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ABSTRACT
The stacking fault and twin boundary energies of C15 Cr2Nb are calculated

by the ® rst-principles local-density-functional approach. It is found that the
intrinsic and extrinsic stacking fault energies are 116 and 94 mJm¡2 ,
respectively, and the twin boundary energy is 39 mJ m¡2. The lower extrinsic
stacking fault energy is consistent with the fact that the C36 structure has a
lower energy than the C14 structure. The calculated stacking fault energies at
0 K are larger than the experimental values available in the literature. The
equilibrium separations between Shockley partials based on the calculated
elastic constants and stacking fault energies are also calculated.

} 1. INTRODUCTION
For a wide variety of structural applications, Laves phases have some unique

properties such as high melting temperature, low density, and high oxidation resis-
tance. Unfortunately, this potential has not been well exploited, largely because of
low temperature brittleness due to the lack of plastic deformation. Cr2Nb, one of the
most studied Laves phase compounds, has either the cubic C15 or hexagonal C14 (or
C36) structure, which is topologically akin to the face-centred cubic (fcc) (A1) or the
hexagonal close-packed (hcp) (A3) structure, or any one of the polytypic phases. The
topologically close-packed (TCP) plane of the C15 structure is of the f111g type, and
the potential modes of plastic deformation in Cr2Nb are twelve f111gh110i slip
systems and twelve f111gh112i twin systems. Since each of the TCP units consists
of the quadruple atomic layers, the slip, twinning, or stress-induced polytypic trans-
formation will require a coordinated process of atomic motions, such as
synchroshear, in order to e� ect the motion of Shockley partial dislocations.

Among other quantities, the knowledge of stacking fault energy (SFE) , ®SF , is
necessary to understand the deformation mechanism, since SFE will play an impor-
tant role in processes such as dislocation dissociation, cross-slip and twinning. First-
principles calculations are useful to estimate the energetics of stacking faults (SFs)
and understand the interaction between Shockley partials.

Using the linear mu� n-tin orbital (LMTO) method, Chu et al. (1995a) estimated
the intrinsic stacking fault energy of Cr2Nb from the structural energy di� erence
between the C15 and C14 structures, and obtained ®SF ˆ 90 mJm¡2. On the other
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hand, Yoshida et al. (1995) obtained a value of 8 mJm¡2 for SFE from transmission
electron microscopy (TEM) observations of extended dislocation nodes at 1623¯C.
More recently, Kazantzis et al. (1996) obtained a value of 25 mJm¡2 from TEM
observations of extended nodes in Cr2Nb at 1400 and 1500¯C.

In a previous paper (Hong and Fu 1999) , we investigated the phase stability of
three Laves phases (C15, C14 and C36) of Cr2Nb. It was found that the C15 phase is
the ground-state structure with the lowest energy and the C36 phase is an inter-
mediate state between C15 and C14. These three phases, however, are very close in
energy, i.e. within a range of about 60 meV/formula unit (Hong and Fu 1999) indi-
cating the possibility of low stacking fault energies in this system. In this paper, we
report the calculation of SFE using supercell geometry, and an evaluation of
the equilibrium separation between Shockley partials using the anisotropic elastic
theory.

} 2. LAVES STRUCTURES
In describing the structures of Laves phases and their stacking faults and twin

boundary, we follow the notations of Hazzledine (1994).
Laves phases have ideal chemical compositions S2L; they contain smaller atoms

S and larger atoms L in alternate sheets parallel to the TCP planes (i.e. (111) plane
for the C15 structure and (0001) plane for the C14 and C36 structures). The main
geometric characteristic of Laves phases S2L is that they consist of two types of
atomic stacking sequence, aAa (bBb and gCg) and acb (bag and gba). Here, the
Greek letters (a, b, g) denote the L atoms, while lower case Latin letters (a;b;c) and
capital letters (A ;B;C) denote the type-1 and type-2 S atoms, respectively. Note that
the acb-type stackings are more closely spaced (in terms of the interlayer spacings).
For Cr2Nb, Latin and Greek letters represent Cr and Nb, respectively.

Figure 1 represents an atomic layer of A atoms based on the hexagonal unit cell
on the TCP plane (a Kagome net) which is determined by two lattice vectors
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Figure 1. The hexagonal unit cell on the basal planes which is determined by two lattice
vectors a1 and a2. See the text for details.



a1 ˆ 1
2 ‰0-11Š and a2 ˆ 1

2 ‰ -110Š. The vectors b1 , b2 and b3 are Shockley partial Burgers
vectors of the type 1

6 h112i(b1 ‡ b2 ‡ b3 ˆ 0). The dotted circles in ® gure 1 denote A
atoms, one of the type-2 S atoms, projected on the (111) plane. Let the centres of
hexagonal rings consisting of A atoms be denoted by A¤ , and thus the A atoms are
placed midway between the lattice points A¤. Similarly, the lattice points B¤ and C¤ ,
which determine B and C atoms respectively, can be obtained by the displacement of
A¤ by b1 and ¡b1 , respectively, on higher or lower planes. Also, we denote the
projected points of B¤ and C¤onto the plane given in ® gure 1 as B‡ and C‡ , respec-
tively, which are the saddle points for larger a atoms. Then, the projected atomic
positions of a (or a) onto the given plane are at the sites of A¤ in ® gure 1, and the
projected positions of b (or b) and g (or c) are at those of B‡ and C‡ , respectively.
Consequently, the TCP C15 structure is de® ned by repeated XYZ stacking:

C15 : ¢ ¢ ¢ Aacb
z‚‚}|‚‚{X

Bbag
z‚‚}|‚‚{Y

Cgba
z‚‚}|‚‚{Z

¢ ¢ ¢ ; …1†

where the TCP plane unit X (Y or Z) consists of one single layer of A (B or C) atoms
and one triple layer of acb (bag or gba). A synchroshear mechanism was ® rst
introduced by Kronberg (1957) , and was used to explain the deformation twinning
process by several groups (Livingston and Hall 1990, Chu and Pope 1993,
Hazzledine 1994). Synchroshearing of the X unit (Aacb) creates the X0 unit
(Aabg) , and similarly for the Y0 (Bbca) and Z0 (Cgab) units. The C14 and C36
Laves phases have repeated X0Z and XYZ0Y0 stackings, respectively, as follows:

C14 : ¢ ¢ ¢ Aabg
z‚‚}|‚‚{X0

Cgba
z‚‚}|‚‚{Z

¢ ¢ ¢ ; …2†

C36 : ¢ ¢ ¢ Aacb
z‚‚}|‚‚{X

Bbag
z‚‚}|‚‚{Y

Cgab
z‚‚}|‚‚{Z0

Bbca
z‚}|‚{Y0

¢ ¢ ¢ : …3†

It can be seen that the primed X0 , Y0 , Z0 units are introduced by synchroshear in
order to make sure that TCP structure is maintained in C14 and C36. For example, c
and b of the X unit in C15 are synchrosheared by ¡b2 and ¡b1 , respectively, to
become b and g of X0 unit. This displacement preserves a close packing between X
and Z units in C14.

The stacking sequences for an intrinsic stacking fault (ISF) and an extrinsic
stacking fault (ESF) and a twin boundary are given in table 1 in terms of X, Y, Z
units. Note that the ISF contains a local C14-like structure in C15, while the ESF
contains a local C36-like structure in C15. Figure 2 shows schematic illustrations of
an ISF and an ESF obtained from C15 through the synchroshear mechanism: (a)
C15 ! ISF, and (b) C15 ! ESF. The C15 stacking has a repeated XYZ sequence (no
stacking fault). For the ISF, one unit, namely Y, is missing from the C15 XYZ
sequence, and X becomes X0 by synchroshear (shifts by ¡b2 and ¡b1 shown in
® gure 2 (a)) , while for an ESF a unit Y0 is added into the original C15 sequence.
For the ESF, two successive synchroshears (two synchro-shifts shown in ® gure 2 (b))
are operative in the acb type to maintain a TCP structure by introducing two primed
units, Z0 and Y0. Twinned structure is equivalent to a mirror re¯ ection about the X0

unit (see table 1).
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} 3. STACKING FAULT AND TWIN BOUNDARY ENERGIES
Total-energy calculations for the stacking fault energies of C15 Cr2Nb are per-

formed using the full-potential linearized augmented plane-wave (FLAPW) method
(Wimmer et al. 1981) within the local-density approximation. The FLAPW method
solves the local-density-functional equations without any shape approximation to
the potential or charge density. The atomic positions are relaxed by calculating
Hellmann± Feynman forces acting on the atoms.

The supercell geometry is used to obtain the energies of ISF, ESF and twin
boundary. In the supercell calculation, we use the experimental lattice constant
(6.991 A

¯
) of C15 Cr2Nb and spacings along a3 axis corresponding to the ideal hcp

c=a ratio, which gives ¹4. 04 A
¯

for the thickness of each X, Y, Z unit. We consider a
supercell containing XYZX0Z for an ISF and XYZXYZ0Y0 for an ESF. In these
supercells, the separations between ISF and ESF planes are about 20 A

¯
and 28 A

¯
,
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Figure 2. Schematic illustrations of an ISF and an ESF obtained from C15 through the
synchroshear mechanism: (a) C15 ! ISF, and (b) C15 ! ESF.

Table 1. Stacking sequences of the C15 structure (no stacking fault),
intrinsic stacking fault, extrinsic stacking fault, and twin
(C15 ‡ C15T† structure.

Sequence of faults

C15 ¢ ¢ ¢ XYZXYZXYZ¢ ¢ ¢
Intrinsic stacking fault ¢ ¢ ¢ XYZX 0ZXYZ¢ ¢ ¢
Extrinsic stacking fault ¢ ¢ ¢ XYZXYZ 0Y 0XYZ¢ ¢ ¢
Twin (C15 ‡ C15T† ¢ ¢ ¢ XYZX 0Z 0Y 0X 0Z 0Y 0¢ ¢ ¢



respectively. Also, a supercell containing XYZX0Z0Y0 (¹24 A
¯

) is considered for twin
boundary. The supercell for twinning contains two twin boundaries in it, thus the
separation between twin boundaries is about 12 A

¯
.

The internal coordinates of each structure are fully relaxed from the ideal posi-
tions (de® ned by the atomic positions of the C15 lattice) by calculating Hellmann±
Feynman forces acting on the atoms. The relaxation energies of ISF, ESF, and twin
boundary are 41, 20, and 17 mJm¡2 , respectively.

The results for the stacking fault and twin boundary energies are given in table 2.
It is found that the fault energies are ® ISF= 116 and ®ESF= 94 mJm¡2 for ISF and
ESF, respectively, and the twin boundary energy is ®T = 39 mJ m¡2. Since ESFs and
ISFs contain local C36-like and C14-like structures, respectively, a lower ESF energy
(®ESF) compared to the ISF energy (® ISF) is consistent with the fact that the C36
structure has a lower energy than the C14 structure (Hong and Fu 1999).

For comparison, we also calculated the stacking fault and twin boundary
energies using the theoretical lattice constant (6.822 A

¯
). The relaxation energies of

ISF, ESF, and twin boundary are 48, 40, and 21 mJm¡2 , respectively. It is also found
that the fault energies are 140 and 108 mJm¡2 for ISF and ESF, respectively, and the
twin boundary energy is 52 mJm¡2. The results using the theoretical lattice constant
are slightly larger than those using the experimental one.

Although the intrinsic faults are expected to prevail in fcc crystals rather than the
extrinsic faults (Hirth and Lothe 1982) , extrinsic stacking faults were observed to be
dominant in Laves phase Co2Ti (Allen et al. 1972) , and Nb-doped HfV2 (Chu et al.
1998). Since the calculated ®ESF is smaller than ®ISF , it is likely that the observed SFs
in Cr2Nb are also of extrinsic type.

We compare our results with others. Chu et al. (1995a) obtained ® ISF= 90 mJm¡2

by an estimation from the structural energy di� erence between the bulk C14 and C15
structures. This value is close to our value of 116 mJm¡2. On the other hand,
Yoshida et al. (1995) observed extended dislocation nodes in C15 Cr2Nb deformed
at 1623 K, in which the SFs are bounded by three Shockley partials (of the type
1
6
h112i) with a radius of curvature of R. They obtained a smaller value of 8mJ m¡2.

Note that Chu et al. (1995a) re-estimated SFE from the data of Yoshida et al. (1995)
to obtain ®SF ˆ 15± 60mJm¡2. More recently, Kazantzis et al. (1996) obtained a
value of 25 mJm¡2 from TEM observations of extended triple-junction nodes in
Cr2Nb at 1400 and 1500¯C. These results are tabulated in table 2.

Our results for SFEs are higher than the experimental results. Certainly, SFE
obtained at high temperatures can be expected to be lower than the calculated value
at 0 K, which has also been suggested by Kazantzis et al. (1996). The unknown image
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Table 2. Stacking fault and twin boundary energies for C15 Cr2Nb, using the experimental
lattice constant.

Method ®SF …mJm¡2) ®T (mJm¡2)

This work 116 (intrinsic) 94 (extrinsic) 39
LMTOa 90 (intrinsic) Ð
Expb 25 Ð
Expc >8 Ð

a Chu et al. (1995a): estimated from energy di� erence between C14 and C15.
b Kazantzis et al. (1996): estimated from dislocation triple-junction.
c Yoshida et al. (1995): estimated from dislocation triple-junction.



shift of Shockley partial dislocations can also give an uncertainty in the SFE deter-
mination ; for example, for SFE in silicon, ®SF ˆ 30 erg cm¡2 has an uncertainty in
the range 15 < ®SF < 75 erg cm¡2 , after taking into account the image shift (Aerts et
al. 1962). From these points of view, the temperature and image shift e� ects may
be responsible for the di� erence between our calculated value and experimental
results.

Our theoretical calculations on Cr2Nb were performed for the stoichiometric
composition. In experiments, however, some localized variations in chemical com-
position are possible in polycrystalline compounds. For instance, the two Cr2Nb
alloys investigated by Yoshida et al. (1995) were Cr± 32. 2% Nb and Cr-34. 0% Nb,
in which the second phase particles observed are Cr solid solution in the former and
Nb solid solution in the latter. Also, polycrystals used in experiments may have
compositions that deviate from the ideal stoichiometry ratio, since the phase
region of the C15 Cr2Nb is relatively large. For example, as mentioned by Hong
and Fu (1999) , the calculated elastic moduli for the stoichiometry alloy at
the experimental lattice constant are very di� erent from the experimental values
(Chu et al. 1995b) obtained from polycrystals. Therefore, this composition
e� ect can also be partially responsible for the discrepancy between theory and
experiment.

The calculated twin boundary energy, ®T ˆ 39 mJm¡2 , at the experimental
lattice constant for Cr2Nb is relatively low, for instance, in comparison to
®T= 60 mJm¡2 for TiAl of the Ll0 structure (Fu and Yoo 1990). In view of the
energetics of twin nucleation, such a low twin boundary energy suggests a high
propensity of twinning in Cr2Nb. This is consistent with the experimental observa-
tions of twinned microstructures in Cr2Nb, formed due to plastic deformation at
elevated temperatures (Yoshida et al. 1995) and to the internal stresses resulting from
the C14± C15 transformation as well as the thermal contraction di� erences between
Cr solid solution and Cr2Nb in the two-phase alloy (Kumar and Liu 1997).
However, the absence of deformation twinning in Cr2Nb at low temperatures is
not understood. Kinetic aspects of the motion of synchro-Shockley partials need
to be elucidated in order to better understand twin formation in the C15 Laves
phase.

} 4. INTERACTION BETWEEN SHOCKLEY PARTIALS
From the anisotropic elasticity theory (Stroh 1958, Hirth and Lothe 1982) we

calculate the equilibrium separation between Shockley partials, using the calculated
elastic constants (Hong and Fu 1999) and stacking fault energies.

First, we consider the following case for the ISF:

1
2

‰1-10Š ! 1
6

‰1-21Š ‡ ISF ‡ 1
6

‰2-1-1Š; …4†

where B ˆ 1
2 ‰1-10Š, b…1† ˆ 1

6 ‰1-21Š and b…2† ˆ 1
6 ‰2-1-1Š correspond to ¡a2 , b3 , and ¡b1 in

® gure 1, respectively. This expression for the formation of an ISF is approximate
since the Shockley partial b3 ˆ 1

6 ‰1-21Š is the sum of two synchro-Shockley partial
vectors ¡b2 and ¡b1 , lying in the two successive atomic planes, shown in ® gure 2 (a).
The equilibrium separation between Shockley partials can be obtained through the
balance of the attractive force (the surface tension due to the ISF) and the repulsive
force (due to elastic interaction between the partials).
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The radial and tangential components of the interaction force (per unit length)
between two parallel dislocations can be calculated by

Fr ˆ fr=…2ºr† ; …5†

F³ ˆ f³=…2ºr†: …6†

Here, r is the separation between the two partials of Burgers vectors b…1† and b…2† ,
and fr and f³ are the radial (in the f111g plane) and tangential (out-of-the plane)
components of the interaction force constants, which are determined from the
anisotropic elasticity theory of dislocations (Stroh 1958). For the dissociation of
equation (4) , the interaction force constants fr and f³ are obtained numerically
(Yoo 1987) , by (i) letting b…1† ˆ 1

6 ‰1-21Š and b…2† ˆ 1
6 ‰2-1-1Š , (ii) using the experimental

lattice constant a0 ˆ 6:991 A
¯

for C15, and (iii) the calculated elastic constants and
®ISF at experimental lattice constant.

As shown in ® gure 3, the radial component fr increases monotonically from
¿ ˆ 0 (screw) to ¿= 90¯ (edge) , where ¿ is the angle between a dislocation line
and the Burgers vector B. The tangential component f³ is maximum in magnitude
at ¿= 31¯and zero at the edge orientation. At ¿ ¹ 30¯ , the two parallel Shockley
partials are inclined at about 60¯and 0¯ to their respective Burgers vectors. This
implies that while the repulsive Fr balances the surface tension ®SF (see
equation (7) below) , the out-of-plane force (F³ ˆ 0:5Fr at ¿ ˆ 30¯ ) promotes
cross-slip of the screw Shockley partial and climb of the 60¯ Shockley partial,
most likely onto the ( -101) plane. This Shockley partial dissociation con® guration
of the cross-slip and climb combination may lead to a possible mechanism for the
thickening process of a twin embryo originating from a mixed (¿ ˆ 30¯ ) 1

2 ‰1-10Š
dislocation.
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Figure 3. Orientation dependence of the interaction force constants in Cr2Nb for the ISF-
type dissociation, using the results obtained at the experimental lattice constant. ¿ is
an angle between a dislocation line and the Burgers vector 1

2 ‰1-10Š.



The width of the equilibrium separation, w, can be obtained from

®SF ˆ Fr ˆ fr=…2ºw†; …7†

w ˆ fr=…2º®SF†: …8†

The separation is ws ˆ 17:6 A
¯

for the B ˆ 1
2 ‰1-10Š screw dislocation, and we ˆ 54:7 A

¯

for the edge dislocation. These results are shown in table 3, together with those in the
isotropic case (discussed below). Also, the results using ®ESF and the experimental
result are tabulated.

For the isotropic case, the equilibrium separation w is given by a simple formula
(Hirth and Lothe 1982):

w ˆ Gb2

8º®SF

2 ¡ ¸

1 ¡ ¸
1 ¡

2¸ cos 2¿

2 ¡ ¸
… †: …9†

Here, b ˆ jb…1†j ˆ jb…2†j ˆ a0=61=2. The Hill’ s average values of shear modulus and
the Poisson’ s ratio are G ˆ 50:0 GPa and ¸ ˆ 0:383, respectively. Using ® ISF , it is
found that ws ˆ 19:3 A

¯
and we ˆ 53:9 A

¯
. As given in table 3, the results in

anisotropic and isotropic cases are rather close, because the shear anisotropy of
C15 Cr2Nb is moderate, A ˆ 1:45 (Hong and Fu 1999) , compared to the isotropic
case (A ˆ 1).

The radial component fr of the isotropic case is very close to that of the aniso-
tropic one, whereas its tangential component f³ is exactly zero (® gure 3). While the
anisotropic corrections to fr and hence to w in equation (9) are very small, the
anisotropic tangential component of the elastic interaction force is quite large ; for
instance, f³=fr ¹ 0:7 at ¿ ˆ 0. This indicates that cross-slip of 1

2 ‰1-10Š dislocation is
di� cult in Cr2Nb because of a large constriction energy for the Shockley partials
that include the non-radial component of the interaction energy.

Next, let us consider the ESF case:

1
2

‰1-10Š ! 1
6

‰1-21Š ‡ 1
6

‰11 -2Š ‡ ESF ‡ 1
6

‰2-1-1Š ‡ 1
6

‰ -1-12Š …10†

º
1
6

‰2-1-1Š ‡ ESF ‡
1
6

‰1-21Š : …11†

To calculate the width of the ESF, we approximate two Shockley partials on two
successive TCP units on either side of the ESF by a single Shockley partial (as in the
ISF case) , and use the same formulas for the ISF. In other words, the only di� erence
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Table 3. Equilibrium separation between Shockley particles bounding an ISF and an ESF,
using the results obtained at experimental lattice constant. ws and we are the width for
screw and edge dislocations, respectively. The numbers are in angstroms.

ws (screw) we (edge)

ISF ESF ISF ESF

Theory …T ˆ 0 K† Anisotropic 18 22 55 68
Isotropic 19 24 54 67

Expa (T ˆ 14008C† 99 Ð
a Kazantzis et al. (1996): measured from the ribbon after the correction for image shift and

projection e� ects.



between ISF and ESF in the calculation of separation w is that the stacking fault
energy used in the formulas is of intrinsic or extrinsic type. Using ®ESF , it is found
that ws ˆ 21:7 A

¯
and we ˆ 67:5 A

¯
for the anisotropic case (table 3). For the isotro-

pic case, they are ws ˆ 24:4 and we ˆ 66:5 A
¯

. As mentioned, the results of both
anisotropic and isotropic cases are very close. Since ®ESF is not much di� erent
from ®ISF , the force constants fr and f³ using ®ESF are expected to be similar to
those in ® gure 3 using ®ISF .

On the other hand, we consider the separation between partials by using the
theoretical lattice constant. For the ISF, the separation is ws ˆ 17:1 A

¯
and

we ˆ 53:5 A
¯

for the anisotropic case, while ws ˆ 18:7 A
¯

and we ˆ 52:8 A
¯

for the
isotropic case. For the ESF, the separation is ws ˆ 22:2 A

¯
and we ˆ 69:4 A

¯
for the

anisotropic case, while ws ˆ 24:2A
¯

and we ˆ 68:4 A
¯

for the isotropic case. It can be
seen that the separations are very close when using both experimental and theoretical
lattice constants.

Kazantzis et al. (1996) measured, at T ˆ 1400¯C, the width of the ribbon
(separation between two parallel partial dislocations) as 99 A

¯
after correction for

image shift and projection e� ects. Note that they also obtained a di� erent value of
ws ˆ 82 A

¯
for the width using equation (9) with ®SF ˆ 25 mJm¡2 , which was

estimated from the measured curvature of R in extended dislocation nodes and
the temperature-corrected shear modulus. Compared with the experimental result
at high temperatures, our results for the separation between partials are very small.

} 5. SUMMARY
We performed ® rst-principles total-energy calculations to obtain stacking fault

and twin boundary energies. The intrinsic and extrinsic stacking fault energies were
calculated to be 116 and 94 mJm¡2 , respectively, and the twin boundary energy was
39 mJm¡2. The calculated stacking fault energies are larger than the available
experimental data, measured at high temperatures. We also calculated the
equilibrium separations between Shockley partials using the calculated elastic
constants and stacking fault energies. Our results of the equilibrium separations
are very small compared with the experimental results reported at high temperatures.
This discrepancy may be due to temperature and/or composition and image shift
e� ects.

ACKNOWLEDGEMENTS

The research was sponsored by the Division of Materials Sciences, O� ce of Basic
Energy Sciences, US Department of Energy under contract DE-AC05-96OR22464
with Lockheed Martin Energy Research Corporation.

REFERENCES
AERTS, E., DELAVIGNETTE,P.,SIEMS, R., and AMELINCKX, S., 1962, J. appl. Phys. , 33, 3078.
ALLEN, C. W., DELAVIGNETTE, P., and AMELINCKX, S., 1972, Phys. status solidi (a) , 9, 237.
CHU, F ., ORMECI, A. H., M ITCHELL, T. E., WILLS, J. M., THOMA, D. J., ALBERS, R. C.,

and CHEN, S. P., 1995a, Phil. Mag. L ett., 72, 147.
CHU, F., HE, Y., THOMA, D. J., and M ITCHELL, T. E., 1995b, Scripta metall. mater., 33,

1295.
CHU,F ., LU,Y.-C.,KOTULA,P. G.,M ITCHELL, T. E., and THOMA,D. J., 1998, Phil. Mag.

A, 77, 941.

Stacking fault and twin boundary energies of Cr2Nb 879

http://angelina.catchword.com/nw=1/rpsv/0141-8610^28^2977L.941[aid=641392,^20cw=1]
http://angelina.catchword.com/nw=1/rpsv/0141-8610^28^2977L.941[aid=641392,^20cw=1]


CHU,F., and POPE,D. P., 1993, High-Temperature Ordered Intermetallic Alloys V , Materials
Research Society Symposium Proceedings, Vol. 288, edited by I. Baker, R. Darolia, J.
D. Whittenberger and M. H. Yoo (Materials Research Society) , p. 561.

FU, C. L., and YOO, M . H., 1990, Phil. Mag. L ett., 62, 159.
HAZZLEDINE, P. M., 1994, Twinning in Advanced Materials, edited by M. H. Yoo and M.

Wuttig (The Minerals, Metals & Materials Society), p. 403.
HAZZLEDINE, P. M., and PIROUZ, P., 1993, Scripta metall. mater., 28, 1277.
H IRTH, J. P., and LOTHE, J., 1982, Theory of Dislocations (New York: Wiley).
HONG, S., and FU, C. L., 1999, Intermetallics , 7, 5.
KAZANTZIS, A. V., AINDOW, M., and JONES, I. P., 1996, Phil. Mag. L ett., 74, 129.
KRONBERG, M . L., 1957, Acta metall. , 5, 507.
KUMAR, K. S., and LIU, C. T., 1997, Acta mater., 45, 3671.
LIVINGSTON, J. D., and HALL, E. L., 1990, J. mater. Res., 5, 5.
STROH, A. N., 1958, Phil. Mag. , 3, 625.
WIMMER,E.,KRAKAUER,H.,WEINERT,M., and FREEMAN,A. J., 1981, Phys. Rev. B, 24, 864.
YOO, M. H., 1987, Acta metall. , 35, 1559.
YOSHIDA,M.,TAKASUGI,T., and HANADA,S., 1995, High-Temperature Ordered Intermetallic

Alloys V I, Materials Research Society Symposium Proceedings, Vol. 364, edited by J.
Horton, I. Baker, S. Hanada, R. D. Noebe and D. S. Schwartz (Materials Research
Society), p. 1395.

880 Stacking fault and twin boundary energies of Cr2Nb

http://angelina.catchword.com/nw=1/rpsv/0950-0839^28^2962L.159[aid=638994,^20csa=0950-0839^26vol=62^26iss=3^26firstpage=159]
http://angelina.catchword.com/nw=1/rpsv/0950-0839^28^2974L.129[aid=639371,^20csa=0950-0839^26vol=74^26iss=3^26firstpage=129]
http://angelina.catchword.com/nw=1/rpsv/1359-6454^28^2945L.3671[aid=641396,^20csa=1359-6454^26vol=45^26iss=9^26firstpage=3671]
http://angelina.catchword.com/nw=1/rpsv/0884-2914^28^295L.5[aid=639375]

