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Abstract: Many biological materials are known to be an-
isotropic. In particular, microstructural components of bio-
logical materials may grow in a preferred direction, giving
rise to anisotropy in the microstructure. Nanoindentation
has been shown to be an effective technique for determining
the mechanical properties of microstructures as small as a
few microns. However, the effects of anisotropy on the prop-
erties measured by nanoindentation have not been fully ad-
dressed. This study presents a method to account for the
effects of anisotropy on elastic properties measured by na-

noindentation. This method is used to correlate elastic prop-
erties determined from earlier nanoindentation experiments
and from earlier ultrasonic velocity measurements in human
tibial cortical bone. Also presented is a procedure to deter-
mine anisotropic elastic moduli from indentation measure-
ments in multiple directions. © 2001 John Wiley & Sons, Inc.
J Biomed Mater Res 57: 108–112, 2001
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INTRODUCTION

The elastic properties of bone microstructural com-
ponents (e.g., osteons, interstitial lamellae, and indi-
vidual trabeculae) have been determined by various
microtesting methods.1–10 However, these different
experimental techniques have yielded results that
vary by a factor of 3 or more both for cortical bone11,12

and for single osteons.1–4 These results demonstrate
the difficulty of fabricating representative small speci-
mens by removal of the surrounding material. Re-
cently, nanoindentation techniques have been found
to be effective in determining the moduli of bone con-
stituents without having to remove the surrounding
material.13–15 These techniques simplify specimen fab-
rication, greatly reducing the likelihood of damage to
the specimen. Nanoindentation is even more advan-

tageous when the structural components are a few
microns or less in size, which occurs with some bone
microstructures such as individual lamellae in os-
teons. In addition, nanoindentation can be conducted
in different directions to investigate the anisotropy of
the individual microstructural components. However,
during indentation stresses develop in all directions,
which suggests that the modulus measured by inden-
tation will be a combination of the moduli in all di-
rections, albeit weighted in the direction of indenta-
tion.16–19

The present study was able to demonstrate how
elastic moduli should be combined. It correlated na-
noindentation results13 with anisotropic elastic moduli
determined from ultrasonic velocity measurements20

for human tibial cortical bone.

MATERIALS AND METHODS

Methods

Nanoindentation was conducted on dehydrated
bone, whose results13 were analyzed and compared
with ultrasonic velocity measurements20 obtained
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from bone specimens kept moist in a saline solution.
Dehydration has been shown to increase the elastic
moduli of bone by 15–24%.10,21,22 In addition, nanoin-
dentation was conducted on specific microstructures
(osteons and interstitial lamellae), while the ultrasonic
results applied to macroscopic bone specimens. To
compare the nanoindentation results to the ultrasonic
results, we adopted a rule of mixtures approach,
which included a small void fraction, to estimate the
anisotropic elastic moduli of the composite bone from
the microstructural nanoindentation results. Finally,
the effect of dehydration was adjusted so there would
be an appropriate basis for comparing the two experi-
mental results.

The general anisotropic small strain formulation of
Hooke’s law can be conveniently defined using vector
representations for stress (s) and strain («) and a ma-
trix representation for the elastic stiffness matrix
(C) as:

s = C« , (1)

where {si} = [s11, s22, s33, s23, s31, s12]T, {«i} = [«11, «22,
«33, 2«23, 2«31, 2«12 and T is the matrix transpose op-
eration. For general anisotropy in this representation
C is a symmetric matrix containing 21 independent
elastic constants. For orthotropic materials (such as
materials with orthorhombic symmetry), the principal
axes form three planes of symmetry, reducing the
number of independent elastic constants to 9. Human
cortical bone has been shown to be orthotropic.20

Nanoindentation experiments are most commonly
conducted with sharp pyramidal indenters, preferably
three-sided because they can be ground to the sharp-
est points.23 However, no exact analytical expressions
exist for indentation with a pyramidal tip. Numerical
studies24,25 have indicated that to match results for
three-sided pyramidal tips, a correction factor of b =
1.034 should be applied to modulus values predicted
by a conical tip. Anisotropic materials showed differ-
ences of less than 2% in the value of b because of
orientation.26

Conical indentation of isotropic materials is well un-
derstood,27 but material anisotropy complicates the
analysis of results obtained by nanoindentation. Ma-
terial anisotropy causes one such complication: the
displacement of the indented surface varying in dif-
ferent directions, producing a saddle-shaped edge of
contact between the indenter and the indented sur-
face, as shown in Figure 1. The contact area projected
in a plane parallel to the surface is elliptical, with the
long axis of the ellipse passing through the highest
points on the edge of contact and the short axis of the
ellipse passing through the lowest points.

Swadener and Pharr have recently developed an
analysis of conical indentation of anisotropic materi-
als.19 The ratio of the elliptical axes of the projected

area of contact (a1/a2) for an indentation of an aniso-
tropic surface by a rigid frictionless cone can be found,
according to their analysis, by solving numerically the
integral equation:
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where Bij is the components, derived from the elastic
stiffness matrix, of the first Barnett–Lothe tensor,28

and a3i
and a3j

are the direction cosines of the angles
between the indentation direction and the directions
that define the coefficients of the elastic stiffness ma-
trix. The summation convention is used over repeated
indices. If the indented surface possesses mirror sym-
metry, the contact ellipse is oriented with one axis
aligned with the line of symmetry (for other cases, see
ref. 19).

In nanoindentation experiments measurements of
load and displacement can determine the stiffness of
the indentation contact (S). Elastic constants can then

Figure 1. Area of contact during indentation of an aniso-
tropic material.
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be determined from the contact stiffness. For aniso-
tropic materials Vlassak and Nix17 showed that an ex-
pression for contact stiffness can be used to define an
indentation modulus (M):

S =
2

=p
M=A,

where A is the projected area of contact, which can
also be determined experimentally.29 For isotropic ma-
terials with elastic modulus (E) and Poisson’s ratio (m),
Pharr et al.30 showed that M = E/(1 − n2) for any
axisymmetric indenter. It is from this relation that the
elastic modulus measured by nanoindentation is most
frequently evaluated. For indentation of anisotropic
materials by cones, parabolas of revolution, or flat el-
liptical punches, the indentation modulus can be de-
termined from:19

M =
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where, for conical indenters, the ratio a1/a2 can be de-
termined from Equation (2). For isotropic materials,
Equation (4) reduces to M = E/(1 − n2). However,
indentation of general anisotropic materials is distinct,
and the indentation modulus varies with direction
and depends on the eccentricity of the elliptical pro-
jected area of contact.

RESULTS AND DISCUSSION

Nanoindentation experiments are generally con-
ducted with the axis of indentation normal to the sur-
face. In order to assess a material’s anisotropy, speci-
mens can be fabricated with various surface orienta-
tions. Rho et al.13 conducted nanoindentation
experiments on human tibial cortical bone in the lon-
gitudinal and transverse directions, but at the time of
their experiments no means existed for comparing
their results to anisotropic elastic constants. To make
such a comparison, the indentation modulus (M) was
calculated using Equation (4) based on the elastic stiff-
ness components (Table I) determined by Rho20 from
ultrasonic velocity measurements. The assumptions
C13 = C23 and C12 = C11 − 2C66 were used for the

remaining two components, which could not be de-
termined from ultrasonic velocity measurements be-
cause of the small thickness of tibial cortical bone.
Rho20 showed that ultrasonic velocity measurements
of human cortical bone correlated well with elastic
moduli measured by conventional methods.

The value of M was calculated by numerical inte-
gration of Equation (4)—with convergence to within
0.01%—for indentation parallel to the surface normal
lying in a principal material plane. The x1 direction is
the radial direction in the tibia, the x2 direction is the
circumferential direction, and the x3 direction is the
superior–inferior direction, as shown in Figure 2. For
comparison, the value of the elastic modulus (E) in
various directions was calculated using tensor trans-
formations from the data in Table I.31 Figure 3 plots
the a1/a2 ratio for conical indentation parallel to sur-
face normals in the x1–x3 plane and in the x2–x3 plane.
For indentation in the x1–x3 plane, the a1 axis is always
parallel to the x2 direction, and for indentation in the
x2–x3 plane, the a1 axis is parallel to the x1 direction. As
expected, the a1/a2 ratio for w = 90, u = 0° is the recip-
rocal of the ratio for w = 90, u = 90°. The indentation
modulus and the elastic modulus for the same range
of directions are depicted in Figure 4. As expected, the
indentation modulus varies with direction in a man-
ner similar to the elastic modulus. The minimum in-
dentation modulus is greater than the minimum elas-
tic modulus because of the influence of elastic moduli
in other directions. The same effect accounts for the
variation in the indentation modulus with direction
not being as great as the variation in the elastic modu-
lus. The a1/a2 ratio and the indentation modulus for
conical indentation parallel to surface normals in the
x1–x2 plane are plotted in Figure 5, with the a2 axis
always parallel to the x3 direction. For indentation in
the x1–x2 plane, the indentation modulus is always
greater than the elastic modulus because of the influ-
ence of the larger elastic modulus in the x3 direction.

The indentation moduli for human tibial cortical
bone osteons and interstitial lamellae have been de-
termined from nanoindentation experiments by Rho
et al.13 for the x1 and x3 directions. For indentations in
the x3 direction, they found a mean indentation modu-
lus of 24.6 GPa (standard deviation = 1.3 GPa) for
osteons and 28.2 GPa (standard deviation = 1.1 GPa)
for interstitial lamellae. For indentations in the x1 di-
rection, the indentation modulus was 18.2 GPa (stan-
dard deviation = 1.2 GPa) for osteons and interstitial

TABLE I
Mean Values of Elastic Stiffness Matrix Components of Human Tibial Cortical Bone (standard deviation

in parentheses)

C11 (GPa) C22 (GPa) C33 (GPa) C44 (GPa) C55 (GPa) C66 (GPa) C23 (GPa)

19.5 (2.0) 20.1 (1.9) 30.9 (2.1) 5.72 (0.49) 5.17 (0.57) 4.05 (0.54) 12.5 (1.2)
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lamellae combined.13 The human tibial cortical bone
specimens contained approximately 5% voids, which
caused some differences in the moduli, as determined
by nanoindentation and ultrasonic velocity measure-
ments. Nanoindentation measures the mechanical re-
sponse of the solid constituents in the vicinity of the
indenter, while ultrasonic velocity measurements are
conducted on the composite specimen. A rule of mix-
tures approach can produce approximate values to en-
able a comparison. Since the void fraction is small,
errors from approximation will be small compared to
the uncertainty in the experimental results. Osteons
and interstitial lamellae make up approximately equal
volumes in cortical bone. Therefore, the nanoindenta-
tion data give estimates of combined indentation
moduli of 25.1 GPa in the x3 direction and 17.3 GPa in
the x1 direction. The indentation moduli obtained

from the nanoindentation data are approximately 25%
higher than the results determined from ultrasonic ve-
locity measurements [M = 19.7 GPa and M = 14.0 GPa
in the x3- and x1 directions, respectively(Fig. 4)].

The larger modulus values found for the nanoin-
dentation results can largely be attributed to differ-
ences in the condition of the specimens. For ultrasonic
experiments the bone specimens were kept moist in a
saline solution, while the specimens used for nanoin-
dentation were dehydrated in a series of alcohol baths.
Rho and Pharr22 showed in nanoindentation experi-
ments on bovine femora that dehydration increases
the indentation modulus of bone by approximately
15%. Researchers using other methods10,21 found that
dehydration increases elastic moduli by 18–24%. After
using any correction for dehydration in the range cited
above (15–24%), the remaining differences between
nanoindentation and ultrasonic experimental results

Figure 3. Ratio of elliptical contact axes (a1/a2) for conical
indentation of human tibial cortical bone in the x1–x3 plane
and the x2–x3 plane.

Figure 5. Elastic modulus (E), indentation modulus (M),
and ratio of elliptical contact axes (a1/a2) for conical inden-
tation of human tibial cortical bone in the x1–x2 plane.

Figure 2. Orientation of the material axes and the angles u
and w, which define the indentation direction.

Figure 4. Elastic modulus (E) and indentation modulus
(M) for conical indentation of human tibial cortical bone in
the x1–x3 plane and the x2–x3 plane.
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are not statistically significant (using a two-way analy-
sis of variance, p > 0.1).

CONCLUSIONS

The results presented in this study demonstrate
how the influences of elastic anisotropy are mani-
fested in nanoindentation measurements and how na-
noindentation techniques can be used to quantita-
tively examine bone anisotropy. This method can also
be applied to other anistropic materials. If nanoinden-
tation data are obtained for a number of directions, the
method could potentially be used to determine the
anisotropic elastic constants. Although there is no in-
verse relationship for computing the elastic moduli
directly from the indentation moduli, an iterative ap-
proach could be used.
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