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Abstract. Using two different kinds of many-body potentials as well as the Lennard-Jones
potential for hexagonal close packed metals, we have found that〈c + a〉 edge dislocations with
dislocation lines along〈11̄00〉 can split onto the basal plane, forming a non-planar sessile structure.
The ‘type I’ undissociated dislocation core, observed in previous papers, is shown to be stable only
for small simulations. The observed dissociated core structure has a large distorted region that we
interpret as a(112̄1) twin nucleus, which may help the formation of(112̄1) tension twins. We
also find that this core structure is lower in energy than the previously observed glissile ‘type II’
configuration, dissociated on the(112̄2) plane. The sessile splitting of the core gives rise to non-
Schmid behaviour, with the twin nucleus expanding underc-axis tension, and contracting under
compression.

1. Introduction

The study of dislocation core structures and the energetics associated with slip and twinning
provides valuable information for the understanding of strength and ductility of materials. It is
now well established that the core effects play a major role in the plastic deformation of metals
[1], and could explain such behaviour as the temperature dependence of yield stress. It is also
known that complex dissociations of the core significantly influence mechanical properties
[2]. Atomistic simulations of dislocations are becoming viable tools to study the associated
core structures, due to the increase in computational power and improvements in modelling
materials at the atomistic level.

While numerous studies in the past have dealt with face centred cubic (fcc) and body
centred cubic (bcc) material systems, relatively less focus has been placed on hexagonal close
packed (hcp) materials. It has been known that basal slip, non-basal slip and twinning are
the primary modes of plastic deformation in hcp metals (for a review, see [3]). Dislocations
with a Burgers vector in the basal plane,b = 1

3〈112̄0〉 (denoted as〈a〉 in this paper) may
split in a manner similar to〈101̄〉 fcc dislocations. This dissociation may be understood by
considering simple hard-sphere models. However, dislocations with non-basal Burgers vectors
(e.g.〈c +a〉) also significantly affect the mechanical properties of polycrystalline hcp metals,
and are considerably more complicated to study than the basal slip mode [3].
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Figure 1. Schematic diagrams (a) and (b) of the type II and type III dislocation core structures,
respectively. In the type III dislocation, (b), the dislocation has undergone a splitting into a Shockley
partialp1 connected by a basal-plane stacking fault to a sessile partialp2. The twinned region
extends betweenp2 along the(112̄1) plane to the twinning partials located atp3. This dissociation
is given in (7). The distances and angles are given in table 3.

When a single crystal of hcp metal is deformed in compression or tension along thec-axis,
plastic deformation can occur by pyramidal slip systems, e.g. [112̄3̄]/3 slip on either the first-
order (101̄1) or the second-order(112̄2) plane, and/or by compression twins including the
(112̄2)[112̄3̄] system or tension twin systems [3]. Because of the large magnitude of the
Burgers vector, the〈c + a〉 dislocation may be either decomposed toc and〈a〉 dislocations,
or dissociated into partial dislocations that may have some relationships with the atomic
movements involved in twinning. Therefore, detailed information on the source and mobility of
〈c+a〉 dislocations is important in understanding the mechanical behaviour of polycrystalline
hcp metals and alloys.

In this paper, we re-examine previous simulations of the{112̄2} 13〈112̄3̄〉 edge dislocations.
The previous simulations, performed by Minonishiet al [4, 5] and Liang and Bacon [6],
produced two types of core structures: type I—an undissociated core, and type II—a dissociated
core as shown in figure 1(a):

b −→ 1
2b + 1

2b. (1)

While this structure is expected to be lower in energy than the undissociated structure, none
of the previous studies found either core to be significantly lower in energy than the other.

Our primary result is that the undissociated, ‘type I’ dislocation is not observed in our
simulations, and that the previous simulations produced this result only due to the small size of



Atomistic study of hcp〈c + a〉 {112̄2} dislocations 27

their simulations. An undissociated core is not observed, except in very small-size simulations.
For our larger simulations, we observe either the type II core or a basal-plane dissociation after
relaxation of an initially undissociated core, depending upon the initial conditions. The basal
plane dissociated core, which we refer to as a type III core, is similar to that seen in recent
simulations of the (Lennard-Jones) lj56〈c + a〉 edge dislocation [7]. In order to test the
reliability of our results, we have used two different many-body potentials, developed for hcp
metals, and also the lj56 potential used both by Minonishi [4, 5] and by Liang and Bacon [6].
In all cases, we see only the type II and type III dislocations. We believe that these two types
of dislocations can account for the difference in behaviour between the brittle systems with
limited twinning (Mg and Be), and ductile systems such as Ti and Zr.

2. Simulation methods and potential

As indicated above, we have used several interatomic potentials, to test the sensitivity of
the results to the potentials. We believe that none of the potentials are sufficiently accurate
for quantitative descriptions of the real materials and the corresponding energetics. However,
structures that are potential independent are likely to represent (qualitatively) the structures that
can be observed in real materials. As we shall show in subsequent sections, the observed core
dissociations are independent of potential (although specific partial separations are different).

One of the potentials that we have chosen to use is the embedded atom method (EAM)
potential developed by Zhanget al [8] (see details in [9]). This potential predicts that the
hcp phase is stable relative to the fcc and bcc phases, with reasonable elastic constants and
phonons for both the hcp and bcc phases. The elastic constants and other parameters are
shown in table 1. This potential has been used to model the behaviour of the high-temperature
bcc phase of Zr [8] and also the structure of twin boundaries in Zr [9]. More recently, it has
been used to explore stacking faults on the{112̄2} plane [10], related to the type II dislocation
core structure described below. While EAM models are not ideal for modelling materials
with directional bonding [11], including Ti and Zr, we feel that this model serves as a model
hcp material, and may be more realistic than the simple pair potentials that have been used
previously. However, it has an unphysically low basal-plane, stacking-fault energy, compared
with ab initio potentials (see table 2).

Table 1. Equilibrium values calculated for EAM and FS models of hcp Zr, compared with
experimental values.

Parameter EAM [10] FS [13] Experiment Reference

Ecoh (eV) 6.253 79 6.25 6.25 Brewer [25]
a (Å) 3.21 3.25 3.23 Goldaket al [26]
c/a 1.63 1.595 1.592 Goldaket al [26]

C11 (Mbar) 1.63 1.5 1.554 Fisher and Renken [27]
C12 (Mbar) 0.93 0.85 0.672
C13 (Mbar) 0.78 0.67 0.646
C33 (Mbar) 1.78 1.75 1.725
C44 (Mbar) 0.27 0.36 0.363

Recognizing that a single potential may have unphysical aspects, it is important to identify
which results are dependent upon the potential, and which are independent of the potential. To
this end, we have also used a Finnis–Sinclair (FS) potential [12] for Zr developed by Ackland
et al [13]. These potentials are similar to the EAM model, with the same drawbacks. This
particular potential more accurately reproduces the experimentalc/a ratio than the Zr EAM
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Table 2. Basal-plane, stacking-fault energies andp1–p2 separations from atomistic simulations
and from estimations from linear anisotropic elastic theory. Separations are given in units of the
lattice spacinga0. For comparison,ab initio calculations of stacking-fault energies for Mg [19]
and Zr [20] have been included.

ab initio

Zr EAM Zr FS lj56 Zr Mg

Stacking-fault energy (mJ m−2) 3.3 50 0.138 102 44
Simulatedp1–p2 separation (a0) 12 5 5 — —
Estimatedp1–p2 separation (a0) 167 12 — 5.9 5.3

potential described above. It also has a significantly higher (and more accurate) basal-plane,
stacking-fault, energy. Most of the figures in this paper were generated using this potential.

In addition, we have also repeated some of the calculations using the lj56 potential [14].
This was chosen primarily to compare with the results of Minonishiet al [4, 5] and Liang and
Bacon [15] who performed simulations of the same dislocation considered here using the lj56
potential. Previous work differs from ours primarily in the size of the simulation. As we shall
show below, this directly affects the observed dislocation core structures.

The initial conditions were generated as in previous studies [4, 6]. A displacement field
was calculated from anisotropic elasticity [16, 17], corresponding to a perfect dislocation with
a Burgers vectorb = 〈c + a〉. This displacement field was imposed on a perfect lattice, with
a number of different starting positions of the dislocation. From this structure, a cylindrical
region was chosen, including all atoms within a distanceR of the dislocation line. In all of
these studies, we setR to either 120 Å or 180 Å, to check the effects of the system size. No
differences were found between these different simulation sizes. The repeat distance along the
line of the dislocation was chosen to be four times [11̄00]. Thus, the simulation is essentially
two dimensional.

Once this region was selected, an outer ‘frozen zone’ was selected. In this outer zone,
the atoms were fixed during the simulations. This zone was chosen to be all of the atoms
within 10 Å from the outer surface of the simulation, somewhat larger than the interaction
distance for the EAM or FS potentials. The size of the simulation region plays an important
role in determining the core structure. As shown later, a small simulation region can prevent
the core from splitting, and hence, may produce a stable undissociated core. In comparable
simulations, Minonishiet al [5] used a total of approximately 8000 atoms, and Liang and
Bacon [6] used a total of 9000 atoms. However, the number of atoms in the inner ‘relaxable’
region was about 1000 in both papers, which may not be large enough to give the splitting of
dislocations. In order to overcome this limitation, we have performed large-scale simulations,
using approximately 97 000 atoms, of which about 86 000 atoms are free to relax, and have
thus minimized the size effects.

For the lj56 potential, we chose a rectangular box shape, with an active region ranging
from−40d to 40d in thex-direction (along the Burgers vector) and from−35d to 35d in the
y-direction. This left a total of 50 000 atoms free to move. We chose this size to explore size
effects (see discussion), in order to compare with the lj56 simulations of Minonishiet al [4, 5].

After generating the initial coordinates, we used a classical molecular dynamics (MD) code
to perform a rapid quench of the system, in order to find a local minimum in the energy. This
was performed using the ‘dynamic’ technique [18]. For the EAM model, the atomic relaxation
was also carried out independently using a simple steepest-descent technique, producing nearly
identical results. Following this, we performed MD simulations of the system atT = 500 K for
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approximately 40 ps, in order to ‘anneal’ the structure. Finally, another quench was performed.
In all cases, the dislocation structure after the final quench was qualitatively the same as after
the initial quench. Based upon these results, we only used the dynamic technique for atomic
relaxation, for the FS and the lj56 systems.

3. Non-planar dislocation core structures

To fully explore the possible dislocation structures, we tried a series of 12 initial conditions.
For each potential, we found that certain initial conditions resulted in structures corresponding
to a type II dislocation observed in previous simulations [4, 6]. In the remaining cases, a new
structure, which we have denoted as a type III dissociation, was observed. We did not observe
an undissociated (type I) structure after the initial quench. We note that there did not seem to
be any correlation between the initial conditions that produced the type III dislocations in one
potential, and those that produced these configurations in other potentials.

As the type II structure has been thoroughly studied [4, 6], we will only describe the type III
structure. The core structure for the FS potential is shown in figure 2. The most interesting
feature is a large distorted region extending to the left and upwards from the dislocation. This
contains a small area that is twinned on the(112̄1) planes, as indicated by the traces on the
figure. This is very similar to the twinned regions near type I cores seen in [4, 6]. However,
there is an important difference: the dislocation dissociates according to

b→ 1
3[101̄0] + 1

3[011̄3̄] (2)

with the first of these terminating a basal-plane stacking fault. This non-planar splitting is a
sessile configuration, unlikely to slip on the(112̄2) plane.

We will denote this dissociation by

b→ p1 + p2 (3)

with the identification

p1 ≡ 1
3[101̄0] (4)

p2 ≡ 1
3[011̄3̄]. (5)

The partialp1 also occurs in the usual splitting of the〈a〉 Burgers vector,
1
3[112̄0]→ 1

3[101̄0] + 1
3[011̄0]. (6)

To identify the partialp1, we examined the relative displacements around the dislocation.
In figure 3, the relative displacement of the basal planes immediately above and below the
partialp1 is shown. There are relative motions both parallel and perpendicular to the line,
indicating the mixed nature of thep1 partial dislocation. The edge component is dominant,
with the magnitude of the screw component smaller by a factor of

√
3. This indicates that the

Burgers vector is at an angle of 60◦ to the line of the dislocation. This, combined with the
calculated total magnitude of the Burgers vector, is consistent with the dissociation given in
(2).

The separation of the partials along the basal plane (equation (2)) is significant,
approximately 22 Å for the FS potential. The separations for each potential are given in
table 2. From this table, we see that there is a correlation between the basal-plane, stacking-
fault energies and the separation: a larger value of the stacking-fault energy reduces the
separation. However, the separation is significantly less than what would be predicted from
anisotropic linear elasticity theory, based upon (2).
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Figure 2. The structure of the type III dislocation. The dislocation has split according to
b→ 1

3 [101̄0] + 1
3 [011̄3], with the partials separated by a basal-plane stacking fault.

Type III dissociations found for the EAM and lj56 potentials were similar. The separations
for both the FS and EAM potentials are shown in table 3, along with the stacking-fault energy for
each potential. The stacking-fault energy is particularly low for the EAM potential, producing
the largest splitting. To provide a comparison, we note that theab initio calculations of the
stacking-fault energy for Mg is 44 mJ m−2 [19] and 102 mJ m−2 for Zr [20]. Bond-order
potential calculations for Ti produce stacking-fault energies similar to theab initio Zr results
[11]. Although the empirical potentials generally produce lower stacking-fault energies than
the more accurateab initio results, the separation is significant in all cases.

Table 3 shows a qualitative correlation between the basal-plane, stacking-fault energy0b

and thep1−p2 splittingw12. Including only the interaction between thep1 andp2 dislocations
is overly simplistic for the type III dislocation core, because there are additional interactions
with the twin nucleus. While difficult to account for in an accurate manner, we present a
schematic approach in figure 1(b). In this figure, we have added twinning dislocations at either
side of the twin nucleus, sufficient to produce a four-layer twin. For the1

3(112̄1)[1̄1̄26] tension
twin system, twinning partials have Burgers vectors ofbt = (e/2)η, whereη = 1

3[1̄1̄26] and
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Figure 3. This figure shows the relative displacement of (0001) basal planes passing around the
dislocation in the type III dissociation. From this figure, we see that the partialp1 has both a [11̄20]
edge components, and a [11̄00] screw component. The Burgers vector of the partialp1 forms an
angle of 60◦ with the line of the dislocation.

Table 3. Geometry of the type III dislocation core dissociations, along with basal-plane, stacking-
fault energies and(112̄1) twin boundary energies derived from the separations. The widthsw12
andw23 are thep1–p2 separation and the twin nucleus width, respectively. For definitions ofθ and
φ, see figure 1(b).

0 (mJ m−2)
w12 w23 φ θ

(nm) (nm) (degrees) (degrees) (0001)(112̄1)

EAM 4.2 3.6 50.6 56.5 26 99
FS 2.2 4.2 76.4 30.7 140 47

e = 2/(4γ 2 + 1) ≈ 1
6 for Zr with γ ≡ c/a = 1.63 [21]. Therefore, the total strength of four

twinning partials isp3 = [1̄1̄26]/9. Consequently, the Burgers vector of the sessile partial
located at the corner of this non-planar dissociation isp2 = [145̄3]/9. Thus, the splitting given
in (2) has been modified to

b→ 1
3[101̄0] + 1

9[145̄3] + 1
9[1̄1̄26]. (7)

The widths of the basal stacking fault,w12, and the tension twin,w23, are given in table 3.
The angle between the twin habit plane and the basal plane is8 = tan−1 (2γ ) = 73.0◦. The
other two angles,θ andφ, defined in figure 1(b) are also given in table 3. Using anisotropic
elasticity theory, we calculated the forces on the dislocations. BothFx andFy force components
(along the〈c+a〉 direction and perpendicular to the(112̄2) plane, respectively) of the pair-wise
interaction were calculated first. The net results ofFx in the fault planes were determined atp1

andp3. By requiring that the total glide forces balance to zero, we calculate the basal-plane,
stacking-fault energy,0b, and twice the(112̄1) twin boundary energy, 20t . These results with
the two sets of elastic constants are listed in table 3.
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As compared to0b = 3.3 mJ m−2 and0t = 285 mJ m−2 [22] calculated using the
EAM potential, the basal-plane, stacking-fault energy is higher by a factor of 7.9, while the
twin boundary energy is lower by a factor of 5.8. Based upon the FS potential, we obtain
0b = 50 mJ m−2, and Serra and Bacon [23] reported0t = 278 mJ m−2. As compared to
these results for0b and0t , the values listed in table 3 are higher by a factor of 2.8 and lower
by a factor of 11.8, respectively. This comparison suggests that nonlinear elastic interactions,
ignored in this analysis, assist in the twin nucleation, creating a larger than expected twinned
region. Simultaneously, the complementary splitting on the basal plane is suppressed.

We note that we have not observed a separation into separatec and 〈a〉 dislocations.
Within isotropic, linear elasticity theory, there should be no reason for these to interact, and
we would expect that they could separate. However, this neglects two points. First, anisotropy
can introduce an interaction between these dislocations. However, this can be expected to be
weak. Second, they may lower their energy through an interaction of the dislocation cores.
This effect is beyond the assumptions of linear elasticity theory. We have applied a strain
on the basal plane, coupling to the〈a〉 portion of the dislocation, to attempt to separate the
dislocations. We find that under reasonably strong strains (2%), this has the effect of increasing
the〈p1〉 partial separation, without unbinding the dislocations.

4. Energy calculations

Given that several possible dislocation structures exist, it is important to consider the energy of
the dislocations. While the energy of a single dislocation in an infinite crystal is not defined,
we may compare the core energies of different core structures, to find which structure has the
lowest energy.

To do this, we consider the energy contained within a distanceR from the dislocation.
The total energyET per unit length of the dislocation in the region defined by (0, R) may be
written as

ET = Ec(rc) +Ee(rc, R) (8)

whereEc(rc) is the energy in the ‘core’ region, where linear elasticity is not applicable. (Note
that the choice ofrc also defines the value ofEc.) The elastic energy outside the core region,
Ee(rc, R), is given by [24]

Ee = Ke

4π
b2 ln

R

rc
(9)

whereKe is the energy factor determined from anisotropic elasticity theory. From the
geometry of the〈c + a〉 dislocation and the elastic constants given in table 1, we find the
valueKe = 0.385 eV Å−3 for the FS potential.

We may also calculate the energy from the distortions of the dislocation from atomistic
simulations. If the equilibrium bulk energy per atom in the pure hcp structure isE0, then the
excess energy due to the atomic displacements within a distanceR of the dislocation core is

ET = 1

d

∑
i

(Ei − E0) (10)

whereEi is the total potential energy of atomi, d is the repeat distance along the direction
of the dislocation line (for this geometry,d = √3a0) and the sum extends for atoms within a
distanceR of the dislocation core. At long distances, the behaviour should follow that of (9).

Figure 4 shows the variation of calculated elastic energies with the logarithm of the
radius from the core, from the results for the FS potential. From this, we see that the basal
plane splitting (type III) is significantly lower in energy than that of the type II dislocation.
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Figure 4. EnergyET(R) per unit length of the dislocation, for the two types of dislocation found
in the simulations, as a function ofR. The dislocation energy is given in units of eV Å−1.

A similar calculation for both EAM and the lj56 potentials again shows that the type III
dislocation is lower in energy. At large distances (greater than approximately 40 Å), the
graphs are essentially parallel. This indicates that forR > 40 Å, the energies found in
the simulations behave as predicted by elasticity theory. At large distances, the energy
difference between the two structures corresponds to the difference in the total energy of
the dislocations.

5. Discussion

In this paper, we have used atomistic simulations to explore possible core structures of the〈c+a〉
edge dislocation. We expect that this dislocation core plays an important (and complicated)
role in determining the behaviour of hcp metals underc-axis compression and tension. For
Mg and Be, the dominant deformation mode is the(112̄2) 〈c+a〉 slip system; the compression
twinning mode in Ti and Zr has the same elements. Therefore, it is expected that〈c + a〉
dislocations may determine the non-basal deformation mode.

Our simulation techniques are similar to those performed by Minonishiet al [4, 5] and
by Liang and Bacon [6]. However, they differ in several respects. First, in addition to
simple pair potentials, we have also used more sophisticated EAM and FS potentials fitted
to equilibrium properties. Second, and most importantly, we have used significantly larger
system sizes. Finally, we have not only performed local minimization, but we have also
annealed the dislocation cores in an effort to find the lowest-energy structures.

Unlike previous investigations [4–6] we do not observe a stable, undissociated core.
Instead, we see a new core dissociation, which we label as ‘type III’, where the core emits
a p1 ≡ 1

3[101̄0] partial dislocation along the basal plane. The remaining partial has a core
structure containing a(112̄1) twin nucleus, similar to the undissociated ‘type I’ core found
in previous simulations [4–6]. We observe the type II dislocation found previously [5, 6], in
which the dislocation splits along the(112̄2) slip plane, with a stable stacking fault on the slip
plane. We have found that the type III dislocation has a core energy that is lower than that of
the type II, by analysing the energy distribution in our simulations.
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We believe that previous simulations [4–6] were severely affected by the small system
sizes. In these previous simulations, only a small region (about 1000 atoms) is allowed to
relax. This prevented the type III core from forming. Having only a small region to dissociate,
and having to match the boundary conditions, prevents the partialp1 from separating from
the original dislocation. We have tested size effects for the type III dislocation for the EAM,
FS and lj56 potentials. For these calculations, we chose a rectangular system, and varied
the size of the system. For the EAM potential, which has a large splitting, the system
size must be made very small (∼15 Å normal to the(112̄2) plane) in order to suppress
the dissociation. For the FS and lj56 systems, however, the splitting for the large system
is still not too large, and is suppressed rather easily. Once the system size perpendicular to
the (11̄22) plane is smaller than∼15a0, then the core remains in an undissociated (type I)
configuration.

The splittings are very sensitive to the stacking-fault energy, and are not likely to be
accurately modelled for any given material by any of these potentials. In particular, Zr and
Ti have large basal-plane, stacking-fault energies, close to 100 mJ m−2 [11, 20]. Basal-plane
slip is therefore not usually observed in these materials. However, the stacking fault is stable
[11, 20], and so a type III dissociation may occur for these materials.

We expect that the type III core will be more sessile than the type II, as the partials for
the latter core will slip on the(112̄2) plane. For the type III core, the partialp1 moves on the
basal plane, while thep2 partial should slip on the(112̄1) plane. Thus, the two partials cannot
move together. We also expect that shear on the(112̄2) plane will have a different effect on
the type III dislocation than compression/tension along thec-axis, as the latter will not couple
to the motion of thep1 partial along its easy-slip direction.

It is possible that different types of cores occur in different materials, giving rise to different
behaviour underc-axis compression and tension. It is plausible that in a material where the
dislocation has a type II structure, that the(112̄2) slip will be the deformation mode. If
the type III structure occurs, then the lack of mobility may hinder slip, and twinning may be
favoured. We also note that the presence of a type III configuration may assist in the nucleation
of (112̄1) twins. This suggests that there may be a correlation between metals that exhibit
compression twinning on the(112̄2) plane, and those that have tension twinning on the(112̄1)
plane. This is borne out by experiments: Ti and Zr show both types of twin modes, while Be
and Mg show neither [3].

In conclusion, we have observed two different core structures for the〈c + a〉 edge
dislocation in simulations of hcp materials. Both of these structures are dissociated, with
the type III structure (not observed in previous simulations) having a sessile geometry,
splitting along the basal plane. For all potentials considered here, this latter type is lower
in energy.
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