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Abstract

A small perturbation at the interface of two immiscible liquids under
perpendicularly applied electric fields can drive the system away from a
basic state. This inability of a system to sustain its state is called instability
and has been the subject of numerous studies of theoretical and practical
importance. The classical linear stability analysis hinges on the
assumption that a small perturbation can be decomposed into Fourier
modes and that the evolution of the perturbation can be investigated by
superposing the evolution of each individual mode. Since this framework
is akin to a wave propagation analysis, it is not surprising that a dispersion
equation is at the heart of linear stability analysis. This equation relates the
complex wave frequency to the real wave number in a nontrivial way. The
prime goal of stability analysis is to explore the values of frequencies that
represent the boundary between stable and unstable states by solving the
dispersion relation. Because this equation is complex, standard methods of
solution for real algebraic equations cannot be applied without change.
Therefore, we report on the necessary manipulations for numerically
solving the dispersion equation in the form of two coupled real algebraic
equations. Applications of the results to a system consisting of water,
propanol, and toluene are examined.

1. Introduction

Stability of fluid interfaces under electric fields has been the subject of numerous

investigations. Taylor and McEwan (1965) first studied the stability of the horizontal

interface subjected to an initially perpendicular uniform electric field. They observed that

the fluid interface located between two flat electrodes, kept at a suitable voltage

difference, rose uniformly (Fig. 1) while the section of the interface not directly under the

electrodes dropped. Beyond a certain voltage limit, an instability prevented the interface

from retaining its original shape. The interface became agitated in light of the onset of a

multitude of conical tips. Taylor and McEwan discussed an analytical model to predict

the onset of the instability (critical voltage). However, the model neglected viscous and
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interfacial electric shear forces. Despite these restricting assumptions, adequate

agreement between theory and contrived experiments was achieved.

Melcher and Smith (1968) recognized that disparities between stability analysis

and general experiments could be traced to the existence of shear stresses at the interface,

owing to finite charge relaxation time. Therefore, their comprehensive work applied to

generic cases of interfaces under shear stress. A dispersion relation resulting from linear

stability theory was derived and studied for some key limiting cases, namely, zero shear-

stress dynamics, infinite relaxation time limit for liquid-gas interfaces, and instantaneous

relaxation limit. Melcher and Smith also conducted experiments to validate their analysis

within the appropriate limits.

Dong et al. (2000) studied the interfacial behavior of a liquid-liquid interface

under an applied electric field in an apparatus similar to that of Taylor and McEwan; the

dimensions, however, were different. The cell had an inner height of 11.5 cm, an inner

diameter of 4.8 cm, and a volume of 210 mL. Stainless steel mesh plates (4.4 cm in

diameter) were used as electrodes and were placed parallel to the liquid-liquid interface.

The lower electrode was connected to a high-voltage power supply, and the upper

electrode was grounded. A positive- or negative-polarity DC voltage was applied by a

DC power supply, which had a range from 0 to 30 kV, with a limit of 10 mA (Fig. 1).

The liquid-liquid interface was formed by combining deionized water and isopropanol

with toluene and isopropanol. As an electric field was applied, the interface became

agitated. At first, the onset of instability was the same as that observed by Taylor and

McEwan (and Melcher and Smith). However, as more voltage was applied, liquid

columns formed. This phenomenon had been briefly reported by Terasawa (1983).
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The stability analysis of the particular system used in Dong et al.’s experiments

required a general solution of the dispersion relation presented by Melcher and Smith.

Since solutions to the dispersion relation in its most general form are not available by

means of tabulated functions, a numerical approach was adopted. Here we report on the

algebra and calculus of complex variables necessary for obtaining systematic solutions

via Newton’s method.

The report is organized as follows. Section 2 explains why vertical displacement

of the interface in Dong et al.’s experiments was not observed with the naked eye.

Section 3 gives a background of dispersion relations and illustrates the relevance of

purely dispersive modes. Section 3.2 provides an example of a Gaussian pulse

propagating in different media, and Sect. 3.3 reviews Newton’s method for the problem

at hand. The results are collected in Sect. 4 (and in Tables 1 through 8), and the

conclusions, in Sect. 5.

2. Interface Displacement

According to Taylor and McEwan (1965), the interface (Fig. 1) rose to a height

determined by

( )hhgh
V

−∆= 0
2

2
0

2
ρ

ε
 ,

where ε  is the electric permittivity, V0 is the applied voltage, g is the gravity, and ∆ρ is

the density difference (∆ρ = ρb − ρa, where ρb is the mass density of the lower fluid and

ρa is the mass density of the upper fluid).  For the system under investigation, ∆ρ > 0
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(Dong et al. 2000, Table 1), and h and h0 are positive quantities. In addition, h0 > h

(Fig. 1). By rearranging the above equation, we have a third-degree polynomial,

0
2

2
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0
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∆
+−

ρ
ε
g
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hhh  .
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V

a , we solve for the three roots, h1, h2, and h3 (Abramowitz

1964) of
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We examined the interface displacement h0 – h for three values of a0 shown in Table 1.

These values reflect three levels of voltage, namely, 1, 1.5, and 2 kV, respectively, for

system 3 of Dong et al. (Table 1) when the initial height h0 is 4 × 10-2 m. In each case, the

discriminant 23 rq +  is negative therefore the roots are real and distinct. The computed

and
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values of 2h  were discarded since they were always negative, and the values of 3h  were

unrealistically large (too close to h0). We conclude that 1hh = and present the values of

the vertical interface displacement h0 – h in the right-most column of Table 1. Although

the displacement increases with increasing a0, the values predicted by theory for the Dong

et al. systems are relatively small, <0.2 mm, and cannot be easily detected by the naked

eye.

3. Dispersion Relation for Interfacial Perturbation Modes

The classical linear stability analysis decomposes a small arbitrary perturbation

into independent Fourier modes ( )tkxie ω− , where i is the imaginary number, k is the wave

number (real), x is the space coordinate, ω is the time propagation frequency, and t is

time. Therefore, stability analysis has the same framework as wave propagation theory.

The next two sections are devoted to an introductory discussion of the so-called

dispersion relation.

3.1. Relevance of D(ω, k) = 0

The interaction between a medium and a perturbation determines the

characteristics of the disturbance motion through the dispersion equation D(ω,k) = 0,

which is an implicit relation between the wave number k and the time propagation

frequency ω. This relation is readily obtained from the substitution of the Fourier mode

( )tkxie ω−  into the governing equation for the perturbation in the particular medium.

Therefore, if the frequency is real (null imaginary part), the mode remains oscillatory
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(i.e., it neither grows nor decays). However, if the frequency has a nonzero imaginary

part, the mode will either grow exponentially (if the imaginary part is positive) or decay

exponentially (if the imaginary part is negative). Oscillatory modes (real frequencies) are

of particular relevance to stability analysis because they represent states of neutral and/or

marginal stability. The collection of neutral states defines the dividing surface, in

parameter space, between stable and unstable states. Finding the locus of this surface is

the ultimate goal of stability analysis.

3.2. Example of Gaussian Pulse Dispersion

Consider the one-dimensional Gaussian pulse (formula) with unity amplitude

propagating on the positive side of the x axis with phase speed 
k
ω

. The Fourier

representation of this pulse is given by

( )∫
∞

∞−

−
−

dkee tkxi
k

ω4

2

.

If a particular medium is nondispersive and nondissipative, all modes have the same

phase speed and, therefore, ω = k. This is the simplest possible dispersion relation. All

modes travel with the same speed as indicated in Fig. 2. The evolution of the pulse in this

case was computed from its Fourier representation by integrating via trapezoidal rule in

the frequency space interval (–104, 104) divided into 106 equal subintervals. Since all

modes travel together, the shape of the pulse is not changed by the supporting medium.

However, if a medium is purely dispersive (frequency is real) with phase speed

dependent on the wave number, say 3k=ω , then modes with short wavelength (large
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wave number) propagate faster than modes with long wavelength (small wave number).

Figure 3 shows this effect where an initially Gaussian pulse quickly transforms into a

train of waves as it propagates. The dispersive effect shown in the figure is a qualitatively

accurate description of a pulse propagation on the surface of a deep pond caused by a

falling stone. The outside crests disappear because they propagate with lower energy and

new ones appear from behind.

3.3. Newton's Solution Method for D(ω,k) = 0

Newton’s method is a well-known iterative scheme for computing solutions of

nonlinear real-valued algebraic equations (Dennis and Schnabel 1983). The simplest

implementation of the method requires an initial guess for the values of the unknowns,

the derivative of the algebraic equations with respect to the unknowns, and a residual

tolerance for stopping the iterations.

Since ω is a complex variable, D(ω,k) = 0 implies that the real and imaginary

parts of D must vanish. Therefore, the dispersion equation can be readily solved by

Newton’s method by decomposing

( ) ( )kyxvikyxukD ,,,,),( +=ω

and forming the system

u (x, y, k) = 0 ,

v (x, y, k) = 0 ,

where x and y are the real and imaginary parts of ω. Given the initial guess ( ) ( )( )00 , yx

Newton’s method then reduces to the iterative scheme
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for i = 1, 2, 3 . . . until ( ) ( )1−− ii xx  and ( ) ( )1−− ii yy  are less than a small tolerance.

4. Results

The particular dispersion relation employed in this study was derived by Melcher

and Smith for a system of two horizontal immiscible fluid layers. Standard linear stability

theory was used to perturb the equations of motion of a viscous incompressible fluid

under an applied perpendicular electric field; the effects of surface tension and gravity

were also taken into account. Electrical conductivity and permittivity of the fluids were

included in the analysis so that the effect of charge relaxation could be investigated.

Melcher and Smith did not perform a general analysis of their dispersion equation;

however, they did examine particular limits, as mentioned in Sect. 1.

Here we show necessary manipulations of the dispersion equation for a general

analysis via numerical methods. The dispersion relation was organized as follows:

where all values of ti are nonlinear terms of ω and k. To solve D(ω,k) = 0, Newton’s

method (Sect. 3.3) requires the real and imaginary parts of D, namely, u and v,

( )
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respectively. These can be obtained by decomposing the individual terms ti in their real

and imaginary parts (Tables 2 and 3) so that

u = Re(p1)  Re(p2) – Im(p1)  Im(p2) + Re(p3)  Re(p4) – Im(p3)  Im(p4), and

v = Re(p1)  Im(p2) + Im(p1)  Re(p2) + Re(p3)  Im(p4) + Im(p3)  Re(p4).

In addition, we have computed the derivative of all values of ti with respect to x and y,

where ω = x + i y, so that the derivatives of u and v can be readily obtained as (see

Tables 4 through 8)

∂αu = ∂αRe(p1) Re(p2) + Re(p1) ∂αRe(p2) − ∂αIm(p1) Im(p2) – Im(p1) ∂αIm(p2) +
∂αRe(p3) Re(p4) + Re(p3) ∂αRe(p4) − ∂αIm(p3) Im(p4) − Im(p3) ∂αIm(p4)

∂αv = ∂αRe(p1) Im(p2) + Re(p1) ∂αIm(p2) + ∂αIm(p1) Re(p2) + Im(p1) ∂αRe(p2) +
 ∂αRe(p3) Im(p4) + Re(p3) ∂αIm(p4) + ∂αIm(p3) Re(p4) + Im(p3) ∂αRe(p4)

where ∂α denotes derivatives with respect to x and y. The derivatives of the real and

imaginary parts of the pi terms are obtained by differentiation of the ti terms which we list

in Tables 4 through 8.

5. Conclusions

This investigation reports on the complex-valued algebra and differentiation

required for a general treatment of a dispersion equation obtained by Melcher and Smith

in the stability analysis of a liquid-liquid system under a perpendicular electric field. This

work has been used in Dong et al.’s experimental analysis, where Newton’s method was

applied to solve the dispersion relation in general limits.

We have also explained on theoretical grounds why in Dong et al.’s experiments a

vertical displacement of the interface has not been observed by the naked eye. The
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analysis follows Taylor and McEwan and predicts a vertical displacement < 0.2 mm for

values of applied voltage up to 2 kV.
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8. Figures

Fig. 1. Schematic of experimental apparatus (Dong et al. 2000).
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Fig. 2. Propagation of a single Gaussian pulse without change in shape at a
constant speed.

Fig. 3. Conversion of a single Gaussian pulse into a train of waves
propagating with variable phase speed k3.
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Table 1. Interface displacement for three different levels of voltage (1.0, 1.5,
and 2.0 kV; rows 1, 2 and 3 respectively) in system 3 of Dong et al. (ε = 14.3
× 8.854 ×10-2 F/m, g = 9.81 m/s2, and ∆ρ = 100 kg/m3).

Distance between interface
and upper electrode

constant in section 2 interface displacement

h0 (m) a0 (m3) h0 - h (mm)

4.0×10-2 6.45×10-8 4.04×10-2

4.0×10-2 1.45×10-7 9.10×10-2

4.0×10-2 2.58×10-7 1.63×10-1
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Table 4. Derivatives of t 1 , t 2 , and t 3 . For derivatives of θ, φ , and ψ , see Table 8.
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Table 5. Derivatives of t 4, t 5, and t6. For derivatives of θ, φ ,  and ψ ,  see Table 8.
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Table 6.Derivatives of t 7 , t 8 , and t 9 .  For derivatives of θ, φ , and ψ , see Table 8.
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Table 7. Derivatives of t 10 , t 11 , and t 12 . For derivatives of θ, φ , and ψ , see Table 8.
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Table 8. Derivatives of θ , φ ,and ψ .
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