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ABSTRACT 

NERI Project #2000-0209 begin in August 2000 and has three tasks. The first project year 
addressed Task 1 , namely development of nonlinear prognostication for critical equipment in 
nuclear power facilities. That work is described in the first year’s annual report (ORNL/TM- 
2001/195). The current (second) project year (FY02) addresses Task 2, while the third project 
year will address Tasks 2-3. This report describes the work for the second project year, spanning 
August 2001 through August 2002, including status of the tasks, issues and concerns, cost 
performance, and status summary of tasks. 

The objective of the second project year’s work i s  a compelling demonstration of the nonlinear 
prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus 
(DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of 
nuclear-grade equipment, as opposed to many different failure modes from one piece of 
equipment. Long-term monitoring of operational utility cquipment is possible in principle, but is 
not practically feasible for the following reason. Time and funding constraints for this project do 
not allow us to monitor the many machines (thousands) that will be necessary to obtain even a 
few failure sequences, due to low failure rates (<l O-3/year) in the operational environment. 
Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively 
larger faults in the equipment or to overload the equipment for accelerated tests. Both of these 
approaches are infeasible for operational utility machinery, but are straight-forward in a test 
environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 
2.1-2.4 to analyze archival test data from such tests. 

The second phase of our work involves validation of the nonlinear prognostication over the 
second and third years of the proposed work. Recognizing the inherent limitations outlined in the 
previous paragraph, Dr. Feltus urged Oak Ridge National Laboratory (OKNL) to contact other 
researchers for additional data from other test equipment. Consequently, we have revised the 
work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status 
Summary of NERI Tasks (below). The revised tasks are as follows. 

Task 2.1: ORNL will obtain test data from a subcontractor and other researchers for various test 
equipment. This task includes development of a test plan or a description of the historical testing, 
as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, 
data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this 
data for quality, and subsequently via the nonlinear paradigm for prognostication. 

Task 2.2: ORNL will evaluate the prognostication capability of the nonlinear paradigm. The 
comparison metrics for reliability of the predictions will include the true positives, true negatives, 
and the forewarning times. 

Task 2.3: ORNL will improve the nonlinear paradigm as appropriate, in accord with the results 
of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. 
Maximal forewarning time is also highIy desirable. 

... 
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Task 2.4: O W L  will devclop advanced algorithms for the phase-space distribution function (PS- 
DF) pattern change recognition, based on the results of Task 2.3. This implementation will 
provide a capability for automated prognostication, as part of the maintenance decision-making. 

Appendix A provides a detailed description of the analysis methods, which include conventional 
statistics, traditional nonlinear measures, and ORNL’s patented nonlinear PSDM. The body of 
this report focuses on results of this analysis. 

ix 



1. ADDITIONAL DATA 

Dr. Feltus suggested potential contacts for additional data. Oak Ridge National Laboratory 
(OWL) has pursued these and follow-on contacts as summarized in Table 1. To date, ORNL has 
obtained data from several researchers. as discussed next. 

Don Jarrell of Pacific Northwest National Laboratory (PNNL) sent information to ORNL via e- 
mail on 10/2/01, including a description of pump cavitation tests from their NERI project. The 
specific data spanned 600-1400 s for each of three experiments. However, the sampling rate of 1 
EIz was much too slow to allow analysis by our nonlinear algorithm. No additional data has been 
received from Don Jarrell. 

ORNL obtained test data on CD-ROM from Dr. Amir Shirkhodaie (Tennessee State University, 
Department of Mechanical Engineering) on November 17, 200 1. These tests involve a motor- 
bearing system (Fig. 1) running at 900-3500 rpm. Sixteen channels of data were recorded in each 
record, including a time stamp, twelve accelerations, two forces, and one acoustic reading. All 
data were sampled at 10.8 kHz. Data quality analysis revealed one test sequence with only eight 
undocumented channels. Other data had blank records, inadequate dataset lengths, or an 
inconsistent number of channcls across multiple datasets for the same test sequence. The data 
quality check was passed by one test sequence for which typical data segments are shown in 
Fig. 2. Only a single (acoustic) channel in this sequence see rned to have an adequate sampling 
rate (top plot in Fig. 2). This test involved an imbalance fault (130 grams) at 1500 rpm with data 
sampled at 10.8 kHz for 5 s (54,000 data points). Two such imbalance datasets were provided, 
along with two normal datasets, one before the imbalance tests and one afterward. However, the 
two baseline datasets have different features, just by comparing the linear measures: minimum, 
maximum, absolute average deviation, standard deviation, skewness, kurtosis, average number of 
time steps per cycle, and first zero in the auto-correlation function. Unsurprisingly then, the 
nonlinear measures of dissimilarity between the baseline datasets are large (>0.7 standard 
deviations from the mean) compared to the intra-dataset variability in those same nonlinear 
dissimilarity measures (20.5 standard deviations from the mean). Comparison of both test cases 
to the second baseline shows clear differences in the linear measures by a factor of 2-2.5. 
Nonlinear measures of dissimilarity between the second baseline and the test cases are 3-5 
standard deviations from the mean, which is better than the linear measures. Figure 3 shows 
two-dimensional phase-space portraits of this acoustic data, x,, by plotting pairs of points (x ,+~,  
xi) that are connected by straight lines for values of lag, 1 5 h 5 20. The images resemble a cross, 
indicating abrupt changes due to an inadequate sampling. O W L  sent an e-mail to 
Dr. Shirkhodaie on November 12, 2001 with details of this analysis, questions, and a suggestion 
for increasing the data sampling rate. Dr. Shirkhodaie’s response indicated this data was from 
initial experiments, and that they are working to eliminate the data quality problems. 
Dr. Shirkhodaie said in a subsequent e-mail exchange that he would be glad to share additional 
data with ORNL as it becomes available. No additional data has been received from 
Dr. Shirkhodaie. 

A third fruitful contact is Jan Stein (EPRI) who was the project leader for evaluation of various 
commercial diagnostics for large motors, beginning in 1994. The project report is “Electric 
Motor Predictive Maintenance Program,” TR- 108773-V2 ( 1999), which ORNL bought from 
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EPRI for $1,000. The report included a CD-ROM of actual data from the testing. We expect that 
additional data will be forthcoming. ORNL’s analysis of the present EPRl data is provided 
below. 

Manufacturer: 
Rated voltage: 
Rated hp: 
Winding type: 

Phases: 

We obtained sample data from Dr. Maria Elena Montesino Otero (Universidad Politeckica de 
Valencia, Spain). Our analysis of this data also is described below. 

Allis Chalmers Bearing Type: Sleeve 
4160 Nameplate current: I00 amps 
800 Number of rotor bars: 94 
Form wound Number of stator 94 

3 Hertz: 60 
slots: 

Dr. A1 Akerman (ORNL) kindly provided machine data on CD-ROM. The data were acquired 
from vacuum pumps, blower motors, and purifiers in Building 9204-4 at the Oak Ridge Y-12 
Plant. The specific data included motor current, vibration, moisture, oxygen, and gas flow rate. 
Most of the data were encoded in LabViewrM binary files. RMS values of other data are at 1 min 
intervals, which is very under-sampled for our analysis. We are presently unable to pursue further 
analysis of this data. 

Rpm: 
Insulation class: 

1.1 ANALYSIS OF EPRI MOTOR POWER DATA: ATRGAP-OFFSET FAULT 

710 Motor type: Induction 
F Poles: 10 

EPRI began a project in 1994, entitled “Electric Motor Predictive Maintenance Program.” 
Jan Stein (EPRI) led the project, which evaluated of various commercial diagnostics for large 
motors. Details are reported in EPRI report # TR-108773-V2 (1999). The report included a 
CD-ROM of actual data from the testing. That work involved collaboration by several utilities 
and EPRI on seeded faults in large electric motors. The datasets were recorded in snap-shots of 
1.5 s, sampled at 40 kHz (60,000 total time-serial samples), including three-phase voltages and 
currents, plus tri-axial accelerations at inboard and outboard locations on the motor. Several 
anomalies were introduced in the motors to simulate the most common pre-failure in-service 
conditions. ORNL received data for three different seeded faults via the CD-ROM that 
accompanied the EPRI report. Table 2 shows the specifications of the first motor. 

Table 2. First Motor Specifications 

The test sequence initially acquired data from the motor running in its nominal state (first 
dataset). Two different airgap-offset seeded-faults then were imposed via preinstalled jackscrews. 
The second dataset involved an inboard airgap offset of 8 mils from the nominal value of 
30 mils. The third dataset retained the first fmlt, and added an additional seeded-fault outboard 
airgap offset by 20% in the opposite direction from the inboard shift. This additional fault 
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resulted in the rotor being skewed relative to the stator. These offsets were static because neither 
varied relative to the stator with the motor running. 

We discuss details of the data next. All of the datasets on the EPRI CD-ROM had non-printable 
characters at the beginning and end of the file that confounded normal input as ASCII data to the 
FORTRAN analysis. Morcover, the ‘TYPE’ utility in DOS could not display the non-printable 
data. However, the MATLABTM editor was able to read these datasets. This editor was also able 
to write a FORTRAN-readable ASClI file after adding, then deleting, a space at the beginning of 
the file, and after the addition of a carriage-returnlline-feed at the end of the file. The three 
datasets for this first test sequence were concatenated into a single long dataset for ease of 
analysis. We converted three-phase voltages (K) and currents (I,) into instantaneous motor 
powcr, P = C, I ,K, where the sum runs over the three phases, as shown in Fig. 4. The particularly 
noteworthy feature in Fig. 4 is that the instantaneous power (bottom subplot) displays rich 
dynamical features, which are not at all apparent from the sinusoidally varying currents and 
voltages (upper six subplots) in Fig. 4. Consequently, we focus the analysis on instantaneous 
power, rather than the individual currents or voltages. Closer examination of the power reveals a 
slow, low-amplitude variation with a period of roughly 0.1 s. We removed this artifact with 
ORNL’s patented zero-phase quadratic filter. Otherwise, this artifact confounds the interpretation 
of our results. We split each of the three datasets into five subsets of 12,000 points each, giving 
fifteen total subsets for analysis. This artifact-filtered data showed no data quality problems. 

We next compare the condition change in linear, traditional nonlinear, and phase-space 
dissimilarity measures (PSDM). Figure 5 shows linear measures of artifact-filtered motor power. 
All of the linear measures show an abrupt change with the onset of the airgap-offset faults, but no 
other systematic trends. Figure 6 shows the change in three conventional nonlinear measures. 
The mutual information function (MIF) measures the average infomation (in bits) that can be 
inferred from one measurement about a second measurement and is a function of the time delay 
between the measurements. Univariate MIF measures predictability within the same data stream 
at different times. For the present analysis, we use the first minimum in the univariate MIF, M I ,  
to indicate the average time lag that makes P, independent of P,. The top plot of Fig. 6 shows that 
M I  dccreases erratically from 13 to 11 time steps during the first (nominal) dataset, then varies 
erratically between 10 to 12 time steps during the second (8 mil air-gap test) dataset, and finally 
rises even more erratically from 12 to 16 time steps during the last (20% air-gap test) dataset. The 
middle plot of Fig. 6 shows the maximum likelihood correlation dimension (D),  which i s  roughly 
constant at 3.7 during the first dataset, then decreases to a second roughly constant value at 1.4 
for the second and third datasets. The bottom plot displays the maximum-likelihood Kolmogorov 
entropy ( K ) ,  which measures the rate of nonlinear information loss (bits/s) in the data. K rises 
erratically from 0.019 to 0.026 during the first dataset, then decreases to roughly constant value 
of nearly zero for the second and third datasets. Figure 7 illustrates the two-dimensional phase- 
space reconstruction of the artifact-filtered nominal-state power for several different time lags, 
showing progressive “unfolding” of geometric representation for these dynamics. 

A systematic search revealed a sct of phase-space reconstruction parameters that are most 
sensitive to the condition change for the air-gap seeded-fault test sequence, as shown in Fig. 8. 
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This figure shows an almost linear rise in the connected-phase-space dissimilarities (second 
from the top and bottom plots) fiom near zero for the nominal state to approximately 20 for the 
double-seeded air-gap fault. The rise in non-connected dissimilarity measures is monotonic, but 
little changed between the two faulted states. Thus we find that condition change in this test 
sequence is detected to some degree by all of the linear, conventional nonlinear, and PSDM; the 
connected-phase-space dissimilarities show the progressively worsening severity of the fault 
most clearly. 

1.2. ANALYSIS OF EPRZ MOTOR POWER DATA: BROKEN-ROTOR FAULT 

A second test sequence for this motor began with the same motor running in its nominal state 
(first dataset), followed by progressively more severe broken rotor bars. The second dataset 
involved a simulated failure that was one rotor bar cross section cut 50% in half at the 1 1 o'clock 
position. The third dataset was for the same rotor bar next cut through 100%. The fourth dataset 
was for a second rotor bar cut 100% at the 5 o'clock position, exactly 180" from and in addition 
to the first rotor failure. The fifth dataset was for two additional rotor bars cut adjacent to 
the original 11 o'clock bar, with one bar cut on each side of the original, yielding four bars 
completely open. The EPIU report says that the data-collection personnel noted a definite 
growling sound and a pulsating vibration during this last test. We concatenated the five datasets 
into a single long dataset for ease of analysis, and convcrted the three-phase voltages and currents 
into instantaneous power, as before. We split each of the five datasets into five subsets of 12,000 
points each, giving 25 total subsets. The power has a slow, low-amplitude variation with a period 
of roughly 0.1 s. As before, we removed this artifact, which otherwise confounds the 
interpretation of our results. A check of this artifact-filtered data revealed no data quality 
problems. 

We first show linear measures of artifact-filtered motor power in Fig. 9. The top plot in Fig. 9 
illustrates that the minimum, maximum and standard deviation in motor power are essentially 
flat until the abrupt change during the last test (four cut rotor bars) in the sequence. Skewness 
and kurtosis (second plot down) also are flat until the last test, when they both change abruptly 
and in opposite directions. The number of time steps per cycle in the motor power (third plot 
down) decreases slowly and very noisily from 53 to 45 time steps per cycle (15% change). The 
first zero in the autocorrelation function varies erratically between 32-33 time steps during the 
nominal state, remains constant at 33 time steps for the first four faults, and then varies 
erratically again between 32-34 time steps during the last test. 

For additional comparison, we show the variation of three conventional nonlinear measures in 
Fig. 10. The top plot of Fig. 10 shows that the first minimum in the mutual information function, 
M I ,  vanes erratically for the first four datasets, then rises to 14 time steps and remains there. The 
middle plot of Fig. 10 shows that the maximum likelihood correlation dimension (0) also varies 
erratically over the whole test sequence. The bottom plot displays the Kolmogorov entropy (K) ,  
which shows no consistent trend. 

We systematically varied the phase-space reconstruction parameters to obtain the most 
monotonic increase in condition change for the broken-rotor seeded-fault test sequence. 
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Figure 11 shows that the phase-space dissimilarity measures rise by ten-fold over the test 
sequence. The parameters are: S = 88 (number of equiprobable phase-space symbols), d = 4 
(number of phase- 

500 
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space dimensions), A = 31 (time delay lag in time steps), and w = 550 (half width of the artifact 
filter window in time steps). The exponential rise in the magnitude of the seeded faults (doubling 
from 0.5 to 1.0 to 2.0 to 4.0) is mirrored in Fig. 11 by a linear rise in the logarithm of the 
dissimilarity measures. We conclude that the conventional statistical and traditional nonlinear 
measures provide no indication of condition change due to the broken-rotor bars. In sharp 
contrast, PSDM show condition change that i s  a proportional to the exponentially increasing 
severity of the rotor-bar fault, providing clear indication of the failure. 

60 
Induction 

Number of rotor bars: 
Number of stator slots: 
Hertz: 
Motor tvoe: 

1.3 ANALYSIS OF EPKl MOTOR POWER DATA: TURN-TO-TURN SHORTS 

Poles: 
+configuration: 

Insulation ..... class; 

. ........ 

The EPKI data included a General Electric motor, as specified in Table 3. 

6 
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Table 3. General Electric Motor Specifications 

This sequence began with the motor running in its nominal state (first dataset). The second 
dataset had a turn-to-turn (2.70 ohm) short by installing a large screw between two turns. The 
third dataset had a more severe turn-to-turn (1.35 ohm) short by installing a smaller screw 
between two turns. These three datasets were concatenated into a single long dataset for this 
analysis. The sequence for the concatenation goes from largest turn-to-turn resistance (infinite 
resistance, corresponding to no short), to smaller (2.7 ohms), to smallest (1.35 ohms), 
corresponding to increasing sevcrity in the fault. As before, the three-phase voltages and currents 
were converted into instantaneous power. The three datasets were split into 5 subsets of 12,000 
points each, giving 15 total subsets. Figure 12 shows three-phase voltages and currents, plus 
motor power for the nominal operating state. This data has a low-amplitude, low-frequency 
artifact with a period of roughly 0.006 s. As before, we remove this artifact, which would 
otheiwise confound the interpretation of our analysis. 'The artifact-filtered power data has no data 
quality problems. 

As before, our analysis compares the condition change in linear, traditional nonlinear, and 
PSDM. Figure 13 shows linear measures of artifact-filtered motor power. The minimum, 
maximum, and average (plus or minus one standard deviation) in the power (top subplot in 
Fig. 13) are essentially constant during the entire test sequence. The same is true of the skewness 
and kurtosis (second plot down in Fig. 13). The number of time steps per cycle varies erratically 
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around 17 throughout the test sequence. The first zero in the autocorrelation function also varies 
erratically between 11 and 28 during the first dataset, then is essentially constant during the fault 
tests. 

Figure 14 shows the change in the three convcntional nonlinear measures. The top plot of Fig. 14 
shows that MI varies erratically between 8 and 10 time steps during the nominal state, decreases 
erratically to 7 time steps during the second dataset, and is roughly constant at 7-8 time steps 
during the last dataset. The middle plot of Fig. 14 shows the maximum likelihood correlation 
dimension (D), which varies erratically between 3.7 and 4 during the nominal state, varies 
erratically between 3.6 and 4.2 during the second dataset, and shifts from 4.08 down to a plateau 
of roughly 3.8 during thc last dataset. The bottom plot displays the maximum-likelihood 
Kolmogorov entropy (K) ,  which varies erratically between 0.043 and 0.079 during the first 
(nominal) dataset, varies between 0.06 and 0.1 during the second datasets, and is even more 
erratic (between 0.05 and 0.14) during the last dataset. 

Systematic variation of the phase-space reconstruction parameters revealed values that are most 
sensitive to the condition change for the turn-to-turn seeded-fault test sequence. Figure 15 shows 
that all four of the PSDM rise monotonically over the test sequence. The parameters are: S = 129 
(number of equiprobable phase-space symbols), d = 3 (number of phase-space dimensions), A = 1 
(time delay lag in time steps), and w = 221 (half width of the artifact filter window in time steps). 
The linear rise in the magnitude of thc seeded faults (from 2.7-1.35 ohms) is mirrored in Fig. 15 
by a linear rise in the dissimilarity measures. We conclude that the conventional statistics and 
traditional nonlinear measures provide no indication of failure for the turn-to-turn shorts. In sharp 
contrast, the nonlinear dissimilarity measures show condition change that is a proportional to the 
increasing severity of the rotor-bar fault, providing clear forewarning of the failure. 

1.4 ANALYSIS OF DATA FROM POLYTECHNIC UNIVERSITY OF VALENCIA 

Dr. Maria Elena Montesino Otero (Universidad Politeckica de Valencia, Spain) sent nine digital 
datasets via e-mail to ORNL on April 19, 2002. Each ASCII data file contained 16,384 points of 
uni-axial accelerom.eter data with corresponding time stamps. The data were sampled at 600 Hz 
from a three-phase, %-hp motor running at 18 Hz with a progressively larger imbalance fault. 
ORNL concatenated the nine datasets into one long data file for subsequent analysis. A check of 
the data quality revealed no data gaps (based on the time stamps) or other problems. 

Figure 16 displays the conventional statistical measures for this data. Figure 1Ga shows a 
monotonic increase in the magnitude of the minimum, maximum, absolute average deviation, 
and the sample standard deviation. Figure 16b shows no correlation of the skewness with the 
dataset number. Figure 16c also shows a monotonic increase in the magnitude of the (negative) 
kurtosis with dataset number. The number of time steps per cycles also increases monotonically 
(Fig. 16d) over datasets 1-6, and then is flat for the remainder of the test sequence. The first zero 
in the auto-correlation function (Fig. 16e) is constant at eight time steps over the entire test 
sequence. Thus, some (but not all) of the conventional statistical measures are correlated with the 
increasing fault severity for this test sequence. 
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Figure 17 illustrates the three conventional nonlinear measures for this data. The top subplot in 
Fig. 17 shows that correlation dimension (D) decreases monotonically with the dataset number. 
The middle plot in Fig. 17 depicts such a noisy decrease in Kolmogorov entropy (K) vs dataset 
number, so that essentially no correlation exists. The first minimum of the mutual 
information 

function (bottom plot of Fig. 17) is constant at eight time steps, rising briefing to nine for 
dataset #7. Thus, only the correlation dimension has a clear relation with the increasing severity 
of the fault in this test sequencc. 

A systematic search determined the set of phase-space reconstruction parameters that are most 
sensitive to the condition change for this test sequence. Figure 18 shows the corresponding 
results with a nearly linear rise in all four of the (non)connected-phase-space dissimilarities. The 
dissimilarity for the first dataset is not shown, because it’s always zero, due to comparing the 
basecase with itself. The (non)connected phase-space dissimilarities clearly show the 
progressively worsening severity of the unbalance fault. 

1.5 ANALYSIS OF MOTOR DATA FROM PSU 

‘The Pennsylvania State University (PSU) operates the Applied Research Laboratory (ARL). 
Their facilities include the Mechanical Diagnostics Test Bed (MDTB), a motor-drive-train- 
generator test stand, as shown in Fig. 19 (upper picture). The gearbox is driven at a set input 
speed using a 30 hp, 1750 rpm AC (drive) motor, and the torque is applicd by a 75 lip, 
1750 ‘pin AC (absorption) motor. The maximum speed and torque are 3500 rpm and 225 ft-lbs 
respectively. The speed variation is accomplished by varylng the frequency to the motor with a 
digital vector drive unit. The variation of the torque is accomplished by a similar vector unit 
capable of controlling the current output of the absorption motor. The system speed and torque 
set points are produced by analog input signals (0-10 VDC) supplied by the Data Acquisition 
(DAQ) Computer and a D/A board. The MDTB is highly efficient because the electrical power 
that is generated by the absorber is fed back to the driver motor. The mechanical and electrical 
losses are sustained by a small fraction of wall power. The MDTB has the capability of testing 
single and double reduction industrial gearboxes with ratios from about 1.2:l to 6:l. The 
gearboxes are nominally in the 5-20 HP range. The system is sized to provide the maximum 
versatility to speed and torque settings. The motors provide about 2-5 times the rated torque of 
the selected gearboxes, and thus the system can provide good overload capability. The use of 
different reduction ratios and gearboxes than listed above is possible if appropriate consideration 
to system operation is given. The motors and gearbox are hard-mounted and aligned on a 
bedplate. The bedplate is mounted using isolation feet to prevent vibration transmission to the 
floor. The shafts are connected with both flexible and rigid couplings. Torque limiting clutches 
are used on both sides of the gearbox to prevent the transmission of excessive torque as could 
occur with gear jam or bearing seizure. In addition, torque cells are used on both sides of the 
gearbox to directly monitor the efiiciency and the loads transmitted. Appendix B provides further 
test details. 
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The test protocol involved: (i) a lincar increase in motor speed from zero to the operational 
speed, (ii) maintenance of this constant speed for some chosen period, (iii) a linear decrease in 
motor speed from (ii) to zero, (iv) sampling of the gearbox oil for particulates as a measure of 
gear wear. The cycle of (i)-(iv) was repeated many times under the test load until the gearbox 
failed, meaning that one or more gear teeth broke, causing the experiment tu stop. The present 
analysis uses only the flattop data from (ii) of the test cycle, for which 44 datasets were available 
for each data channel, each containing 10 s of test data. Measurements included 
acceleration, acoustic sounds, temperature, torque, rotation speed, input and load power, and 
RMS currents. Much of this data (temperature, relative oil dielectric) are sampled much too 
slowly (e.g., 1 Wz) to be useful for the present analysis. Other data (rotational speed, drive power, 
load power, drive current, load current, and coil temperatures) were sampled at 1 kHz, but fail 
the data quality check also due to inadequate sampling speed. The present analysis focuses on 
load torque, which was sampled at 1 kHz and which passes all of the data quality tests. Thus, 
each 10 s dataset has 10,000 data points, all of which were concatenated serially into a single 
data file for ease of analysis. Figure 19 (lower plot) shows a one second sample of typical load 
torque data, which is quasi-periodic with complex, nonlinear features. Figure 20 shows the 
erratic variation over the test sequence of the linear measures of this load torque data. Skewness 
(solid curve in the second subplot down) decreases gradually (but very irregularly) from 0.3 to - 
0.2, and is the only linear measure that shows any systematic change. The first zero in the 
autocorrelation function (bottom subplot of Fig. 20) rises in datasets #26-27 and 30, with the 
failure occurring in dataset #44. Figure 21 displays the traditional nonlinear measures of the load 
torque, none of which has any systematic trend as the test sequence progresses. Figure 22 
displays the PSDM for this test sequence, with low values (below 0.875) for datasets #1-29. All 
four dissimilarity measures rise abruptly, beginning at dataset #30, and remain above 0.894 for 
the remainder of the test sequence. These results show that only the PSDM provide forewarning 
of the impending failure. 

1.6 ANALYSIS OF MOTOR DATA FROM PSU (RUN33) 

O W L  decided to engage PSU (Dr. Karl Reichard) under subcontract to acquire test data for this 
project, based on the data analysis in the previous section. This test sequence was designated 
“RUN33,” and also involved the MDTB, as described in App. B. Measurements included 
acceleration, acoustic sounds, temperature, torque, rotation speed, input and load power, and 
RMS currents. ORNL chose to focus on the tri-axial acceleration, based on analysis of several 
initial PSU sample datasets. ORNL obtained the data electronically via FTP from a passworded- 
account on a PSU server. Each data file contained test data for one accelerometer channel. The 
data were obtained at 10 min intervals through the test sequence, sampled at 102.4 kwz. The total 
amount of data was 4.5 GIB (three accelerometer channels, times 401 snapshots for a total of 
1203 files) in MatLab binary format. O W L  serially concatenated 100,000 data points from each 
of the data files into a single three-channel dataset for ease of analysis (1.6 GB). Each 
100,000-point snapshot was divided into ten 10,000-point subsets for this analysis; the results 
were then averaged over these 10 cutsets to obtain a typical value for the entire snapshot. 
Figure 23 shows typical data for each accelerometer channel with quasi-periodic, complex, 
nonlinear features. Figure 24 shows conventional statistical measures throughout the RUN33 test 
sequence. The top plot shows noisy, gradual increases in the magnitudes of the minimum (An),  
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maximum ( A J ,  absolute average deviation (a),  and sample standard deviation (0) for each 
acceleration signal. The other conventional statistical measures in Fig. 24 show no clear trend 
through the test sequence. Figure 24 also reveals two datasets (#l19 and 266) with abruptly lower 
signal, where the operator did not stop the data acquisition system during diagnostic shutdowns 
of the test. This signal loss does not invalidatc the remainder of thc data, so we ignore these two 
datasets in subsequent analysis. 

The use of three orthogonal accelerations has a unique and important advantage, as follows. 
Acceleration is a three-dimensional vector, A_, that can be integrated once in time to give velocity 
vector, _V = 4 dt. Mass times acceleration (vector) is force vector, E = mA. The vector dot- 
product of force and velocity is power (scalar), P = L; * 1. Thus three-dimensional acceleration 
data can be converted into a scalar power via straight-foiward methods of calculus and 
mechanics. ORNL previously used this approach to analyzc tri-axial acceleration data from a 
metal cutting (lathe) operation. That analysis found that the resulting three-dimensional 
accelerometer power captured the relevant dynamics and had more information about the proccss 
than any single accelerometer channel. We used this same approach to obtain power using the tri- 
axial accelerometer data from thc PSU MDTB test sequence. Figure 25 shows a sample of the 
RUN33 power data, which displays very complex, nonlinear features. Figure 26 shows 
conventional statistical measures of the RUN33 accelerometer power data. The top plot shows 
noisy, gradual increases in the magnitudes of the minimum (P,), maximum (PJ,  absolute average 
deviation (a) ,  and sample standard dcviation (a) for thc accelerometer power. The other 
conventional statistical measures of accelerometer power show no clear trend through the test 
sequence. Failure onset begins at dataset #394. Figure 27 shows the corresponding traditional 
nonlinear measures, none of which show forewarning of the failure. We conclude that only a fcw 
of conventional statistics (minimum, maximum, a, and a) provide forewarning trends, but none 
of the traditional nonlinear measures provide indication of the impending machine failure. 

In sharp contrast to the previous unclear trends, Fig. 28 shows a systematic rise in all four 
renormalized measures of dissimilarity, with an additional abrupt rise at the onset of failure. We 
obtained this result by constructing a composite measure, Ci, of condition change, namely the 
sum of the four renormalized measures of dissimilarity for each of the datasets in the test 
sequence. This approach shows both the rising dissimilarity as the test progresses and an 
indication of failure onset. We used the following algorithm to obtain this result. First, wc 
construct the composite measure for the i-th dataset: 

Second, we fit Ci to a straight line via least-squares over a window of m datasets (#194-393 in 
this case): 
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Third, we obtain the variance of Ci about the straight-line fit from step 2: 

Fourth, we determine the ?-statistic from this straight-line fit for datasets #394-400: 

Fifth, we maximize the value of 2 from step 4 over the parameters (d, S, A). The variance, o,’, 
in step 3 measures the variability of C, about the straight-linc fit over the window of m datasets 
(#194-393). The statistic, 2, in step 4 measures the variability of datascts #394-400 from the 
straight-line fit. The value from step 4 is 2 = 180.42, which is inconsistent with a normal 
distribution for 7 degrees of freedom, and is a strong indication of the failure onset. Indeed, 
Fig. 30 shows a clear statistical indication of failure onset. The bottom plot (labeled “normal 
distribution”) in Fig. 29 depicts the maximum value of the 2 statistic for n sequential values out 
of 200 samples from a guassian (normal) distribution with zero mean and a unity sample standard 
deviation. The middle curve in Fig. 29 is the maximum value of the 2 statistic, using step 4 
above, for n sequential values of the composite measure, C,, over the window of m = 200 datasets 
that span the straight-line fit (datasets #194-393). This middle curve is inconsistent with the 
normal distribution (bottom curve). The upper curve in Fig. 29 is the 2 statistic, also using step 
4 above, for p1 sequential values from datasets #394-400. This upper curve (labeled “failure 
onset”) deviates markedly from the lower curves after two datasets (#394-395), with 
overwhelming indication for three and more datasets. We conclude that the PSDM provide 
consistent indication of condition change, as well as clear indication of the failure onset. 

1.7 ANALYSIS OF MOTOR DATA FROM PSU (RUN34) 

PSU repeated the MDTB experiment (RUN34) with the same experimental parameters as 
KUN33. The sampling frequency was 5 1.2 kHz, based on our findings from RUN33. The raw 
data consisted of 560 datasets in MatLab binary format for each of the three orthogonal 
accelerations for a total of 3.2 GB, which PSU sent to ORNL on a DVD disk. ORNL serially 
concatenated 150,000 data points from each of the data files into a single three-channel dataset 
(2.1 GB) for ease of analysis. The tri-axial acceleration data was converted into one channel of 
accelerometer power, as described above. Each 150,000-point snapshot was divided into ten 
15,000-point subsets for analysis; the results were then averaged over these 10 subsets to obtain a 
typical value for the entire snapshot. Data quality analysis showed that the 51.2 kHz sampling 
frequency was adequate. However, the experimental record of RUN34 showed numerous 
annotations of bad datasets, due to known experimental problems. Omission of these bad datasets 
reduced the total number of useful datasets by 37% to 355. In addition, erratic and inconsistent 
variations existed in the data amplitude. RUN34 was rejected from further analysis, due to these 
quality problems. 
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1.8 ANALYSIS OF MOTOR DATA FROM PSU (RUN 35) 

PSU repeated the MDTB experiment for a third time (KUN35) with the same experimental 
parameters as RUN33. The sampling frequency was 51.2 kHz. The raw data consisted of 845 
datasets in MatLab binary format for each of the three orthogonal acceleration directions, which 
PSU provided on a DVD disk (5GB). OKNL serially concatenated 200,000 data points from each 
of the data files into a single three-channel dataset for case of analysis. The tri-axial acceleration 
data was converted into one channel of accelerometer power, as described above (1.8 GB). 
Figure 30 shows sample plots of this quasi-periodic, complex data. Each 200,000-point 
snapshot was divided into ten 20,000-point subsets for analysis; the results were then averaged 
over these 10 subsets to obtain a typical value for the entire snapshot. Data quality analysis 
revealed datasets with a zero signal or abrupt shifts, not unlike the previous test sequences. 
Consequently, we eliminated these bad datasets, as indicated by gaps in the Fig. 31 curves. We 
further note from Fig. 31a that only the monotonic rise (fall) in the maximum (minimum) values 
of power give clear forewarning of the failure onset, beginning with dataset #838. Figure 32 
shows the corresponding traditional nonlinear measures. Correlation dimension and 
Kolmogorov entropy provide no forewarning of failure. The monotonic fall in the first minimum 
of the mutual information function before failure is unique and appears to be a valid (but weak) 
forewarning of the failure. 

The top four subplots of Fig. 33 display the PSDM, using the same phase-space parameters as 
PSU Run33 for a demonstration of repeatability. We find a systematic rise in the PSDM, 
beginning at dataset H480, with an additional abrupt monotonic rise at the onset of failure, 
beginning at dataset #820. We obtained this result by constructing the same composite measure, 
C,, of condition change, using the five-step process of Eqs. (1)-(4). We chose a window of 100 
cutsets for Eq. ( 2 )  over datasets #720-819. We computed the n/ statistic, beginning with dataset 
#820. As before, Fig. 34 depicts the maximum value of the 2 statistic for n sequential values out 
of 100 samples from a guassian (normal) distribution with zero mean and a unity sample standard 
deviation. The middle curve in Fig. 34 is the maximum value of the 2 statistic, using step 4 
above, for n sequential values of the composite measure, Ci, over the window of m=100 datasets 
that span the straight-line fit over datasets #720-8 19. This middle curve is inconsistent with the 
normal distribution (bottom curve). The upper curve in Fig. 34 is the 2 statistic, also using step 
4 above, for rz sequential values from datasets #820-845. This upper curve (labeled “failure 
onset”) deviates markedly from the lower curves after six datasets, with overwhelming indication 
for seven or more datasets. We conclude that the phase-space dissimilarity method gives clear 
indication of condition change, as well as forewarning of failure. 

1.9 ANALYSIS OF TORSION DATA FROM PSU 

PSU performed a sccond type of experiment to show failure forewarning in turbo-machinery. 
Specifically, this experiment simulated the effects of shifting turbine blade oscillation 
frequencies as a fatigue crack develops and grows. Appendix C provides details of the 
experiment. Figs. C. 1-C.2 show eight equally spaced threaded rods that simulate the blades, 
which are rotated about a horizontal axis by a DC motor. Previous PSU work on this experiment 
showed that adjustment of lock nut locations along the threaded rods can simulate the frequency 
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shift, which can be sensed and tracked by measurement of the system’s torsional vibration. The 
present experiment extended the previous PSU work by simulating a crack at the base of one of 
the threaded rods via a progressively deeper 0,010 in. wide slot using electric discharge 
machining, in lieu of moving the nuts. Test data were acquired for each depth of cut. The data 
were sampled at 12.8 kHz and included: motor current and voltage, two-axis traiislational 
acceleration on one bearing pillow block, and torsional vibration of the shaft. Figure 35 
illustrates a representative sample of this data at three different time scales, showing complex, 
quasi-periodic dynamics in all channels. Our previous experience has shown that all three 
acceleration axes are needed to capture the machine dynamics adequately. Consequently, the 
two-axis acceleration data were not pursued further. Comparison of the plots in right two 
columns of Fig. 35 shows that the dynamical properties of the AC-coupled motor power are 
different from the DC-coupled motor power. Thus, the latter data was used as the best 
representation of the machine dynamics for all subsequent analysis. 

Figure 36 shows the conventional statistical measures of the DC-coupled motor power as a 
function of the progressively larger slot depth. The top plot shows no systematic change in the 
miniinum (P,), standard deviation to), absolute average deviation (a) ,  and maximum (PI). The 
second plot from the top shows that both skewness and kurtosis are nearly constant vs slot depth. 
The third plot down from the top displays a series of small rises and falls in the number of time 
steps per cycle vs slot depth. The bottom plot illustrates a single decrease in the first zero of the 
autocorrelation function, followed by a constant value thereafter. Consequently, conventional 
statistical measures provide no forewarning. 

Plots of the traditional nonlinear measures are shown in Fig. 37. The correlation dimension (top 
plot) decreases from 2.4 for the first dataset, to 2.2 for the third dataset, then rises gradually over 
the next four datasets to 2.35. The Kolmogorov entropy (middle plot) has a decrease-increase- 
decrease sequence that is likewise non-predictive. The first minimum in the mutual information 
function is constant at 6 time steps, then decreases to 5.95 at dataset 6, then rises again to 6 at the 
last dataset. Thus, the traditional nonlinear measures provide no failure forewarning. 

Figure 38 shows that all four PSDM rise monotonically from near zero to large values. This 
result was obtained by combining the four PSDM into a single composite measure, Ci, as 
described by Eq. (1). An exhaustive search then was performed over the parameter space of the 
number of phase-space dimensions (d), the number of phase-space symbols (9, and the time- 
delay lag (A). The search revealed a single set of parameters that give the monotonic rise in C,. 
The meaning of these parameters is explained in App. A. We conclude that the PSDM show a 
systematic predictive trend for the progressive failure in this experiment. 

1.10 ANALYSIS OF BEARING DATA FROM PSU 

PSU performed a third type of experiment to show forewarning of bearing failure. The Bearing 
Prognostic Test Rig uses a pair of double row spherical roller support bearings to support a shaft 
on which the test bearing is held in place by a bearing holder between the two support bearings. 
The test rig was configured to test deep groove ball 1 1/8 in. test bearings, but is configurable to 
other types of bearings. A load jack and load cell were mounted directly behind the test bearing 
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and have a radial load capacity of 1,000 lbs in phase with the outer ring. The system is driven by 
a SCR motor with an integral tachometer fitted to the motor. The motor is coupled to the test 
shaft with a flexible coupler to reduce transmitted vibration from the motor. Piezoelectric 
accelerometers are currently utilized with frequency ranges between 10 and 1 OOKHz. Data were 
collected on a 48 channel National Instrument 4472 PXI system. The test ran continuously in the 
overloaded state, with data acquired at periodic intervals until the bearing finally failed. 
Appendix D provides details of the test plan and experimcntal setup. 

We describe the data analysis next. Five channels of data were sampled at a frequency of 
5 1.2 kHz, including tri-axial acceleration at the test bearing, as well as motor current and motor 
voltage. PSU provided this data to ORNL on DVD disks, in the form of MatLabTM binary files 
(5.6GB). ORNL serially concatenated 500,000 data points from each of the data files into a 
single three-channel dataset with 895 segments of three-channel accelerometer data (1 6.4GB). 
The tri-axial acceleration data werc converted into one channel of accelerometer power, as 
described above (5.7Gl3); the 500,000 data points in each segment were subdivided into ten 
cutsets of 50,000 points each for the subsequent analysis. Figure 39 shows time-serial samples of 
the accelerometer power, which has a very complex, nonlinear waveform with rises and falls in 
envelop amplitude over 200 ms. 

Figure 40 displays the conventional statistical measures of the accelerometer power. The 
minimum and maximum (top plot) are variable about a series of plateaus, rising and falling 
without a clear trend. Skewness (bottom curve in the second plot from the top) is roughly 
constant during the entire sequence. Kurtosis (top curve in the second plot from the top) is 
moderately variable during the first one hundred cutsets, more variable and slightly larger over 
cutsets #loo-300, then smaller and much less variable for cutsets #300-810, and finally larger 
and more variable for cutsets #811-895. The average number of time steps per cycle (third plot 
from the top) decreases gradually but erratically from 16 to 13. The first zero in the 
autocorrelation hnction (bottom plot) decreases erratically from five to four over cutsets #1 -300, 
and then is constant at four thereafter. All of these conventional statistics display an abrupt spike 
at cutsets ## 104-1 05. These conventional statistical measures provide no clear forewarning of 
failure. 

Figure 4 1 depicts the traditional nonlinear measures of accelerometer power. Correlation 
dimension (top plot) is moderately variable over the entire sequence with a clear spike at cutsets 
#104- 105. Kolmogorov entropy (middle plot) is very variable over the whole sequence without a 
clear trend. MI (bottom plot) falls abruptly from 4.7 to 4 at cutset #104, then remains constant at 
four thereafter. These traditional nonlinear measures give no failure forewarning. 

The top four subplots of Fig. 42 display the four PSDM, with the same spikes as the other 
measures in datasets #104-105 and #200. Ignoring these spikes, the PSDM rise systematically, 
beginning at dataset #600. An additional abrupt rise occurs at failure onset, beginning at dataset 
#795. We used the five-step process of Eqs. (1)-(4) to obtain this result. We chose a window of 
one hundred cutsets for Eq. (2) over datasets #695-794. We computed the 2 statistic, beginning 
with dataset #795. As before, the bottoni curve in Fig. 43 depicts the maximum value of the 2 
statistic for n sequential values out of 100 samples from a Gaussian (normal) distribution with 
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zero mean and a unity sample standard deviation. The middle curve in Fig. 43 is the maximum 
valuc of the 2 statistic, using step 4 above, for YE sequential values of the composite measure, Ci, 
over the window of rn = 100 datasets that span the straight-line fit over datasets #695-794. This 
middle curve is inconsistent with the normal distribution (bottom curve). The upper curve in 
Fig. 43 is the 2 statistic, also using step 4 above, for n sequential values from datasets 
#795-8 19. This upper curve (labeled “failure onset”) provides clear indication of failure onset 
after three or more consecutive datasets. We conclude that the PSDM gives clear indication of 
condition change, as well as forewarning of failure. 

15 



2. DISCUSSION 

1 I'SU/ARL 1 Motor-driven bearing 

The objective of this phase is a compelling demonstration of the phase-space dissimilarity 
approach for forewarning of failures. Thus, we studied a variety of failures and different data. 
Table 4 below summarizes the present results. The right-most column shows the measures that 
we tested for failure forewarning: conventional statistical measures [CSM] (data maximum 
[MX], data minimum [MN], absolute average deviation [a], standard deviation [ 4, skewness 
[SKI, kurtosis [KT], average number of time steps per cycle [TS]), traditional nonlinear measures 
[TNM] (correlation dimension [CD], Kolmogorov entropy [KE], first minimum in the mutual 
information function [MI], and PSDM. 

I PSDM 
Accelerometer 
~ 0 ~ 7 e r  

Table 4. Data and Failures 

..... __ ... 
Equipment and Type of Failure Measureyio 

__._ 
Provider 

airgaD offset Motor Dower CSM TNM P S D F  

.... ........ 

PSDM 
.................... 

Overloaded gearbox 
Overloaded gearbox (RUN 33) MN c1 o MX PSDM 

.......... ..... :"' 
PSU/ARL Overloaded gearbox (RUN 3 5 )  Accelerometer MN MX-MI PSDM 

PSU/ARf- -  I Crack in rotating: blade Motor Dower PSDM 
ewer ................... 

I..... 

.- 

Only the PSDM provide forewarning of the machine failures across all of these test sequences. 
This forewarning indication is present for several different kinds of equipment failures, as well as 
for different types of diagnostic data. Moreover, this work developed a statistical criterion for the 
determination of failure onset, based on the sum-of-squares deviation from a straight-line fit to 
the rising trend in PSDM. A goal for the third project year is extension of this statistical criterion 
into a statistical test for forewarning of failure. A second goal is publication of this work in a 
peer-reviewed technical journal. 

2.1 LESSONS LEARNED 

Data exchange during this second project year typically involved >10MB for each test sequencc. 
Consequently, we were unable to use e-mail attachments, as in the first project year. We found 
FTP (file transfer protocol) transfers were slow (many hours), and frequently failed duc to 
network or server problems. The most reliable method consisted of compressing the data into 
ZIP-files, writing the files to CD-ROM or DVD disks, and sending the disks via over-night mail. 
This latter method was used for most of the PSU/ARL data, and all of the EPRI data. 
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A low data sampling rate was used for acquiring some of the data (Otero/Spain and the first PSU 
test sequence). Consequently, the PSDM displayed undesirable variability, but still provided 
forewarning of the failures. O W L  obtained several trial datasets from PSU after initiating their 
subcontract to assure that the data quality (especially the data sampling rate) was adequate for our 
analysis. ORNL analysis of these sample data showed that a sampling rate of >50 kHz provided 
adequate data quality. Moreover, this analysis determined that current and voltage from a 
digitally controlled electric motor was not appropriate for PSDM analysis. For such tests, we 
focused instead on 3D accelerometer power. 

One lesson-learned from the first project year of this work is that a higher data-sampling rate 
(>50 kHz) is needed for the nonlinear analysis. Tests during the first project year used a PdMA 
Emax system, which is a ruggedized laptop computer for data acquisition with a maximum 
sampling rate of 12,288 Hz for each of six channels. Consequcntly, ORNL procured hardware 
and software from National Instruments Corporation during the first quarter of this second 
project year with the capability of sampling each of six channels at 208 kHz. The system 
components include a data acquisition board (PCI-MIO- 16E- l), connector block, cable, and 
companion software (LabViewTM) at a total cost of $4,180. Table 5 provides further details. 
ORNL installed and tested this data acquisition system on the desktop PC that was procured for 
this project during PY I .  

2.2 OTHERWORK 

Dennis Strickler of Computational Science and Engineering Division worked with Lee Hively to 
port the nonlinear analysis code to ORNL’s 184-node IBM SP computer, called “Eagle.” Code 
changes used the Message-Passing Interface (MPI) for parallelization. Measures of dissimilarity 
for each channel of sample data were computed independently on multiple processors. Initial 
results gave an improvement in computational time by a factor of three. Further improvements 
are possible by parallelizing the base case calculations and implementing shared memory parallel 
programming techniques in individual modules. 

We submitted a patent application (PA) to the U.S. Patent Office (USPO) on March 8, 2000, 
seeking protection of the connected phase-space dissimilarity approach. The USPO issued an 
oftice action on January 16, 2002, which was received by the ORNL legal department on 
February 4,2002. We sent our response to the USPO on May 15,2002. The attorney of record on 
this response was a subcontractor, Michael McGovern of Quarles and Brady LLP (Milwaukee, 
Wisconsin). The USPO responded in July 2002 with a notice that allowed all of our revised 
claims. 

Our research has developed improvements to the phase-space dissimilarity methodology, as 
described in a more recent invention disclosure (END #0885), dated October 17, 2000. This ID 
was elected for conversion into a PA on December 19, 2000. We have added further 
improvements to the methodology, and submitted the PA to the USPO on July 12, 2002, also in 
collaboration with Michael McGovern. 
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Table 5. Further Details of New Data Acquisition System 

- Brief Description of Item 
1) PCL-MIQ- 16E- 1 Multichannel IO Board 

(part number 777305-0 1) 

2) SH68-68-EP (1 meter shielded cable) 
(part number 184749-0 1 

3) SCB-68 Shielded IO connector block 
(Dart number 776844-0 1) 

4) LabViewTM full development software 
(part number 776670-03) 
acquisitiodanalysis 

TOTAL COST 

cost ($) 
1,795 

95 

295 

1,995 

4.180 

Additional Details 
Resolution = 12 bits 
Sampling Rate 
Voltage range 
Absolute accuracy < 0.045% 
Input impedance 
Warmup time = 15min 
Calibration interval = 1 year 
Operating temperature = 0 - 55°C 
Storage temperature = -20-70 "C 
Relative humiditv = I0-90% noncondensing 

= 1.25 MHz total or 208 kHz for each of 6 channels 
= +/- 1OV maximum or +/- 0.05V minimum 

= 100 Gohms in parallel with lOOpF 

Provide connection from item #I  to item #3 

Provide connection points for current and voltage probes 

For Windows 2000/NT/Me/9x (English) 
Graphical user interface and programming environment for data 



ORNL received an e-mail request on June 11, 2002 from Marty Martinez (Enegetics, hc.)  for a 
brief annual report to be included in an FY02 NEKl program summary. We prepared two pages 
of text plus one figure in the prescribed format and sent it to Martinez via e-mail on 
June 18, 2002. We received a draft PDF version of our summary from Martinez via e-mail on 
August 7, 2002 for our comments, which we provided to him on August 12, 2002 also via e-mail. 

ORNL’s nonlinear paradigm is applicable to forewarning of biomedical events, as well as 
forewarning of machine failures. Specifically, we are using the phase-space dissimilarity 
approach to analyze scalp EEG to forewarn of epileptic seizures. Recent results are documented 
in a paper to the journal, IEEE Transactions on Biomedical Engineering, for a focus issue on 
epileptic seizure prediction. We received the reviewers’ comments on July 15, 2002. We revised 
the paper in accord with the reviewers’ suggestions, and sent the revised paper and our response 
to TBME on August 6, 2002. Since this work is presently unfunded, we recently submitted 
proposals to two potential sponsors. We have also submitted two proposals to analyze EKG data 
for forewarning of cardiac events. 

Lee Hively was contacted by Diana Tallett (Program Administrator for the Nuclear Safety and 
Technology Product Line at PNNL) on October 8, 2001, regarding the total dollar value of the 
present NERI project. Since the abstract for this work is available on the NEKl Web site 
(neri.ne.doe.gov), EIively provided the total amount ($1.1 17M) to Ms. Tallett, who confirmed 
receipt of this information in an October 9,2002 e-mail. 

On March 28, 2002, Lee Hively was contacted by Richard Wood (in ORNL’s Nuclear Science 
and Technology Division), who is a collaborator on a different NERI project. Wood requested a 
short (two paragraph) summary of our work for the Nuclear Regulatory Commissioners, which 
we provided that same day. 

2.3 ISSUES/CONCERNS 

Lee Hively’s PII-400MHz PC failed late in the afternoon of Friday, July 12, 2002, and was 
diagnosed on Monday, July 15, 2002 with a harddrive crash. This computer was approaching 
four years old, and consequently was replaced with a new computer under ORNL’s Managed 
Hardware Program (procurement initiated on July 16, 2002 with installation on July 30, 2002). 
The total cost of this procurement was $4,813, plus $1,300 for an upgrade to MatLabTM (version 
6.5) and $384 for an upgrade to Compaq Visual FORTRANTM (version 6.6). Hively’s second 
office PC was inadequate for compute-intensive analysis and had been out of commission since 
May 2002 for upgrades. The first motherboardCPU upgrade failed repeatedly and reproducibly 
when loaded with a compute-intensive problem. Replacement hardware failed in the same way, 
and also was returned to the vendor. The second set of replacement hardware was provided by 
PC support to Hively on July 18, 2002, and successfully reproduced sample results. No 
subsequent failures have occurred. The total cost of this upgrade was $6,108. These failures did 

not impact the work progress, because in the intervening two weeks (July 15-30, 2002)’ Hively 
used a PC at home (2GHz P4-XeonTM, 1GB memory, two 73GB SCSI harddrives) for data 
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analysis via Compaq‘” Visual FOR‘I’KAN, visualization via MatLabTM, and report preparation 
via MS-WordTM. 

2.4 cosr PERFORMANCE 

We received $157,000 for the first project year and $48 1,000 for the second project year. Total 
project spending through the fourth quarter of the second project year (through the fiscal month 
of August 2002) is $580,761. Our work is on schedule and within the budget, as shown in 
Fig. 44 and Table 6. 

Subcontract work by Dr. Karl Reichard (Applied Research Laboratory, Pennsylvania State 
IJnivcrsity) has proceeded within budget ($90K) and on schedule by providing test sequence data 
to O W L .  The FY02 subcontract payments to PSU were as follows: $8,376.24 on 
March 19, 2002, $22,336.46 on April 25, 2002, $15,544.31 on May 16, 2002, $19,742.82 on 
June 19, 2002, and $23,974.18 on July 15, 2002 for a total of $89,974.00. ORNL is pleased with 
PSU’s performance, and plans to use them for FY03 work for this project. 

During the first project year, we demonstrated the PSDM approach for two test sequences, 
costing $157K, or $78.5Wtest. During this second project year, we gave a compelling 
demonstration of the method with nine test sequences for $481K, or $53.4Wtest. These values 
correspond to an efficiency improvement of (78353.4) - 1, or nearly 50%. 

Several factors have contributed to this efficiency improvement. One innovation is the statistical 
criterion for failure onset (Eqs. 1-4), as an easily computable objective function for the best 
choice of phase-space parameters. We included this criterion in our most recent patent 
application. The present subcontractor (ARL/PSU) is the second contributor to this success by 
providing high-quality data for the test sequences that we have presented here. A third factor is 
the consistent use of a key lesson-learned from the first year of this project, namely requiring a 
sufticiently high sampling rate as a crucial parameter in the data quality. A fourth factor involves 
refinement of the research-class FORTRAN software implementation of the methodology by 
adding new high-level routines for partial automation of the PSDM analysis, rewriting modules 
for clear algorithmic flow, and combining related modules. A final reason for this 
accomplishment involves development of MatLab’rM m-files to automate the search through 
PSDM results for many different parameter choices, and also to provide publication-quality plots 
of the results. These improvements led to a much more efficient use of the analyst’s time. 

The specific goals for the third year’s work are as follows. First, we will work with our 
subcontractor to acquire and analyze additional test-sequence data for further demonstration of 
the tcchnology for forewarning of machine failure. Second, we will work with the subcontractor 
to assess the impact of this technology, in terms of enhanced safety at next-generation nuclear 
power plants and corresponding cost reductions. Third, we will collaborate with operators at 
ORNL’s High-Flux Isotope Reactor (HFIR) to acquire and analyze operational data for 
representative nuclear-grade equipment. HFIR currently experiences several failures per year in 
this equipment, so forewarnings of failure also would provide an immediate safety benefit to 
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HFIR. A fourth task addresses the PSDM analysis over many different phase-space parameters, 
presently requiring lengthy runs on modem desktop Pes. We will pursue various improvements 
in the analysis to reduce this time substantially, and expect that these additional enhancements 
will provide even better cost efficiency. 

09/00 
09/00 
11/00 

Notwithstanding past and future efficiency improvements, the present forewarning paradigm is 
limited by the central role of the human analyst. An advanced approach is needed to automate 
many different aspects of human expertise. These features include, but are not limited to: (1) 
assessment of data quality indicators; (2) choice of the best data type; (3) comparison of 
conventional statistics, traditional nonlinear measures, and PSDM; (4) development of new 
nonlinear measures; and (5) statistical test(s) for failure forewarning. While the implementation 
of these steps in fully automated form is beyond the scope of the present project, we think that 
such an approach should be pursued in the future. 

1 o/oo 
02/0 1 
04/0 1 

Table 6. Status Summary of NERL Tasks for First and Second Project Years 

DE&S provide datasets to ORNL 
Task 1.2: ORNL analyze quality of DE&S test data 

1 P1;m;dL Actual 
Milestonehask description completion completion 

date - 

- 0610 1 
01/01 1 06/01 02/0 1 

Task 1.1 : O W L  set subcontract in place for DE&S 
DE&S provide preliminary test data to ORNL 
DE&S construct test plan for accelerated testing 

Task 2.1 : PSU provide test data for several seeded-fault sequences 
Task 2.2: ORNL evaluate prognostication capability of nonlinear 
paradigm 

I 06/02 
08/02 

06/02 
08/02 

Task 2.3: ORNL improve nonlinear paradigm as appropriate 
~- Task 2.4: ORNL develop algorithm for pattern change recognition 

I 02/01 
DE&S provide replacement datasets for any found 

inadeauate 

08/02-- - 08/02 
08/02 08/02 

08/0 1 
08/0 1 06/0 1 

Task 1.3: ORNL perform condition change analysis on data 
Task 1.4: ORNL construct library of nonlinear condition change 

Task 1.5: ORNL correlate condition change to approaching failure 
Task 1.6: ORNL procure new computer 

ORNL iniolement nonlinear analvsis software on new PC 

signatures _- 
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Fig. 2. Baseline data YS time from the equipment in Fig. 1. Top plot shows acoustic data. 
Second plot down shows accelerometer data. Third plot down shows accelerometer data. Bottom 
plol shows another channel of accelerometer data. Vertical axes in all four plots are arbitrary 
units. 
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Fig. 3. Two dimensional phase-space plots for acoustic data in top plot of Fig. 2. The 
abrupt spikes in that time serial data cause the bow-tie and cross-shaped phase-space portraits. 
The lack of change for L22 indicates that this data is under-sampled. 
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Fig. 4. Typical baseline data vs time from the Allis Chalmers motor. Top three plots show 
the three-phase voltages (VJ. Middle three plots show the three-phase currents (Z?). The sinusoidal 
variation in these plots corresponds to 60 Hz. The bottom plot shows instantaneous power, P ,  as 
the sum of the products of the three-phase currents times the corresponding voltages. See text for 
discussion. 
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Fig. 5. Linear measures for the air-gap seeded-fault. Top plot shows various linear measures 
of instantaneous power, P: minimum (P,) as the bottom curve, maximum (P,) as the top curve, 
average plus one standard deviation (P -t op) as the middle top curve, and average minus one 
standard deviation (P - 0,) as the middle bottom curve. Second plot down shows skewness (solid) 
and kurtosis (- -) in the instantaneous power. Third plot down shows the number of time steps per 
cycle in the instantaneous power. Bottom plot shows the lag in time steps, corresponding to the 
first zero in the autocorrelation function. See text for discussion. 
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Fig. 6. Conventional nonlinear measures for the air-gap seeded-fault. Top plot shows the 
location (in time steps) of the first minimum in the mutual information function. The middle plot 
shows the correlation dimension (D). The bottom plot shows the Kolmogorov entropy ( K ) .  Error 
bars in the middle and bottom plots correspond to the 95% confidence interval. S e e  text for 
discussion. 
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Fig. 7. Two-dimensional phase-space reconstructions for baseline power data. The 
horizontal axis is power, P,? at time tJ. The vertical axis is power, PJ+A at later (lagged) time tJ+n. 

Each plot corresponds to progressively larger time lag, A, beginning at twenty-one (21) time steps 
in the upper left plot. The lag increases by one time step as the plots progress from left to right. 
The lag also increases as the plots descend from top to bottom, as shown by the “ b n n ”  
designation in the upper left corner of each plot, where “nn” denotes the particular value of lag. 
Successive plots demonstrate the “unfolding” of the phase-space representation. See text for 
further discussion. 
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Fig. 8. PSDM for the airgap-offset seeded-fault. The phase-space parameters: d=3, S=56, 
~ 5 7 3 ,  b88. Dataset #1 is for the nominal (no fault) state. Datasets #2-3 are for two different 
airgap-offset faults. See text for further discussion. Stars (*) show the dissimilarity values with 
the straight linear added as an aid for interpretation of the gfaphs. 
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Fig. 9. Linear measures €or the broken-rotor seeded-fault. Top plot shows various linear 
measures of instantaneous power, P: minimum (P,) as the bottom curve, maximum (P,) as the top 
curve, average plus one standard deviation (P -+ op) as the middle top curve, and average minus 
one standard deviation (P - op) as the middle bottom curve. Second plot down shows skewness 
(solid) and kurtosis (- -) in the instantaneous power. Third plot down shows the number of time 
steps per cycle in the instantaneous power. Bottom plot shows the lag in time steps, corresponding 
to the first zero in the autocorrelation function. See text for discussion. 
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Fig. 10. Conventional nonlinear measures for the broken-rotor seeded-fault. Top plot 
shows the location (in time steps) of the first minimum in the mutual information function. The 
middle plot shows the correlation dimension (0). The bottom plot shows the Kolmogorov entropy 
( K ) .  Error bars in the middle and bottom plots correspond to the 95% confidence interval. See text 
for discussion. 
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Fig. 11. PSDM for the broken-rotor seeded-fault. Dataset #1 is for the nominal (no fault) 
state. Dataset #2 is for the 50% cut in one rotor bar. Dataset #3 is for the 100% cut in one rotor 
bar. Dataset #4 is for two cut rotor bars. Dataset #5 is for four cut rotor bars. The exponential rise 
in the severity of the seeded faults is shown as an almost linear rise (solid line) in the logarithm of 
all four dissimilarity measures (*) for the chosen set of phase-space parameters. 
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Fig. 12. Typical baseline data vs time from the GE motor. Top three plots show the three- 
phase voltages (Vi). Middle three plots show the three-phase currents (It) .  Note the very rich 
dynamical features in this raw data, as well as in the instantaneous power (bottom plot). 
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Fig. 13. Linear measures for the turn-to-turn short seeded-fault. Top plot shows various 
linear measures of instantaneous power, P: minimum (P,) as the bottom curve, maximum ( P J  as 
the top curve, average plus one standard deviation’ (P -t op) as the middle top curve, and average 
minus one standard deviation (P - op) as the middle bottom curve. Second plot down shows 
skewness (solid) and kurtosis (- -) in the instantaneous power. Third plot down shows the number 
of time steps per cycle in the instantaneous power. Bottom plot shows the lag in time steps, 
corresponding to the first zero in the autocorrelation function. See text for discussion. 
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Fig. 14. Conventional nonlinear measures for turn-to-turn short seeded-fault. Top plot 
shows the location (in time steps) of the first minimum in the mutual information function. The 
middle plot shows the correlation dimension (0). The bottom plot shows the Kohogorov entropy 
(K) .  Error bars in the middle and bottom plots correspond to the 95% confidence interval. See text 
for discussion. 
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Fig. 15. PSDM for the turn-to-turn short seeded-fault. Dataset #1 is for the nominal (no 
fault) state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for the 1.35-ohm short. The 
monotonic rise in the severity of the seeded faults i s  shown as an almost linear rise (solid line) in 
the four dissimilarity measures (*) for the chosen set of phase-space parameters. 
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Fig. 16. Conventional statistical measures vs dataset number. Results are for the 
Polytechnic University of Valencia imbalance test sequence: (a) minimum (MIN), maximum 
(MAX), absolute average deviation (a), and sample standard deviation (03; (b) skewness; (c) 
kurtosis; (d) time of time steps per cycle; (e) first zero (in time steps) of auto-correlation function. 
See text for discussion. 

Ni. 8 

7.5 

37 

- - 



4 I I I I I I I 

3 -  - 

h 

e E 2 -  
v 

Y 

1 -  

0 

Fig. 17. Traditional nonlinear measures vs time. Results are for the Polytechnic University 
of Valencia imbalance test. (Top) correlation dimension (D); (middle) Kolmogorov entropy ( K ) ;  
(bottom) location of the first minimum (in time steps) in the mutual information function (MI). 
See text for discussion. 
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Fig. 18. Unrenormalized PSDM vs dataset number. Results are for the Polytechnic 
University of Valencia imbalance test: (top) 2, (second down) x2, (third down) L, (bottom) L,. 
The values of A and B in each subplot correspond to the slope and y-intercept for the least-squares 
straight line. See text for discussion. 
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Fig. 19. Mechanical Diagnostics Test Bed at PSU/ARL. Top picture shows (from left to 
right) the 30 hp drive motor, torque cell, gear box, second torque cell, and 75HP electrical 
generator (load). Lower plot shows a typical segment of data for load torque (in arbitiary units) vs 
time from the MDTB, sampled at 1 kHz. 
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Fig. 20. Linear measures of load torque from PSU/ARL MDTB. Top plot shows various 
linear measures of instantaneous torque, T: minimum (T,) as the bottom curve, maximum (T,) as 
the top curve, average plus one standard deviation (T + q) as the middle top curve, and average 
minus one standard deviation (T - e) as the middle bottom curve. Second plot down shows 
skewness (solid) and kurtosis (- -) in the instantaneous torque. Third plot down shows the number 
of time steps per cycle in the torque. Bottom plot shows the lag in time steps, corresponding to the 
first zero in the autocorrelation function, which varies from zero to 539. See text for discussion. 
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Fig. 21. Conventional nonlinear measures of load torque data. Top plot shows the location 
(in time steps) of the first minimum in the mutual information function. The middle plot shows 
the correlation dimension (D). The bottom plot shows the Kolmogorov entropy (K) .  Error bars in 
the middle and bottom plots correspond to the 95% confidence interval. See text for discussion. 
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Fig. 22. PSDM vs dataset number. Results are for the PSU/ARL MDTB test sequence vs 
dataset number. Datasets #1-5 are the basecases. These results are for the following phase-space 
reconstruction parameters: d=16, S=3, and k 6 1 .  See text for discussion. 
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Fig. 23. Raw tri-axial accelerometer data. The subplots are for RUN33 of the PSU MDTB 
test sequence vs time: left column (A,), center column (A2), and right column (A3). Each row 
(down) of subplots corresponds to five-fold greater resolution in time. 
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Fig. 24. Conventional statistical measures of tri-axial acceleration. The subplots are as 
follows: (top row) minimum (An), absolute average deviation (a), sample standard deviation (6, 
and maximum (Ax); (second row from top) skewness (-) and kurtosis (- -); (third row from top) 
number of time steps per cycle; (bottom row) first zero (in time steps) in the autocorrelation 
function. 
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Fig. 25. Tri-axial accelerometer power vs time. Subplots are at three successively faster time 
scales. S e e  text for discussion. 
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Fig. 28. PSDM vs dataset number. Results are for RUN33 of the PSU MDTB gearbox 
failure sequence for d=2, S=274, and k l .  Results for the two bad datasets (#119 and 266) have 
been replaced by locally averaged values. See text for discussion. 
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Fig. 29. Maximum 2 vs number (n) of sequential points. Results are obtained for samples 
from (bottom curve) a normal distribution with zero mean and unity sample standard deviation; 
(middle curve) composite measure, Cj, of condition change from the 200 datasets that span the 
straight-line fit; (top curve) composite measure, Ci, of condition change during failure onset 
(datasets #394-400). The middle and top curves use the same analysis parameters as in Fig. 29. 
See text for discussion. 
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Fig. 30. Tri-axial accelerometer power vs time. Results are for RUN35 of the PSU MDTB 
experiment at four successively faster time scales. See text for discussion. 

51 



I I I I I I I I I 

I 

a l(1Q p(1 3m 400 500 Bcw 700 ma ma .I I 
(=I 

3 I I I I I I I I 

1 

Fig. 31. Conventional statistical measures of accelerometer power vs dataset number. 
Results are for RUN35 of the PSU MDTB test sequence: (a) minimum ( P J ,  maximum (PJ, 
absolute average deviation (a), and standard deviation (d) of accelerometer power; (b) skewness 
of time-serial power; (c) kurtosis of power; (d) number of time steps per cycle; (e) first zero (2,) 
in the autocorrelation function. See text for discussion. 
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Fig. 33. PSDM vs dataset number. Results are for RUN35 of the PSU MDTB gearbox 
failure sequence for d=2, S=274, and A=l . See text for discussion. 
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discussion. 
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APPENDIX A: DESCRIPTION OF ANALYSIS METHODS 

This Appendix is organized as follows. Section A. 1 describes the method for removal of artifacts 
from the data. Section A.2 discusses conventional statistical measures for time-serial analysis. 
Section A.3 describes three traditional nonlinear measures for our analysis. Section A.4 explains 
OWL'S nonlinear PSDM. 

A.l ARTIFACT REMOVAL 

Data frequently include artifacts, such as sinusoidal variations in three-phase voltage and current. 
We remove essentially all of these artifacts with a novel zero-phase quadratic filter.' This filter 
uses a moving window of 2w + 1 points of raw data, e,, with the same number of data points, w, 
on either side of a central point. We fit the data to a quadratic equation, F(t,) = alTI2 + a2T, + u3, 

with TI = t, - tc, and tc the time at the central point of the moving window. We obtain the best fit 
to the data by minimizing the fimction, Y=C, [F(t) - ell2. The sum is over the 2w + 1 points in the 
moving window. The minimum in Y' is found from the condition dY/dak = 0, which yields three 
linear equations in three unknowns. The window-averaged signal is the fitted value at the central 
point, F(t, = t,) = u3. The sums over odd powers of T, are zero; symmetric sums over even powers 
of T, (over i from -w to w) can be converted to sums from 1 to w, giving a window-averaged 
solution for the artifact signal, 

W W 

F(t -- tc) = [3(3w2 + 3w - 1)C e;+c - 15C i2 ei+c] / (4w2 + 4w - 3)(2w + 1). (A. 1) 
p - w  ,=-u' 

The sums in this last equation are over i fi-om -w to w, with sums over even powers of i explicitly 
evaluated with standard formulas for Ci i2 and Ci i4 (ref. 2). The effort to evaluate Eq. (A.l )  can 
be reduced further by computing the sums initially with c = w + 1, and then using recursions 
thereafter for c > w + 1 (ref. 1). Application of this filter to the N-point set of raw data, e;, yields 
N - 2w points of artifact data,Jf; = F(tc = ti). The residue, xi = e; -A, has essentially no artifact 
content. Subsequent analysis uses only the artifact-filtered machine data, xi. 

A.2 CONVENTIONAL STATISTICAL MEASURES 

Analysis of time serial data begins with the collection of a process-indicative scalar signal, x, 
from a dynamical system whose dimensionality, structure, parameters, and regime are usually 
unknown. This signal is sampled at equal time intervals, z, starting at the initial time, to, and 
yields a sequence of N points, xi = x(t0 + iz). Several linear measures are useful for characterizing 
the gross features of this data. The first is the mean, x , or average over the N data points: 

N 

4 =C,x; lN 
i= 1 
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The second is the sample standard deviation (o), which follows from Eq. (A.2): 

N 

cJ2 = m i - z ) Z / ( N - 1 )  i= I 

Equation (A.3) is the second moment about the mean, implyng that higher moments are 
available. Thus, a third linear measure is the third moment about the mean, called skewness, s: 

N 

s = C ( X i  -&>’ / N o 3 .  
i= l  

A fourth linear measure is the fourth moment about the mean, called kurtosis, k: 

N 

k = C(X; -&)4 /No4 - 3 .  
1 = I  

Typical process data have significant values for skewness and kurtosis, but Gaussian random 
processes have values that are not significantly different from A large positive (negative) 
value of skewness corresponds to a longer, fatter tail of the data distribution about the mean to 
the right (left). Kurtosis measures the amount of flattening (negative k)  or excess peakedness 
(positive k )  about the mean. Another measure applies to both linear and nonlinear systems, and 
involves counting the number of times, n,, that the signal crosses the mean value. More 
specifically, one-half of a wave period is delimited by two successive mean crossings. For nc 
>> 1, the average number of time steps per wave cycle (m) as: 

This last measure indicates the average periodicity in the signal, or the inverse of the average 
frequency. Analysis of typical data shows that these measures provide little, if any, 
discrimination for detection of condition change. We include these measures for the sake of 
completeness and to show that linear measures are inadequate for prognostication. 

A.3 TRADITIONAL NONLINEAR MEASURES 

Nonlinear analysis uses the same sequence of time serial data, xi, to reconstruct the process 
dynamics. h particular, phase-space (1%) reconstruction4 uses d-dimensional time-delay vectors, 
y(i) = [xi, x,+l , . . . , xj+(d-))l], for a system with d active variables and time lag, A. The choice 
of lag and embedding dimension, d,  determines how well the PS reconstruction unfolds the 
underlying dynamics from a finite amount of noisy data. Takens’ found that, for a d-dimensional 
system, 2d + 1 dimensions generally results in a smooth, non-intersecting reconstruction. Sauer 
et a1.6 showed that, using ideal data (i.e., no noise and infinite precision), the first integer greater 
than the correlation dimension is often sufficient to reconstruct the system dynamics; this result 
has been confirmed by computing the embedding dimension via the false nearest-neighbors 
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m e t h ~ d . ~ ' ~ ? ~  However, too high an embedding dimension can result in over-fitting for real data 
with finite length and noise. We further note that different observables of a system contain 
unequal amounts of dynamical information," implying that PS reconstruction could be easier 
from one variable, but more difficult or even next to impossible from another. Our analysis seeks 
to balance these caveats within the constraints of finite-length noisy data. 

Various nonlinear measures have been defined to characterize process dynamics using the PS 
reconstruction. * '7'2 We choose three of these nonlinear measures, against which we compare the 
dissimilarity indicators. In particular, we use: the first minimum in the mutual infomiation 
function as a measure of de-correlation time, the correlation dimension as a measure of dynamic 
complexity, and the KoImogorov entropy as a measure of predictability. For the reader's 
convenience, we briefly describe these three measures next. 

The mutual information function (MIF) is a nonlinear version of the (linear) autocorrelation and 
cross-correlation functions and was originally developed by Shannon and Weaver13 with 
subsequent application to time series analysis by Fraser and Swinney.I4 The MIF measures the 
average information (in bits) that can be inferred from one measurement about a second 
measurement and is a function of the time delay between the measurements. Univariate MIF 
measures predictability within the same data stream at different times. Bivariate MIF measures 
predictability of one data channel, based on measurements in a second signal at different times. 
For the present analysis, we use the first minimum in the univariate MIF, M I ,  to indicate the 
average time lag that makes xi independent of x, . The MIF, I(q,r), and system entropy, H ,  are 
defined by 

For a window of N points, we denote the Q set of data measurements by 41, 42, . . . , qN, with 
associated occurrence probabilities P(ql),  P(q2), . . . , P ( ~ N ) .  R is a second set of measurements, 
rl, r2, . . . , r N ,  with a time delay relative to the qi values, with occurrence probabilities P(rl) ,  
P(r2), . . . , P ( ~ N ) .  The function P(qi, 5) denotes the joint probability of both states occurring 
simultaneously. H and I are expressed in units of bits if the logarithm is taken in base two. 

The maximum-likelihood correlation dimension, D, is: I 5 , l 6  

(A.lO) 
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where M is the number of randomly sampled point pairs; 6, is the maximum-norm distance 
between the (randomly chosen) i - j  point pairs, as defined in Eq. (A.12) below. The distance 
(scale length) 6, is associated with noise as measured from the time serial data. Note that the 
distances are normalized with respect to a nominal scale length 60, which is chosen as a balance 
between sensitivity to local dynamics (typically at 6 0  $52) and avoidance of excessive noise 
(typically at SO 2 a). Here, the symbol a denotes the absolute average deviation as a robust 
indicator of variability16 in the data, 

where x_ is the mean of xi over the window of N points. The distances 4, are defined by 

where m is the average number of points per cycle, as determined by Eq. (A.6). 

The Kolmogorov entropy, K,  measures the rate of information loss per unit 

(A. 11) 

(A.12) 

time, or 
(equivalently) the degree of predictability. Positive, finite entropy is generally considered a clear 
demonstration that the time series and its underlying dynamics are chaotic. A very large entropy 
indicates a stochastic (nondeterministic) and therefore totally unpredictable phenomenon. The 
K-entropy is estimated from the average divergence time for pairs of initially close orbits. More 
precisely, the entropy is obtained from the average time for two points on an attractor to go from 
an initial separation 6 5 60 to a separation of more than that distance (6 > 6,). We use the 
maximum-likelihood K-entropy of Schouten et al.,” 

A4 

fr = ( l IM)Cb ,  , 
i=l 

(A. 13) 

(A. 14) 

with bi as the number of time steps for two points, initially within 6 5 &, to diverge to S > 6 0 .  

The symbolf, denotes the data-sampling rate. 

There are several problems associated with the use of these measures for detection of dynarnical 
change. The most serious is that these nonlinear measures are expressed as a sum or integral 
over (a region of) the PS, thus averaging out all dynamical details into a single number. Two 
(very) different dynamical regimes may lead to very close, or even equal measures. The situation 
is even murkier for noisy dynamics, in which case reliable determination of the nonlinear 
measures is next to impossible. The second difficulty arises from the definitions of K-entropy 
and correlation dimension in the limit of zero scale length. However, all real data have noise and 
even noiseless model data is limited by the finite precision of computer arithmetic. Thus, we 
choose a finite scale length that is somewhat larger than the noise (60 = ZQ), at which to report the 
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values of K and D, corresponding to finite-scale dynamic structure. Consequently, the calculated 
values of K and D have smaller values than expected for the zero-scale-length limit (& -+ 0) and 
cannot capture dynamical complexity at length scales smaller than 60. A third difficulty arises 
from the definition of these nonlinear measures as functionals of the distribution functions. 
Some of these functionals do not satisfy all the mathematical properties of a distance. In 
particular, for some of them, symmetry and the triangle inequality may be violated.18 Therefore, 
these measures cannot define a metric in the mathematical sense. They may indicate change, 
although only in a sense that has to be made precise for each situation. 

A.4 PHASE-SPACE DISSIMILARITY MEASURES 

The traditional nonlinear measures described in the previous section characterize global features 
of the dynamics, and can clearly distinguish between regular and chaotic dynamics. However, 
they do not reveal slight dissimilarities between dynamical states. The same is true for other 
global indicators, such as fractal dimension, Lyapunov exponents, etc. This lack of 
discrimination occurs because such traditional measures are based on averaged or integrated 
features of the dynamics over the attractor, which provide a global picture of long-term 
dynamical behavior. 

Greater discrimination is possible by more detailed analysis of the reconstructed dynamics. The 
natural (or invariant) measure on the attractor provides a more refined representation of the 
reconstruction, describing the visitation frequency of the system dynamics over the PS. We 
obtain a useful discrete representation of the invariant measure from time serial data as follows. 
We first represent each signal value, xi, as a symbolized form, si, that is, one of S different 
integers, O , l ,  . . . , S-I, 

(A. 15) 

Here, the function (INT) converts a decimal number to the closest lower integer, and xrnin and xmOx 
denote the minimum and maximum values of xi, respectively, over the base case (reference data). 

the minimum and maximum values over both the base case and test We previously used 
case (data to be tested for departure from the base case). However, in real- or near-real-time 
analyses, only base case extrema are actually known. We require that si(xi = x,,,,) = S - 1 in order 
to maintain exactly S distinct symbols. Consequently, Eq. (A.15) creates symbols that are 
uniformly distributed between the minimum and maximum in signal amplitude (uniform 
symbols). 

19,20,21 

An alternative is equiprobable symbols. These symbols are formed by ordering the base case 
time-serial data from the smallest to largest value. The first N/S of these ordered data values 
correspond to the first symbol (0). Ordered data values (N/S)+l through 2NIS correspond to the 
second symbol (I), and so on up to the last symbol, S-1 . Consequently, equiprobable symbols 
have non-uniform partitions in the signal amplitude so that each symbol has the same occurrence 
frequency (N/S) of xi values. Much structure is inherent in uniform symbols before beginning 
the PS reconstruction, but no PS structure arises from equiprobable symbols. Thus, a key 
advantage of equiprobable symbols i s  that dynamical structure arises only from the phase-space 
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reconstruction, as described below. Large negative and large positive values of xi have little 
affect on equiprobable symbolization, but dramatically change the partitions for uniform 
symbols. Moreover, information theoretic measures of the PS-DF (e.g., mutual information 
function) are a smooth function of the reconstruction parameters for equiprobable symbols, but 
are noisy functions of these same parameters for uniform symbols. We find that equiprobable 
symbols provide better discrimination of condition change than uniform symbols. 

The phase-space is partitioned into s’hypercubes or bins by the symbolization process. We then 
count the number of PS points occurring in each bin to obtain the distribution function (DF) as a 
discretized density on the attractor. We denote the population of the ith bin of the distribution 
function, Qj, for the base case, and Rj for a test case, respectively. For infinitely precise data, this 
representation has been used in Grebogi et a1.22 The choice of parameters (S, N, and d,) depends 
not only on the system, but also on the specific data under consideration. In the preliminary 
phase of the analysis, we systematically varied each parameter with the others fixed, to obtain 
optimum sensitivity of the measures to changes in system dynamics for eacli class of data. After 
achieving optimal sensitivity, the values of the parameters were kept fixed. 

Initial analysis used an embedding window, A41 = (d - 1)A, based on the first minimum in the 
mutual information function, MI (rcf. 14). This choice of time delay provides maximal 
information for the reconstruction of the phase space dynamics. Then, we set A = INT[0.5 + 
MI/(d - l)] to obtain an integer value for the lag when A 4 1  is not evenly divisible by d - 1. The 
reconstruction requires that A ? 1, thus constraining the largest value of dimensionality to d 5 
2Ml-t  1 from the above formula. Subsequently, we have found that this choice of time-delay lag 
is not the best for failure forewarning. Rather, we vary A as one of several parameters that 
determine the goodness of the PSDM in providing forewarning of failure. 

After reconstruction (unfolding) of the dynamics, the test case is compared to the base case. Diks 
et measured differences between delay vector distributions by the square of the distance 
between two DFs. S~hre ibe?~ ,*~  measured dissimilarity via the Euclidean distance between 
points of the attractor. These measures of dissimilarity only account for the geometrical shape 
and location of the attractor. Manuca and S a ~ i t ? , ~ ~  described dissimilarity via ratios of the 
correlation integral over the DF. This is essentially the correlation dimension, as discussed 
above. Moreover, these papers discuss dissimilarity measures from the perspective of non- 
stationarity, while our focus is on quantification of condition change. Tn particular, we measure 
the difference between Qi with Ri by the 2 statistics and L1 distance, 

x2 = Z(Q~ - RJ / ( Q ~  + R,) , 
i 

i 

(A. 16) 

(A. 17) 

where the summations in both equations run over all of the populated PS cells. The choice of 
thesc measures is based on the following considerations. The 2 statistic is one of the 
most powerful, robust, and widely used statistical tests to measure discrepancies between 
observed and expected frequencies. The X 2  statistic is obviously symmetric, but does not always 
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satisfy the triangle inequality, so it does not define a distance in the mathematical sense. The LI 
distance is the natural metric for distribution functions since it is directly related to the total 
invariant measure on the attractor and does define a bona fide distance. Therefore, these 
measures account for changes in the geometry, shape, and visitation frequency of the attractor 
and can be viewed as somewhat complementary. Obviously, calculation of these measures in a 
consistent fashion, requires that the base case and test case contain the same number of points, 
identically sampled; otherwise the distribution functions have to be properly rescaled. 

We extended the previous analysis in a manner that is naturally compatible with the underlying 
dynamics. By connecting successive PS points as prescribed by the dynamics, y(i) + y(i +- l), 
we obtain a discrete representation of the process Thus one can form a 2d-dimensional 
vector, Y(i) = b(z), y(i + l)], by adjoining two successive vectors from the d-dimensional 
reconstructed PS, lives in a 2d-dimensional space, that we call the connected phase space (CPS). 
As before, Q and R denote the CPS DFs for the base case and test case, respectively. We define 
the measures of dissimilarity between these two CPS DFs, as before, via the LI-distance and 2 
statistic, 19,2 I ,29,30 

(A. 18) 

(A. 19) 

The subscript c indicates the connected distribution function measure. We note that the value A 
= 1 results in d - 1 components of y(i + 1) being redundant with those of y(i), but we allow this 
redundancy to accommodate other data such as discrete points from two-dimensional maps. The 
CPS measures have a higher discriminating power than their non-connected counterparts. 
Indeed, we can prove that the measures defined in Eqs. (A.16HA.19) satisfy the four 
ineq~a l i t i e s~~  2 S L ,  x.2 I L , ,  L <Le , and 2 Sx;. Alternative forms are: 2 S L  I L ,  and 2 2 

2 
x c  <Le. 

The 2 statistic requires statistical independence between various samples. However, the PS 
points depend on one another due to reconstruction from time delay vectors with dynamical 
structure.23 The resulting statistical bias is avoidable by averaging contributions to 
Eqs. (A.16)-(A.19) over values of y(j) or Y(j) which satisfy li -jl < A (ref. 23), where A is some 
largest typical correlation time lag. We tested the bias in typical data by sampling every A-th 
connected phase space point for 4 5 A 5 23, resulting in A different samples for the base case 
(QJ and for each cutset (Ri). We then averaged the sampled 2 values over the A’ different 
combinations of distribution functions for the base case and test case cutsets. As expected, a 
decrease proportional to 1/A occurs in the sampled 2 values, because the number of data points 
contributing to 2 decreases in the same proportion. The trend over time in sampled 2 values is 
the same as in 2 values without sampling, showing that no bias is present. Thus, we 
use unsampled 2 values for the remainder of this work as a relative measure, rather than as an 
unbiased statistic for accepting or rejecting a null statistical hypothesis.” 
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Use of the dissimilarity measures on finite length, noisy data requires a consistent statistical 
implementation and interpretation. We use the first B non-overlapping cutsets as base cases. 
The choice of the number of basecase datasets, B, should strike a judicious balance between a 
reasonably short base case period to capture quasi-stationary, “normal” dynamics and a 
sufficiently long period for statistical significance. We have chosen B = 10 for noisy machine 
data to provide a sufficient statistical sample. 

‘The disparate range and variability of various nonlinear measures are difficult to interpret 
(especially for noisy data), so we need a consistent means of comparison. Thus, we renormalize 
the nonlinear measures.’’ 21 For each nonlinear measure, V = {D, K ,  M I ,  L ,  L,, 2, and x:}, we 
define V,  as the value of the nonlinear measure for the ith cutset. As before, Vis the mean value 
of that nonlinear measure over the non-outlier base cases, with a corresponding sample standard 
deviation 0, as described above. No averaging is needed for I>, K,  and A41 since the calculation 
of these measures involves only one cutset at the time. The renormalized form is then U( V) = I V, 
- yJ/o, which measures the number of standard deviations that the test case deviates from the 
base case mean. Several successive occurrences above threshold provide a clear indication of 
condition change. Alternativcly, a systematic rise in the PSDM will indicate a clear departure 
from the base case dynamics, and provides forewarning of failure. 
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1.ntroduction 

This appendix describes testing that was performed on the PSU (Pennsylvania State University) 
Mechanical Diagnostics Test Bed (MDTB) in support of work at Oak Ridge National Laboratory 
(ORNL) under the U.S. Department of Energy NEWOOO-109 (Nuclear Energy Research Initiative) 
project. This test plan describes the MDTB, the equipment that will be tested, instrumentation and data 
acquisition equipment, and the conditions and procedure under which the equipment will be tested. 

Test Bed 

Figure B.l shows the MDTB, which was built as an experimental research station for the study of fault 
evolution in mechanical gearbox power transmission components. The gearbox is driven at a set input 
speed using a 30 HP, 1750 RPM AC (drive) motor. A mechanical load (torque) is applied to the gearbox 
by a 75 HP, 1750 RPM AC (absorption) motor. The maximum speed and torque are 3500 RPM and 225 
ft-lbs respectively. Speed variation is accomplished by varying the frequency to the motor with a digital 
vector drive unit. The variation of the torque is accomplished by a similar vector unit capable of 
controlling the current output of the absorption motor. The system speed and torque set points are 
produced by analog input signals (0-10 VDC) supplied by the data acquisition controller computer. The 
MDTB is capable of parallel or right angle gear motor mounts. 

Figure B.l: Mechanical Diagnostics Test Bed 

The MDTB has the capability of testing single and double-reduction industrial gearboxes with gear ratios 
from about 1.2:l to 6:l and with ratings that can range from 5 to 20 HP. Duty cycle profiles can be 
prescribed for varying speed and load. Drive line speeds for tests to date have been fixed at 1750 RPM 
with variable load profiles that step up to maximum values of 2 to 5 times the rated torque of the test 
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gearbox. Thc motors and gearbox are hard-mounted to minimize vibration transmission, and are 
precision aligned using laser technology. The shafts can bc connected with either flcxible or rigid 
couplers. Torque limiting clutches are used on both sides of the gearbox excessive torque that could 
occur with gear jamming or bearing seizure. Also, torque cells are used on both sides of the gearbox to 
directly monitor the loads transmitted and efficiency. The vector drives control the drive and load 
motors, providing output signals, which are sampled and stored. Output data include: input power to the 
drives, root-mean-square (RMS) currents, winding temperatures, motor speed, and generator torque. 
These signals allow automation and shutdown of motors directly through the controller PC. 

Dodge (R8600 1) 
APG Size 3 
Single Reduction Helical 
1.5 

Equipment to be Tested 

Dodgc (R86005) 
APG Size 3 
Single Reduction Helical 
3.38 

The MDTB was designed to perform run-to-failure testing on gcarboxes. To date, only single-reduction 
gearboxes have been tested on thc MDTB. The intent under this program is to use the MDTB to collect 
data on single-reduction gearboxes. Table B. 1 describes the characteristics of two candidate gearboxes. 
The first two sets -of data from the MDTB will be collected on Dodge gearboxes. Future sets may be 
collected using the SEW' Eurodrive gearboxes. Table B.2 and Table B.3 show the bearing and gear mesh 
frequencies for the Dodge gearbox at rated input speed. 

Rated Input Speed 
Rated OuGut 
Torque 
Potential Failure 

Table B. 1 : Candidate Gearboxes 

1750 RPM 1750 RPM 
530-1b-in 555 Ib-in 

Gear Shaft 

The Dodge gearboxes have the advantage that they have already undergone extensive (over 25 runs) on 
the MDTB. Our previous experience with the Dodge gearboxes means that we should be able to induce 
predictable failure modes during different runs (shaft failure, input gear failure, output gear failurc, etc.). 
The SEW Eurodrive gearbox is a precision gearbox that uses AGMA-rated gears (American Gear 
Manufacturers Association). 

' SEW (Siiddeutsche-Elektromotoren-Werke) was the name of the original German company, which was founded by 
Christian P2hr in 1935. 
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Table B.2: Dodge Gearbox Bearing Frequencies (at rated input speed) 

Description Ball Bearing 
_I_ (outer) 
Part Number 6307 
Input Freq-(Hz) 

(OUTFREQ) 
FTF (Hz) 10.76 
(OUTFREQ) 

29.1667 -__._ 

Ball Bearing 
(inner) 
6309 

29.1667 

11.07 ~ _ _ _ .  

Tapered Roller Taper Roller 
Bearing (inner) Rearing (outer) 
#15520/15578 #2520/258 1 

16.07 15 

8.03 7.85 

16.0715 
__I__ 

BPFO(Hz> 1 86.06 
(OUTFREQ) 

Gearbox Size 3 - Ratio 1.5 

BSF (Hz) 5 1.77 

875.5 Hz 

Instrumentation and Data Acquisition Equipment 

Data will be collected using a National Instruments PXI measurement system. Figure B.2 shows a - 
picture of an example NI system. This data acquisition system is conrposed of a backplane, a processor 
and control module, and separate data acquisition modules. The MDTR testing will use NI4472 dynamic 
signal acquisition and analysis nrodules (Figure B.3). Module operating characteristics are given in 
Tablc €3.4. Each module has 8 analog inputs with simultancously-sampled, 24-bit, sigma-delta A/D 
converters. The maximum sample rate for each channcl is 102.4 kHz. The internal digital anti-aliasing 
filters in the sigma-delta AID’S are designed to have the following dynamic characteristics (per National 
Instruments specification sheet for the data acquisition module): 

Alias-free bandwidth (passband): DC to 0.4535 f; 
Stop band: 0.5465 f; 
Alias rejection: 110 dB. 

These specifications are consistent with comparable signia-delta AID systems. We intend to acquire data 
at 5 1.2 kHz sample rate, which should provide an alias-free bandwidth of DC to 23 kHz. Note that the 
mounted resonance frequency of the accelerometers that will be used for vibration measurements is 
above 70 kHz, well outside the bandwidth of the proposed measurements. 

The following data will be collected: 

3-phase input motor voltages 
3-phase input motor currents 
3-axis acceleration measurement on gearbox housing 
input and output torque 
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All channels will be sampled at approximately 50 kHz in 10 second snapshots. The data will be saved to 
a computer hard disk drive. Operating specifications for the tri-axial accelerometer are given in Table 5 .  
Additional sensor measurements may be added on open data acquisition channels to provide consistency 
with earlier gearbox tests. The full sensor list will be provided in the post-run test description along with 
a drawing showing sensor placement. 

Channels per module 
A/D resolution 

8 
24 bits 

Dynamic range 
Measurement bandwidth 
Coupling 

120 dB 
DC-45 kHz 
AC/DC 

Figure B.2: National Instruments PXI Data Acquisition System 

Figure B.3: National Instruments Dynamic Data Acquisition Module 
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Data Format 

Data will be provided in a documented binary format. MatLab m-files were also provic id to read the 
header information and data from the files. Data were delivered to ORNL on either CDR or DVDR. The 
anticipated total size for a one, 10s snapshot containing 11 sensor channels is 22.5 MB (10 seconds x 
5 1.2 k samples/s x 4 bytes/sample/channel x 11 channels/snapshot). If each channel is saved into a 
separate file, the size per channel per snapshot would be roughly 2.2 MB per file. 

Test Conditions and Procedure 

The test procedure that will be followed is described below: 
1) Disassemble gearbox and drain out oil; 
2) Take images of both pinion and gear teeth; 
3) Index gear if possible; 
4) Place tooth identification numbers on gear; 
5 )  Mark mating piniodgear teeth with a large slash; 
6) Assembly gearbox using mating slash and refill with manufacturer gear oil; 
7) Mount the gearbox to the test stand and laser align; 
8) Attach all sensors to the gearbox and set up data acquisition system; 
9) Calibrate all sensors and save results, with time stamps to correlate with oil data; 
10) Run Test Matrix until failure; 
1 1) Disassemble gearbox and take images of both pinion and gear teeth; 
12) Index gear if possible. 

The intended test conditions are shown below in Table B.6. Data will be collected until failure of the 
gearbox or until the damage to the gearbox threatens to induce damage in other system components. 
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Table B.6: Test Condition Matrix 
Torque I Length of 1 Snapshot I GroundTruth 

100% of 

* J  

Condition Rate Information 
1 hour 15 mins Send data to ORNL for quality 

Test I Speed 
yondition \E:) 

rated I 

rated failure 
30 mins** 
(nom.) 

check 
ARL verify quality of data 
Oil sample 
Borescope gears 
Borescope gears if changes are 
detected via algorithms 
Oil samples every 24 hours 
Send data to ORNL for quality 
check and analvsis 

Sample rates will change from 30 minutes to 1-10 minute intervals as algorithms detect changes. 

The test protocol involves: (i) a linear increase in motor speed from zero to the operational speed, (ii) 
maintenance of this constant speed for some chosen period, (iii) a linear decrease in motor speed from 
(ii) to zero, (iv) sampling of the gearbox oil for particulates as a measure of gear wear. The cycle of (i)- 
(iv) was repeated many times under the test load until the gearbox failed, causing excessive vibration, 
which triggered termination of the experiment. ORNL analysis uses only the flattop data from (ii) of the 
test cycle. 
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Appendix C: Test Plan for Torsion Experiment 

Title: Seeded Crack Fault Test of Laboratory Bladed Disk Assembly 

Personnel: Brian Resor, Martin Trethewey, Ken Maynard 

Test Description 

One failure mode in a turbo-machine begins with a crack at the base of a rotating blade, eventually 
causing blade loss. This Appendix describes an experiment to simulate such a failure. PSU conducted the 
experiment on the Torsional Vibration Test Rig during May of 2002. Figure C.l shows the test rig. The 
objective was detection of dynamical changes with increasing crack size, thus simulating the change in 
dynamical frequencies due to crack initiation and growth. 

, 

P 
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PSU work to date has simulated the crack growth by changing the lock-nut locations along the threaded 
rods. Figure C.2 shows the rotor assembly, which has eight equally spaced threaded rods to simulate the 
blades. A fractional horsepower DC motor rotates the blades. The present experiment is an extension of 
this earlier PSU work, involving a sequence of tests with a progressively deeper machined “crack” to 
change the rod frequencies, instead of moving the lock nuts. The seeded crack was placed in one of the 
threaded rod “blades” by using a wire electric discharge machining (EDM) to cut a 0.010 in wide slot. 
Test data at each depth of cut included motor voltage, motor current, two-axis translational vibration on 
one bearing pillow block, and torsional vibration of the rotor shaft. A description of the data files is 
shown at the end of this Appendix. Additional details can be found in the 2002 PSU Masters Thesis by 
Brian Resor. 

The test protocol was as follows: 
1. 
2. 
3. 
4. 
5.  
6.  
7. 

Acquire test data (items 3-5, below) for the no-cut (nominal) state of the rotor assembly. 
Place an initial 0.010-inch cut in one rod. 
Measure the bending natural frequency of the seeded fault rod. 
Place the rotor assembly in the torsional vibration test stand. 
Run the test stand and acquire the time-serial data from the system sensors. 
Remove the rotor assembly and increment the slot depth another 0.010 inch by EDM. 
Repeat steps 2 and 6 until a “failed” state is achieved (after six successive EDM cuts). 

Deliverables for this experiment include: 
1. Data for each of the seven tests of the rotor (one nominal state, plus six cuts). 
2. Experimental characterization of each test state. 

The motor that spins the rotor is a small 10,000 RPM DC motor made by Bodine Electric Company. 
Typical motor supply is on the order of 4 Volts and 2 A m p s  (depending on the load that is being spun). 
This particular motor is not manufactured anymore. The DC power supply is by Sorenson Power 
Supplies, a Raytheon Company @art number DCRl5O-12B). 

The transducer that was used for measuring motor input voltage was a LEM Voltage Transducer CV 3- 
200. The current was measured using a LEM Current Transducer LTS 6-Np. Both are contained in the 
box that is pictured in Fig. C. 1. 

The vice is used to hold the rotor assembly, while the “blade” static frequency is measured by placing the 
tip of the fiber optic probes very close to the end of 
the blade and plucking the blade. The probes sense 
the size of the gap between their tip and the tip of 
the blade. This signal is analyzed in the DSA in 
order to determine the blade frequencies. 

Accelerometers were mounted on a pillow block to 
measure vibration in both horizontal and vertical 
directions. 

The angstrom resolver is the instrument that 
converts the signal from the optic probes into a 
voltage which is then fed to the computer. 

Figure C.2. Simulated bladed disk assembly 
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The data acquisition system is a Hewlett Packard VXI M a i n m e  with an E1433A 8-channel data 
acquisition board with tachometer inputs. Data is sent from the VXI Mainfiame to a desktop PC using 
the HP E8491A firewire card. 

The desktop PC used a software package called HP DAQ Express to manage the data acquisition. Using 
this s o h a r e  along with the E1433 card, it was possible to acquire 3 simultaneous channels of data at 
12.8 KHz sample rate. 

Results of Crack Simulation 

The seeded defect for these tests was a small “crack” at the base of one of the eight blades of the rotor, as 
shown in Fig. C.3. Wire EDM cutting was used to produce the smallest possible out to simulate a crack. 
The diameter of the wire that was used for these cuts was 0.010 inches and the over bum is 
approximately 0.001 inches. This adds up to a total cut width of 0.012 inches. The cut depth can be 
controlled to within about 0.0005 inches. 

Figure C.3. Picture of blade cut 

The cut location was as close to the blade root as was practical. A fixture was created for use in the Wire 
EDM machine to which the whole bladed assembly (excluding shaft) is mounted. Using computer 
controlled tooling, the cut location and depth can be carefully controlled for each cut. The depth of the 
first cut was measured fiom the point that the 0.010 inch wire came in contact with thread surfaces at the 
deepest point of the thread. 

The original tuned frequency of all the blades was set at 205 Hz (within +/- 0.25 Hz). Cuts were made to 
each of the depths found in Table C.l and the static frequencies were recorded. Static frequencies for 
first bending modes in both axes were recorded. The “soft” static frequency corresponds to the 
fiequency that couples with shaft torsion and is measured by the torsional vibration measurement 
technique. 
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Table C. 1: Torsional test results summary 

Soft static Stiff static Dynamic Dynamic 
blade Coupled 1” Shaft Rogue Soeed Coupled 1’’ Shaft Rogue Blade Speed 

depth ( I n )  frequency (Hz) frequency (Hz) Mode Mode Frequency (RPM) Mode Mode Frequency (RPM) 
blade Cut spec’d cut 

0 205 205 2135 2685 notwsible 2941 195 233 not wsible 2930 
1 0 024 203 205 25 2135 2665 notwsible 2858 198.5 240 75 20725 3032 
2 0 0 3 2  201 75 205 2135 2655 206 3019 198.5 2395 206 3014 
3 0 037 201 5 205 25 214 26425 205 2988 19825 240 206 3039 
4 0 042 198 5 204 5 213 2645 203 3029 19725 23525 203 5 2986 
5 0047  195 203 75 2125 26425 200 2959 197 241 201 75 3022 
6 0 049 193 75 203 5 211 5 261 8 199 1 2994 193 3 233 8 200 7 3004 

Figure (2.4 shows the relationship betwecn cut depth ratio and percentage degradation in blade frequency. 
Cut depth ratio is defined as cut depth L to pitch diameter D of the threaded rod (D is about 0.016 
inches). Note that the trend in frequency degradation vcry nicely follows a definite trend except for one 
point that corresponds to Cut 3. The rig was probably not mounted quite right for this cut and thercfore 
the cut depth might not have been crcated accurately. 

.~ 

0.99 ’ I---- - 1  4 
I 
I 0.98 

0.97 

0.96 

0.95 

0.94 

0.93 

LL. 

0.92 
0 0.1 0.2 0.3 0.4 

LID 

Figure C.4. Cut depth versus frequency change 

The rotor was assembled in the torsional rig and it was spun at approximately 2900-3000 rpm. The 
running speed was maintained approximately the same for all tests so that effects of aerodynamic 
excitation and cenkipetal speed stiffening are equal throughout. 

In some of the motor voltage and current and accelcration data there may be evidence of speed 
fluctuations. During some of the testing it was diftlicult to keep the rig running at a constant speed for 
some unknown reason. The motor speed would often cycle by about 50 RPM every 15-20 seconds. This 
problem was not experienced in the past. 

86 



Torsional Measurements 

Torsional data was acquired by detecting zero crossings from a striped tape encoder that is installed on 
the shaft of the rotor. Measured zero crossings are compared to imaginary zero crossings that would be 
observed with no torsional vibration in order to determine the phase shift of the carrier wave. When 
rotating speed is known, shaft twist is directly related to phase shift. See the 2002 PSU Masters Thesis 
by Brian Resor for more information on this technique. 

The torsional data from this testing is the actual shaft twist time waveform in the form of degrees of twist 
versus time. The times that are rcported are the exact sample times (which are not spaced constantly due 
to the nature of this technique). The shaft twist is calculated from the measured zero crossings from a 
159 pulse-per-revolution striped tape. The data is corrected for errors that are present in the striped tape. 
A lst order digital Butterworth high-pass filter with 50 Hz cutoff is also applied in order to remove the 
effects of very gradual shifts in running spccd. 

The torsional spectra for this experiment are the logarithm of torsional displacement versus frequency. 
For example, a value of -3.5 on the vertical scale corresponds to a peak vibration amplitude of 
degrees = 0.0003 16 degrees. 

Torsional Results 

For each cut depth, data was acquired with the rig in two different configurations. Setup 1 is the typical 
setup that has been studied in all the previous work on torsional vibration monitoring for turbine blade 
health. The location of the coupled mode (See Figurc C.5) is 5-10 Hz higher than the rogue blade mode. 
In this configuration, as a rogue bladc deteriorates it appears to separate and grow away from the large 
coupled mode peak. Figure C.6 shows the torsional results of this portion of the test. 
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Figure C.5: Important torsional peak locations 
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Figure C.6: Rogue blade cascade for Setup 1 

Setup 2 is a different configuration in that the coupled mode is about 10 Hz lowcr than the rogue blade 
mode. This configuration is achicved by simply moving thc masses 011 the shaft by a small amount. 

Kcsults for testing in Setup 2 arc found in C.7 

Figure C.7. Rogue blade cascade for Setup 2 
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The coupled-mode peak appears in slightly different locations in each case due to difficulties associated 
with disassembly and reassembly of the shaft components for each cut. These effects are insignificant. 
This experiment shows that the rogue blade mode behaves as expected, moving away from the tuned 
frequency die to coupling with the shaft torsion. The rogue blade vibration amplitude increascs as the 
frequency change increases. Moreover, this test shows that a very fine cut shifts the rotor-blade 
frequency that is detectable via the torsional vibration measurement. 

Data File Descriptions 

PSU providcd four MatLabTM-forniatted binary data files for each wire EDM cut of  a blade. Their 
contents are shown in the table below. The designation, “xx,” corresponds to a set of data (examples: 
Base, CutOl, ... Cut06). Both DC and AC-coupled motor data were provided, with a corresponding 
change in the A/D voltage range. Additionally, two different setups were used to acquire data. Setup 1 
contained torsional natural frequencies at 213 1-k and 265 Hz. Setup 2 contained torsioiial natural 
frequencics at about 195 Hz and 240 Hz. Blade frequencies are visible in the torsional spectrum within 
the range of 199-207 Hz. 

Sample length of AID voltage 
Filename Variable name Description rate (Hz) block (N) range (V) 

xx-motor-dc. mat Motor data, DC coupled 
fs sample frequency 1 
Motor-current Motor current 12,800 I536000 5 
Motor-mltage Motor mltage 12,800 1536000 5 
Tach 1 PPR tach signal 12,800 1536000 10 

fs sample frequency 1 

Motor-wltage Motor mltage 12,800 1 536000 0.01 
Tach I PPR tach signal 12,800 1536000 IO 

fs sample frequency 1 
Vert-accel wrtical acceleration 12, a00 9 536000 1 
HOE-accel horizontal acceleration 12,800 1536000 0.1 
Tach 1 PPR tach signal 12,800 1536000 10 

Torsion Digital demodulated 7770.98 830139 na 

SampleTmes sample times of the 19.66~10% 8301 39 na 

fs amrage sample 1 

xx-motor-ac mat Motor data, AC coupled 

Motor-current Motor current 12,800 1536000 0.05 

xx-accel mat Acceleration data 

xx-torsion. mat Torsional data 

torsional vlbratron signal 

torsioinal signal 

frequency of torsional 

Motor voltage, current, and acceleration were supplied as a pure voltage signal. Conversion of these 
voltages to standard units requires scaling factors as listed in the following table: 

Conversion Ratio 
Motor Voltage 200 VinIlO Vout 
Mator Current 2.5+(0.625*lp/lp~) V 

I, = input current 
IpN = 6A 

Vertical Accleration 1008 mVlg 
Horizontal Acceleration 104.4 mVlg 
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APPENDIX D: BEARING PROGNOSTIC TEST RIG 
Terri A. Merdes 

May 7,2002 

INTRODUCTION 

The Bearing Prognostic Test Rig (BPTR) provides bearing transition-to-failure data that supports 
development of diagnostic and prognostic algorithms. These algorithms can benefit a wide range of 
applications and industries, since nearly all rotating machines rely on some type of bearing. With 
rigorous demands being placed on their loading capacity, bearings are aniong some of the most important 
components in rotating machines. There is a trend toward increased reliability requirements. Today 
rolling bearings have developed into a particular branch of enginecring research. 

This research enables calculation of bearing life with considerable accuracy, in order to correlate the 
bearing life with the service life of the machines involved. Unfortunately, a bearing sometimes docs not 
attain its calculated rating life. There may be many reasons for this: inadequate or unsuitable lubrication, 
heavier loading than has been anticipated, ineffective sealing, careless handling, or insufficient internal 
bearing clearance. Each fault type produces a particular type of damage, leaving a unique imprint on the 
bearing itself. Therefore, a growing need exists for algorithms to detect progression of these failures 
before costly teardown and inspection processes arc implemented. 

DEFINING BEARING LIFE 

Bearing life is defined as the number of revolutions by the bearing before the first signs of fatigue failure 
appear. Under normal conditions, the worlung surfaces of a bearing generally are subjected to very high 
altcmating stresses due to the continuous action of the rolling elements (number of revolutions and 
magnitude of the load). Specifically, cyclical shear stresses appear immediately below the load-carrying 
surface, eventually causing cracks which extend out to the outer bearing surface. As the rolling elements 
pass over these cracks, the surface materials break away in a relatively long, drawn-out process. This 
fault condition is known as spalling or flalung, which causes increased noise and vibration in the bearing. 

DEEP GROVE BALL BEARlNGS 

These bearing types are the most widely used of all for general applications, incorporating decp, 
uninterrupted raceways which makes the bearing suitable for many different loads types: radial loads or 
radial and axial loads in either direction. Due to the optimum size of the balls and their conformity with 
raceways, the bearings have a comparatively high load carrying capability and are suitable for high-speed 
operations and have some misalignment capacity. The bearings are manufactured with evenly spaced 
balls inside a one or two-piece cage around the raceways, and may be shielded and sealed. 

THE EXPERIMENT 

The Bearing Prognostic Test Kig (Fig. D. 1) uses a pair of double row spherical roller support bearings to 
support a shaft on which the test bearing is held in place by a bearing holder between thc two support 
bearings. The test rig was configured to test deep groove ball 1-1/8” test bearings, but is configurable to 
other types of bearings. A load jack and load cell were mounted directly behind the test bearing and have 
a radial load capacity of 1,000 Ibs in phase with the outer ring. The system is driven by a SCR motor as 
shown in ‘Table D.l, with an integral tachometer fitted to the motor. The motor is coupled to the test 
shaft with a flexible coupler to reduce transmitted vibration from the motor. Piezoelectric accelerometers 
are currently utilized with frequency ranges between 10 and 100KHz. Data is collected on a 48 channel 
National Instrument 4472 PXI data processing system. The system was run continuously in the 
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overloaded state, with data acquired at periodic intervals until the bearing finally failed. The objective of 
this test was acquisition of data throughout the entire test sequence as a quantitative indicator of the 
failure progression. The deliverables are the data and their historical characterization. 

kW 
1.5 

Table D.l. dc Variable Speed Motor 

Rpm Vdc FLAmps Kgs 
3000 180 10.0 31.5 

I Motor I Base I Arm I Arm 1 Approx 

Test Condition 
1 
2 

Speed Radial Load 
2500 rpm 500 lbs 
1250 rpm 500 lbs 

1 118 Test 

Figure D.l. Bearing Prognostic Test Rig 

Table D.2: Tri-axial Accelerometer Description 
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CURRENT EQUIPMENT REQUIREMENTS 

For this experiment, the BPTR required the purchase of the following: 

.- T 
1 125" Dta 

B -  

- 0000 , 25"  D,a 11816' + 0003 Dia 1 1 2 5 "  Dla 

0 

A new stainless steel shaft for $65.00, involving machine shop work as shown in Figure D.2. 
Each test deep groove ball bearing from ESI Hearing Distribution costs $5.50. 

as described in Table D.2: 

Rick Horner 5.8708 
Project# 9923 
Stock Material: 
Type 303 1.114 inch Stainless Rod 

Sensor Directory 

Sensor Name 
0 One on the top center test bearing 

t- 16.5" b 

Triaxial 
Accelerometer 

Figure D.2. BPTR Stainless Steel Shaft 

Sensor Make - PCB 

0 One on the outside roller support 
bearing 

support housing 

. 

Sensor Model # 356808 

Sensor Serial # 8052 

Current and voltage were acquired from the 
DC electric motor. All data were sampled at 

Sensor Type ICP 

5 1.2 kHz sample rate using National 
Instruments 24-bit A/D data acquisition HW 

Sensor Volt Sensitivity 100 mVlg 

(same data acquisition system used on 
MD'TH gearbox tests). Bit Resolution 24 
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