformation can be related to the contact
radius by

pm =
P

pa2 =
4Eea

3pR
, (4)

where a positive value ofpm indicates that the pressure is
compressive.

Hertzian contact is an axisymmetric problem for
which the state of stress can be thought of as a combi-
nation of hydrostatic compression and biaxial tension
in the r and u directions. When there is no preexisting
stress in the material, the maximum shear stress occurs

FIG. 3. Spherical indentation geometry.
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beneath the surface along the axis of indentation (thez
axis). As the load is increased, the yield criterion for the
material is reached, and a small plastic zone develops
beneath the surface. With further increases in load, the
plastic zone grows until it reaches the surface and spreads
beyond the area in contact with the indenter. After yield-
ing has initiated, the Tabor relation21 can be used to
relate the mean pressure to the effective flow stresssf

through

pm 4 csf , (5)

wherec is a constraint factor that varies with the relative
depth of penetration (or, alternatively, with the ratioa/R)
and sf is the flow stress at an effective strain defined
by ef 4 0.2a/R.The constraint factor, which depends on
the elastic–plastic behavior of the material, represents the
resistance to further yielding due to the effects of hydro-
static constraint on plasticity. At the onset of yielding,
Johnson18 showed using either the Tresca or the von
Mises yield criterion thatc 4 1.07 (often rounded to
1.1). The value ofc increases as the plastic zone grows,
and Tabor suggested that when the plastic strains in the
vicinity of the contact are large compared to the elastic
strains, the constraint factor reaches a plateau value of
c 4 2.8.21 The spherical cavity model proposed by
Johnson is often used to describe the development of the
constraint factor during the transition from the initia-
tion of yielding to the fully plastic condition.18,19For an
elastic–perfectly–plastic material, Johnson’s model gives

c = C1 + C2 lnH Eea

3syR
+

2~1 − 2n!

3~1 − n! J , (6)

where C2 4 0.67 andC1 4 0.86 for ns 4 0.25 and
C1 4 0.67 forns 4 0.5. Experimental results have con-
firmed the general form of Eq. (6),22,23but the constants
C1 and C2 vary from the predictions of the model in a
manner that is material dependent.

When a biaxial residual stresssR is present in the
material, Taljat and Pharr have shown by finite ele-
ment analysis (FEA) that the onset of yielding is de-
termined by the superposition of the biaxial and Hertzian
stresses.17 As long as yielding initiates below the sur-
face along the axis of symmetry, the yield condition is
given by

pm 4 1.07 (sy − sR) , (7)

where the contact pressurepm is positive and the residual
stresssR is positive for tension and negative for com-
pression. Equation 7 follows directly from Eq. (5) by
noting that a tensile residual stress will reduce the flow
stress at yielding by an amount exactly equal tosR,
that is,sf 4 sy − sR, and that the constraint factor at
yielding is c 4 1.07.

Eq. (7) forms the basis of one of the methods devel-
oped here for measuring the residual stress. The method
requires that the yield stress be known and that the con-
tact pressure at the onset of yielding be determined ex-
perimentally. The method we propose for measuring the
contact pressure at yield is to extrapolate experimental
data of the form of that in Fig. 2 tohf /hmax 4 0. The
contact radius determined from the extrapolation can
then be used in Eq. (4) to determine the contact pressure
at yielding, which can then be used in Eq. (7) to deter-
mine sR. A complication arises when the residual
stresses are large and compressive, since the physical
location in the specimen at which yielding begins can
switch from beneath the surface, as described by the
classical Hertzian theory, to the contact periphery at
the surface.17 Using finite element analysis for a material
with ns 4 0.3, Taljat and Pharr found that the switch
occurs whensR < −0.75sy and that the associated yield-
ing takes place at slightly lower indentation pressures
than those calculated by Eq. (7).17 However, they also
found that the yield pressure is still adequately estimated
by the extrapolation procedure suggested above. An ana-
lytical justification for the change in the yielding location
is given in Appendix A.

The second method for determining the residual stress
relies on an experimental observation made during the
course of this work concerning the influence of residual
stress on the mean contact pressure in the elastic–plastic
transition regime. This method will be developed and
discussed after the necessary experimental results have
been presented.

III. PROCEDURES

A. Experimental

Indentation with continuous load and depth measure-
ment (nanoindentation) was conducted on polished disks
of commercial aluminum alloys. The specimens were
mounted in bending fixtures, which applied either com-
pressive or tensile biaxial stress to the specimen surface.
Nanoindentation was conducted using a synthetic sap-
phire spherical indenter.

To evaluate a large range of yield strength and ultimate
strength in similar materials, three common precipitation
hardened commercial aluminum alloys were chosen for
study: 2024-T3, 6061-T6, and 7075-T6. The mechanical
properties of these materials as measured in uniaxial ten-
sion are listed in Table I.24 The 6061-T6 and 7075-T6
alloys both show little work hardening, but their yield
strengths differ by a factor of 1.8. The 2024-T3 alloy
exhibits a greater work hardening and has an intermedi-
ate yield strength.

Circular disks 50 mm in diameter and 3.2 mm thick
were fabricated from sheets of the three alloys. The
specimen surfaces to be indented were mechanically
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polished with successively finer grit materials, and fin-
ished with 0.1-mm diamond paste. The specimens were
then loaded in axisymmetric bending by the apparatus
shown schematically in Fig. 4. Indentation experiments
were conducted on the upper biaxially stressed sur-
face within a radius 3 mm from the center. Since the
indented region was two to three specimen thicknesses
away from the loading points, St. Venant’s principle in-
dicates that the tested region was in a state of approxi-
mately pure biaxial bending. The indenter penetrated
only to a maximum of 1.5mm into the surface, so the
state of stress was effectively constant with depth. A
strain gauge rosette attached to the center of the lower
specimen surface was used to measure the strains ap-
plied by the bending fixture. At higher levels of applied
bending load, some plastic yielding was noted by com-
paring the strains measured during loading in the fixture
with the strains after unloading. The in-plane stresses

were calculated from the total accumulated strains. Un-
loading was assumed to be elastic, since the maximum
accumulated plastic strain was always less than the elas-
tic strain. To avoid residual stress in the indented surface,
bending loads were applied at progressively larger mag-
nitudes, and separate specimens were used for tensile and
compressive loading.

Indentation experiments were conducted using a na-
noindentation system with displacement and load reso-
lutions of 0.16 nm and 0.3mN, respectively. The
indenter tip was fabricated from a polished synthetic sap-
phire sphere pressed into a stainless steel mount and
brazed in place. The spherical tip was calibrated over
depths from 50 to 500 nm by nanoindentation of single
crystal sapphire and fused quartz specimens in the elastic
regime.25 The calibrations yielded a tip radius of 69mm
and a machine stiffness of 9.0 × 109 N/m. These values
were found to work well for depths up to 1500 nm
(1.5 mm) based on nanoindentation measurement of
the elastic moduli of the aluminum alloys. Although the
spherical sapphire indenter is elastically anisotropic, its
effective indentation modulus,Ei/(1 − ni

2) in Eq. (3), as
determined by Swadener and Pharr,26 falls over a fairly
narrow range: 412 to 438 GPa. The mean value of
425 MPa was used to analyze the Experimental results.

Nanoindentation was conducted in load control using
a five-step procedure: loading at a constant rate to a
prescribed maximum load, a 30-s hold at constant
load, unloading at the same rate as loading to 10% of
the maximum load, a 100-s hold, and complete un-
loading. During the 100-s hold period, displacements
were measured to determine the thermal drift of the ap-
paratus. Displacement measurements were corrected for
thermal drift, which was generally found to be less than
0.03 nm/s. Four maximum load values (20, 60, 200, and
600 mN) were used for each applied biaxial stress. Ten
experiments were performed at each load, although
some were not successful due to improper detection of
the surface.

B. Finite element simulations

A limited number of finite element analyses were con-
ducted using procedures identical to those employed by
Taljat and Pharr17 to augment earlier results. Simulations
were conducted using the commercial finite element
code ABAQUS (Hibbitt, Karlsson, and Sorensen, Inc.,
1996) employing axisymmetric analysis for a rigid

TABLE I. Specimen mechanical properties (from Ref. 24).

Alloy
0.2% offset yield
strength (MPa)

Ultimate tensile
strength (MPa)

Ultimate elongation
in tension (%)

Elastic modulus
(GPa)

Poisson’s
ratio, n

Work hardening
coefficient,k (MPa)

Work hardening
exponent,n

2024-T3 345 483 18 73.1 0.33 777 0.10
6061-T6 276 310 12 69.0 0.33 377 0.039
7075-T6 503 572 11 71.7 0.33 724 0.051

FIG. 4. Schematic of axisymmetric bending apparatus.
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spherical indenter. The diameter of the indenter was var-
ied over the range of 2 to 25 mm depending on the de-
sired range of the analysis. The specimen measured
40 mm in diameter and 20 mm high and was composed
of 1746 linear four-node elements. Displacements on the
lower specimen boundary were fixed in thez-direction
and unconstrained in ther-direction, while the upper and
outer boundaries were unconstrained in all directions. A
friction coefficient of 0.2 was used for contact between
the indenter and the specimen.

The analysis used an isotropic elastic–plastic constitu-
tive model for the specimen. The von Mises yield crite-
rion and a stationary yield surface were employed. The
specimen yield strength and elastic modulus were varied,
but a Poisson’s ratio of 0.3 was used throughout. Prior to
simulation, uniform tractions were applied, which re-
sulted in equal biaxial stress throughout the specimen.
Simulations were run over a wide range of loads for
various material property combinations so that the analy-
sis spanned elastic to fully plastic contact.

C. Measurement of indentation parameters

The methods developed in this work are premised on
accurate measurement of four indentation parameters: (i)
the peak indentation loadPmax, (ii) the total depth of
penetrationhmax, (iii) the residual (or final) depth of the
contacthf, and (iv) the contact radiusa. Both Pmax and
hmax were obtained directly from the indentation load–
displacement data. In principlehf could also have been
determined from the load–displacement curves, but since
data during the final stages of unloading were sometimes
of questionable accuracy and/or obscured by the constant
load hold period near the end of the test (during which
the thermal drift rate is measured), an alternative proce-
dure was adopted. The procedure is based on the assump-
tion that the unloading process can be modeled as the
elastic unloading of a sphere of one radiusR1 from a
spherical contact impression of another radiusR2. Under
these circumstances, Hertzian contact theory applies, and
the unloading data may be described by the modified
form of Eq. (2):

P = 4⁄3Re
1/2Ee~h − hf!

3/2 , (8)

where Re is an effective radius related toR1 and R2

throughRe 4 (1/R1 − 1/R2)
−1.20 Values ofhf were de-

termined by curve fitting the upper 90% of the unloading
data to this equation, i.e., from peak load down to the
drift hold segment. Since the value ofR2 was unknown,
it, too, was treated as an unknown in the regression
analysis. The quality of the curve fits was good (corre-
lation coefficient,r > 0.999), suggesting that the unload-
ing behavior is indeed accurately modeled by the
Hertzian theory.

The indentation contact radiusa could not be meas-
ured directly from theP-h data but was deduced from it
by well-established methods. The method used in this
study is that developed by Francis22 and Field and
Swain,27 in which the depth of penetration over which
contact occurs (hc in Fig. 3) is modeled to consist of
elastic and plastic components. The plastic component
is the residual depth of the impressionhf. Using Hertzian
contact theory, the elastic component is just half the
difference between the total depth (hmax) and the resi-
dual depth (hf), as noted by Francis.22 Therefore, the
contact depth can be written in the form:27

hc = 1⁄2~hmax + hf! . (9)

Oncehc is determined, the contact radius follows from
the spherical indenter geometry through

a = ~2Rhc − hc
2!1/2 . (10)

Alternatively, the contact depth could have been deter-
mined from the contact stiffness at the beginning of the
unloading segment using the Oliver–Pharr method of
load–displacement data analysis.28

In addition to the four measured parameters listed
above, one of the methods requires an estimation of the
depth dependence of the mean contact pressurepm. This
follows quite simply from the other measured parameters
since

pm =
Pmax

pa2 . (11)

Much of the data obtained in this study was analyzed
and plotted as a function of the nondimensional con-
tact radiusEea/syR. To determine this parameter, the
effective modulusEe was computed from Eq. (3)
using the relevant material data in Table I and assuming
that the effective indentation modulus for the sapphire
indenter isEi/(1 − ni

2) 4 425 MPa.24 Values ofn and
sy were taken from Table I, and the indenter radius
R 4 69 mm determined from calibration procedures
was employed.

IV. RESULTS AND DISCUSSION

A. Influence of stress on indentation
load–displacement data

The experiments conducted in this study showed that
there is indeed a significant effect of biaxial stress on
nanoindentation load–displacement data obtain with
spherical indenters in the elastic–plastic transition re-
gime. Figure 5 shows several load–displacement curves
for 6061-T6 aluminum, which is typical of the materials
examined in this study. Noting that the solid curve rep-
resents the behavior of an essentially unstressed material,
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it is apparent that biaxial tension tends to stretch out the
curves to larger depths, while compressive stresses com-
press the curves to smaller depths. Thus, at a given in-
dentation load, the total depth of penetrationhmax is
much greater for a material stressed in tension than an
unstressed specimen or one stressed in compression. The
final depth hf exhibits similar behavior, implying that
plastic deformation is enhanced by tension and dimin-
ished by compression. These observations are qualita-
tively in agreement with previous results obtained using
Brinell hardness testing.9

Two methods were developed for measuring the bi-
axial stress, which utilize data from load–displacement
curves such as those in Fig. 5. One relies on the influ-
ences of residual stress on the onset of yielding, and
the other on the variation of the contact pressure with
residual stress for data obtained in the elastic–plastic
transition.

B. Method I: Onset of yielding

The first method for measuring the residual stress is
based on the principles outlined at the end of Sect. II. The
basic idea is to obtain indentation data at a variety of
indentation depths and loads in the elastic–plastic tran-
sition and to extrapolate from a plot ofhf /hmax versus
Eea/syR like that in Fig. 2 to determine (Eea/syR)0, the
value of the nondimensional contact radius at the onset of
yielding. The importance of this measured parameter is
seen by combining Eqs. (4) and (7) to obtain:

sR

sy
= 1 −

3.72

3p SEea

Rsy
D

0
. (12)

Equation 12 shows that if an independent estimate ofsy

is available, the residual stress can be determined by
simple experimental measurement of (Eea/syR)0.

The procedure we propose for measuring (Eea/syR)0
is based on the form of the finite element results in
Fig. 2. Since the abscissa of this plot isEea/syR, the
value at which plasticity commences as indicated by
hf /hmax first increasing above zero is the desired param-
eter. However, direct determination of this point is dif-
ficult because yielding generally commences beneath
the surface, and its effect on the indentation displace-
ments is difficult to detect in the early stages of plas-
ticity. Moreover, in the experiments conducted in
this study, yielding initiated at very small depths where
the depth measurement was imprecise. Thus, instead
of attempting to determine the onset of yielding di-
rectly, we note thathf /hmax as shown in Fig. 2 initially
increases in an approximately logarithmic manner with
Eea/syR. Therefore, the onset of plasticity can be esti-
mated by extrapolating experimental results obtained at
various indentation depths tohf /hmax 4 0 using least
squares regression curve fits of the formhf /hmax 4 A1 +
A2log{Eea/syR}. When applied to the finite element re-
sults, this procedure gave values of (Eea/syR)0 accurate
to within 2%, even when the onset of yielding shifted to
the edge of the contact at large compressive biaxial
stresses (sR 4 −0.9sy).

Figures 6 and 7 present nanoindentation data ob-
tained to implement and examine the proposed
method for two of the aluminum alloys: 2024-T3
(Fig. 6) and 6061-T6 (Fig. 7). Data for the 7075-T6
alloy are not included because hard particulates in
the material made it difficult to obtain smooth surfaces
at the micron scale. The resulting surface roughness
led to difficulties in determining the true location of
the surface and produced a large degree of scatter in the
results at the small to moderate depths, which are
most important in the extrapolation. In the experi-
ments, values ofhf /hmax were kept to less than 0.7 by

FIG. 5. Typical load–displacement results for spherical indentation of
6061-T6 Al for various biaxial stress cases.

FIG. 6. Effect of biaxial stress on residual depth as a function of
contact radius for spherical indentation in 2024-T3 Al. Mean values
are shown. The standard deviation inhf /hmax 4 0.02.
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careful choice of experimental conditions to ensure
that the data reside in the elastic–plastic transition re-
gime where the effects of residual stress are most
pronounced.

Included with the data in Figs. 6 and 7 are predictions
of several finite element simulations for elastic–
perfectly-plastic materials having the same yield stresses
as the experimental materials. While the general trends in
the finite element results are observed in the experimen-
tal data, there are notable differences in the numerical
predictions. For example, for the 2024-T3 data in Fig. 6,
the simulations and experiments differ by a factor of
about 1.3 in theEea/syRvalues for small contacts and by
a factor of approximately 1.6 for larger contacts. Similar
differences are observed in Fig. 7 for the 6061-T6. These
discrepancies are probably due to differences between
the idealized plastic behavior assumed in the finite ele-
ment simulations and the behaviors of the real materials,
which exhibit some work hardening. A preliminary finite
element analysis for 2024-T3, which includes linear
work hardening, is in closer agreement with the experi-
mental results. However, further studies are needed to
quantify the effects of work hardening.

With the values of yield stress given in Table I and
the values of (Eea/syR)0 obtained from the experi-
mental data in Figs. 6 and 7 by the logarithmic extrapo-
lation procedure, biaxial residual stresses were predicted
by Eq. (12). Results are summarized in Fig. 8, where
the experimentally determined values ofsR are plotted
as a function of the known biaxial stress obtained
from the strain gage measurements. The agreement is
generally good. The standard error for thesR values
is 37 MPa for the 2024-T3 (11% of the yield strength),
and 67 MPa for the 6061-T6 (24% of the yield
strength). The larger error for the 6061-T6 is caused
mainly by one outlying data point, that at an applied
stress value of 94 MPa.

Comparison of the data points in Fig. 8 to the solid line
representing a perfect prediction shows that the measured
biaxial stresses are systematically lower than expected.
The slight bias toward the compression side by an aver-
age of 40 MPa may be due to compressive residual stress
near the surface caused by mechanical polishing. If cor-
rections are made for this bias, the results are generally
within 10% of the yield strength for each material.

One limitation of this method is that for tensile biaxial
stresses, the extrapolation cannot predict a value ofsR

greater thansy because the logarithmic extrapolation
cannot extend below zero. This is not a concern for the
range of biaxial stress examined in this study but may be
important for materials with a large capacity for work
hardening. Another limitation is that the yield stress
must be known independently. In practice, this limitation
can be overcome if a specimen of the material in a known
state of stress is available, e.g., stress free, since inden-
tation experiments like those in Figs. 6 and 7 conducted
in the reference material could be used in conjunction
with Eq. (12) to estimatesy. An overestimation ofsy by
10% would lead to predictions of biaxial tensile stress
that are 10–15% higher and predictions for compressive
stress that are 5–10% lower. An underestimation ofsy

would have the opposite effect.
Conceivably, this method could be extended to cases

of uniaxial stress by calculating the criteria for the
onset of yielding in uniaxially stressed materials. Mroz29

recently proposed using oblique indentation in various
directions to distinguish between uniaxial and biaxial re-
sidual stresses.

C. Method II: Influence of residual stress on
contact pressure

A second method for measuring the biaxial stress is
based on an important experimental observation made
during the course of this investigation. In Fig. 9, Eq. (11)

FIG. 7. Effect of biaxial stress on residual depth as a function of
contact radius for spherical indentation in 6061-T6 Al. Mean values
are shown. The standard deviation inhf /hmax 4 0.02.

FIG. 8. Values of biaxial stress determined by extrapolation to the
onset of yielding in spherical indentation experiments in 2024-T3 Al
and 6061-T6 Al.
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was used to plot the 2024-T3 data in Fig. 6 as the mean
contact pressurepm versus the nondimensional contact
radiusEea/syR. Inspection of this plot reveals that data
obtained at different applied biaxial stresses are offset
vertically by an amount very close to the magnitude of
the applied stress. To further examine this point, the
data in Fig. 9 have been replotted aspm + sR versus
Eea/syR in Fig. 10. The convergence of the data to a
single master curve suggests thatpm + sR is a unique
function ofEea/syR, that is,pm + sR 4 f(Eea/syR). Note
that whensR 4 0, the function is given by Eq. 5 or
f(Eea/syR) 4 csf; thus,f(Eea/syR) describes the devel-
opment of constraint during indentation. These observa-
tions suggest that for stressed specimens, Eq. 5 should be
rewritten as:

pm + sR 4 csf . (13)

Eq. (13) forms the basis of another method for stress
measurement. If the variation ofcsf with Eea/syRcan be
established by experiments in a reference material in a
known state of stress, thensR can be determined from
measurements of the indentation contact pressurepm.
From a theoretical perspective, Eq. (13) would be ex-
pected to hold as long as the elastic strains are large
compared to the plastic strains. Under these conditions,
the stresses are largely determined by elastic deforma-
tion, and the early-stage growth of the plastic zone and its
influences on the indentation behavior may be modeled
as if the governing stresses were determined by the su-
perposition of the Hertzian contact stresses and the ap-
plied biaxial stress. Strictly speaking, Eq. (13) would be
expected to apply only when the form and shape of the
plastic zone for the stressed specimen is the same as that
for the reference state. However, based on the experi-
mental observations, this does not appear to be a severe
limitation.

To further explore these ideas, the variation of the
constraint factorc 4 pm/sf with Eea/syR was deter-
mined for each of the aluminum alloys by experimental
measurement at small applied biaxial stresses (sR 4
10 MPa for 2024-T3;sR 4 −11 MPa for 6061-T6;sR 4
−4 MPa for 7075-T6). Following Tirupataiah and
Sundararajan,23 the flow stress was calculated assf 4
k(0.2a/r)n, wherek is the work hardening coefficient and
n is the work hardening exponent, using the material
properties in Table I. Results are plotted in Fig. 11. In-
terestingly, the variation ofc for the three alloys is es-
sentially indistinguishable within the experimental
uncertainty. While the coalescence of the data to a single
curve is not necessary for the proposed method of re-
sidual stress analysis, the behavior shown in Fig. 11
could be used as an estimate of the variation of the
constraint factor in circumstances where a reference
specimen is not available for testing. Values forc for

FIG. 9. Effect of biaxial stress on the mean pressure under the in-
denter as a function of contact radius for spherical indentation in
2024-T3 Al. Mean values are shown. The standard deviation ispm 4
30 MPa.

FIG. 10. Data from Fig. 9 replotted as (pm + sR) versusEea/syR
illustrating convergence of the data to a single curve.

FIG. 11. Variation of the constraint factor with contact radius for
spherical indentation of the aluminum alloys in the unstressed
condition.
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elastic–perfectly-plastic materials determined by finite
element analysis also shown in the figure are ap-
proximately 0.2 lower than the experimental values.
Approximately half of this difference can be attributed to
the suspected 40-MPa compressive residual stress in the
specimens. There may also be some discrepancy due to
differences between the work hardening of the elastic–
perfectly-plastic model and the actual work hardening of
the specimens. For comparison, the value ofc predicted
by Johnson’s expanding cavity model18,19is also plotted
in the figure, but it is not in good agreement with any of
the experimental data. The behaviors of the three Al al-
loys in the unstressed state are similar to experimental
results by Tirupataiah and Sundararajan for peak-aged
7039 Al.23

Least squares logarithmic curve fits of the data for
each alloy in Fig. 11 were used to describe the de-
pendence ofc on Eea/syR in the low stress reference
condition, and values ofsR were computed from meas-
urements of the mean contact pressure by means of
Eq. (13). The results are shown in Fig. 12. Measurements
for the 7075-T6 alloy were limited only to the largest
loads and depths (Pmax 4 600 mN; hmax 4 1500 nm)
due to the aforementioned scatter in results at small to
moderate depths caused by surface roughness. For the
other two materials, thesR values were experimentally
determined at all depths for which data were available.
The standard errors for the experimental measurement of
sR were 48, 46, and 75 MPa for the 2024-T3, 6061-T6,
and 7075-T6 alloys, respectively, which are 14–17% of
the yield strengths. In contrast to the results obtained by
method I (extrapolation to the onset of yielding), no bias
toward compression was observed, because the measure-
ments were made relative to a reference state which was
assumed to be unstressed, i.e., any preexisting stress in
the reference specimen due to polishing and surface
preparation was not taken into account.

D. Complications due to pileup

One potential difficulty in the general application of
these methods is the effect of pileup on the calcu-
lated contact radius. Materials that exhibit little work
hardening like the aluminum alloys examined here
might be expected to exhibit pileup around the indenter,
leading to an actual contact area that is larger than that
calculated from Eqs. (9) and (10).15,30,31Pileup would be
greatest for large contacts in materials with little work
hardening.

To evaluate the extent of pileup, indented surfaces
were examined with atomic force microscopy (AFM). A
surface scan in the region near a large, 600-mN inden-
tation in Al 2024-T3 is shown in Fig. 13. While this
indentation has a contact depth of 1100 nm, the height of
the residual pileup is less than 20 nm, implying that the
change in contact area due to pileup is less than 5%. A
recent finite element analysis of spherical indentation
showed that pileup is minimal in virtually all materials,
irrespective of their work hardening behavior, when the
contact radius less than 0.1R.31 Therefore, the influences
of pileup can be avoided by conducting experiments at
a/R ratios of less than 0.1.

V. CONCLUSIONS

Biaxial stress has a large effect on spherical inden-
tation experiments conducted in the elastic–plastic tran-
sition regime, in agreement with previous observations9

and predictions.17 Two methods have been developed to
determine the biaxial stress from load- and depth-sensing

FIG. 12. Values of biaxial stress determined by comparison to a ma-
terial in the unstressed state in spherical indentation experiments in the
aluminum alloys.

FIG. 13. Contact atomic force microscopy image of a 50-mm-square
region in the neighborhood of a 600 mN indentation in 2024-
T3 aluminum.
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indentation experimental results. The methods are accu-
rate to within 10–20% of the specimen yield strength and
can be applied to cases of tensile or compressive biaxial
stress.

The first method extrapolates spherical indentation
data from the post-yield regime to determine the contact
radius at the onset of yielding. If the specimen yield
strength is known, the biaxial stress can then be deter-
mined based on a closed form analytical solution. This
method could potentially be extended to cases of uniaxial
residual stress, but further study is needed to establish the
differences in behavior of uniaxially and biaxially
stressed specimens.

The second method requires a specimen in a known
stress state (such as stress free), which can be tested
as a reference to determine how the indentation con-
straint factor increases with contact depth (or radius).
Using an empirically derived expression relating the bi-
axial stress to the mean contact pressure and the con-
straint factor, the residual stress can then be estimated.
The second method has the advantage of not re-
quiring the yield strength of the specimen to be known in
advance.

The methods can be used to determine residual stress
for a wide range of materials which can withstand
a moderate degree of indentation without fracture. In
this study, effective strains (0.2a/R) of 1–2% were
sufficient to apply the methods and estimate the bi-
axial stress.
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APPENDIX

Shift in location of initial yielding caused by large
compressive biaxial stresses

Insight into the circumstances that cause the location
of first yielding to switch from beneath the surface on the
axis of symmetry to the contact periphery at the surface
when large compressive biaxial stresses are applied can
be obtained by examining the stress distribution for
Hertzian contact. Using the Tresca yield criterion,
Johnson showed that forns 4 0.3, the maximum shear
stress in the Hertzian contact problem is |sr − sz|/2 4
0.465pm at z 4 0.48a.18 The Hertzian solution for the
stresses at the edge of contact givessu 4 −pm(1 − 2ns)/2
andsz 4 0 at r 4 a, z4 0 (see Ref. 19). Thus, when a
compressive biaxial stress is superposed for the case of
ns 4 0.3, the condition for yielding becomes 0.93pm + sR

ù sy at r 4 0, z 4 0.48a, or 0.2pm − sR ù sy at r 4
a, z4 0. Initial yielding will then occur preferentially at
the contact periphery rather than beneath the surface
whensR < −0.65sy. The stress at the transitionsR 4
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−0.65sy is within the range where the transition was
observed in the finite element analysis, −0.50sy > sR >
−0.75sy.

17

For other values ofns, some differences can be ex-
pected. For a range of Poisson’s ratio, the compres-
sive biaxial stress for which the onset of yielding occurs
at the edge of contact can be calculated by the same
method. Results are listed in Table AI. Frictional
effects would be expected to increase the magnitudes of
these values. Therefore, the values in Table AI are prob-
ably conservative estimates of the range in which Eq. (7)
is valid.

TABLE AI. Maximum biaxial stress (sR) for which yielding initiates
at the edge of contact.

ns 0 0.1 0.2 0.3 0.4 0.5
sR/sy −0.40 −0.46 −0.54 −0.65 −0.84 −1.0
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