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ABSTRACT
Taking Mo± Si compounds as model systems, we show that the coe� cients of

thermal expansion (CTEs) of complex structures can be calculated precisely from
® rst principles by incorporating the Debye model for acoustic response.
Speci® cally, we obtain a nearly isotropic CTE in MoSi2 but a highly
anisotropic CTE in Mo5Si3. The CTE anisotropy in Mo5Si3 is due to an
elastically more rigid basal plane and a higher anharmonicity along the c axis.
As the structure of 5± 3 compounds is modi® ed from D8m to D8l by boron
substitutions (Mo5SiB2), we predict a signi® cant decrease in the CTE
anisotropy, which is con® rmed by experiments.

} 1. INTRODUCTION
In the synthesis and processing of non-cubic high-temperature materials, micro-

cracks are often induced owing to the anisotropy in the coe� cients of thermal
expansion (CTEs). To minimize the thermal stresses in polycrystalline materials, a
more isotropic CTE is desirable. The degree of the anisotropy, however, is not
predictable by any empirical rules and can vary substantially within any speci® c
material type. For example, among the transition-metal silicides, the CTEs are
highly anisotropic for 5± 3 silicides, but become nearly isotropic for disilicides
(Shah et al. 1992). No ab initio theory has been developed to correlate the degree
of the anisotropy with the nature of crystal and electronic structures. In this paper,
taking the tetragonal Mo± Si alloys (MoSi2 ; Mo5Si3 and Mo5SiB2) as model systems,
we show that ab initio theory can precisely predict and elucidate the theromoelastic
properties of these alloys.

That the CTEs are highly anisotropic in 5± 3 transition-metal silicides is well
documented. There is no exception for Mo5Si3. Measurements by Chu et al.
(1999) show that the CTE in the [001] direction is more than twice the CTE in the
[100] direction. We shall calculate the CTEs and address the origin of anisotropy in
this class of compounds. One prominent feature of 5± 3 Mo± Si is that the substitution
by boron …Mo5SiB2† substantially improves the oxidation resistance (Meyer et al.
1996) but, at the same time, changes the crystal structure from D8m (T1 phase) to
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D8l (T2 phase). An important basic question is whether or not the CTE anisotropy
of the T1 phase is retained in the T2 phase. The answer provided by our investigation
is that the CTEs of the T2 phase become nearly isotropic. This prediction is further
con® rmed by experiments. The structures of D8m and D8l are depicted in ® gure 1.
Note the existence of prominent chain structures along the c axis shown at the cell
boundaries in ® gure 1 (a).

} 2. THE THEORETICAL MODEL
Although thermal expansion is a classic subject, the calculation of CTEs by ® rst

principles is still largely limited to simple cubic elements (for example Fleszar and
Gonze (1990) and Quong and Liu (1997) ). This is the situation because rigorous
calculations of the entire phonon spectra become lengthy and di� cult for complex
multicomponent systems. The problem can be simpli® ed by approximating the pho-
non contribution through the elastic acoustic response (i.e. the Debye model). The
semiempirical approach based on this model has had quantitative success in describ-
ing the CTEs of monatomic cubic metals (Moruzzi et al. 1988). Generally, the use of
a Debye model for thermal expansion tends to overestimate the hydrostatic pressure
for multicomponent systems. For the present systems, however, we ® nd that the use
of a Debye model for the lattice anharmonicity in our formalism (see below) is
adequate enough to give CTE values to within about 10% of the available measured
values in most cases. On physical grounds, this is not surprising. The materials
investigated here display strong covalent bonding characteristics (Fu et al. 1999),
which imply high optical phonon energies. Because of their higher activation ener-
gies, optical phonons are not expected to modify signi® cantly the results presented
here. The good agreement between our results and the measurements on the proto-
type system MoSi2 (see below) further con® rms that optical phonons do not play
signi® cant roles.
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Figure 1. The crystal structures of the (a) D8m and (b) D8l structures.



To calculate the CTE of a tetragonal structure, we consider the free energy F…T †
in the presence of elastic strain components (uniform expansions or contractions) ui
as

F…T † ˆ E0 ‡1
2

C·¸u·u¸ ‡ 1
3!

C·¸¼u·u¸u¼ ‡Fphonon…T † ; …1†

where the Greek subscripts take values from 1 to 3 and the Einstein summation
convention is implied. Fphonon is the phonon free energy (including zero-point
motion), and E0 is the total energy at 0 K. Cij and Cijk are second-order and
third-order elastic constants respectively. The sound velocities are determined
from the Christo� el equation (Ashcroft and Mermin 1976). A minimization of the
free energy with respect to the strains (da=a and dc=c in [100] and [001] directions
respectively) yields the following equations for the change in lattice parameters at
temperature T :

da
a

ˆ 2 ~C…2†
13 Gc…T † ¡ ~C33Ga…T †

2… ~C11 ‡ ~C12† ~C33 ¡ 4 ~C…1†
13

~C…2†
13

; …2†

dc
c

ˆ 2 ~C…2†
13 Ga…T † ¡ 2… ~C11 ‡ ~C12†Gc…T †
2… ~C11 ‡ ~C12† ~C33 ¡ 4 ~C…1†

13
~C…2†

13

: …3†

Here, G…T † and Gc…T † are the derivatives of Fphonon with respect to da=a and dc=c,
and the ~C values are given by

~C11 ‡ ~C12 ˆ C11 ‡C12 ‡ …C113 ‡C123†
dc
c

‡1
2

…C111 ‡3C112†
da
a

; …4†

~C33 ˆ C33 ‡1
2

C333
dc
c

‡2C133
da
a

; …5†

~C…1†
13 ˆ C13 ‡1

2
…C113 ‡C123†

da
a

; …6†

~C…2†
13 ˆ C13 ‡1

2
C133

dc
c

: …7†

The algebraic equations (2)± (7) are solved iteratively once Ga…T † and Gc…T † are
obtained from ® rst principles. Clearly, thermal expansion depends on both crystal
elasticity and lattice anharmonicity. If the system is isotropic in lattice anharmonicity
(i.e. Ga ˆ 2Gc†, the ratio of thermal expansions becomes inversely proportional to
the ratio of elastic tensile sti� ness in the basal plane and along the c axis.

The calculation of the CTEs for these complex structures imposes a tremendous
challenge, since the CTE depends not only on the second-order elastic constants but
also on higher-order elastic constants (dominated by third-order terms). For a tetra-
gonal structure, there are six independent second-order elastic constants and ten
independent third-order elastic constants. While the calculation of second-order
elastic constants has become more common recently, the calculation of higher-
order elastic constants remains challenging. This is because that the calculation of
higher-order terms involves the di� erence in the elastic strain energies at a small
change in lattice parameter. The higher-order elastic constants contribute to both
crystal anharmonicity (through the dependence of the Debye temperature on the
lattice parameter in our model) and the temperature dependence of elastic constants.
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The elastic constants were calculated by the full-potential linearized augmented
plane-wave (FLAPW) method (Wimmer et al. 1981) within the local-density-f unc-
tional approach. The calculational details of the second-order elastic constants of a
tetragonal structure have been described by Fu et al. (1999). The third-order elastic
constants were determined through the derivative of second-order elastic constants
with respect to lattice strains (i.e. da=a and dc=c). Within a range of 3± 4% change in
the lattice parameters, the dependence of the second-order elastic constants on lattice
parameters is found to be linear, indicating that the third-order terms are dominant
in the higher-order elastic constants. In calculations of the strained structure sys-
tems, the internal coordinates of the atoms within the unit cell were relaxed using the
calculated FLAPW atomic forces.

} 3. RESULTS AND DISCUSSION
The calculated second- and third-order elastic constants are listed in table 1 and

table 2 respectively. We ® nd excellent agreement between theory and experiments
(Nakamura et al. 1990 ; Chu et al. 1999) in the second-order elastic constants for
MoSi2 and Mo5Si3. The measured second-order elastic constants are C11 ˆ 446 GPa,
C12 ˆ 174 GPa, C33 ˆ 390 GPa, C13 ˆ 140 GPa, C44 ˆ 110 GPa and C66 ˆ 140 GPa
for Mo5Si3, and C11 ˆ 417 GPa, C12 ˆ 104:2 GPa, C33 ˆ 514:5 GPa,
C13 ˆ 83:8 GPa, C44 ˆ 204:2 GPa and C66 ˆ 193:6 GPa for MoSi2. However, we
are not aware of any measurement of higher-order terms. For Mo5SiB2, there is
no experimental measurement to compare with, since single-crystal T2 phase is not
currently available.

To examine the validity of our theory, we ® rst consider MoSi2. It has the simplest
structure studied here. There are two interesting features in the elastic properties of
MoSi2.

(1) C11 ‡ C12 º C33 (i.e. the same degree of elastic rigidity in the basal plane and
along the c-axis).
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Table 1. Theoretical second-order elastic constants of MoSi2, Mo5Si3
and Mo5SiB2.

C11 C12 C33 C13 C44 C66
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

MoSi2
a 404 109 508 87 198 195

Mo5Si3
a 438 162 371 136 106 143

Mo5SiB2 483 154 419 188 179 127
a At experimental lattice parameters.

Table 2. Theoretical third-order elastic constants of MoSi2 , Mo5Si3 and Mo5SiB2. Here
C111 ‡3C112 and C113 ‡C123 measure the `softening rate’ of the tensile modulus
C11 ‡C12 with [100] and [001] expansions respectively.

C111 ‡3C112 C113 ‡C123 C333 C133 C144 C344 C166 C366
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

MoSi2 ¡4700 ¡1450 ¡4560 ¡950 ¡700 ¡600 ¡900 ¡750
Mo5Si3 ¡6520 ¡1540 ¡2830 ¡780 ¡370 ¡665 ¡820 ¡370
Mo5SiB2 ¡5700 ¡600 ¡2600 ¡200 ¡600 ¡770 ¡650 ¡200



(2) C166 º C366 and C144 º C344 (i.e. the response of shear elastic constants with
respect to lattice expansions in different directions are approximately equal),
indicating a small difference between the lattice anharmonicities in the [100]
and [001] directions.

Indeed, the calculated CTEs of MoSi2 shown in ® gure 2 (a) are nearly isotropic
with magnitudes of about 8± 10 ppm K¡1 at high temperatures. The calculated CTEs
are in good agreement with experiment (Thomas et al. 1985). The measured CTEs
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Figure 2. The calculated CTEs in the [100] and [001] directions for (a) MoSi2, (b) Mo5Si3 and
(c) Mo5SiB2 .



are 8.2 and 9.4 ppm K¡1 in the [100] and [001] directions respectively. This good
agreement con® rms that our model is valid for these strong covalent Mo± Si systems.
In the following, we report our theoretical predictions for the 5± 3 Mo± Si com-
pounds.

The calculation for the CTE of Mo5Si3 becomes far more demanding owing to
the complexity of its structure. The bonding in Mo5Si3 is shown to have pronounced
multicentred covalent components (Fu et al. 1999), characterized by the planar Mo±
Si± Mo bonding units in the basal plane and by the unusually short Mo± Mo bonds
along the c axis (shorter by about 10% relative to the MoÐ Mo distance in the basal
plane). While the basal plane is found to be elastically more rigid than the c axis
(C11 ‡C12 > C33 ), the Mo± Mo bonds along the c axis will be shown to play a more
important role in determining the anisotropy of lattice anharmonicity. Anisotropy is
found in the elastic response to lattice expansions, which is evidenced in the marked
di� erence in the magnitudes of calculated third-order terms: C344 > C144 and
C366 < C166 for [100](001) and [100](010) shears respectively.

The anharmonicity can be described by examining the volume dependence of
Debye temperature ³D, that is the GruÈ neisen constant …® ˆ ¡@…ln ³D†=@…ln V )). We
® nd that ® is higher for the lattice expanded in the [001] direction (®‰001Š ˆ 2:55) than
in the [100] direction (®‰100Š ˆ 2:17). In other words, the lattice vibration energy
decreases more rapidly by [001] expansions than by [100] expansions. The calculated
CTEs of Mo5Si3 shown in ® gure 2 (b) are consistent with the experimental measure-
ment by Chu et al. (1999) . The CTE along the [001] direction is about twice that in
the [100] direction. The measurements were made in the range from 300 to 700 K
with ® tted CTEs of 5.2 and 11.5 ppm K¡1 in the [100] and [001] directions respec-
tively. It should be noted, however, that the calculated CTEs still increase linearly
with increasing temperature at higher temperatures (in particular, in the [001] direc-
tion).

An examination of the third-order elastic constants of MoSi2 and Mo5Si3 shows
the di� erence between their elastic responses to lattice expansions. In MoSi2, the
response of either C44 or C66 to lattice expansions is nearly isotropic. By contrast, the
corresponding shear elastic response in Mo5Si3 is anisotropic. Because of a planar
covalent bonding in the basal plane in Mo5Si3, the ® nding that C366 < C166 for (001)
intralayer shear is not entirely surprising (i.e. C66 decreases more rapidly by [100]
expansions than by [001] expansions). The large di� erence (by a factor of two)
between C344 and C144 for (001) interlayer shear, however, is unexpected, since an
increase in lattice spacing in either the [001] or the [100] direction has the same e� ect
to decrease the [100](001) shear elastic strength.

Analysis shows that, as the lattice spacing is varied, the change in Debye tem-
perature (i.e. lattice anharmonicity) is particularly sensitive to the variation in shear
elastic constants. In the case of Mo5Si3, the major contribution to the anisotropy in
anharmonicity comes from the anisotropy in C344 and C144 (i.e. C44 decreases more
rapidly by [001] expansions than by [100] expansions). (Note that the response of
[100](001) shear (i.e. C44 ) is about twice as important as the response of [100](010)
shear (i.e. C66 ), since C44 and C55 are degenerate for tetragonal systems. ) The
physical origin for this anisotropy lies in the dominant role of the unusually short
Mo± Mo [001] covalent bonds in coupling the (001) layers. These covalent Mo± Mo
bonds, which characterize the [100](001) shear, are weakened more by [001]
expansions than by [100] expansions. Increasing the [001] spacing reduces the
Mo± Mo [001] bond strength and decreases the lattice vibrational energy (giving
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higher lattice anharmonicity) more rapidly than in-plane expansions. This direc-
tional dependence of the Mo± Mo bond strength (in coupling the (001) layers) con-
tributes signi® cantly to the di� erence in the softening behaviour of the [100](001)
shear characteristics.

Thus, for Mo5Si3, there are two physical sources contributing to a higher CTE
along the [001] direction than along the [100] direction : a stronger bonding in the
basal plane …C11 ‡C12 > C33† and a higher lattice anharmonicity along the c axis
(dominated by C344 > C144 ). Both of these physical mechanisms can be understood
in terms of electronic structure : the existence of planar multicentred Mo± Si± Mo
covalent bonds in the basal plane, and the dominant role of directional Mo± Mo
bonds along the c axis in the (001) interlayer coupling. In fact, we believe that the
same mechanisms are also responsible for the observed CTE anisotropy in other 5± 3
transition-metal silicides. For example, although Ti5Si3 has a di� erent crystal struc-
ture (hexagonal D88 structure) from the tetragonal D8m structure discussed above,
the interlayer coupling between basal planes is still dominated by atomic chains
along the c axis with unusually short interatomic distance. As a result, the calculated
CTEs of Ti5Si3 are also highly anisotropic. It follows that it is possible to reduce the
CTE anisotropy if the interlayer coupling between basal planes is no longer domi-
nated solely by the [001] bonding component. This can probably be achieved either
by interstitial alloying additions (to modify bonding direction) or by alloying sub-
stitutions (to increase the interatomic distance along the chains). These suggestions
are currently examined by experiments.

The substitution of boron in Mo± Si changes the crystal structure from D8m (T1
phase) to D8l (T2 phase). One notable feature of the T2 phase is the absence of
transition-metal atomic chains along the c axis in this structure. The calculated
lattice parameters are 6.027 and 10.97 A

¯
for a and c respectively.

For Mo5SiB2, the averaged elastic moduli are higher than those of Mo5Si3. This
increase is partly attributed to the formation of Mo± B covalent bonds. While the
calculated second-order elastic constants for the T2 phase still indicate that the basal
plane is elastically more rigid than the c axis (C11 ‡C12 > C33†, the e� ect of this
di� erence on the CTE is balanced by a substantial increase in the elastic coupling
(C13 ) between the basal plane and c axis, presumably owing to the e� ect of boron at
interstitial sites (cf. ® gure 1). Most signi® cantly, the lattice anharmonicity for the T2
phase is found to be nearly isotropic in the [100] and [001] directions (with GruÈ neisen
constants of 2.05 and 1.98 respectively). We identify this near isotropy in lattice anhar-
monicity as being due to the absence of a directionally bonded [001] chain structure
characteristic of the T1 phase. Indeed, in this case, the di� erence between C344 and C144
becomes smaller and is balanced by a relatively larger di� erence between C166 and C366 .

As a result of decreased anisotropy in both the elastic (static) contribution
and the lattice anharmonicity compared with the T1 phase, the CTEs for the T2
phase become nearly isotropic in [100] and [001] directions with the CTE in the
[100] direction being slightly higher. The calculated CTEs for the T2 phase are
presented in ® gure 2 (c). Experimentally, it was observed that, in the processing of
these alloys, grain-boundary cracking problems (characteristic of the T1 phase)
are virtually eliminated in the T2 phase, indicating that the CTE anisotropy in
the T2 phase is much less than that of the T1 phase, in agreement with theo-
retical prediction.

More recently, the CTEs of Mo5SiB2 were measured by neutron powder di� rac-
tion (Rawn et al. 2000) and by synchrotron X-ray di� raction (Kramer 2000) from
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room temperature to 14008C. The experiments con® rm the theoretical prediction not
only of the CTE values but also of a nearly isotropic CTE for Mo5SiB2.

In summary, we have shown that the CTEs of complex systems can be predicted
by ® rst-principles calculation. The high CTE anisotropy in 5± 3 silicides is under-
stood in terms of the anisotropy in lattice anharmonicity. The removal of atom
chains (characteristic of the T1 phase) along the c axis by boron substitutions sub-
stantially decreases the CTE anisotropy in the T2 phase.
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