Bioenergy – Understanding the enemy


Insight from a new Oak Ridge National Laboratory study is helping bioenergy researchers defeat lignin, one of the biggest barriers to efficient biofuel production. Lignin, a woody component in plant cell walls, is made of three monomers: guaiacyl, syringyl, and p-hydroxyphenyl (H). Experimental studies have shown that higher concentrations of the H monomer lead to plants that break down more easily into sugar, but scientists have not known why. ORNL researchers used supercomputer simulations to explain this phenomenon, showing how the H subunits “cap” lignin’s growth and prevent the polymer from forming long chains. “Shorter chains will lead to easily extractable lignin during biomass processing,” said ORNL’s Amandeep Sangha. The team’s study, supported by DOE’s BioEnergy Science Center, is published in the Journal of Physical Chemistry B.

 -  Morgan McCorkle,  865.574.7308,  February 04, 2014

We're always happy to get feedback from our users. Please use the Comments form to send us your comments, questions, and observations.