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ABSTRACT 

Nuclear materials safeguard efforts necessitate the use of non-destructive methods to 
determine the attributes of fissile samples enclosed in special, non-accessible containers. The 
sample identification problem, in its most general setting, is then to determine the 
relationship between the observed features of the measurement and the sample attributes and 
to combine them for the construction of an optimal identification algorithm. The goal of this 
paper is to develop an artificial intelligence (AI) approach to this problem whereby neural 
networks (NN) and genetic programming (GP) algorithms are used for sample identification 
purposes. Monte Carlo simulations of the source-detector cross correlation function for 
various sample shapes, mass, and enrichment values of uranium metal have been performed 
to serve as training set for the artificial intelligence algorithms. Both the NN and'GP 
algorithms have shown good capabilities and robustness for mass and enrichment predictions 
of uranium metal samples. These results serve as a proof of principle for the application of 
combined stochastic and AI methods to safeguards procedures. 
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1. INTRODUCTION 

Nuclear materials safeguard efforts necessitate the use of non-destructive methods to 
determine the attributes of fissile samples enclosed in special, non-accessible containers. To 
this end, a large variety of methods has been developed at the Oak Ridge National 
Laboratory (ORNL) and elsewhere.’, ’ Usually, a given set of statistics of the stochastic 
neutron-photon coupled field, such as source-detector, detector-detector cross correlation 
functions, and multiplicities are measured over a range of known samples to develop 
calibration algorithms. In this manner, the attributes of unknown samples can be inferred by 
the use of the calibration results. 

The sample identification problem, in its most general setting, is then to determine the 
relationship between the observed features of the measurement and the sample attributes and 
to combine them for the construction of an optimal identification algorithm. The goal of this 
paper is to develop an artificial intelligence (AI) approach to this problem whereby neural 
networks w) and genetic programming (GP) algorithms are used for sample identification 
purposes. To this end, the time-dependent MCNP-DSP3 Monte Carlo code has been used to 
simulate the neutron-photon interrogation of sets of uranium metal samples by a 252Cf- 
source, The resulting sets of source-detector correlation functions, R12(r) as a function of the 
time delay, z, served as a data-base for the training of the AI algorithms. 

The organization of this paper is as follows: Section 2 describes the Monte Carlo simulations 
of source-detector cross correlation functions for a set of uranium metallic samples 
interrogated by the neutrons and photons from a 252Cf source. From this database, a set of 
features is extracted in Section 3. The use of neural networks (”) and genetic 
programming to provide sample mass and enrichment values from the input sets of features is 
illustrated in Sections 4 and 5, respectively. Section 6 is a comparison of the results, while 
Section 7 is a brief summary of the work. 

1 
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2. 252Cf-SOURCE-DRIVEN SIMULATIONS 

In the 252Cf-source-driven measurement the source undergoes spontaneous fission emitting 
neutrons and gamma rays. The timing of each spontaneous fission event is recorded in 
appropriate time bins. If fissile material is present inside the sample to be analyzed, the 
neutrons emitted by the source will initiate fission chains. Neutrons and gamma rays from 
the source as well as those eventually emitted by the fissile system are measured with two 
detectors. The detection times are also recorded, in time bins of 1 ns. The uranium sample 
to be analyzed is placed between the source and two fast plastic scintillation detectors. The 
source was located at 25.4 cm from the center of the uranium metal sample at a height of 
10 cm. The detectors, 10.16 cm width and height and 5.08 cm thick, are placed one on top of 
the other at a distance of 25.4 cm from the center of the sample. 

Simulations were performed with cylindrical and spherical samples of seven different masses 
(8 kg, 10 kg, 12 kg, 14 kg, 16 kg, 18 kg, and 20 kg). The different masses were obtained by 
increasing the sample radius, both in the case of the cylinders (in which case the height was 
kept constant at 20 cm) and in that of the spheres. For each mass, four different enrichments 
were tested ranging from depleted to highly enriched (0.2 wt% 235U, 36.0 wt% 235U, 
50.0 wt% 235U, and 93.15 wt% 23sU). Two additional simulations were run for both cylinders 
and spheres giving a total of 30 simulations for the cylindrical samples and 30 for the 
spherical ones. An additional simulation run with no sample between source and detectors 
will be referred to as the void simulation. 

2.1 CROSS-CORRELATION FUNCTIONS 

The source-detectors cross-correlation h c t i o n s  [Rlz(z)] are generated by correlation of the 
source signal with the combined signal from the two detectors, and normalizing to the source 
count rate to remove the dependence on the source. 

In Figure 2.1 the cross-correlation R~z(t) as a function of the delay time between source 
fission and corresponding detection is shown for cylinders of varying enrichment and fixed 
mass (20 kg). The curve consists of two major components: a first peak due to directly 
transmitted gamma rays from the '"Cf fission (the photo peak), and a second, broader peak 
due to directly transmitted and scattered neutrons Erom the source and secondary neutrons 
and gamma rays firom fission induced inside the uranium sample. As it can be seen from the 
figure, the directly transmitted gamma rays are not very sensitive to the fissile mass since 
gamma ray attenuation is not related to fission. On the other hand, the second peak of the 
cross-correlation function depends strongly on enrichment. . 

In the first part of the second peak the curves show similar behavior for time lags below 
20 ns, since the directly transmitted neutrons and secondary photons are not strongly 
dependent on enrichment. Above time lags of about 20 ns, the peak broadens: neutrons 
generated by secondary fission inside the fissile material increase and the number of neutron 
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generations increases. The total path covered by the neutrons before a detection event occurs 
also increases. 

In Figure 2.3 the cross-correlation function obtained with spherical samples is shown. The 
first peak is much higher than in the case of the cylinders. This can be explained in terms of 
the greater attenuation given by the geometry of the cylindrical samples whereas the 
spherical samples allow more gamma rays from the source to reach the detectors directly. 

Figures 2.2 and 2.4 show the source-detectors cross-correlation function in the case of 
cylinders and spheres of varying mass and constant enrichment (36 wt% 23sU). In this case, 
both the gamma peak and the secondary peak height are inversely related to mass: as the 
sample mass increases, so does the attenuation of gamma rays and neutrons. A similar 
relationship was found with other values of enrichment. 
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Fig. 2.2. Source-detectors cross-correlation function (Rlt) for uranium cylinders 
of varying masses and fixed enrichment (36 %wt 235U). 

5 



7 
RlZ 

6 

5 

4 

3 

2 

1 

1 O4 

I 36.0% 

I I I I 

0.2% 

50.0% 

I 

- -  
0 20 40 60 80 I00 

Time lag (ns) 
Fig. 2.3. Source-detectors cross-correlation functions for uranium spheres of 

0 

different enrichments and fixed mass (20 kg). 

I 1 I I I 

Rq a 

0 5  

0 

I _---A 
60 70 80 90 100 40 50 

I /=?=7-=- ' - ' 
10 20 30 

Time lag (ns) 

Fig. 2.4. Source-detectors cross-correlation function (R12) for uranium spheres 
of varying masses and fixed enrichment (36 "hwt 235U). 

6 



3. SELECTION OF FEATURES FOR THE SAMPLE 
IDENTIFICATION ALGOFUTHM 

The selection of features for the sample identification algorithm (SIA) was performed on the 
basis of their relationship to sample attributes and of their ability to discriminate between 
close numerical values within each attribute group. 

The first feature (F,) chosen is the integral of the cross-correlation function at time lags from 
0 to 8 ns, normalized to the same integral of the void calculation. It essentially corresponds 
to the normalized area of the first peak of the cross-correlation function. 

A plot of F, as a function of the sample’s total mass is given in Figures 3.1 and 3.2, for all 
values of enrichment. Figure 3.1 refers to cylinder simulations, while Figure 3.2 refers to 
sphere simulations. As expected, F, depends only on the sample mass, 

The second feature chosen is the integral of the cross-correlation h c t i o n  at time lags from 0 
to 100 ns, normalized to the same integral of the void simulation. 

(3.2) 

Inspection of Figures 3.3 and 3.4, shows that F, is sensitive to both the sample’s total mass 
and enrichment. 

The moments of the cross correlation function were also examined i.e.: 

However, up to n=3, all the moments examined looked very much alike, with the n=l 
moment giving the best resolution. Hence, the average delay time, z, was selected as the 
feature F,, shown in Figures 3.5 and 3.6 for cylindrical and spherical samples, respectively. 
This feature is essentially constant for the depleted samples, increases with sample 
enrichment and for high enrichments is very sensitive to sample mass. 

7 



Because the asymmetry of the second peak is generated by the neutron induced fission in the 
sample, the skewness of the cross correlation hnction was selected as feature, F,, defined by 
the relation below. 

3 
F = L  P 

4 

CT 
(3.4) 

where 03 is the cube of the standard deviation and c23 is the third moment about the mean 
value of the distribution. As shown in Figures 3.7 and 3.8, F, is especially sensitive to the 
lower values enrichment of the samples. 
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4. APPLICATION OF NEURAL NETWORKS TO NUCLEAR MATERIALS 
IDENTIFICATION SYSTEMS 

Two three-layered artificial neural networks4’ 5 3  were trained to generate a mapping from 
input (Fly F2, F3, and F4) to output (sample’s mass and enrichment). The well-known error 
back-propagation algorithm was used for the network’s training. The activation functions 
were chosen to be sigmoidal from the input to the hidden layer and linear from the hidden 
layer to the output. The number of hidden nodes was set to two. 

For each NN, the values of learning rate and momentum for the training were optimized by a 
genetic algorithm (GA)7 (the choice of these parameters is usually made by a trial and error 
approach). In the GA an initial population of 50 chromosomes each made up of two genes 
coding the quantities of interest, is allowed to evolve according to the rules of mating, cross- 
over, and mutation, similarly to what occurs in biological systems. The objective is to 
maximize the fitness h c t i o n ,  defined as the inverse of the network’s training error. After a 
predetermined number of generations (1 00 in OUT case), the fittest chromosome is elected. 

I 
Individuals 
sorted 

True 
MassEnrichrnent 

Assignmentof 
I Population of 

chromosomes 
(bit - strings) 

Decoding 

1 Network parameters 
Learning rate 
Momentum 

---+ I Neuralnetwork I I 
L I 

Predicted Features 

FI, F2, F3, F4 MassEnrichment 

The values of learning rate and momentum selected as described above were then used in 
training the neural networks for the prediction of the total mass and enrichment of the 
samples on the basis of the four features Fl’F4. 

4.1 RESULTS 

Having chosen a linear transfer function in the output nodes of the NN allows us to express 
the network mapping structure in terms of the simple analytical formula below: 
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(4.1) a, 
+ a, + Output = al 

b, F ,  + b, C, F,  +cJ  
l + e  - ( i T 4  1 1 + i ( l F 4  1 

where ai, (i=1,2,3), bj, cj, 0=1, ... 5) are coefficients which depend on the network’s weights, 
given in table 4.1, and the output is the sample mass and enrichment. 

Table 4.1: Coefficients of equation 4.1 for mass and enrichment prediction in both 
spherical and cylindrical samples 

bS 8.96 
C l  16.1 
c2 -30.3 

’ 

c3 -.02/ 
c4 -1.82 
CS J.69 

The sample mass and enrichment predictions obtained with the NN-GA approach are shown 
in the following Figures 4.1 - 4.4. Nineteen simulations, about two thirds of the data 
available, were selected for the NN training. Figures 4.1 and 4.2 refer to cylinder simulations 
and sphere simulations, respectively, used during the network training. The NN were tested 
with the remaining 11 cases. The results are shown in Figures 4.3 and 4.4. Inspection of 
these results shows that the present type of neural network can predict enrichment and mass 
values for uranium metallic samples to a very good approximation both in the case of the 
training patterns and in the test cases. 
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5. APPLICATION OF GENETIC PROGRAMMING TO NUCLEAR MATERIALS 
IDENTIFICATION SYSTEMS 

Genetic Programming (GP) is an evolutionary computation technique that is able to evolve 
Lisp programsg. 9 to perform various tasks. A mathematical expression (just a Lisp sentence) 
can be easily expressed in the form of a parse tree. In Figure 5.1 the mathematical 
expression, (x/3.5)*(-y) is shown as a parse tree. 

Fig. 5.1. A parse tree 

GP technique practicians use it to solve regression problems, i.e., problems in which a data 
set in the form of pairs 

describe a sampling of the mathematical expression 

Y =  f (2). 

GP is used to obtain an explicit mathematical expression for the h c t i o n  f with the unique 
information given by the data set. 

In the following section we will describe a simple version of the GP algorithm similar to the 
one used in the present simulations. 

' 
5.1 A SIMPLE GENETIC PROGRAMMING ALGORITHM FOR REGRESSION 

PROBLEMS 

The algorithm works with a population of possible solutions described in parse trees as the 
one shown in Figure 5.1. The algorithm performs a set of operations on the initial population 
producing a new population which hopefully will include new members which, in average, 
will outperform the previous population when solving the problem. The process should be 
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repeated many times, and usually a new member is created that totally solves the problem. 
Before starting with a more precise description of the algorithm, a few concepts should be 
stated: 

Fitness value: it is the degree of performance of a mathematical expression. In this paper a 
simple error for each parse tree is used over the data set: 

Error = - ( yi - parse - tree - evaluarion ( yi )) , 
N 

where N ranges for all members of the data set. The error should be maximized to solve the 
problem. 

Terminal set: is the name for the set of possible values for the leafs of the parse tree. They 
are usually f i e  variables of the problem. In Figure 5.1 Xi and % belong to the terminal set 
and when evaluating the expression, they are substituted from values taken from the data set. 
Constants are also terminals, as 3.5 in Figure 5.1. They are created randomly and just once 
(see algorithm below). 

Function set: is the name of all-possible h c t i o n s  and operators that may be used in the 
internal nodes of the trees. In Figure 5.1 *,/, and (-), were used. 

Protected division: a division by 0 may crash the algorithm when evaluating an expression. 
lnstead ot using a standard division, GP practitioners use what is called a protected division, 
a division operator that when dealing with 0 denominators retuns a constant. In our 
experiments a return value of 1 was used. 

Closure of the function and terminal sets: a generalization of the concept of protected 
division IS the concept ot closure, which means that each h c t i o n  of the Function set should 
be able to handle gracefully all values it might receive as input. 

Genetic operations: are operations made on the trees in order to create new trees. Typical 
operations are Keproduction, Mutation and Crossover described below. 

Reproduction operator: a new tree is created just making a copy of an existing tree. 'The 
selection ot the parent tree is made at random proportionally to the fitness values of the 
existing trees, giving more opportunities to reproduce to the trees with best performances. 
The important fact here is that it does not matter how bad a tree is performing because a 
chance to reproduce is given to it (this is how natural evolution works, isn't it?). 

Mutation: a new tree is created just selecting random nodes and substituting their values for 
new ones. Mutation operators may have different versions. They may imply the substitution 
of a node with a node, a leaf with a leaf, a leaf with a branch, or a constant by a new constant 
generated around the original one. This last version is used to fine tune solutions where not 
other operator gets better results, and it is needed just a small modification in the constants of 
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the mathematical expression. In Figure 5.2 it is shown an example of the four versions 
having as the parent tree the one shown in Figure 5.1. 

Fig. 5.2. Four mutations over the tree of Figure 5.1. 

Crossover: it takes two trees and choosing a random crossover point in each tree and 
exchanging the subtrees beneath those points produces two offspring. Figure 5.3 illustrates 
the operator. 
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Offsprings 

I I 

New subtree - 
New subtree 

Fig. 5.3. Crossover operation. 

Training and test sets: the data from the experiments should be split in two sets. 
tramng set, is used to generate solutions evaluating the fitness values with it, and the second, 
the test set, is used to evaluate the performance of the final solution. 

The algorithm comprises eight steps (this version is called steady statell). 

I 

One, the 

1. Initialize the population. A population of mathematical expressions, parse trees, is 
created fiom scratch at random. Several important decisions should now be made: 

a. Choose size of operation. 
b. Choose maximum depth of the trees (maximum size of the mathematical 

expressions) 
c. Choose values for the function and terminal sets. In general, one does not know in 

advance what are the fhctions and variables needed to form the tree solution, so 
the technician can just make a guess of them. Also, different probabilities can be 
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used when selecting a function or terminal, giving more opportunities to those 
elements that are expected to be needed more frequently in the solution. 

When creating new branches from a node in a tree, the number of branches must 
equal the number of arguments taken by the function or operator in it. For example, 
if the node contains the operator f, the number of branches must be two, while if the 
node contains the function sine, the number of branches must be one. In the case that 
the node is a leaf, no more branches can be added from that point. 

Random constants are placed in leafs at random. They are created at this point of the 
algorithm, and not in any later points. 

2. Randomly choose a subset of the population to take part in a tourriament. A size of 
seven trees for a subset is typical. 

3. Evaluate the fitness value of each member of the tournament. 

4. Select one or two winners, i.e., ones with the best fitness values. 

5. Apply genetic operators to the winner or winners of the tournament. Operators are 
selected at random accordingly to some predefined probabilities. 

6. Replace the losers in the tournament with the results of the application of the genetic 
operators to the winners of the tournament. Alternatively the replacement can be 
made with bad trees selected in the population, or with old trees, trees that have been 
being reproduced without changes during many iterations of the algorithm. 

7. Repeat steps 2-7 until a termination criterion is met. The desired termination criterion 
is a very low error in the trees of the population, close to 0, but sometimes if the 
population is stuck in a local minimum, new iterations can be performed and no 
improvement is achieved in a long time. Then a restart is needed (go back to 1). 

8. Choose the best tree in the population as the solution of the problem. 

5.2 GP APPLIED TO THE PREDICTION OF THE SAMPLE TOTAL MASS AND 
235U ENRICHMENT 

The previous GP algorithm was applied to generate a function mapping the features, F,, F,, 
F,, and F,, to the sample mass and enrichment. The parameters of the algorithm were as 
follows: 

Terminal set: F,, F,, F,, and F,, normalized in [-1, +1], and random constants in (-Ol., +0.1). 
A normalization of the output was also done. It is important to note that the normalization 
was not necessary for the enrichment data, but it was required for the sphere’s to get good 
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results. Similar normalization are done when using other techniques like neural networks. 
Random constants were selected with a probability of 28%, while each Fi with 9%. 

M a s  = (((((Fl - -0,514) * ((Fl - ((((Fl * F1) - F1) + -0,876) / (-0,502 + -0,584))) * -0,58)) * 
-0,582) * -0,574) - (((-0,876 - F1) + ((Fl * ((((Fl * F1) - F1) + -0,882) / (-0,49 + -0,544))) * 

Function set: operators +,-,*,/ (protected), selected with equal probabilities of 9%. The 
accumulative probability of selection between terminals and hnctions in a genetic operation 
is 100%. 

(5.2) 

Population size: 10,000. 

Enrichment = (((F4 - (-0,014 * (F4 - (-0,014 / F4)))) - (((F2 * 0,748) * ((F3 * 0,366) + (F4 - 
(-0,014 / ((Fl + ((F4 - (-0,014 / (F2 - (F4 * F3)))) - (-0,014 * F4))) - (F4 * (F3 / 0,748))))))) * 

' F3)) + F2) 

Maximum initial size for trees (step 1 of the algorithm): 4 nodes. 

(5.3) 

Maximum size for trees after my genetic operator: 50 nodes. 

Termination criterion: -0.001 error or 100,000 iterations. It is important to note that the 
criterion based on the number of iterations, which is the criterion that says that the population 
of trees cannot be improved in its present configuration and a restart should be done, it is 
unlikely reached in these experiments. 

Tournament size: 7. The replacement of bad elements is done within the entire population. 

Probabilities for selecting genetic operators: reproduction 7%, mutation 20%, crossover 
73%. 

Size of training set: 19 cases. 

Size of test set: 1 1. 

The following equations show one example of results obtained for each sample (note that the 
features and desired outputs were normalized). We got many of them with an acceptable 
error and this selection was not made under any objective criteria. 

CYLINDER: 

SPHERE: 

(5.4) Mass = ((-0,204 * ((F2 * (((-0,49 * ((F4 - -0,722) - (F2 * ((-0,49 / -0,SS) + F2)))) * (-0,45 / 
((((F3 * F2) * ((F2 * F2) - F2)) * ((F3 * -0,722) - F2)) - F2))) - F2)) - F3)) - F2) 
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Enrichment = ((((-0,5 + (F4 + (F2 * (F4 - F3)))) * F2) * (F4 * -0,742)) - ((F4 * -0,49) + 
((((F4 + F2) - (-0,496 + ((F4 - ((((F4 - F3) - -0,8 1) * ((F4 - F3) * (F4 + €2))) * F4)) * -0,49))) 
+ F2) * -0,54))) 

The constants that are found in each equation were created at the initial population and 
passed fiom trees to trees in each iteration of the algorithm through the application of the 
genetic operators. Some of the major achievements of the GP when solving a regression 
problem is how it manages to combine constants to create new ones'. 

( 5 . 5 )  

The equations may be simplified, but we didn't do it. When simplifying an equation, it is 
easy to find introns which is the name for parts of the trees that do not affect the performance 
of the tree". Examples of introns could be [FI/l) or (F2+0). 

After inspection of the above equations, it can be found that: 

a). Mass for the cylinder is calculated using just F1. TIus simplification can be found in 
most of the solutions. The explanation of this result is that the cylinder intercepts 
most of the source photons, thus, the area under the photo peak, normalized to the 
same area for the void m, is a measure of the photon attenuation that depends on the 
sample mass. Because for cylinders, the Fl feature depends so strongly on the mass 
of the sample, the GP program selected just FI among the four inputted features. 

b). Mass for the sphere is calculated using just F2 and F3. We have found this kind of 
simple dependence in many other solutions. The spherical sample intercepts less 
photons than in the case of the cylindrical sample, thus, FI does not contain too much 
sarnpte mass information. The F2 feature, on the contrary, contains the mass 
information from the photo peak (FI), plus the sensitivity to sample mass imprinted in 
the left side of the second peak. The third feature, F3, is also selected by the program 
for its high sensitivity to sample mass at high sample enrichments. 

For both spherical and cylindrical samples, the equations constructed by the GP algorithm to 
determine the sample enrichment depend only on the F2, F3, and F4 features because of the F1 
feature exclusive dependence on sample mass. 

Figs. 5.4 - 5.7 show the results fiom the application of equations (5.2) up to (5.5) to 
cylindrical and spherical samples, respectively. 

For both samples the mass prediction is very accurate in and out of the training set. The 
sample enrichment prediction is within a 4% band for enrichments above 15%. The error 
increases as the enrichment decreases towards the depleted case. A significant property of 
the (GP) algorithms is its capability to select and then combine in an explicit fashion a given 
set of features for optimal attribute determination. 
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Fig. 5.6. Genetic Programming: prediction of mass and enrichment on the 
basis of features FI, F2, F3 and F4: set of 11 cases used for testing relative to cylinder 
simulations. The true values are shown with the circles and the values predicted by 
the algorithm with stars. 
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Fig.5.7. Genetic Programming: prediction of mass and enrichment on the 
basis of features F1, Fz, F3 and Fd: set of 11 cases used for testing relative to sphere 
simulations. The true values are shown with the circles and the values predicted by 
the network with stars. 
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6. COllilYARISON OF RESULTS 

Cylinder 

'r ra i n in g 
Test  

Extra 

In order to make a more meaningful comparison of the results n e  applied a standard 
regression to predict the mass and enrichment of the cylindrical and spherical samples. 
Tables 6.1 and 6.2 sumrnarize the error for the three tzclniques for both training and test 
cases. The error measure used is: 

PREDICTED BY GP 
MASS ENRICH 

1.34% 2.16 
0.45 'Yo 

u 

lreal, - predicted, I 
retrl, 

Error = ' 

Sphere 

Table 6.1: Error results for the cylindrical samples 

PREDICTED BY GP PREDICTED BY N N  PREDICTED BY Regressioi 
MASS ENRICH MASS ENRICH MASS ENRICH 

Trainins 0.17% 2.93% 
Tesf 0.13% 2,W/<i 

Extrq 0.3 8"/d 14.00"A 

Table 6.2: Error results for the spherical samples 

0.27% 2.20% . c  U t  

U Id . / l c l {  0.27 ,'a 4 . 5 9 7 ' 7  A - . & b  (4 I r. ,  I > 

0.72% 13.33 */j 1.08'% 

The tables show that NN and GP are comparable and more effective than regression in 
solving the prediction problem. NN and GP are capable of dealing with non-linear problems 
and this is demonstrated in the case of the enrichment for both configurations, cylinder and 
sphere, in which the linear solution, the regression, performs very poorly. indicatin, (7 that the 

problem is strongly non-linear. 
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We have found non-remarkable differences in the perforniance betu.een the artificial 
intelligence techniques. Two caszs 1 ro\vs labeled as 'Extra' janiples in the Tables 6.1 and 
6.2. and bottom two rows in Tables 6.3 and 6.4) of the test sets had enrichment \.dues 
selected outside of the training set range. These can be used to test the overfitting of  the 
models. The error in predicting these enrichment values range from 8?6 to 13%. indicating 
that some overfit has taken place. This can be explained by considering that there were only 
four \dues of enrichment in the training set. covering a \vide range of enrichment: from 
depleted to highly enriched uranium. Better results can be obtained by adding more cases to 
the training set. 

I'ables 6.3 and 6.3 show the prediction results and error for both '11 techniques (GP snd Y h )  
compared to the linear regression for c t  linders and spheres. respectivel!.. 

Table 6.3: Results for uranium cylinders: NN, GP. and regression predictions. 
Training cases are shown in gray, test cases in white. 

'Y 



Table 6.4: Results for uranium spheres: "4, GP,  and regression predictions. Training 
eases are shown in gray, test cases in white. 
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7 .  SUM,MIARY AlUD CONCLUSIONS 

Monte Carlo simulations of the source-detector cross correlation function for various sample 
shapes, mass: and enrichment values have been performed to serve 3s a training set for two 
artificial intelligence algorithms (AI): neural networks (NN) and genetic programming ((2). 
The input presented to the AI algorithm has been in the form of features extracted from the 
physical properties of the cross-correlation functions related to mass (beam attenuation) and 
to enrichment (fission induced pulse broadening). Both the X d  md GP algorithms have 
shown good capabilities and robustness for mass and enrichment predictions of ur,mium 
metal samples. 

These results serve as a proof of principle for the application of combined stochastic and ,AI 
methods to safeguards procedures. 
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