
3 445b 0445493 5

DAMA National Sourcing
Database System Description

Bill Grimmell
Ron Lee

Sergey Petrov

This report has been rzproduced directly I'rom the best available cop!

A\ailable to D O L and 1)OF contractors from thc Office of Scicntitic and
'Iechnical Inlbmiat ion. P .0 . Box 62. Oak Ridge. TK -3783 1 : prices a \a i lablc
from (0 1 5) 576-X-LOl.

+.\ailable to the public from the National Technical Information Sen ice. 1I.S.
Ileparmcnt 01' Commerce. 52x5 f'ort KO! a1 Fr.. Ypringtield. V A 22 161

This report \\as prepared as an account oi'nnrk sponsored b>, an agcnc) of the
United States Government. Neithcr the llnitcd States Govcrtiment no r an!
agency thereof. nor any of their einployxs. nor an) of their contractors.
subcontractors. or their employees. makes any warrant),. express or implied. o r
assumcs any legal liabilit! or responsibilit! for the accurac!'. completeness. o r
usefulness of an! information. apparatus. product. or process disclosed. o r
represents that its use would not infringe pri\,ately o\+ned rights. Keference
herein 10 an! specific commcrcial product. process. or service b? trade namc.
trademark. manufacturer. or otherwise. does not necessaril: constitute or imply
its cndorsemcnt. recommendation. o r Favoring by the United Statec Government.
any agency thereof or an: of thcir contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those ol'the United
States Government. an! a g e n q thereof or any o f their contractors.

ORNL'TM- I3678
DAMA-G-6-98

DAMA NATIONAL SOURCING DATABASE .
SYSTEM DESCRIPTION

Bill Griininell
Computer Science and Mathematics Division

Ron Lee
Computational Physics and Engineering Division

Sergey Petrov
Life Sciences Division

Date Published: September 1998

Prepared by
OAK RIDGE NATIONAI, LABORATORY

Oak Kidgc, Tennessee 3783 1-6285
managed by

LOCKHEED MARTIN ENtKGY RESEAKCH CORP.
for the

U S . DEPARTMENT OF ENERGY
under contract DE-AC05-960R2211.64

3 4456 0445493 5

CONTENTS

Page

.. LIST OF FIGURES ... V I I

LIST OF TABLES ... ix

ACRONYMS ... x i

FOR WA K r i .. x v

..
ACKNOWLEDGMEN'fS .. X V I I

1 . 1NTROT)IJCTION ... 1

1 . 1 OVERVlEW ... 1

1.2 PI LOT IMPLEMENTA'I'ION S .. 2

1 . 3 RELATED STAND-ALONE SYSTEM ... 4

1 . 4 1JTILlTlES .. 5

2 . NSDB DATABASES .. 7

3 . IJSER INTERFACE ... 1 1

3 . I GENERAL STRIJCTURE ... 1 1

3.2 DATA SOURCE OBJECT DATA FLOW ... 13

3 . 3 NSDB TOP ... 14

3 . 4 NSDB DATA SOIlRCES ... 18
3.4. I General ... 18
3.4.2 ATAPD .. 19
3.4.3 SEAMS ... 22
3.4.4 Cottonliic ... 23
3.4.5 KTA ... 24
3.4.6 GCA ... 24
3.4.7 GI DC .. 2 7
3.4.8 L'4MUB ... 28
3.4.9 EC96 .. 29
3.4.10 Example of NSDB Data Source Web Pages ... 31

EXTERNAL DATA SOURCES .. 3 8

CROSS-DATA SOURCE SEARCH .. 3 8
3.6.1 General ... 3 8
3.6.2 Creating Cross-Data Source Enabling File Set .. 3 8
3.6.3 On-line Cross-Data Source Search ... 42

3.5

3.6

...
111

CONTENTS (continued)

Page

3 . 7 MULTIPLE WINDOWS .. 4 8

3.8 NSDB PERL PACKAGE ... 4 9

3.9 NSDB PILOT COMMAND CLIENI' NETWORK UTILITIES 50

3 . 10 INTERFACE FILE ORGANIZATION .. 51

3.1 1 DISTRIBUTED NSDB .. 54
3.1 I . 1 General ... 54
3.1 I . 2 Distributed Data Sources i n Sybase and/or MS SQL Server Databases 54
3 . 1 1 . 3 General Distributed Data Source Configuration .. 55
3.1 1 . 4 Inclusion of the LAMDB Data Source ... 56
3.1 I . 5 Distributing Nontext Media .. 57

3.12 LINKING TO NSDB REPORTS FROM EXTERNAL WEB PAGES 5 7

3.13 POTENTIAL INTERFACE ENHANCEMENTS .. 6 0

4 . UTI Ll TI ES ... 65

4.1 GENERAL .. 65
4.1.1 Major Database [Jtilities ... 65
4.1 . 2 General Aspects of the Utility Layout and Operation 6 7

CREATING AND LOADING THE SYBASE DATABASE 6 8

CREATING REPLICATE NSDB DATABASES .. 74

BACKUP AND RESTORATION OF THE NSDB SYBASE DATABASE 7 8

CREATION OF STORED SQL PKOCEDURES .. 81

DATA SOURCE UPDATE PROGRAM .. 82
4.6.1 General ... 82
4.6.2 Export and Import of Data ... 84
4.6.3 Transferring Updated Data to "Permaneiit" Tables 91

FURTHER ASPECTS OF THE MAIN UTILITY PROGRAMS 92
4.7.1 Insertion of Parameters into SQL Scripts .. 92

4.2

4.3

4.4

4.5

4.6

4.7

4.7.2 'Temporary Files ... 9 3

4.8 MISCEI. LANEOUS UTILITIES ... 9 3
4.8.1 General ... 9 3
4.8.2 Batch Update Tutorial .. 9 3
4.8.3 NSDB Access Counts .. 9 4
4.8.4 EC96 Data Entry Program ... 9 6
4.8.5 EC96 Data Source Statistics .. 98
4.8.6 Web Server Installation Setup

4.9 UTILITY FILE, ORGANIZATION ... 9 9
4.9.1 General ... 99

iv

CONTENTS (continued)

Page

4.9.2
4.9.3
4.9.4

Utility Files On Web Server .. 100
IJtility Files On NSDB Sybasc Server ... 103
File Structure For EC96 Company Specific Data 108

5 . INSTALLATION .. 109

5.1 GENERAL .. 109

5.2 DATABASE SERVER INSTALLA'T'IONS .. 109
5.2.1 Central Priniary Database Server .. 109
5.2.2 MS SQL Server Databases ... 1 1 1
5.2.3 Other Sybase Databases ... 112

5.3 WEB SEKVEK INSTALLA'I'ION .. 113

APPENDIX A . NSDB DATABASE TABLES .. A- 1

A.l

A.2
TABLE WITH RECORD FOR EACH DATA SOIJKCE A-3

GCA (GARMENT CONTRACTORS ASSOCIATION OF SOUTHERN
CAILIFORNIA) TABLE .. A-4

COTTONINC (COTTON INCORPOKA'I'ELI) 'I'ABI .. ES A-5 A.3

A.4

A.5

A.6

AUBURN (ALABAMA TEXTILE AND APPAREI. . PKODUCERS DIREC'T'ORY)
TAB I, E S .. .A- 6

KTA (KNITTED TEXTILE ASSOCIATION) TABLES A- 12

SEAMS (SOUTHEAST APPAREL MANUFACTURERS ASSOCIATION)

TABLES ... A- 14

TC2 (TEXTILE CLOTHING TECI-INOI, OGY CORPORATION) TABLES A- 16 A.7
A.8

A.9

EC96 (ELECTRONIC CA?ALOG 96) TABLES .. A- 18

GIDC (GARMENT INDUSTRY DEVELOPMENT CORPORATION)
r 7 1 ABLE .. A-20

A.10 LOUISIANA APPAREL MAKERS DATABASE (LAMDB) TABLE A-22

APPENDIX €3 . PILOT NSDB SYBASE DATABASE PARAMETERS H- 1

V

LlST OF FIGURES

Figure Page

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
1 1 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .

34 .

35 .
36 .
37 .
38 .
39 .
40 .
41 .
42 .

43 .
44 .

Conceptual view of the WWW NSDB ... 1
Representation of original pilot implementation .. 3
Representation oT the current pilot implementation ... 4

Form object .. 13
Flow from NSLJB top page .. 12

Report object .. 13
Representative data source object data flow .. 13
Web NSDB top page welcome ... 1 5
Portion of Web NSDB top page sourcing area directory .. 16
Web NSDB top page data sources and functions .. 17
Web NSDB top page explanatory information links ... 1 8

SEAMS ob-ject data flow .. 22
Cotton Incorporated object data flow ... 24
KTA object data flow ... 25

GIDC object data flow ... 2 7
I A M D H object data flow .. 2 8

ATAPD top form ... 3 2

A’TAPL) product form .. 3 4

ATAPD object data flow .. 20

GCA ob-ject data flow .. 26

EC96 object data flow ... 3 0

ATAPD category form ... 3 3

ATAPD company form .. 35
Beginning of ATAPD report ... 36
References and Machinery sections of part of an ATAPD report 3 7
Creation of cross-data source enabling file set ... 39
Cross-data source search major object data flow .. 43
Cross-data source search form ... 44
Cross-data source search company/data source list .. 4 5
Cross-data source search wizard object data flow ... 4 7

NSDB Web user interface directory structure .. 51
Cross-data source search wizard field (Step 1) page .

Representation of distributed NSDB with all database management systems
compatible with a single command client network utility .. 55
Representation of distributed NSDB with sets of database management systems
where each set requires a different command client network utility 56
NSDB Frames prototype user interface display ... 61
NSDB Java-Frames user prototype interface display ... 6 2

Major utilities (excluding data soitrce update related utilities) 66
Update utilities ... 67
Possible setup for implementing MS SQL Server replicate ... 75

Backup and restomtion of NSDB Sybase Database and creation of routines for the
backup and restoration .. 79

Portion of SEAMS worksheet ... 84

... 48

NSDB Java prototype user interface display .. 63

Possible setup for implementing the NSDB Access Database 78

Data source update process ... 8 3

vii

LIST OF FIGURES (continued)

Figure Page

45 .
46 .
47 .

Web server NSDB utility director) structure ... 101
Utilit) directory structure in NSDB primary Sybase database server 103
Director) structure for EC96 company raw data input to do-ec96 108

...
Vll l

Table

1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .
1 1 .
12 .
13 .

14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
2 6 .
27 .
28 .
29 .

30 .
31 .
32 .
33 .
3 4 .
35 .
3 6 .
37 .
3 8 .
39 .
40 .
41 .
42 .
43 *
44 .

LIST OF TABLES

Page

Data sources in pilot ... 2
Aspects of current pilot system .. 5
Data source database tables ... 8
SQL procedures used by the user interface ... 9
ATAPD objects, melliods, templates, and procedures ... 21
SEAMS objects, methods, templates. and procedures ... 23
Cotton Incorporated objects, methods, templates. and procedures 25
KTA objects, methods, templates, and procedures .. 26
GCA objects, methods, templates, and procedures ... 27
GlDC objects, methods, templates, and procedures .. 28
LAMDH objects, methods, templates, and procedures ... 29
EC96 objects, methods, templates, and procedures .. 31

Noncompany-specitic cross-data source search files .. 43
Objects, methods, procedures, form, etc., for cross-data source search 46
Report methods used by cross-data source search .. 46
Objects, methods, arid fornis for cross-data source search wizard 47
Nondata-source-specifjc files in Nsdb directory and its subdirectories 52

NSDB database general utilities ... 66

NSDB data-source-specific routines for preprocessing of raw dah source data 70

Routines used by do-ec 9 6 .. 74

Routines used by do-it-acces s .. 78

backup files ... 8 0
Routines used by restoration utilities ... 81
Routines used by Create-SQL to create a databases’ stored SQL, procedures 82
General routines used in update exports and imports ... 85
Typical data-source-specific utilitiesiroutines for data source update 87
SQL scripts associated with Excel input and output files .. 88

Update routines that load database permanent tables ... 91
Miscellaneous utilities ... 93
Forms and images used by NSDB batch update tutorial (exc.luding home page) 94

Objects, methods, templates, arid procedures used i n creating the cross-data source
search enabling file set .. 40

General form of UKLs to externally link to NSDB reports .. 59

Pilot NSDH parameters ... 69
General routines used in preprocessing of raw data source data 70

Routines used by do-nsdb .. 71
Routines used by typical “do-source” routines ... 72

Routines used by do-it-ms .. 76

Routines used by brn-bcp to create backup and restoration utilities and

. . .

Routines used by Load-Update ... 91

. . .

Routines and list used by Counts .DoGe t. cgi ... 95
Files used by Counts . DoGet . cgi ... 96
EC96 data entry program files .. 9 7

Routines used by Install-Setup .. 9 9
Routines used by clas s-report .. 9 8

Nondata-source-specific utility files on Web server ... 1 02

ix

LIST OF TABLES (continued)

Table Page

45 .
46 .

Files in tiondata-source-specific directories ... 105
Created routines .. 105

47

48
49
B-

Data-source-specific directories' files (containing routines used i n implerneiitation
of the NSDB databases) ... 106
"Original" data source files ... 107
Files with preprocessing routines used only for one data source 107

. Pilot NSDB Sybase Database parameters ... B-3

X

ACRONYMS

AAMA
AAPN
A-CIM

AMC

ATAPD
ATMI
ASCII

AMTEP

bcp

CRM

CCil

cid
Coltonlnc

DAMA
UB
DBMS
dbf

DOE
DOS

EC94
EC96
EC97

GCA
GlDC
gi f

HTML
HTTP

American Apparel Manufactiirers Association
American Apparel Producers Network
Apparel Computer Integrated Manufacturing ((Jniversity of Southwestern
Lou is iana)
Associate Member Congress (of the AAMA)
American Textile Partnership
Alabama Textilc and Apparel Producers Directory
American Textile Manufacturers Institute
American Standard Code for Information Interchange (used hcre to dcsiguate
text files where the charactcrs are represented in ASCII format)

bulk cop) (a facility of the Sybase Database Management System-also used
here to refer to ASCII database-related files that are created by use of the bcp
faci I ity)

Cooperative Business Management (task i n the Demand Activated
Manufacturing Architect tire Project)
Common Gateway lnterfacc (software that processes rcquests from a browser
and provides thc responses to these requests through a Hypertext ‘Transfer
Protocol Server)
classification id-ids used for EC96 classification in EC96 database tables
Cotton Incorporated

the Demand Activated Maiiufacturing Architecture (Project)
database
database management system
database file (used here to designate files in a dbl‘ format, which is the format
of some of the raw data from data source suppliers that were received by the
National Sourcing Database developers)
U.S. Department of Energy
Disc Operating SJ stein

1994 Electronic Catalog (produced by the AMC of the AAMA)
1996 Electronic Catalog (produced by the AMC of the AAMA)
updated EC96 provided by lnteriiet Tradeline Inc.

Foxpro memo file(used here to desiynatc files i n an fpt format. which is the
format for soinc of the raw data for the 1996 Electronic Catalog data source
that were output by its data entry program and received by the National
Sourcing Database developers)

Garment Contractors Association of Southern California
Garment Industry Development Corporation
graphic interchange format (used here to refer to image files that use a gif
format)

Hypertext Markup Language
Hypertext Transfer Protocol

xi

ACKONYMS (continued)

id

I P

I TC

I 1 1

K TA

LAMDB

m sq I

MB
Mhz
MS

NSDB
N T

ORNL
OS

PC

SEAMS
SQL

[TC]'

USITC

USL
U K L

VlCS

WAlS

identification (used here primarily to refer to database record identifications
and user identifications)
Internet Protocol (used here in the term "IP address," which refers to an
Internet networh node address)
Integrated 1 extile Complex (set of fiber producers, textile producers, textile-
containing fabricated product producers, suppliers to these producers, and
retailers of textile containing fabricated products)
Internet Tradeline Incorporated

Knitted Textile Association

Louisiana Apparel Makers Database

miniSQL (command client network utility through which a subset of SQL
commands/queries can be submitted to a Minerva database mana, uement
system)
megabytes (where a megabyte is 1024 bytes)
megahertz
Microsoft

National Sourcing Database
New Technolog} (as used i n Microsoft's Windows NT operating
systen-also used here to refer to software designed specifically to run under
that operating system)

Oak Ridge National Laboratory
operating system

personal computer (used here to refer to IHM and IRM clone personal
computers)

Southeastern Apparel Manufacturers and Suppliers Association
Structured Query Language (language used for sending commanddqueries to
certain relational data base management systems)

company formally known as the 'Textile and Clothing Technology
Corporation (where the DAMA project director is employed)

United States Integrated Textile Complex (those ITC facilities located in the
United States)
University of Southwestern Louisiana
universal resoitrce locator [can be viewcd as a Web address with possibly added
information for a process (program) that might be at that address]

Voluntary Industry Commerce Standards

Wide Area Information Servers (here it refers to a software package WAIS-sf.
which is used to index an information set and then to search via the index for
particular information within the set)

xii

ACRONYMS (continued)

WWW World Wide Web (can be viewed as sets of software wing the Internct to
transmit hypertext documents from servers to clients)

...
XI11

FORWARD

A Demand Activated Manufacturing Architecture (DAMA) National Sourcing Database
(NSDB) pilot system was maintained by Oak Ridgc National Laboratory (OKNL) for slightlq
over threc years, from June 1, 1995 through June 19, 1998 subsequent to the conclusion of
the Voluntary Indust13 Commerce Standards (VICS) 1998 confereiicc and exhibition. The
system that supported this pilot provided a web accessible means for searching a set of
databases with information about suppliers to textile and apparel and apparel rctailing
companies. During the pilot this system evolved and the final pilot system represents a
partial implementation of a far reaching concept and a design for iniplcmentation of that
concept. This report dcscribes the final system and ittilib software developed to support that
system. It also describes aspects of the design beyond the current implementation and
includes some historical notes concerning the pilot evolution.

During the spring of 1995, Mr. J im L,ovejoy, the DAMA project director, asked ORNL, and
other DOE laboratory DAMA project participants about the possibility of implementing an
Internet accessible version of a PC sourcing database known as the Alabama Textile and
Apparel Produccrs Database (ATAPD). O R N L offered to create a rapid prototype of a World
Wide Web (WWW) accessible ATAPD. Mr. Lovejoy, subsequent to his viewing the rapid
prototype, then asked ORNL to initiatc consideration of a web accessible database utilizing
data from a number of different data suppliers. After a meeting in Oak Ridge in which a
number of such suppliers, most of whom produced hard copies of the data they gathercd, were
introduced to the concept of a national sourcing database. ORNI, began the design and
implementation of what was to become the DAMA NSDB. It officially became available on
June I , 1095 with data from five sources, the ATAPD, the American ‘Textile Manufacturers
Institute (ATMI), Cotton Incorporated, and the Davison’s Blue Book and Gold Book. The
initial pilot system provided maximum integration of the data from the various sources. Thi:,
degree of integration did not meet with data provider approval’ and hence a new less
integrated design was developed and implemented toward the end of 1995. Data displayed by
the new system were always readily identified with the data provider from whom it canic.
Data from three of the original data providers were not included at the provider‘s request’
and additional data were added so that in January of 1996, tlie NSDB contained data froin the
ATAPD (an updated set), Cotton Incorporated, the Garment Contractors Association of
Southern California (GCA), the Knitted Textile Association (KTA), the American Apparel
Manufacturer’s Association (AAMA) 1994 Electronic Catalog (EC94), and the Southeastern
Apparel Manufacturers and Suppliers Association (SEAMS).

During the remainder of 1996, a “cross-data source scarch” was included which allowed users
to search for data through all of the data regardless of the provider (though data displayed
could still be readily linked to the data’s provider). This allowed for sonie nieasiire of
integration over the various sources of data, but not the degree of integration of the original
pilot system which soinc of the providers objected to. The design of the NSDB was extended
to include data which could be located on multiple database servers and in databases of
different database maiiagement systems, data from AAMA‘ s EC96 replaced tlie EC94 data
and data from the Garment Industry Development Corporation (GIDC) was included i n the
system. Three additional user interfaces, a Frames, a Frames-Java, and a Java interface were

’ Some of the data providers wanted to maintain a visible connection between the displayed data and the
provider of that data.
- These providers switched to a commercial provider of web pages and requestcd direct links to their pages
from tlie NSDB. Davison’s wanted to still be able to charge users for the right to see all of its data, a
feature which was not part ofthe NSDB

xv

created (the standard NSDB interface was a pure H'I'MI, interface). In addition, at tlie DAMA
project director's request, a stand-alone PC based version of the NSDB was developed to run
under a variety of PC operating systems.

The ORNL NSDB tcain and the DAMA project director worked with the Associate Member
Council (AMC) of the AAMA in creating EC96. They provided advice to the AMC during
the EC96 planning, created a data eiitrj program for AMC members to facilitate the data
preparation and worked with personnel at [TC]', the company which einployed the DAMA
prqject director, in loading the EC96 data into tlie NSDB. EC96, which was the first NSDB
source of data that included images and links to company web pages. was introduced by the
AMC at tlie September 1996 Bobbin show in Atlanta.

During 1997, tlie utilities supporting the NSDB were enhanced to provide for a possible
porting of the NSDB to systems outside of ORNL and support was provided for [TCI'efforts
to commercialize the system. resulting in an updated commercial version of EC96 (called
EC97) being created b j Internet Tradeline Incorporated (ITI). The first remotely located set
of data. the I>ouisiana Apparel Manufacturer's Database (LAM1)B). which was in a different
database management system than previous NSDB data, was included in the system. and the
cross-data source search user interface was improved to provide a guided step by step
construction of search criteria

During 1998 only minor changes cuch as addition and modification of links to external
relevant data and cosmetic changes to some forms were made i n tlie NSDB. It was maintained
in operation so it was available for various DAMA project functions such as its display at the
VICS 1998 conference and exposition. ORNL'? obligation to the DAMA project to maintain
the NSDB expired at the end of that conference and exposition' though the system will
remain in operation for some time beyond June 1998 and tlic tcchnology embodied in it inay
find its way into other DAMA work.'

A full documentation of the NSDB was first produced at the end of 1996. It was updated a
number of times since as the system evolved though never formalized as a report. This report
contains the final update.

' Since the NSDB pilot began a number of the data suppliers have, in part inspired by the NSDB,
implemented web accessible databases of their own. rhese data suppliep however have been inclined to
keep these databases accessible only through their own interfaces. [TC]- has therefore expanded an IT1
development and produced a web page (referred to as the "Sourcing Mall") which links to these and other
sources of data relevant to fiber, textile, apparel and apparel retailing companies.
' A small quantity fabric sourcing database has been suggested ar a potential valuable tool by a number of
small apparel companies visited as part of another DAMA activity. Latter this year the business case for and
viability of such a sourcing database will be investigated bi DAMA. If this invehtigation leads to a
decision to create such a web accessible database, NSDB technology will be utilized for its creation

,

xvi

ACKNOWLEDGMENTS

The DAMA NSDR has as an ancestor a PC textile and apparel producers database created at
Auburn University. We would be rcniiss if we did not acknowledge the role that Auburn’s
Professor 1 xnda J o Anderson and her colleagues and students played in creating that database
and the role that that database plajed in leading to the creation of the DAMA NSDB.

Jim Lovejoy, the DAMA project director, first communicated to us a concept of web
accessible sets of “sourcing” data which we subsequently evolved into the concept, design and
iniplementation described in this report. Mr. I,ove.joy also was a source of continuous advice
as our worked progressed and he lined up suppliers of appropriate data for inclu~ion in the
NSDB.

Numerous ORNI, colleagues provided helpful guidance as our work progressed. Two who made
contributions to tlie work deserve special mention. Rao Surapaneni (formerly of ORNI,)
provided the bulk of tlie effort expended i n the iinpleinentation of the configurable PC stand-
alone version of the NSDB noted in this report and Bill Jackson did the major portion of the
work required to include data remotely located at the liniversity of Southwestern Louisiana
(USL) into the NSDR.

The data located at 1JSL is in a database scrver at that university’s Apparel Computer
Integrated Manufacturing (A-CIM) center. The A-CIM center created the database as part of
a university DAMA program. We should like to acknowledge the work of IJSL’s Professor
Denis Gracanin and his students in creating that database and Professor Gracanin’s assistance
in the implementation of the NSDB’s access approach to that database.

Our colleagues from other United States Department of Energy (DOE) Laboratories engaged
in the DAMA project’s Cooperative Business Management (CBM) task provided thoughtfill
critiques of our work. We especially would like to thank Kcn Washington of Sandia
Laboratory, tlie CRM task leader during the NSDB development, for his ideas.
encouragement, and advocacy for our efforts.

Many people in the apparel and related industries and industry associations critiqued our
efforts as well as provided data for the NSDR. We were particularly pleased that the AAMA‘s
AMC invited us to advise and work with them i n the creation of their 1996 Electronic
Catalog (EC96), their first electronic catalog designed specifically for the World Wide Web.
Dick Yardley of the AAMA and the AMC officers who, with Mr. Yardley, lead the effort
have our thanks for setting up this collaboration.

[IC]’ is the Research, Education, and Technology Transfer company that is the industry lead
organization for the DAMA project. Along with Jim Lovejoy, the DAMA project director,
other [IC]’ staff have assisted lis as the NSDB evolved. We want to particularly thank
Dupree Jones (a former [TC]’ staff member) for his work i n testing the EC96 data entry
program we developed and then loading AMC conipanys‘ output from the program into an
OKNL server.

Thc OKNL work i n the DAMA project has been supportcd by the DOE. The majority of the
support came from the department’s Office of Energy Kcscarch’s then existing Laboratory
Technology Transfer program. Later portions of the work were supported by DOE‘s Defense
Programs’ Office of Development and Technology Transfer and by Energy Kesearch’s
Office of Basic Energy Science. We wish to express our gratitude for this support.

xvii

1. INTRODUCTION

1.1 OVERVIEW

The World Widc Web (WWW)-accessible Natioiial Sourcing Database (NSDB) provides a
mcans for users to obtain information about suppliers to (sources for) the Integrated Textile
Complex (ITC). The main components of' the NSDB are

databases and
a user interface.

'The NSDB databases consist of a set of "data sources" i n which the type of data included
differs to varying degrees from data source to data source. 'rhe WWW NSDB design provides
for the distribution (by data sourcc) of the NSDB databases through inore than one database
server. However, the design does require that a data source not be distributed, that is, that all
the data associated with any single NSDB data source reside on only one server.

Figure 1 depicts the WWW NSDB concept. A central server or savers house the user
interface and possibly a ret of NSDH data sources. Other NSDB data sourccs are located o n
remote database servers. Supplier sites where additional information (about a supplier and/or
the supplier's specific products and services) is available, rnay bc linked to from NSDB data
sources. In addition, siipplier web pages may provide links that, when selected, lead to the
NSDB generation and display of specific reports containing NSDB data source data. Finally.
the NSDB user interface links to external (non-NSDB) data sources that contain other
sourcing data of potential interest to the ITC.

I , S@CS

Fig. 1. Conceptual view of the WWW NSDB.

The external ITC-oriented data sources viewed during the early NSDB development were
apparently collcctions of web pages and did not use a database. The NSDB, in contrdst to
these types of external data sources. generatcs f o n s and reports on the fly using data
retrieved from its database(s). Its user interface maintains a certain commonality i n the

1

forms and reports from NSDB data source to NSDB data source despite the data source
differences. However, information from external data sources linked to by the NSDB is
normally displayed without regard to NSDB conventions.

A pilot version of the WWW NSDB has been operating since June 1995. Its U R L is:'

h ttp ://sat u r n.ep m .o rn 1. gov/Nsd b/

Il ie WWW NSDB has evolved based on availability of data sources, user and data-source-
provider feedback, and technology advances. The original and current pilot implementations
are discussed in Sect. 1.2.

1.2 PILOT IMPLEMENTATIONS

The pilot WWW NSDB currentlq uses three servers: a web server and a database server that
correspond to the main servers of Fig. 1. and a remotely located database server. The data
sources currently included i n the NSDB are listed i n Table 1. Until September 1997, all NSDB
data sources reqided on the single ccntrally located database server. At the end of September
1997. the Louisiana Apparel Makers Database (LAMDB) was added as a remotely located
data source.') [The Garment Industry Development Corporation (GIDC) data source, which
was added i n November 1996, was the last centrally located data source to be added.]

Table 1. Data sources in pilot

Data source I Data sourcc provider

' Three other lJRLs are aliases for the this URL: http:l/avalon.epm.ornl.gov/Dama7l.
http:/avalon.epm.ornl.gov/Daina3/. and http:i/avalon.epm.ornl.gov/Nsdbi. The first two were URLs of
various major versions as the pilot evolved. These major versions. as well as the initial rendition of the
current major version. resided on the original NSDB Web server. The NSDB web server was changed in
the summer of 1997; consequently, avalon rather than saturn is present in the three aliases.
' The addition of the remotely located LAMDB was facilitated because in keeping with the NSDB design.
all that was required for distribution of data sources were minor changes to a single original pilot NSDB
user interface routine, the addition of entries in a table for each data source and database server, and
inclusion of required database server interface software as described in Sect. 3.1 1 .

2

Although tlie data sources available before September 1997 all reside 011 a single active
database server, two mirrored database servers. a Sybase database server and an MS SQL
Server database ~ e r v e r , ~ are maintained for these data sources. A system administrator can
select either server to be the pilot’s active central database server for these data soitrces. In
the following discussion, the server housing these data 50urcc5 is referred to as the central
database server and the database server housing the LAMDB data source is referred to as the
remote databaw server.

Figure 2 is a representation of tlie original WWW NSDR. and Fig. 3 is a representation of the
current WWW NSDB. The Hypertext ‘l’ransfcr Protocol (IITTP) Web server currently used
is the Apace 1. 1 .3 HTT‘P Server (an acquired package). ‘The Corninon Gateway Interface
(CGI) that conirniinicates with the central database server was written specificallq for the
NSDH. ?‘hc command client network utility coniriiiinicating it11 the Fig. 2 database server is
an enhanced version of a portion of Sybase’s i sq l and has written for the WWW NSDB
(i s q l is compatible with both Sybase and MS SQL Server databases).8

Fig. 2. Representation of original pilot implementation.

’ The NSDH MS SOL Server version of the database was implemented to prepare for what initially was
considered to be an eventual transfer of the NSDB to rTC].’ However, given Sybase functionality, creating
a Sybase database as the priniary NSDB central database was easier and simplified certain ulility
iinplemcntation.

but Apache 1.1.3 and the enhanced coininand client network utilit}. were incorporated since the original
implementation.

Actually an earlier version of the Apache Web server and isql were used in the original WWW NSDB,

3

The database server atid coininand client network utility on the right of Fig. 3 are the same as
the database server atid command client network utility in Fig. 2. The database server on the
left in Fig. 3 is located remotely at the University of Southwestern Louisiana (USL). This
remote database server uses a Miiierva database. The command client network utilitq that
communicates with it is msql (an acquired package), which is compatible with Minerva
databases.

The current Web server resides on a Unix platform as does the Sqbase database server and the
USL, Minerva database server. ‘I hc MS SQL Serler database server runs under Windons NT
on a PentiumTM platform. 1 able 2 summarizes features of the current hardware and software.

I A ‘ I

Compliant
Database

Compliant
Database

Fig. 3. Representation of the current pilot implementation.

1.3 RELATED STAND-ALONE SYSTEM

An NSDB stand-alone system has also been developed to run i n Windows environments
(Windows 3.1 1 , Windows N 1‘ 3.51, and Windows 95). This system can be configured to
contain any subset (including the full set) of the data sources that were i n the WWW NSDB
in August 1997 (ix.. that are currently in the central database server). ‘fhe stand-alone has
beeii written in Visual C++ and stores NSDH data in an Access database.

4

Table 2. Aspects of current pilot system

H'T'I'P Server
CGI

I I
.-

Soft ware Characteristics

Apache 1.1.3 H7"rl' Server
Written primarily in Per1 5.003 scripts with some
Borne shell scripts-uses WAlS freeware routine
wa isa

Command Client Network Utility (for
central database server)
Command Clicnt Network Utility (for
remote dalabase server)
Database Management System (for
central database server)
Database Management System (for
remote database server)

Ehhanced subset of isql written in C using Sqbase
Dl3 Lib
rnsyl 2.0.1

Either 1 . Sq basc 4.10 or 2. MS SQL Server 4.2
(alternate mirrored servers)
Mitierva 2.0. I

Web Server
Sybase database scrver
Minerva database server
MS SOL Server database
servcr

1.4 UTILITES

Sun SPARC' Server 20 with O S 4.1.4 operating system
Sun SPAKC Server 20 with OS 4.1.4 operating system
Silicon Graphics Indigo K4000 with IKIX 6.2 operating system
PentiumTM (90 M ~ L) with NT 4.0 operating system

A set of utilities (see Sect. 4) have been created in part to facilitate loading and updating of
centrally maintained NSDB databases. One utility creates a -'priinary.' NSDB Sybase database
and loads the contents of the '-original" data source files into that database. Other utilities

9

1. backup and restore the primary NSDB Sybase database,
2. create and load NSDB MS SQL Server or "secondary" NSDR Sybase databases

corresponding to the primary NSDB Sybase database, and
3 . create and load Access databases corresponding to the primary Sybase database.

An update utility extracts data from the primary Sybase database and with a minimal number
of manual operations creates Excel NSDB data wurce workbooks containing this data. An
NSDB workbook contains the Sybase database contents for a data source in a form that
facilitates modificatioti/iipdating of the data source. Another utility loads text file versions of
the updated data source workbooks into the primary Sybase database.

' I t has been assumed that remotely located data sources will be initially implemented and subsequently
maintained by the organiration supporting the database server on which they reside. IJSL initially
implemented and currently maintains the LAMDB data s o m x .

5

2. NSDB DATABASES

The NSDB's centrally located data sources, as noted previously, have been maintained i n
three database nianageinent system. The pilot's NSOB Sybase database is currently the
primary NSDB databasc for these data sources. Creation and loading of this database is
accomplished through a utility that uses Sybase SQL, Borne shell, and AWK scripts (5ee
Sect. 4.2). "Original" data (data marly i n the form originally supplied by the data source
providers"') is loaded into the pilot NSDB Sybase database by this utility. As noted previously
(and as discussed in Sect. 4.3), other utilities, using tlie NSDB Sybase database as their input.
automatically' ' create and populate the pilot's NSDR MS SQI, Server and the stand-alone's
NSDB Access databases.

'llie NSDB Sybase and NSDB MS SQI, Server databases contain:

1 . a "sources" table in which inforination about each of the data sources is storcd;
2. a set of tables for cach NSDB data source, with the set (number of tables and type of

information) differing from data source to data source; and
3 . a set of stored SQL procedures.

'lhe NSDB Access database does not contain the stored procedures.

'The database permanent tables for each data source are listed i n Table 3. Appendix A
contains a complete description of each table in the NSDB databases. The [TC]' data source
listed Table 3 is included in the centrally located NSDB databases but is not accessed by tlie
NSUB user interface because it is currently empty. (This data source was named for the
former Testile/Clothing Technology Corporation now known as [TC].')

The set of stored SQL procedures included in the centrally located databases consists o f
subsets with each subset specific to a data source. They are used by the NSDB Web user
interface in its queries of the NSDB database. The reniotelj located Minerva database does
not provide for stored procedures. Therefore the SQl, procedures executed by the user
interface for qucrying the Minerva database are housed in the Web server. 'T'lie name of each
SQL procedure used by the interface starts with a data source indicating character string
followed by a .'-" (e.g., each stored SQI., procedure that accesses the SEAMS data source's
tables has a name that starts with "Seams-"). The "-.' is in turn followed by a character
string indicating the procedure's function (e.g., the procedure that retrieves the names of
companies listed in the SEAMS data source is Seams-ListCompanies).'2 The data
source indicating character string is the same for each procedure in the subset specific to a
data source.

The stored SQL procedures, and the corresponding SQL procedures for the LAMDB data
source are listed in Table 4 (and are noted in Sect. 3.4, "NSDB Data Sources," where aspccts
of the user interface relevant to each data source are described). Stored SOL procedures for

The "raw" data are preprocessed to create the -'original" data (see Sect. 4.2).
NSDB MS SQL Server copies (as well as any secondaiy NSDR Sybase replicates) of the primary NSDR

i o

Sybase database (excluding a set o f stored SQL procedures) are produced completely automatically, while
creation of Access copies requires some manual commands (see Sect. 4.3).

'This naming convention is used to determine the command client network utilit] that will be used i n
querying a data source's database (and, in an expanded system where data sources that can be queried
through the sanie command client network utility are distributed over multiple database servers, it would
be used to determine a data source's database server).

12

7

the [TC]' data source database tables have not yet been written because. as noted earlier, this
data source is currently empty.

Utility programs (see Sect. 4) create various temporary tables in the primary NSDH Sybase
database. These temporary tables, except for "temporary update tables," are generally
dropped by the utilities after the utilities finish using them.

Table 3. Data source database tables
Data source Tab

Alabaina 'l'extile and Apparel AU-Category
Producer's Directory (ATAPD or

AU Company
AU CompanyMacliDetail
A U C om panv Te c h 11 eta i I

Cotton Incorporated (Cottonlnc) CI Company

Garment Contractors Association GC-Company
(GCA)

Gar m en t 1 n d 11 st ry Deve Io pin en t
Corporation (GI DC)

AAMA Electronic Catalog 1996
(EC96 or AAMA EC96)

G l---C o m pan y

E6-C lassificatioii

E6 Company

KT Company
KT Produce

Knitted Textile Association (KTA)

Louisiana Apparel Makers Database company
(LAMDB)

Southeastern Apparel Manufact's SM-Company
and Suppliers (SEAMS)

SM Produce

Textile and Clothing Technology '1'C-Category
Corporation ('lC2)

TC Company
TU Produce

5

AU-. Produce

A U Product
AU Productcategory

CI Produce

E6-Product

KT Product

SM-Product

TC-Product

TC Productcategory

8

Data I Stored Procedures
Source I I I Source I

I I I

I nata I Stored Procedures

ATAPD

tX96

Procedures with the sql extension are housed in the Web server. Others are stored procedures.
This SQL procedure was included but then was not used in the current EC96 implementation.

I 3

14

Atapd GetCoinpanvProfile Cotton Inc CottonInc GetCompanyl’rofile
Atapd GetMachDetail CottonInc Listcategories
Atapd GetProdDetaiIs C o tto n I nc 1, i s tC at I’ rod u c t s
Atapd GetTechDetail Cottoiilnc ListCompanies
Atapd ListCategorics CottonInc ListCoProducts
At a pd L i s tC at Prod i i c t s
Atapd ListC‘ompanics
Atapd ListCuProducts
Atapd I.istProdCompanies
Atapd ListProducts GCA L istCompan ies

EC96 GetCompany Detail
EC96 GetProductDetail GCA Searcliklaterial
EC96 ListClabsif7cation GCA SearcliMens
EC96 L,istCompanicsByClass GCA SearchOther
EC96 ListCoinpaniesBy Descr GCA SearchServices
EC96 I ,istCoinpaiiiesByName GCA ’3earch%’omens
EC96 ListCoinpanyProductr,
EC96-1, istCoProdsByCom pany GlDC Gidc-Getcompany Profile

HC96 ListCoProdsB\ I’roduct Gidc 1,istCompanies

Cotton I n c L i s 1 Prod Coni pan i es
C o tlo i i In c I, i s t P rod 11 c t s

GC A Ci e tC o in pan y Pro fi 1 e

GCA SearchChi Idrens
GC A Search Equipment

GCA

14

I EC96 ListProductsByClass

9

EC96 1.istProductsHyCompany
EC96 ListProdiictsBy Descr
EC96 ListProductsRyNarne

K T A KTA GetCoinpanyProfile
KTA GetProdDetaiIs
K TA I, i stC o m pan i e s
KTA ListCoPruducts
KTA ListProdCompanies
KTA ListProducts

LAMDB I a n d b 1,istConipanies.sql
Lanid b GetCompany Profile. sq 1

SEAMS Seams GetConipanyProfile
1 Seams GetProdDetaiIs

Seams ListCategories
Seams ListCatProducts
Scams ListCoinpanies
Seams ListCoProductr
Seams ListProdCompanies
Seains ListProducts

3. USER LN‘TERFACE

3.1 GENERAL STKIJCTIJKE

The CGI in the Web server (see Figs. 2 and 3) is the lieart of the user interface. It receives
user input. and, in response to the input, it outputs reports and form$. querying the databases
as necessary and building the forins and reports. Procedures in thc CGI are spawned by the
HTTP Web Server. These procedures are Per1 5.003 scripts. which build Hypertcxt Markup
Language (HTML) 2.015 reports and forms. Static forins iiscd by the CGI were also
constructed i n I ITMI, 2.0. I n addition stored and web server-based SQL procedures are used
bj the Per1 scripts (see Sect. 2).

When a user enters the NSUB, the HTTP server displays the NSDR top page. The top page
of the NSDB provides the following:

1 . means for selecting any NSDB data source,
2. entree to a high-level (cross-data source) search capability,
3. links to external data sources, and
4. links to information (including help) about the NSDB.

The flow from the top page is illustrated i n Fig. 4 (excluding the links to external data
sources and information about the NSDB). A user choice of an NSDB data 5ource allows the
use of search procedures specific to the chosen data source to locate reports with informatioil
of potential interest to the iiser. The high-level cross-data source search capability provides a
list of company/data source pairs meeting a user-entered search criteria. From entries i n this
list, specific company reports from the companies’ paired data sources can be obtained.
These are the same reports that can be obtained through data source specific search methods.
The main CGI function in reaction to input is. a5 implied previously, the generation of forms
and reports. Since the CGI was designed using an object oriented paradigm, its structure for
carrying out these functions is described in the following in tcrms of its object classes and the
objects that are instantiations of these classes. ‘Three main object classes (excluding those
related to the cross-data source search) are used:

1 . tops,
2. forins, and
3 . reports.

The NSDR top object contains an HTML form, s h t m l . h, and a method, D o G e t . The
D o G e t method provides a means for implenienting a user’s choice, through the forin, of an
NSDB data source. A data source top object analogously contains an HTMI, forni,
itidex.html, and a D o G e t method. The data source’s top object provides the means for
selecting. through its forin: a data source search approach and for implementing that choice
via its D o G e t method. Most data sources have multiple search approaches, though some
have a single approach. Regardless, the data source’s search approaches are listed on the data
source’s top form and arc initiated via a user choice from this form. A data source top’s

The lJSlTC is characterized by many small companies in its apparel manufacturing sector, conipanies
that to a large extent do not remain current regarding their computer technology. Therefore the user
interface was written to be compatible with most available browsers, not simply the most current set of
browsers. (Some exceptions were made late in the pilot for nonessential added functions.)

15

1 1

D o G e t method will, based on the user-selected search approach. invoke a method froni a set
of possible data source specific objects.

Cross Data
wSource Search

t
Data Source

2
.

Report

Fig. 4. Flow from NSDB top page.

A form object (Fig. 5) consists of an HTML template (h t m l . h) and two methods:

1 . Build, arid
2. DoPost.

A report object (Fig. 6) consists of a Build method. A Build method creates and outputs,
the form or report, that is transmitted to the user in response to his or her input. A form
Build method initiates queries of a database if its form requires data from a database and
uses the querq results to f i l l in a template, h t m l e h,16 whereas a report Build incthod builds
a report without the use of a template. A D o P o s t method reacts to user input in response to
a displayed form and provides that input to another form or report object when invoking one
of the object‘s methods.

I(, A Build method must also insert a “new window” indicator into the template to instruct the user’s
browser whether to display the resulting form i n the current or a new window.

1 2

Fig. 5 Form object. Fig. 6. Report object.

3.2 DATA SOURCE OB,JECT DATA FLOW

Figure 7 provides an illustration of the interactions of a top ob-ject, forins objects. and a
report object. (It is representative of a number of data sources in thc NSDB.) A search
approach, either a product category, product name, or company name search is chosen by
the user from the data source top forni. The data source lop’s DoGet method is invoked,
which. based on the user’s input, invokes the B u i l d method of either the CategoryForm,
ProductNamcForm, or CompanyNatneForm search forni object.

DoGct

Fig. 7. Representative data source object data flow.

‘The search forin object’s B u i l d method may query the databaw and construct a list of
itcms for display (e.%., a set of the data source’s product categories), insert that list into rlie
object’s template, and display the resulting form. Alternately, it tnay simply build and display

13

the object's forin with a field for inputting a string. User input via the displayed forin is then
used by the form object's DoPost method to invoke the B u i l d method of the
ProductForin (when the input is via the category or product name forms) or CompanyForm
(when the input is via the company name form) object.

The ProdiictForm's B u i l d method queries the database for products meeting the criteria of
the various preceding user input. builds a list of such products, inserts the list into the
ProductForm's template and displajs the resulting furm. User input via the form then leads
to the invoking of the object's DoPost method, kzhich in turn invokcs the B u i l d method
of the Companj Form object. The ProductForm's B u i l d method maq also be invohed by
the Coinpanj Form's DoPost method. In such a case, the ProductForm's B u i l d method
will build a list of the products of the companies selected bq a user froin a list of companies
built by the CompaiiyForm's B u i l d method.

The Companj Form's B u i l d method (in complete analog) to the ProductForm's B u i I d
method) queries the database for companies meeting the criteria of the various preceding user
input, builds a list of such companies. insertb the list into the Company Form's template and
displays the resulting form. User input via this displayed form leads to the invoking of the
object*s DoPost method. Depending on this input, the DoPost method wi l l invoke either
the ProductForm's or ReportForm's B u i l d method. (Note: the ProductForm's B u i l d
method will be iiivoked if the user asked for a list of products made b j the user-selected
companies. and the Report's Build method will be invoked if the user asked for a report on
the selected companies. Multiple companies may be selected from a company form, and a
user request for a company report will yield a report on all the companies selected. However.
a user request for a products list will yield a list of the products of only the first selected
companj in the company list.)

The Report's B u i l d method queries the database and in so doing acquires all the data
source's data concerning the user-sclected companies. fhese data are tlicn used to build a
report for the companies. and this report is displayed. Each company's part of such a report
will have sections that depend on the data source, for example, the ATAPD data source's
reports have the following sections: company profile, company information, references,
product details, machine details, and technical details. When data for a report field for a
company is not included in the database, the field w i l l be left blank in that specific company's
part of reports (or i n some cases the field will be not be included at all).

The objects used for most of the specific data sources differ fi-om what has just been discussed.
They are dictated i n part by the organization of the data within the data source's database
tables, which in turn has been determined in part by the makeup of the data provided by the
data source provider.

3.3 NSDBTOP

The NSDB top form may be thought of as consisting of the following parts:

I . Welcome,
2. Sourcing Area Directory.
3. NSUB Data Sources and Functions. and
4. NSDH Explanatory Information Links.

14

Fig. 8. Web NSDB top page welcome.

The Welcome (Fig. 8) contains the Demand Activatcd Manufacturing Architecture (DAMA)
Project Logo and a welcoine message. It is also used to provide links to prototypc systems
related to the NSDB and may be used for short explanatory information.

The Sourcing ,4rea Directory (Fig. 9) provides a set of links to areas of the form and directly
to both NSDB and external data sources. Near the top of this part of the form is a list of
sourcing areas (e.g., Apparel and I lome Furnishings) and subareas. Selecting an area or subarea
(if the area entry contains a list of subareas) will cause a list of data sources containing
information about products in the selected area or subarea to move to the top of the display.
Selecting any data source in such a list will bring up the top page of that data source.

These lists o f data sources (for each area or subarea) make up portions of this part of the
form. Each such portion of this part of the forin contains a link back to tlie top of the form.
in addition to links to data sources. I n these lists, NSDB data sources are preceded by a green
ball, and external data sources are preceded by a red ball.

At the top of this part of the form is a link to the “NSDB Data Sources and NSDH Cross-
Data Source Search.” Selecting this link will bring the Data Sources and Functions part of the
form to tlie top of the display.

The Data Sources and Functions part (Fig. 10) provides for selection o f NSDB data sources
from a set of buttons (one per data source), selection of the high-level cross-data source
search function, or selection of links to certain external data sources or Web sites. The NSDB
top‘s DoGet nicthod is invoked when an NSDB data source button is chosen and it causes the
display of the chosen data source’s top fonn. If the “Create New Window,” indicator is
selected before an NSDB data source is selected, thc data sourcc*s top page will appear in a
new window.

15

Fig. 9. Portion of Web NSDB top page sourcing area directory.

Selecting the high-level cross-NSDH data source search function from the Data Sources and
Functions part of the NSDB top form brings u p the cross-data source search's top form in
which a search criteria can be specified. A list of certain external Web sites with USITC-
related data is also contained in this part of the NSDB top form. A choice fioni this list
brings up the site's top page (via a direct link).

16

Fig. LO. Web NSDB top page data sources and functions.

Note that as indicated in Figures 9 and 10, NSUB data sources can be selected from the
Sourcing Area Directory or the Data Sources and Functions part of the NSDB top form
(producing the data soiirce’s top form via a direct link or via the NSDB lop’s DoGet method
respectively).

The Explanatory Information Links (Fig. 1 I) part of the NSDH top form contains links to
various information that should help a user widerstand what the NSDB is and how to use it. In
addition it provides a means for sending einail to the NSDH developers and administrators and
a link to the top of the form.

17

Lccatiort : I h t t p . / (satut-n.apn-l.~rnl.goviNsdhi I I . . I

3.4 NSDB DATA SOURCES

3.4.1 General
‘The last data source i n the current version of the NSDB was added at the end of September
1997,” bringing the total NSDH data sources to eight:

1. Alabama Textile and Apparel Producers Directory (ATAPD)
2. Southeactern Apparel Manufacturers and Suppliers Association (SEAMS)
3. Cotton Incorporated (Cottoiilnc)
4. Knitted Textiles Association (KTA)
5 . Garment Contractors Association of Southern California (GCA)
6. Garment Industry Development Corporation (GIDC)
7. Louisiana Apparel Makers Database (LAMDB)
8. Electronic Catalog ‘96 (EC96)

The first seven data sources in this list may be thought of as having as their target a company
(companies) report that contains all the data source‘s data on the company(ies) and its
(their) products and/or services. The last data source, EC96, has two types of targets,

Links to NSDR data source provider and external data source Web pages have since been modified as I 7

NSDB data source providers developed Web pages and external data source URLs were changed.

18

company reports (which include a list of a company’s products and/or service4 but not
information about these prodricts and/or services) and product reports. which provide details
of a company‘s products and/or scrvices. I n addition the fkst seven data sources contain at
most one level of product classification (categories), while EC96 has a four-level
classification hierarchy (primary group, category, class, and type).

Some features of the forms are common for all of the NSDB data sources. Each data source
has a top form that provides for a choice of search approaches. Searches yield forms with
lists from which selections can be made for fiirther searching or for calling For reports.
Bui Id methods construct the forms and reports. l‘he first seven sources contain
instantiations of all or subsets of tlie following two sets of object classes:

I . a category forin, a product name or search forni, and a company name form and
2. a product form, a company form, and a report.

The EC96 contains the following objects:

1. a generalixd search form and
2. a product name form. a company form, a company/product form, a company rcport, and

a product report.

Stored or Web sener-based SQL procedures are used by the objects’ Build methods to
obtain data used i n building the various forms and reports. kigures 12 through 19 illustrate the
object data flow for the data sources. ’The objects, along with their templates and SQL
procedures, used for each data soiirce are listed for further clarification in Tables 5 through
12.

3.4.2 ATWD

The ATAPD data soiirce uses all of the object classes of the first seven data sources, as can be
seen froin Fig. 12. In that figure, as in all the tigures illustrating the object data flows. the
methods for each object are shown and the stored (or Web server-based) SQL procedures used
bq each Build method are listed (e.& the CompanyForni object‘s Build method uses the
stored SQL procedures ListProdCompanies and Listcompanies). ‘The data passed
to another object by each DoPost method i s also shown (c.g., the CategoryFonn ob-ject’s
DoPost method passes a category selected by thc user to the ProditctForm’s Build
method). A Build method does not necessarily w e all of the stored procedures listed each
time it is executed, those used being dependent on the data input to the Build method (e.g.,
the CompanyForm‘s Build method will use Listcompanies when it receives conipany
names and ListProdCompanies when it receives a product name).

In ‘fable 5 , as i n all tlie corresponding tables for data sources, templates and stored procedures
used by a method are listed indcnted below the method. A stored procedure is indicated by a
“*” after its name, and those stored procedures that may be alternately used by the method
are listed with “-”S in front of them. Normally no more than one -‘list’* procedure will be used
at each running o f a Build method (Le., where multiple list procedures are listed for a
Build method, only one is used at each invocation of the Build method). The names of
the methods and stored procedures in Fig. 12, as in the corresponding figures for other data
sources, have been shortened with the full names being given in Table 5 , as they are i n the
corresponding tables for other data sources.

19

company name strin

F

Getcompany Profile
GetProdDetails
GetMachDetail
GetTech Detail

Fig. 12. ATAPI) object data flow.

20

Table 5.
Object

Atapd.top

Category Form

ProductNameForm

CompanyNanieForm

Product Form

Company For tn

Report

F ATAPD ob.jects, methods, templates, and procedurc
Metliodll’rocedureiForin

i n d ex. 11 tin 1
At apd .top . DOG et, cg i
CategoryForin.Build.cgi
Category Form.htm 1.h
Atapd Listcategories *

CategoryForm.1loPost.cgi
I’roductNameForm .Bu i Id .cgi
T’rodiictNa17ieForin .litin I .I1

ProductNameform.Dot’ost.cai
Company NameForni. Bu i Id .cgi

Corn pan yN anie Fo r rn . h t in 1 .h
~:oiiipai.lyNanieForm. DoPost.cgi
Productform .Du ild.cgi

I’rod uct Form. h tin I . h
- Atapd ListCatProducts *
- Atapd ListProducts *
- Atapd ListCoProducts *

Prod uctForm. Dol’os t .cg i
Corn pail y Form. H u i Id .cg i

Company Form .htinl. h
- Atapd ListProdCompanies *
- Atapd ListCompanies *

CompanyForrn.DoPost.cgi
Repoi-t.Build.cgi

1 Atapd CetCompanyProfile *

HTML
Perl
Perl
HTML
SQL
Per1
Per1
HTML
Per1
Per1
H’TM 1,
Per1

Atapd GetMachDetaiIs *
Atapd Cet‘I‘echDetails *

Perl

ZH S L

21

3.4.3 SEAMS

The SEAMS data source has instantiations of the same object classes and has the same object
data flow as the ATAPD data source (see Fig. 13). The structure of its reports is different
howevcr, as is indicated in part by its Report object's Build method, which uses only a
GetCompanyProf ile and a GetProdDetails stored procedure (see Fig. 13 and Table
6). whereas the corresponding ATAPD Report Build method also uses a
GetMachDetail and a GetTechDetail stored procedure.

categorj

I-r
product name string

company name string

ListCoProducts

product

1 7
company

Fig. 13. SEAMS object data flow.

22

Table 6.
Object

Seams.top

Category Form

Product N am e Form

CompanyNameForm

Product Fonn

Company Form

Report

3.4.4 Cottonlnc

SEAMS objects, methods, templates, and procedures
Metliod/Procedure/Form Language

index .I1 t ml IITMI,
Scams.top.UoGet.cgi Perl
CategoryForm.Bu ild.cgi Per1
Category Form .htm 1.h III’ML
Seams ListCategories * SQL

Prod uctNam c For in. €3 u i Id . c p i Per1

ProductNaineForm.DoPost.cgi Per1
CompanyNameForm. Bui Id.cgi Per1

CompanyNaineForm .DoPost.cgi Per1
ProditctForm.Ruild.cgi Per1

Category Fo rm .Do Post . cg i ~- 6 r l

ProductNaineFor~n.html.I~ H T’M L

CITMI, Corn pariyName Forin. ht in 1.11

I’roduc t Form. htm 1. h HTML
- Seams ListCatProducts * SQL
- Seams Listproducts * SQL
- Seams ListCoProducts * SQL

Product Form. DoPost .cpi Per1
CompanyForm .Build.cgi Per1
Company Form . h tin I .h
- Seams ListProdCompanies * SQL

t I TML

- Seams Listcompanies * SQL
CompanyForm .DoPost.cgi Per1

Seams Get C om pan y Pro fi 1 c * SQL
Seams GetProdDetails * SQL

Report.Build.cgi Perl

The Cotton Incorporated data source does not contain a Category object but contains objects
from all of the other object classes of the first seven data sources (see Fig. 14). In fact, there
are two product categories, woven and knit, in the data source. However, these categories are
accounted for by having two separate search method selections on the Cotton Incorporated
top form. Note that the ListCoProducts stored procedure is used by both the Cotton
Incorporated ProductForm and Report Build methods (it is listed twice in Table 7).

2 3

company name string I
I

I

product

Fig. 14. Cotton Incorporated object data flow.

3.4.5 KTA

The KTA data source does not contain a CategoryForin or ProductNaineForm (see Fig. 15
and Table 8). The top of KTA allows for selection of a search based on an inclusive product
list built bq the K'IA ProductForm B u i l d method (KI'A has only a short list of products).

3.4.6 GCA

The GCA data source does not contain a CategoryForm or a ProductForm and contains a
ProductSearchForm rather than a ProductNameForm (see Fig. 16 and Table 9). The
ProductSearchForin provides for a user selection of a category along with user input of a
product name string.

24

Table 7. Cotton Incorporated objects, methods, templates, and

c 0 tt on I I1 c .top

ProductNanieForm

Object MethodlProceduielForin
i nd ex. h tin 1
Cotton I nc. top. DoGet .cg i
I’roductN am e Form. B u i Id .cg i
I’roductNamcForni .litml.h

ProdiictNameForm.DoPost.cai
Corn panyNameE onn. Bit i Id.cg i

C om pan yN am e 1; o rin .lit in 1.11
CoinpanyNanieFortn.DoPost.cffi

Company NameForm

Product Forni ProductForm .Suild.cgi
Prod uctForm .h tm I .h
- Cottonlnc 1,istCatl’roducts *
- CottonInc ListProducts *

- Cottonlnc l,istCoProducts *
ProductForin.DoPost.cgi

Corn pa nv Form. htm I . 11
- Cottonlnc l,istProdConipan~es *

Company Form CotnpanyForin.Huild.cai

- Cottonlnc ListCompaiiies *
Company Form. DoPost.cgi

Report Report. Bu i Id.cgi
Cottonlnc GetCompany Profile *
Cottonlnc ListCoProdiicts *

product I

procedures

H T M L
Per1
Per1
HTML
Perl
Perl 1
H T M L
Per1
Per1
H T M L
SQI ,
SQL
SQL
Per1
Per1
H’TML
SQL
SQL
Perl
Per1

SQL

1,anguage

SOL

I L I I
I ’ I

company name string1

Fig. 15. KTA object data flow.

25

P rod u c t F o rni ProductForm.BuiId.cgi

L

category, product
name string

company name string

Build
.SearchChi/dren.s
SearchEqniprnent

Search Material
Search Mens
SearchServicev
Search Wumens
Search Other
ListCornpanies

companies, category, product
I

Getcampany Profile

Fig. 16. GCA object data flow.

26

Table 9.
Object

GCA.top

ProductSearch Form

Coin panyNameForni

Company Form

Report

3.4.7 GIDC

GCA objects, methods, templates, and procedures
Method/Procedure/b om1 Language

index.h tm I HTML
GCA.top. DoGet.cgi Per1
I’rodiictSearch Form .Bui Id.cgi Per1

ProductSearchForm.I)oPost.cgi Per1
Company Nainel- orni.Bu ild.cgi Per1

I lTML
C om pan y N ain c F o rin . Ll o Po st. cg i Per1
Company Form. Ru i Id .cgi Per1

CompanvForm .\itml. h HTML
-GCA SearchChildrens * SQL
- GCA SearcliEquipinent * SQL
- GCA SearctiMaterial * SQL

ProductSearchForni.tItml.h I I‘I‘ML,

C om pail yN ani e Form .I1 tin 1. h

- GCA SearchMens * SQL,
- GCA SearchServices * SQL
- GCA Search Womens * SQL
- GCA Searchothers * SQL
- GCA ListCompanies * SQL

Company Form .DoPost.cgi Per1
Report.Build.cgi Per1
GCA GetCompanyProfile * SQL

The GIDC data source has the simplest object data flow (see Fig. 17). I t contains a
CompanyNaineForm, CompanyForm and Report (see Fig. 17 and Table IO). ‘i’he initial
search approach is by company name string (consequently. its top form provides only one
search choice).

7- panies company name strin

I I .

Fig. 17. CJDC object data flow.

27

Table 10. GIDC objects, methods, templates, and procedures

Report

0 bj ec t Method/Procedure/Form Language
Gidc.top index. h t i i i I H T M I.,

C o in pa ti 4 I; o r m . Do Post . c g i Per1
Report.Build.cgi Per1
Gidc GetCoinpanyProfile * SQI ,

3.4.8 LAMDB

The LAMDB data source contains instantiations of the same object classes as the GlDC data
source (i.e.. CompanyNameForm, CompaiiyForm and Report) and has the same object data
flow as that data source (see Fig. 18). as). As indicated by the lack of a -'*" next to them in
Table 1 1 , the SQL procedures used by LAMDB's Build methods are not stored procedurcs
(and consequently reside in the Web server).

company name string T I
panies

Fig. 18. LAMDB object data flow.

2 8

Object
1 .amd b . top

CompanyNarneform

Co ni p any For in

3.4.9 EC96

MethodlProcedurelForm Iaiguage
i nd ex. h t ni 1 t I T M L
t,amdb.top.UoClet.cgi Per1
Coin panyName Form. Bui Id.cgi Per1

1lTML Coin panyNanieForm.htm1. h
ConipanyNamel- orm.Dol’ost.cgi Per1
CompanyForni. Builds@ Per1

Company Form .htrn 1.h H’TMl,

’The EC96 data source is the most sophisticated of the NSDH data sources (see Fig. I9 and
Table 12). I t contains only one initial search approach. This search approach however has a
number of options providing more search capabilities than other data sources with multiple
initial search approachcs. ?‘hc form built by the SearchForni’s Build method allows for
selection of options to search through -‘company data” or ‘-product data’. and within that
data to search by “name” or “description.” It allows for input of a string lo be searched for
within the conipanj or product data and for the limiting of the search to products (or, when
searching through company data, to companies with products) that fall within a specified
classification. I n addition. the EC96 data source has two report ob-jects, a Company Report
and a ProductReport. Company reports contain lists of the company product names, which
are links (contain data which specify a method that here is the ProductKeport‘s Build
method) to reports for products o f a company. (The dashed lines in Fig. 19 represent the
data flow via those links).

Lamd b Li stCom pan ies.sq 1
company Form. Do f’os t . c g i

Report Report.Bui Id.cgi
Lamdb C;etCompanyProfile.sqI

A product, by the definitions of the EC96 data source, is a product name and classification. A
classification can be from one to four levels deep (with the levels being from the top:
primary group, category, class, and type). ‘The possible names of successively lower levels
depend on the higher levels previously chosen. Therefore the SearchForni object provides for
selection from a generated list of the possible names for each successively lower level after
the name of the immediate higher level is chosen. This is why there is a path from the
SearchForm‘s DoPost method to its Build method in Fig. 19. In setting up a classification
for search criteria, a full classification is not required. For example, if a primary group only is
selected, then the search will be through all products with classifications whose highest levcl is
the selected primary group regardless of what the lower levels of their classifications are. The
stored SQL procedure wed by the ProductNameForni (CompanyForm) on receipt of data
from the DoPost nicthod of the SearchForm is a function of that data. If a nu l l search
string is provided. the List P r oduc t s ByC 1 as s (List Compan ie s ByC 1 as s)
procedure is used. If a non-null search string is provided. then when a search by name is
chosen the ListProductsByMame (ListCompaniesByName) is used, and when a
search by description is chosen ListProductsByDescr (ListCompaniesByDescr)
i s used. A “by description search on product” searches all the data i n products’ description
and attribute fields. A “by description search on company” searches all the data in
companies’ description fields.

SQL
Per1
Per1
SQL

29

namddescription choice, product/ company choice, 1
search string I

tring

ListProductsBy Class
ListPruduct~ByName

ListProduc tsByUescr
ListI'ruductsBy Company

companies, classification

companies, classification

k

ListCompaniesBy Class
company name ListCompaniesByName

tietCompanyDelaik
ListCompan yProduct8

Fig. 19. EC96 object data flow.

As noted previouslq, a company report contains a list of the company's product names
(generated by CompanyReport's B u i l d method). These provide links to a product report
that also may be called for from a "companyiproduct" form. A product report (generated by
ProductReport's B u i l d method) will contain multiple product parts if the product name
selected has been classified in more that1 one way by the company. Each part is about a
product with the same product name as the other products in the report but with a different
classification (as noted earlier. a product is defined as a product name and a classification).
'fhe product report begins with a set of links to the product parts of the report where each
link is represented by the product name. (This approach allows a company to provide
different information about a named product depending on the differing potential customers
for the classifications used.)

30

Obiect
EC96.top

Search Form

MethodlProcedurelFori~i
index . h tni I
EC96.top.DoGet.cgi
Search Form .H ui Id.crri

Prod uctN am eForin

Company Forni

Language
HTML
Perl
Per1

SearchForm .htm 1.11
EC96 ListClassification *

Search Form. UoPostxgi
Prod uctName Form. B 11 i Id. cgi
Produc tNani eF orni .h tm 1 .h
-EC96 IAProductsByC lass *
-EC96 ListProductsByName *
- bC96 Id is t Prod u c ts B \i Desc r *
-EC96 ListProductsByCoiiipany *

ProductNameForm.DoPost.cai
Company Form. Bu i Id.cgi

Coni i x m Form. htrn 1.11

HTML

CompanyProductForm

SQL
Per1

- EC96 ListCompaniesByClass *
- EC96 ListCompaniesByNaine *
- EC96 ListCornpaniesByDescr *

ConipanyForm.DoPost.cKi
CompanvProdiictForm.Biiild.cgi
CoinpanyProductFor~n.html.li

Per1

C om pan y Re po rt

Prod uctReport

IHTML
SQL
SQL
SQL
SQL
Pert
Perl
H T M L
SQL
SQL,
SQL
Perl

EC96 I,istCoProdsByProducl *
C o m pan y Product F c) rm . Do P o s t . cg i
Coinpaq Report.Biii Id.cgi
E 0 6 GetCompanyDetail *
EC96 ListCom pan y Products *

EC96 GetProductDetaiI *
Product Report. Bu i Id .cgi

Perl
14 7‘ M I,
SQL
SQL
Perl
Per1
SQL
SOL
Per1

3.3.10 Example of NSDB Data Source Web Pages

I’he appearance of the Web pages for an NSDB data source depend on the type of data
available in the data source and the orgaiii&ion of the data source’s database tables.
Nevertheless. there is a tneasure of cominonality of NSDB data source Web pages from data
source to data source. Particularly, each data source includes the following:

1 .
9
r .

3 .

4.

a top form with selection buttons for each of the data source’s search approaches;
scroll down lists 011 subsequent fornis where the lists‘ items are retrieved from the data
source’s database tables based on previous user entries and selections;
a “create new window” check box.’” links to the top form of the data source and to the
top page of the NSDB, and action buttons i n an “actions area” for submitting user entered
and selected data on all foriiis; and
reports with linhs that case navigation through the reports’ pai-ts and sections.

31

Fig. 20. ATAPD top form.

Figures 20 to 25. are screen displays from the ATAPD data source that illustrate typical
aspects of NSDB data source pages. ’Ihese screens resulted from a search. initiated via the
ATAPD‘s product category search approach, for information about ATAPD-listed makers of
certain types of apparel. The end result of the search was the display of a report on two such
companies.

The NSDB ATAPD data source‘s products are categorized in a one-level categorization
scheme. Thus, as seen in Fig. 20, the ATAPD top form, a search approach button for a
product categories approach is available, along with buttons for product name and company
name search approaches. The SEAMS data source has the same search approaches as
A‘I‘APD; consequently, its top page is essentially the same as the ATAPD top page. (Note
that where the data source supplier has a Web site, a link to that site is included on the data
source top page).

Figure 21 was displayed as a result of the choice of the “Product Categories” search approach
in Fig. 20. The category “Intimate Apparel” was chosen in Fig 21. Clicking on the “List
Products” button then resulted in thc display of the form in Fig. 22.

32

Fig. 21. ATAPI) category form.

Had either the company or product name search approaches been chosen (in thc Fig. 20
form), a form with a field for a search string and a “Search” button to activate a search would
have been displayed rather than the form in Fig. 2 1. In such a case, clicking on the forni’s
“Search” button would have resulted in the display of a form containing a list with all the
product names (in the case of a product name search approach) or all the company names (in
the case of the company name search approach) that contain the search string. A blank
search string field would have resulted in all the data source’s company nanies or all the data
source’s product names being included in the list.

3 3

Fig. 22, ATAPD product form.

The product name “Loungewear” was chosen i n the Fig. 22 form. Then, clicking on the “List
Coiiipaiiies” button resulted in the display of the Fig. 23 form, which contains a list of all
ATAPD-listed companies that make loungewear.”

i x A user who wants to find manufacturers of such products but who does not know the exact name used in
the data source for these products can find them through the product category search method. If the user
knows the name used in the ATAPD data source, then simply inputting it via the product name search
method would save a step in getting to the list i n Fig. 2.3. The product name search method with no input
string would yield a list of all the product names in the A‘I’APD; hobever, this would require inspecting a
much larger list than the list resulting from a category selection i n the product categories search method.

34

Fig. 23. ATAPD company form.

Cleburne Manufacturing Company and Lawrence Corporation were selected i n the company
list of Fig. 23. Clicking on the ‘Generate Report” button then resulted in the display of the
report. which is partly shown in Figs. 24 and 25. Figures 23 and 24 illustrate that one or
more, up to all, of the companies in the list in the conipany form may be selected and that
all the companies selected will have their information included in the resulting report (with
the report being divided into parts and having a report part for each company).

35

Fig. 24. Beginning of ATAPD report.

The beginning of the report (Fig. 24) lists the companies whose information comprises the
report (the list is immediately followed first by back links and then by the beginning of the
first company's part of tlie report). Each company name in the list acts as a link to the
beginning of the company's part of the report. Each company's part of a report is divided
into sections (e.g.. tlie ATAPD report sections are: Profile, General Information. References,
Machinery, Technical Data, and Company Products). The start of each company section
contains a set of links to other sections of the company's pail of the report, as well as a link
back to the list of companies in tlie report.

36

Fig. 25. Reference and Machinery sections of part of an ATAYD report.

Figure 25 contains the Reference and Machinery sections of the Cleburne Manufactiiring
Company’s part of the report. As can be seen from the Machinery section, some sections of‘
NSDB data source reports are essentially check lists that indicate, for example. what the
company’s equipment and capabilities are. I n such a check list, a ‘-Y”’ indicates the possession
of and a -‘N” the lach of possession of a check list feature.

37

3.5 EXTERNAL DATA SOURCES

External data sources are simply directly linked to from the NSDH top page. They need not
obey any of the conventions or requirements of an NSDB data source (e.g., their information
need not be i l l an SQL compliant database or i n a database at all), they are not searched in the
NSDB high-level cross-data source search, and no interface functionality for them is provided
in the NSDB CGI. They are. however, included i n the NSDB top‘s Sourcing Area Directoty to
provide an indication of their contents.

The data sources linked to at this writing are the

1. American ‘4pparel Producers Network (AAPN),
2. American Textile Manufacturers Institute (ATMI), and
3 . Davison’s Bluebook.

Davison’s Bluebook is accessed through the Apparel Exchange. the top page of which is also
I in ked to.

3.6 CROSS-DATA SOURCE: SEARCH

3.6.1 General

The high-level cross-data source search capability ha5 been implemented using the
FreeWAIS-sf freeware package, which includes two routines: waisindex and waisq.
The waisindex routine was used off-line in conjunction with scripts to develop a set of
files that enable the cross-data source search. This set of files was then integrated into the
NSDH and currently resides on the Web server. The set is searched with waisq. The result
of a search is a list of company/data source pairs, each pointing to information in the data
source about the coinpan) (or company’s products) that matches the search criterion. The
standard NSDB data soiirce report capability is then used to display reports for user-selected
entries i n the coinpany/data source list.

3.6.2 Creating Cross-Data Source Enabling File Set

Figure 26 depicts the data flow in the creation of the files for enabling tlie NSDH cross-data
source search. This off-line process is carried out in part by scripts that were written to
retrieve information and create files (one per company per data source) for input to
waisindex. The set of script-generated tiles and a manually created format file are input
to waisindex to generate another set of files. the “wais index.” needed by waisq. The
waisindex input and output are then included in the set of NSDB files that enable a cross-
data source search.

In developing the scripts, a base class Company was created that detines a Write method.
Derived classes inheriting from Company. one per data source, were then created that use
the Write method to generate data source company data files compliant with the format
described in nsdb. fmt, the manually generated format file. ‘Hie data source specific classes
each define a new method that queries the database in a data source specific manner to
retrieve company data that serves as the input to the Write method. Index. Build, a
method of the ob-ject Index, uses waisindex, to build tlie “wais index,” specifying

38

nsdb . fmt as the format file and the per company per data source
Write method as the waisindex input.”

data files produced by the

I ... -.I

Fig. 26. Creation of cross-data source enabling file set.

Table 13 lists the methods. routines. and stored SQL procedures used in the creation of the
cross-data source enabling file set. At this stage. the LAMDH is not included in the cross-data
source search, so no entries for it are included in the table. The stored SQL, procedures used in
the process are a subset of the set used by the on-line user interface and include all those
procedures used for report generation (see Sect. 3.4). A data source’s T h i s .Generate
method serves simply as a calling routine for an inherited WriteAll routine. The inherited
WriteAll routine executes a data source specific Listcompanies method. a data source
specific new method. and the inherited Write method. Company. pm contains the
WriteAll method and Write method (inherited by the various data source specific
objects).

The routines setup. s h and setup. p l are sourced respectively by Index Build and
the T h i s . Generate methods (they are executed as part of these methods). Setup. s h
defines directory paths for the cross-data source search enabling files and certain methods
used in their generation and extends the process path to include the path to the waisindex
directory. Setup. pl defines the same directory paths as setup. s h and imports the
Nsdb . pm package, which in turn defines further directory paths, sets environment variables
required for accessing thc NSDB database, and provides the Nsdb P e r 1 package of
subroutines (note that the multiple setup-pl entries in Table 13 all refer to the same
ro u ti ne).

The object Index consists of two methods, Index.Build and 1ndex.Quet-y. It creates the “wais index” 19

with 1ndex.Build and searches the index and associated files with Index.Query.

39

A "blanket" T h i s . G e n e r a t e routine successively executes all of the data source specific
T h i s . G e n e r a t e routines. Either it can be used to generate all the data source files of
Fig. 26, or, alternately, data source specific T h i s . G e n e r a t e routiiies can be individually
executed to create their data source's Fig. 26 files.

Ob.ject/Obiect Class I Met hod/Proced u re/etc.
I

Table 13. Objects, methods, routines and procedures used in creating
the cross-data source search enabling file set

Language

Table 13u. General methods and roiiliiies

Object/Ob.iect Class I MetIiodlProcedureietc. I Language
I I

Th is.Generate

Atapd .Company

ThkGeiierate Per1
setup.pl Per1
ListCompan ies Per1
Atapd Li stCom pan i es SQL

Inherited WriteAl I Per1
new

Atapd GetCoinpanyProfile
Atapd GetProdDetails
Atapd GetMacliDetaiIs
Atapd GetTech Detai Is

1 n h eri ted Write

Per1
SQL
SQL
SQL
SQL
Per1

Table 13c. Cottonlnc methods, procedures and routiries
L

Object/Object Class I Method/Procedure/etc. I Language
I I

Cottonlnc GetCompaiiyProfile
Cottonlnc ListCoProducts

1 n 11 er i ted Write

SQL
SQL
Per1

40

Table I3d. EC’BA methds, pr-ocedium cud routines
Object/Object Class Method/Procedurc/etc. I Language

This.Generate ‘Hi i s .Generate Per1
setup.pl Per1

EC96.Com pany ListCornpanies Per1
EC96 Li stCom pan ies SQL.

Inherited WrileAll Per1
new Perl

EC96 CietCompanyDetails SQL
EC96 ListCompariyProducts SQL
EC96 GetProductDetai Is SOL

Inherited Write Perl

‘TI1 is. Gcncrate

G C A. C o m pan y

I

‘T’h is. Generate Per1
setup.pl Ped
ListConipanies Ped
GCA ListCompanies SQL

Inherited WriteAIl Per1
new Per1

SQL
Inherited Write Perl

GC A GetCom pany Profi le

7uble 136 GTOC methotr’s, procedures urzd routines

I I
Object/Obiect Class I Method/Procedure/etc. I Language

Gidc.Company
set 11 p . p I Perl
ListCompanies Per1
Gidc ListCompan ies SQL

Inherited WriteAll Ped
new Perl

Gidc GetCompanyProfile SQL
Inherited Write Perl

41

lirhle I3g. KTA riiethocrlr.. procedures und rouf ines
Ob.ject/Object Class I Method/Procedure/etc. I Language

1 I
Th is. G en erate

K T A . C o in pan y

7’11 is.Generate Per1
set u I-). p I Per1
Listcompanies Per1

KTA Listcompanies SQL.
Inherited WriteAII Per1
new

KTA GetCompanyProfile
K-1-A CietProduct Detai Is

1 nherited Write

Table I3h. Senriw methods. procedures and routines
Object/Object Class Method/Procedure/etc. Language

2

Per1
SQL
SQL
Per1

Table 14 lists the noncompany specific files required for the cross-data source search
(nsdb . f m t and the I n d e x . B u i l d generated files). lheir creation (except n s d b . f m t)
froni the data sources’ company files is depicted in Fig. 26. The Table 14 files can also be
built incrementally, one data source at a time (with the files being appended to or updated
with each run of I ndex . Bui ld) . or in even finer increments, one company/data source
pair at a time.

3.6.3 On-line Cross-Data Source Search

‘The following are the main interface objects employed in dcfining and carrying out a cross-
data source search and i n displaying reports selected from the search results:

SearchForm
HitsForm
Index
data sources’ Report objects

The ilia-jor object data flow for a cross-data source search is depicted i n Fig. 27.

SearchForm’s SearchForm. B u i l d method builds a search form with an empty search
string (see Fig. 28) when a user requests the cross-data source search from the NSDB top (the
NSDB top form links to Wais.top’s i n d e x . c g i , which invokes SearchForm. B u i l d) .

42

File Name Created
nsd b. fint Manually
nsd b.dct
n sd b.doc
nsd b . fti
nsdb. 11 I
nsdb.inv
11 sd b. src
nsdb field data.doc
nsdb field data.inv
nsdb tield name.dct
nsdb field iiatne.inv
iisdb field products.dct
nsdb field products.inv
nsdb field s takdct
nsdb tk ld state.inv

by Iiidex.Build (throirgh use of waisindex)
by IndexBuild (through use of waisindex)
by 1ndex.BuiId (through use of waisindex)

by index.Build (through use of waisindex)
by 1ndex.Build (through use of waisindex)
by Index.Build (through use ofwaisindex)
by 1ndex.Build (through use of waisindex)
by Index.Build (through use of waisindex)
by I ndex.Build (through use of waisindex)
by Iiidex.Build (through use of misindex)
by Index.Build (through use of waisindex)
by Iiidex.Build (through use of waisindex)
bq 1ndex.Build (through use of waisindex)

by Index.Build (through use of waisindex)

w

Datasource 1

search
~ t e r m n

4
I

I company/source pail

compa

I Datasourcen

ul

Fig. 27. Cross-data source search major object data flow.

SearchForm’s DoPost method invokes I-titsForm’s Build method passing it the input
search criteria. IIitsForm’s Build method invokes Index‘s I n d e x . Q u e r y method.
1ndex.Query

1 . executes waisq to query the wais index to generate a set of company/data soiirce pairs,
2. passes the waisq output through Query’s Filter method. and
3 . returns the filtered waisq output to HitsForm’s Build method.

43

IlitsForiii's Build method then, using HitsForin's html . h template, constructs a form
containing the list of company/data source pairs (Fig. 29) with data meeting the scarch
criteria. HitsForm's DoPost method invokes the Report Build method of the data source
from the user-selected company/data source pair, passing it the company name.

Fig. 28. Cross-data source search form.

The types of search criteria that a user can construct are indicated on the cross-data-source
search form, shown in Fig. 28. The criteria depend on fields that are defined by nsdb. f m t .
These fields are:

1 . name (for company name),
2.
3 .

4.

state (for the states listed for a company),
products (for the name and other information about the products made by and services
provided by a company), and
data (for all other data about a company).

44

A search ‘-word” (e.g., rayon) or search “word phrase” (e.g., ‘has cutting tables’) may be
looked for i n one of the four cross-data source’s fields of a company’s data (e.g.,
prodiicts=rayon in a search criterion would lead to products’ fields being searched for the
strino rayon). A wild card is permitted i n a search word or word phrase (e.%., namc=Bu*). 111

addition, any search word or word phrase for which a ficld is not specified will be searched for
in all four fields of a company’s data (i e , it leads to a “global” search). Compound search
criteria, using Boolean operators, may also be constructed for the cross-data source search
leg., (state=tri or al or ga) and ‘has cutting tables. n o t ‘private label‘ not naine=atli*].

9

‘The result of a search is depicted in Fig. 29, wliich contains a list of companyldata source
pairs (with the data source in parenthesis). Selection of a compariy/data source pair from the
list. followcd by clicking on the “Generate Report” button, will cause a report on the
companq to be displayed based on the data source’s data for the company.

‘The objects. methods, procedures. etc., excluding the report B u i l d methods, used by the
cross-data source search are listed in Table 15. The report B u i l d methods are listed in
Table 16.

Fig. 29. Cross-dapa source search company/data source list.

45

Table 15. Objects, methods, procedures, form,
etc., for cross-data source search

Data Source I Object Method I Language

ATAPD
c o t to I1 1 I1 c
EC96

Report Report.Ruild.cpi Per1
Report Keport.Bui Id.cgi Per1

ProductRenort ProductRcnort.HuiId.cPi Per1
CompanyReport

A “search wizard” is provided to facilitate the construction of search criteria. The wizard
provides for a term-by-term construction of the search criteria” without the need to input
field name or logical operator strings for each term.2’ The object data flow for the wizard is
depicted in Fig. 30,” and the objects, methods, etc., that it uses are listed in Table 17. The
wizard employs three “pages,” one to select a search term‘s field, another to input text for
the search term, and a third to select a logical connection (“and.” “or,” or “not and”)
between the entered search term and any subsequent terms.

GCA
GIDC
KTA
SEAMS

Provides path to waisq.
These are the same methods used to generate reports called for by a user when searching through specific

data sources. They use stored procedures as noted in Tables 5 through 10 and in Table 12 but not listed in
this table.
’’ The cross-data source search wizard was added to the NSDB in September 1997. Because it is not
essential for the creation of the cross-data source search criteria and because it was more easily implemented
by using Java scripts rather than pure HTML, Java script was used as part of the forms built by all of the
.cgi methods shown in Fig. 30 and listed in Table 17. In addition. frames were used for the displayed
fortns.
2i Fields and logical operators are selected by clicking on buttons.

methods are analogous to Build methods in previous figures except that they also incorporate the previous
figures’ DoPost method‘s functionality in their Java scripts.

10

?I

24 The “Page.’ objects shown in the figure are analogous to the Form objects and the Page object‘s

Report Repot-t.Build.cgi Per1
Report Report.Build.cpi Pert
Report Report.Ruild.cgi Per1
Report Report. Bui Id.cgi Per1

46

link from search Form

0 b i ec t MethodlForinletc.
index. h tm I W izard.top
i s- t o p . h t in I
header. htrnl

warn ing.htm I
Field Page FieldPagecgi
TextPage Text Page. cg i
Model'age ModePage.cgi

+ scarch string

1 .anpiiage
H'I'ML
H T M L
HTML
1-ITML/.Iava Script2?
Per1
Per1
Per1

search string
I

-!- search string,
search field

search string,

I search lield I search string
I

to SearchFonn's Build Method

Fig. 30. Cross-data source search wizard object data flow.25

Figure 3 1 i s a display of the wizard's step I (Field) page. At its top, as is the case for each
wizard form, there is a link (i.e., the bulton with the "?" in it) to an explanation of how to
use the wizard for the construction of search criteria.36 Below the button is the "form"
constructed by the F ie ldpage method. The "Remove Last Term'" button is displayed only
when the search string is not empty. The "'Next'' button leads to the display of the next
step's (step 2's) "page."

The wizard may be thought of as an object bclonging to the SearchForm object with the objects

The HTMI, filejstop.htinl sets LIP two frames for each wiiard page, with the top frame remaining

25

displayed i n the figure belonging to the wizard.

constant and the bottom kame containing the form built by one of the Page .cgi methods.

26

47

Step 2 Enter Search Text.

Step 3 Choose Search Logic

Completion of w iLard-constructed search criteria is indicated on the wizard‘s step 3 (Mode)
“page.” This page contains a “Next” button and a “Finish“ button. When the “Next” button
is clicked on, the step 1 (Field) page is displayed to start the definition of the next term
in the search criteria. When the “Finish” button is clicked 011 (to indicate coinpletion of tlie
wizard’s use), tlie SearchForm. Build method is invoked. When the
SearchForm. Build method is invoked (from the wizard’s step 3 page), i t receives the
wizard constructed search criteria as input arid includes this search criteria i n tlic search string
field of the search form it constructs. ‘The search criteria can then be edited before clicking
on the ‘-Perform Search“ button (see Fig. 28). When this button is clicked on, it initiates the
search.

7 he search criteria can be alternately constructed b j direct input into the search string field
of tlie search form (Fig. 28). However. direct search criteria construction requires that the
user carefully follow the search critcria syntax noted i n the search examples section of the
search form. The wizard, on the other hand, automatically follows this syntax. Careful user
attention to the syntax is also required when editing a search form‘s search string field,
whether it5 search criteria was constructed directly or with the wizard.

3.7 MULTIPLE WINDOWS

A user may request that the next form or report be displayed in a new window when choosing
a data source from tlie Nsdb top form‘s data source buttons (in the “Sources and Functions”
part of the top form: see Sect. 3.3) or when moving to another form or report within a data
source or within the cross-data sourcc search (see for example Fig. IO) . Each D o G e t and

48

DoPost method that is part of the user intcrface passes on a parainetcr to the Build
method required by the other user selections. The Build method places this parameter i n a
header (after the string “Windowtarget:”) of the Form or report it builds. T‘he parameter is
then used by the user’s browser to determine whether the form or report is to be displayed in
the current windom or in a new window.

Direct links from a form to a Build method lead to the display of a form or report in the
current window. Conscquently. the top forins of each data source. when requested via links in
the “Sourcing Area Directory” of the NSDH top forni, and the top form of the cross-data
source search are displayed in the current window.

3.8 NSDB PERL PACKAGE

As noted previously, the CCil has been writtcn in Perl version 5.003 and uses stored or Wcb
server-bascd SOL procedures to retrieve data from the NSIIH’s datahase(s). A package of
subroutines, which has been labeled the “Nsdb P e r l Package ,” was written to facilitatc
implementation of the CCil for this environment. This package, whosc development wa5
motivated by the needs of the NSDH CGI, is reusable and is likely applicable to many other
form-proccssing web intcrfaces (a degree of greater functionality than required by the NSDB
CGI ha5 been included in some of the routines).

The package consists of the Following nine routines:

1 .

2.

3 .

4.

5 .

6.
7.
8.
9.

Query()-executes a specified SQL procedure and returns results in a regular or associative
array depending on a parameter that is passed to it.
ListlsqIO-strips column names and superfluous lines from command client network
utility output that contains a single column result and returns each row element as an
entry in an array.
CaptureIsql()-extracts column names and values for each row, returning each row as an
entry in an array.
BuildValues()-coiiverts results from CaptureIsql() into an associative array indexed by
row number and column name.
ParseInput()-reads an HTTP data block from an IiTML form submission and returns an
associative array containing input values indexed by input value name.
CgiUnescape()-replaces CGl escapc sequences with ASCII characters.
Hit ild’rabs(tbui1ds tabs line for report generation.
CgiEscapeO-replaces special characters with CGI escape sequences.
GetTarget()--provides the parameter for a form or report header that determines
whether the form or report will be displayed i n the current or a new window.

The first four routincs are used to retrieve and format data from the NSDB databases. Query
is called by Build methods and uses ListIsql when returning a regular array and
CaptureIsql and Buildvalues when returning an associative array. The fifth and
sixth routines are used in converting user input to values i n an associative array indexed by
the value names. ParseInput is called by DoPost methods and uses CgiUnescape to
convert the HTTP nonalphanumeric character reprcsentations to characters. The seventh
and eighth routines are used by Build methods, with BuildTabs being used by all Report
Build methods and CgiEscape being used by methods that construct URLs (currently
only in EC96’s CompanyReport Build method). The ninth routine is used by DoGet and
DoPost methods to obtdill a paramcter to be passed on to Build methods.

49

3.9 NSDB PILOT COMMAND CLIENT NETWORK UTILITIES

‘The routine t e x t . g e t is the NSDB pilot command client network utility used to retrieve
data from seven of the eight NSDR data sources. It provides an enhancement to i s q l
functionality, which is useful for the Web NSDB user interface. The command client network
utility, m s q l , used to retrieve data from the eighth data source. is an acquired package.” The
t e x t . g e t isql enhancement overcomes an inconvenience for “downstream” NSDB
processing of retrieved data that would result from isql.18 Particularly, this is i s q l ‘ s
treatment of text columns. The i s q l command client network utility places any text field
on a separate line from all other values retrieved from a table row. The routine t e x t . g e t ,
however, places all values retrieved from a table row, including the text values (i.e., values
froin text fields) on a single line. ’Ihe t e x t . g e t routine was written in C and uses a set of
fiinctions froin the Sybase DB-Lib function library that is used by isql.

All user interface methods requiring data from the NSDB database retrieve the data through
calls to the routine Query i n the Nsdb P e r 1 package. Query ’ s Parameters, i n addition
to a pointer to the Nsdb package, are:

1 . an SQI, procedure name,
2. a result-mode (either a normal array, i.e., ‘‘list,.’ or an associative array. i.e., “values”),

and
3 . a set of SQL procedure parameters.

Q u e r y determines which command client network utility is to bc used from the SQL
procedure name passed to it. When it uses t e x t . g e t , it creates a file and passes the file
name to t e x t . g e t , where the file contains the following:

1. an SQL command to exccute the stored SQI.. procedure whose name was passed to it and
2. the procedure‘s parameters.

Query also passes a user id, a password, and, if the result-mode is “values,” a delimiter.
When Query uses msql, it creates and passes to msql a file containing an SQL procedure
constructed by Query from the procedure whose name was passed to Query. The conitnand
client network utilities t e x t . g e t and m s q l , when executed by Query , establish a
connection to the required data source’s database server. submit an SQL command/query. and
retrieve the query‘s results. The routine t e x t . g e t also performs an intermediate
formatting of the SQL query results, while m s q l leaves such formatting for Query. Query
handles the msql output formatting through a call to a routine written specifically for
formatting m s q l results.

’’ Available from Hughes Technologies. Main Reach, Gold Coast. Australia. See
hltp:iiwww . H ughes.com.aui .

processing routines were not written to account for these types of fields.
The original pilot data sources’ database tables did not have any text fields: as a result, “downstream” 28

50

3.10 INTERFACE FILE ORGANIZATlON

The directory organimtion of the Web NSDR uscr interface is illustrated in Fig. 32. All the
filcs containing the code writtcn specificall} for the NSDB and used by the user interfacc are
contained in the directories shown i n the figure.”

Nsdb

wais I . .
bin A

GCA Gidc KTA Lanidb Seains

i in ages hklp

EC96
\

\
index

I
help

Fig. 32. NSDB Web user interface directory structure.

The main Nsdb directory contains a bin subdirectory, a wais subdirectory, an images
subdirectory, a help subdirectory, and subdirectories for each data source. The wais directory
contains an index subdirectory, a wizard subdirectory, and subdirectories for each data source.
The images directory contains a subdirectory for each data source that includes images among
its data (only EC96 i n the pilot).

Table 18 contains a list of the nondata-source-specific files i n the Nsdb directory and its
subdirectories. Two files in Nsdb contain the NSDH top form and D o G e t method
respectively. Tlic third, Nsdb . pm, contains the Nsdb Per1 package (see Ssect. 3.8). ’The
t e x t . get entry in Nsdb/bin is the enhanced isql command client network utility written for
the NSDR. The wais subdirectory of the Nsdb directory (Nsdblwais) contains all the nondata-
source-specific files (other than waisq) necessary to implement a cross-data source search,
while its wizard subdirectory Wsdblwaislwizard) contains all the files required for the wizard
construction of a cross-data source search criteria. The images subdirectory of Nsdb
(Nsdbhmages) contains gif-formatted images used in Web NSDB forms. The help subdirectory
of Nsdb (Nsdb/help) has two files that contain, respectively, forms that provide a description
of the NSDB” and of the NSDH data sources. The subdirectory contains a third file that is an
image used b j the form containing the NSDR description. The help subdirectory of the wizard
directory (Nsdb/wais/wizard/ielp) contains a file that describes the wais wizard’s operation.

As noted in Sect. 4.9.2, in the pilot iniplernentation, various NSDR utilities that also run on the Web
server and routines associated with these utilities but not required by the user interface are in some cases
located in directories shown in Figure 32. ‘These are not included in the file enumeration of this section. ’’ The NSDB top page, which has a link to this form (Le., the link “NSDB Description and Help”), also
has a link to instructions on how to use multiple windows (Le., the link “Using Multiple Windows”).
This latter link actually connects to a part of the form containing the “NSDB Description and Help.”

29

51

Table 18.

I Nsdbibin

N sdbiwai s I====

N sd bihe I p

Nondata-source-specific files in Nsdb

Each data source subdirectory of the Nsdb directory (e.g., Nsdb/Atapd) contains all the
methods and templates that are listed in its tables (Tables 5 through 12 i n Sect. 3.4) but not
necessarily the SQL procedures listed in those tables that, except for the LAMDB data
source, are stored in the central NSDB database (see Sect. 2).

The index subdirectory of the wais directory (Nsdb/wais/index) contains all of the files listed
in Table 14. As noted in Table 14, the file nsdb. fmt is created manually and all the other
files are generated through use of waisindex. These other files are automatically placed in
the index subdirectory during their generation.

Each data source subdirectory of the wais directory contains the company-specific files that
have been generated by data-source-specific routines used i n building the set of cross-data
source enabling files. These files are named 0 0 0 1 .data, 0 0 0 2 .data, . . .
wxyz .data, where wxyz is the total number of companies listed in the data source.

The EC96 subdirectory of the images directorq (NsdbiiinagesiEC96) contains a set of gif files.
which are image files provided as part of the EC96 data soiirce input. A link (or links) to
each of these files is included in company and/or product reports. The data source utilities
that load the EC96 data into the NSDB database create a set of sequential names. gfl .gif.

5 2

gf2.gif, . . . gfxyq i f , wherc xy7 image files had links included in the EC96 input data. ‘The
created nanies are used to rename the image files provided by the listed companies and to
construct the links to them. These links are included i n the data source’s tables in the central
NSDR database.3’ All the names i n the sequence ma) not be present in the EC96
subdirectory. File names in the sequence are assigned as a utility processes the data source’s
input data and comes across references to image files. When gif tiles with the referenced
names are encountered on further processing, thcy are given the sequence names previously
assigned to their refcrences. Should a referenced image file not bc among the data source
images input, its name will not appear as the name of a file in the s~ibdirectory.~~ Should
other data soiirccs be implemented with gif image files, the names of these files would be
similarly generated and, if stored in the Web server, would be stored i n a subdirectory of the
images dircctory (with the subdirectory name identical to the data-source-specific
subdirectory names in Nsdb).

I n additioii to including the files noted previously i n the directories of Fig. 32, the following
items must be set up for the user interface to function:

1.

2.

3 .

4.

5.

Tlic FreeWAIS-sf 2 . 1. 1 freeware package utility \\aisq must bc in a dircctory that
is accessible to the I n d e x . Q u e r y method.
The Sybasc file i n t e r f a c e s and directory locales must be i n a directory accessible
to t e x t . g e t . and loca les must contain entries for each database that rniglit at any
time be the active central NSDB database.
The Pe r l 5 . 0 0 3 packagc must be i n a directory specified i n the f i les that contain Ped
scripts that are part of the NSDB user interface.
‘The Apache 1 . 1 . 3 H T I T server must be installed and know the location of the Nsdb
directory.
‘The m s q l 2 . 0 . 1 software must be located in a directory accessible to Query.

Items 1 through 5 of the immediately preceeding list are accomplished in the current pilot
system, where the Nsdb directory path is /usr/satiim/www/Nsdb, by the following:

1 .

2.

3 .

4.

5.

Having w a i s q in /iisr/local/biii/wais (s e t u p . s h used by I n d e x . Query extends the
process path to include this directory).
Locating the Sybase file i n t e r f a c e s and directory l oca l e s i n /usr/sybase (and
setting the variable ‘SYBASE’ in Nsdb. p m to this directory).”
Locating the P e r l 5. 0 0 3 package in /usr/local/bin (which is specified in the Per1 script
files).
Installing the Apache 1 .1 .3 IlTML Web server in usrisaturnlwww (and indicating in
its configuration file, i.e., usr/saturii/www/apache/coiif/srin.conf, that /Nsdb is an alias for
/us r/sat u rn/w ww/N sd b) .
Installing the m s q l 2 . 0 . 1 software package i n /usr/Hughes (and setting the variable
‘MINISQL’ i n Nsdb. p m to this directory).

Because the image file names are provided by each company, there could be duplicate names across
companies. Therefore. the load utilities provide unique names for each image file that is part of EC96.

Currently the EC96 data source image subdirectory will also contain files whose names are not names
from the sequence (unless these are removed manually). These result from image files provided as part of
the data source data input but not referenced in the data source text data.

Entries for each database that might be used for the central NSDB database must also be made in the
Sybase “interfaces” file. In the pilot, a statement in Nsdb.pm that defines the variable $DSQIJERY is set to
point to the NSDI3 Sybase or NSDB MS SQL Server database entry i n “interfaces,” depending on which
of these is desired to be the active central NSDB database.

31

3 2

3 1

53

Note again that the directory structure and contents discussed in this section deal only with
the Web NSDB User Interface requirements and not with any of the off-line utility
requirements, for example, tlie files for tlie generation of the cross-data source search are not
included in this discussion (but are noted i n Sect. 4.9.2). I n the current implementatioti. inany
of these utility files are included iii directories dcscribed earlier.

3.1 1 DISTRIBUTED NSDB

3.11.1 General

The NSDH Web system design provides for the distribution of the data sources over a set of
NSDB database servers (with each data source's text data residing cotnpletely on one database
serber). Houever. until mid September 1997. tlie pilot implementation maintained all tlie
data sources on a single database server (either in a Sybase or MS SQL Server DBMS). It also
niaintained all non-text media on the Web server. Discussed i n the following sections are the
approaches to distributing data sources when (1) only Sybase or MS SQL database servers are
used, (2) a general set of database servers is used, and (3) the current pilot system with the
remotely located LAMDB data source is used. I n the last section is discussed the anticipated
approach for distributing non-text data associated with data sources.

3.11.2 Distributed Data Sources in Sybase and/or MS SQL Server Databases

Only minor changes to the pre-September 1997 pilot system user interface are required to
deal with data sources distributed over database servers where the database servers are a
combination of only Sybase and/or MS SQL Server database servers.

The configuration shown i n Fig. 33 is representative of such a Web NSDB
general structure of the Web server remains the same as for the pre-September 1997 pilot
system (see Fig. 2). However, additional database servers are accessed through the enhanced
isql coinmand client network utility. The utility is able to locate these database servers
through entries for cach such server in the Sybase interfaces file.'5 A data
sourceidatabase server table for determining a pointer to the database server i n which a data
source's tables reside (implemented, e.g.. as a Per1 associative array) is included in the
Nsdb. p m file for this situation. The name of the database server pointer for a data source is
extracted from the table and the process environment database pointer variable is set to this
pointer before access to the data source's database tables is attempted. This approach can be
impleniented with the pilot system through code changes to only the Nsdb Per1 Package
routine Query. Query can be changed to:

The

The configuration is also representative of a situation where database systems other than Sybase or MS 3 4

SQL Server are used but in which all the systems are compatible with a single command client network
utility (e& a situation in which a rnultiple of Oracle databases housed data sources).

This file in the pilot Web server currently has entries for the Sybase NSDB database server and the MS
SQL Server database server (the definition of the environmental variable DSQUERY made in Nsdb.pm is
changed by the database administrator when the active server is switched between the Sybase and MS SQL
Server database servers).

1 5

54

determine the data source from which it is to obtain data through tlic name of the stored
SQL procedure passed to it as a
find the data source’s database server pointer name from thc data source/database server
table, and
set the DSQU EKY environnient variable to the data source’s database server pointer

before passing query parameters to the command client network utility (i.e.? to text . get).

I

.

Fig. 33. Representation of distributed NSDB with all database management
systems compatible with a single command client network utility.

3.1 1.3 General Distributed Data Source Configuration

When database servers other than Sybase or MS SQL Server database servers are included in
the NSDB. further modification of the Web server is necessary. Figure 34 i s representative of
the situation in which NSDR data sources reside on a set of database servers. the set is divided
into subsets, and access to databases i n different subsets requires different command client
nctwork utili ties.

‘The CGI. in the Fig. 34 situation, communicates with a multiple number of command client
network utilities. To retrieve information from a data source, the CGI selects the compatible
coinniand client network utility for the data source before passing it query parameters. A
database server command client network utility table can be included i n N s d b . pm along with
the data source/database server tablc described in Sect. 3.1 1.2 (this might also be implemented
by a Per1 associative array, so the one associative array provides the database server pointer

The SQL procedures for a particular data source all start with the data source identifier followed by an 30

underscore (see Sect. 2).

5 5

for a data source, and the second prolides the command client network utility for tlie
database server). The soft\\ are required to support the various command client utilities
(corresponding to the files in the pre-September 1997 pilot’s /usr/sybase directory) is
installed, and entries are made in appropriate tableslfilesiscripts to allow the command client
network iitilities to locate the database servers that they must access. This approach can also
be implemented through code changes to only tlie routine Query . Query can be changed to
determine (1) tlie database servcr to be accessed (through use of the data source/database
server table) and (2) the command client network interface utility to be used (through use of
the database server/cotnmand client network utility table). Any particular required formatting
of commands to and responses fi-om each command client netbkork util i ty can also be
included i n Query.

.

.

Fig. 34. Representation of distributed NSDB with sets of database
manangement systems where each set requires a different conimancl client
network utility.

3.11.4 Inclusion of tlie LARIDB Data Source

The 1,AMDB data sourcc is maintained at tlie Ilniversity of Southwestern Louisiana in a
Minerva database. Thus, inclusion of LAMDB i n the pilot World Wide Web NSDB is a
special case of the general data source distribution discussed previously . Figure 33 represents
this situation. I n this case, each of the two command client network utilities accesses only
one database serker. Conscqueutly . in the post-September 1997 pilot, the data
source/database s e n er and database servericommaiid client network utilities tables described
preb iously (for location i n Nsdb. p m) were combined into a single data source/command
client network utility table (implemented as a Per1 associative array).

56

The following modilicatioiis wcre made to the previous user interface to allow it to retrieve
and display data from LAMDB.

1 .

2.

3 .

4.

The command client network utility msql was loaded into the Web server to
communicate with Mincrva databases.”
An associative array providing a pointer to the command client network utilities used for
each data source was included in the constants iii Nsdb. pm.
The routine Query was modified so that it determines whether to use the t e x t . g e t or
msql cornmand client network utility based on the SQL procedure name passed to it, arid
code was included in Query to command msql and to format msql ‘ s output.
Forms and cgi routines were included for LAMDB, and links to LAMDB were included in
the NSDH top page.

3.1 1.5 Distributing Nontext Media

Nontext media that is part of a data source is not stored in the NSDB databases. It is placed in
files that can be stored on either the NSDB Web server or other servers. Links included i n a
data source’s reports provide the user access to these nontext files. I n the pilot system, as
noted earlicr, images are the sole available nontcxt media and they are currently provided
only in the EC96 data sourcc. ‘The files of these EC96 images are stored in thc NSDB Web
serber, and the links to them are included in the data source’s database files.

NSDB data sources’ nontext media files may be located oil an NSDB server remote from the
NSDB Web server. However, all files for each type of a specific data source’s iiontext media
must be located i n a cominon directory on a single server (e.g.. all of data source a‘s image
files might be located on one server, and all of data source a’s video files might be located on
the same or another server). Should these iiontelt media files not he loaded on tlie Web
server. a file would be included in each data source‘s Nsdb subdirectory (e.g., Nsdb/EC96 for
the EC96 data source), which would provide the location of each of tlie source‘s types of
nontext media. bach data source’s report Build methods(s) would then be niodified to use
this file to construct the report links to the files.

3.12 LINKJNG TO NSDB REPORTS FROM EXTERNAL WEB PAGES

Information from the NSDB can be linked to from an esternal Web page by providing links
to the NSDB cgi processes that dynamically generate HTML reports. The URL provided in
such a link must contain a set of parameters expected by the .cgi p r o ~ e s s . ’ ~ An example of a
URL with such parameters is

h t t p : / / s a t u r n . e p m . o r n l . g o v / N s d b / A t a p d / R e p o r t . B u i l d .
c g i ? L i b e r t y + D i v i s i o n + W a l l s + I n d u s t r i ~ s l P i o n e e r + M a n u f
acturinglYork+Sportswear&Rainwear& - blank

Note that version compatibility must be maintained between tlie Minerva databases and the msql
command client network utility that accesses them.

The submissions for obtaining reports are assumed in this section to be GF.T submissions. POST
submissions could also be used. However, they would require including the parameter naines as well as
their values in the submission, thus requiring more knowledge of the .cgi processes that build the reports.

37

i S

57

Selecting a l ink with this URL will lead to the display of a report from the ATAPD data
source on the three companies

I . Liberty Division Walls Industries,
2. Pioneer Manufacturing. and
3 . York Sportswear.

The report ill have tlie product Rainwear highlighted i n tlie Products section of each
coinpanj‘s part of tlie report, and tlie report will appear i n a new \\indow.

Tlie following part of the URL provides tlie path to the ATAPD Report Build method:

saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.cgi

Tlie ? i n the URL indicates that a query string follows, where the query string contains tlie
parameters for tlie Build method. The parameters for the ATAPD Report Build method
are

1 . a list of companies.
2. an optional product. and
3 . an optional “target” parameter that determines \\here the report will appear (if this

parameter is “-blank,” tlie report will be displayed in a new windo\\, if it is “-top” or
“+,” tlie report will be displayed in tlie current windowi0).

The parameters are separated by ampersands; that is, ”&” serves as the parameter separator.
list items are separated by ‘*I‘’S. and blanks are replaced by t”s in the query string. Thus. the
list of companies, the product. and tlie target parameter are given by the following,
respective 1y :

1 .
2. Rainwear, and
3 . __blank.

L i be rty + D i v i s ion + W a 1 Is+ I n d u s t r i esl Pion ee r+M an u fac t u r i n g I Yo r k+S port swear.

The general form of tlie UKL for an ATAPD report is

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi? list of companies&optional product&optional
target parameter,

where list items are separated by ‘‘[”s, blanks are replaced by “+”s, and tlie querq string may
be terminated after tlie last included parameter. Also, since any ampersand is considered a
parameter delimiter. all ampersands in a parameter are replaced by “%26” (e.&.. The A&B
Company would appear in a company list as 711ie+A%26B+Companq). Since it is enbisioned
that links to the NSDB would normallq come from company sites, it might be expected that
tlie company list would contain on14 one company name and that probably no product
highlighting would be required in the report A URL that would provide the ATAPD report
fot York Sportswear, mliich would appear i n a new‘ window with no product highlighted, is.

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi?York+Sportswear&&-blank

; 0
It could be another value indicating another target for the report, for example, a frame in the current

window.

5 8

Note that the following IJRI., will provide the A'IAPD report on York Sportswear i n the
c irrrent window :

ATAPD Rcport

Cottonliic Report

EC96 Company
Report
EC96 Product Report

GCA Report

GIDC Report

KTA Report

LAMD13 Report

SEAMS Report

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi?York+Sportswear&&+

http://sat~irn.epiii.ornl.gov/Nsdb/Atapd/Report.Uuild.c~i?li~~t of
cornpun it>.\ & optional protluct& oplionul ttyqet purunieter
http://saturn .epm .om1 .gov/N sdh/Cottonl nc/Report.Bu ild.cgi?li.,t of
c o w p m irs & optioural product& optional tcrrget ,w rranieler
Iittp://sat~irn.epni.~~rnl.go~/Nsdb/~~96/~oinpanyReport.Bui Id.cgi'?li.s
t of cor~i~?uniL.s&ol,tioncil larget puratiwler
l i t tp : / / sa t~1rn .epni .~r1 i l .gov~sdb/E~~96/Prodi tc t~epo~.~ui Id .cg i?
list of cornpttnir,~ a i d pwduct numcs&optional target parawirier
http://saturri.epm.oml.~o~~/Nsdb/GCA/Repol.Build.cgi'?lisf of
conipunies&optioiial product&optionuI target parcrmeter
http://saturn.epni .orn I .gov/Nsdb/G idc/Report. Bu ild.cgi?list of
conrpuriies&optionul turgct parumcler
http://saturn .epm .or11 I .gov/Nsd b/KTA/Keport.Ru i Id .cgi?lis/ of
conzpuiziss&optional productboptiotiul lurget purameter
http://saturn .epin.orn I .gov/Nsd b/KTA/Keport.R 11 i Id .cgi?list of
conipuniL's&optiOnLII productboptional target puranzeter
http://saturn.epni .orti I.gov/Nsd b/Seams/Report. Rui Id .cgi'!list of
compunie.~&o~)tinn~rl protJuct&optional turget puranieter

Table 19 contains the path and parameters of tlie URIA for all reports obtainable from the
NSDB with its current data sources. The ATAPD. Cottonlnc, CCA, KTA, LAMDB, and
SEAMS Report URl,s all have a common query string format. The GIDC and EC96 Company
Reports have that same format except they d o not include an optional product parameter.

Table 19. General form of URLs to externally link to NSDR reports
Report General Form of URL I ! I

'The EC96 Product Report's first parameter is a list of company/product natne pairs where
the company and product name are separated by two colons. An example of such a list is

Better+Methods+Alexander::Collar+Strips,+Staysl~etter+Me
t h o d s + A l e x a n d e r : : P i n s , + T + P i n s , + S t r a i g h t + P i n s ISunbrand,+a
+Willcox+%26+Gibbs+Company::Dennison+Fasteners

Thus to generate and display in the current window an EC96 report on the following
product names:

1. Collar Strips, Stays-sold by Better Methods Alexander
2. Pins, T Pins, Straight Pills-sold by Better Methods Alexander
3 . Dennison Fasteners-sold by Sunbrand a Willcox & Gibbs Company,

tlie IJKL

h t tp : / / s a tu rn . epm.o rn l .gov /Nsdb /EC96 /Produc tRepor t .
Build.cgi?Better+Methods+Alexander::Collar+Strips,t

59

could be used.

3.13 POTENTIAL lNTERFACE ENHANCEMENTS

‘The NSDB standard user interface was designed to produce IITML 2.0 compatible forms.
This was a requirenient of the initial pilot interface implemented in June 1995, and given the
state of small USITC companies‘ computer capabilities and sophistication,‘” has bcen
essentially maintained as the pilot evolved.J’ Navigation within the interface can be
improved through the use of frames and/or Java capabilities. Three NSDB “prototype
interfaces” have been implemented to demonstrate the advantages accruing from the iise of
these capabilities. I h k s to these prototypes are included in the top page of the NSDB
standard interface. The prototype interfaces and their URLs are as follows:

a Frames interface
a Java- Frames interface
a Java interface

11 ttp://saturn .epm .orn 1 .gov/N sdb/fi-ames/
11 tt p ://sat u rn .e p in .orn 1. gov/N sd b/tab fram es/
http://saturn .epni .or11 I .gov/N sd b2/

The apparel sector of the USITC is made up ofa large number of small- and mediuni-sized enterprises
where many. if not the majority, of these companies have computer capabilities that are years behind
currently available capabilities. Some companies even continue to use systems that require DOS platforms.
(However, see the concluding paragraph of this section.)

An exception is the cross-source search wizard, which, not being essential for creating cross-source search
criteria. was implemented using Java script and frames. Also. a ‘.batch update” tutorial (see Sects. 4.8.2
and 4.6) which runs independently from the user interface, employ5 the frames capabilitj.

4U

.(I

60

.~
Fig. 35. NSDB Frames prototype user interface display.

Each prototype is an inipleinentation of all or part of the object-oriented design presented
earlier in this part of the system description. ‘The first two w e a large part of the standard

The last is a pure Java i~npleinentation.~~

The frames capability (available, e.g., in Netscape 2.0 or later and in Explorer 2.0 or later)
allows a window to be divided into different areas or frames. User interface output can then be
sent to specifically targeted frames. The NSDB Frames interface has used this to provide
navigation links in a top franie while displaying standard interface fornis within a niain lower
fraine (see Fig. 35) . ‘This cuts down on the tiiiinber of user and, in some cases, Web server
interactions necessary for navigating through portions of the interface.

The links to the “NSDB Top’’ or data source tops in these interfaces link to the standard interface top

It iinplements the user interface functions for only a subset of the NSDH data sources.

4?

and standard interface data source tops.
4 i

61

Fig. 36. NSDH Java-Frames user prototype interface display.

The Java-Frames interface uses Java routines to create “tabs,” graphics which resemble tab
card tops (see Fig. 36), for thc link areas and at times provides three frames i n a window.
This provides a potentially more user-pleasing navigation means, through the tabs, and
further simplifies navigation (via two levels of links with each level in a different frame).

T’he Java interface contains a further level of sophistication i n displaying NSDB data.
Figure 37 shows a mindou from this interface i n which the three lists generated for the
ATAPD data source are displayed in one window. A user may update the companies or
products list by making a selection(s) from another list (the categories list or companies list
for updating of the product list and the product list for updating of the companj list) and
then selecting the appropriate button in the window. Company reports in the Java interface
are generated in separate u indows.

The Java and frames features provide significantlq improved interfaces that could make the
NSDB a more easily used and valuable tool. Although the small companies in the apparel
sector still remain well behind i n computer teclinologj, they have progressed

62

Product Categories Products : YORK SPORTSWEAR

Generate company report

Fig. 37. NSDB Java prototype user interface display.

significantly over the last three years44 and most who have computers now appear to have
browsers with Java and frames capabilities. Therefore, USITC sourcing systems should in the
future be expected to have user interfaces that use Java or Java Script and that possibly use
frain es features .45

Sec DAMA report DAMA-(3-2-98 Version 2.0, Cwroit Infi,rmcition Technolocplj Needs ofSmcrll to

As a result of an agreement between the DAMA and Internet Tradeline Inc. (ITI), in 1997 IT1 in

14

Mediiim Sized hppurel Ahinufactiirers urd Contmctors, A pri 1 1998.

cooperation with the NSDB developers impleniented a commercialized version of a portion of the NSDB
(currently only a version of an updated EC96 data source, called EC97). IT1 provided two interfaces, one
using Java capabilities and another that is pure HTML, where the latter i s deemed necessary because of the
portion of the USITC that continues to use older browsers. (17’1 has also implemented an on-line update of
its version of the EC96 data source.)

45

6 3

4. UTlLITIES

4.1 GENERAL

4.1.1 Major Database Utilities

A set of utilities was created to facilitate the developnient and maintenance of NSDB
databases and to liandle other non-user NSDB functions.” The utilities from this set that
create the user interface’s cross-data source enabling tiles are described in Sect. 3.6.2. ‘The
remaining utilities are described i n this section and deal primarily with the following database-
related functions:

1 . creating and loading tlic primary NSDR Sybase database(s) from the data source
providers’ “original” data;

2. creating and loading the NSDH MS SQL Server, secondary NSDB Sybase, and NSDH
Access replicates of the primary NSDB Sybase database(s):

3. exporting the primary NSDB Sybase database(s) data to text files (both for backup and
for data source updating): and

4. recreating and importing the prima9 NSDB Sybase database(s) data from text files
(created for backup or for data soiirce updating).

The routincs that comprise the utility set have been written i n different languages as deemed
most suitable for each routine’s function and the desire to minirniLe its development time.

Figure 38 illustrates the major database-oriented utilities47 and their functions (with the
exclusion of those associated with data source updates).48 These utilities are listed in Table
20.

Figure 39 illustrates the batch update procedure. A set of utilities, one utility per data source,
exports data from individual data sources in the primary NSDB Sybase database to text files
for input into Excel workbooks. A corresponding set imports data into the primary NSDB
Sybase database from text file output from these Excel workbooks, after their modification
(updating). Two ‘*blanket” utilities exist that, using the individual data source utilities shown
in Fig. 39, provide, respectively, for a complete update export of and import to the database
(see Sect. 4.6). As noted in Sect. 4.6, the data loaded into the NSDB database by an update
utility is loaded into “update tables.” It must then be subsequently loaded into the ”permanent
tables” for the data source(s) that is (are) being updated.

These utilities were not designed for data sources implemented originally in other than a Sybase 46

database. Therefore they are not directly applicable to the LAMDB data source itnpleniented in a Minerva
database.

The utilities named in Fig. 38, other than bcpput , are short control routines that call a number of more
involved routines to carry out their functions.

A set of SQL scripts that create the SQL procedures stored in central Web NSDB databases (see Table 4
for the list of these stored procedures) might also be considered as database-oriented utilities. There is one
such SQL script per data source (see Sect. 4.5).

47

18

6 5

or secondmy NSDB

do nsdb
do-it-m s

the path to the Acccss DE3 is dashed since
some manual operations are required i n
coiijunction with the LISC of dopitpacccsa files with all data

from the database

creates and loads (primary) Sybase NSDB database
replicates NSDB Sybase database as an MS SQL Sewer

Borne shell
Borne shell

Fig. 38. Major utilities (excluding data source update related utilities).

do-it-access

bcp-out'"

reload-nsdb'"

redo-nsd b'"

Table 20. NSDB database general utilities

Utility I Function I Laiiguage
I

database or as a (secondary) Sybase database
generates scripts and exports data to create and load tables
of an Access replicate of primary NSDB Sybase database
exports primary NSDB Sybase database's data to ASCII '-1"
delimited files
imports an NSDB Sybase database's data from ASCII "1''
delimited files
creatcs an NSDB Sybase database and its tables and imports
its data from ASCII *'I3' delimited files

Borne shell

Borne shell

Borne shell

Borne shell

The bcp-_out utility and the routines bcp-in and truncate.sql are created by a routine brn-bcp as
discussed in Sect. 4.4. The reload_-nsdb utility executes truncate.sql and bcp---in. and the redo-nsdb utility
executes bcp-in. Thus brn-bcp must have been executed subsequent to the last change in the NSDB
Sybase database if reload -nsdb and/or redo-nsdb are to produce the latest version of the NSDR database.

-1"

66

data source text
files output from blanket routine

Th is. Load ‘Th i s . G e t i e ra te
blanket routine

data source text
files for input to

.......................... >.
A.

._-- ,%

Fig. 39. Update utilities.

4.1.2 General Aspects of the Utility Layout and Operation

The utilities outlined in the previous section could reside on any Unix system with the Sybase
client side software. in the pilot, the utilities

1. shown i n Fig. 38 reside on the primary NSDB Sybase database server:
2. shown i n Fig. 39 reside on the Web server, and
3 . that transfer the data from the update tables loaded by the Fig. 39 utilities to the priniary

NSDB database “perinanent” tables (those queried by the user interface) reside on the
primary NSDB database server.’”

SQL scripts that create stored SOL procedures reside on the Web server, miscellaneous
utilities (discussed in Sect. 4.8) reside on both the pilot’s Web and NSDB Sybase database
server. and a utility used in the generation of the EC96 data source runs on a PC. The file
layout o f all of’ the pilot’s utilities, including the SQL scripts that c r a t e the stored procedures
but excluding the PC-based utility, is provided i n Sect. 4.9.

Table 21 contains a set of parameters whose values may differ with the installation of the
NSDB software. These are defined in s e t u p . s h on the pilot’s Sybase database server. This
s e t u p . s h routine is “so~irced” by utilities located on that server to obtain the parameters‘
values. SQL scripts used by these utilities have the parameter values inserted into thein before
they are executed.

The choice of location of these utilities in the pilot was made in line with the responsibilities of their
developers. The utilities that created, altered. and dropped tables that are queried by the user interface were
the main responsibility of the database administrator and hence werc located on the database server. The
utilities dealing with the export of data for Excel workbooks and the import of data from iipdatcd versions
of these workbooks were the main responsibility of the tnajor developer of the Web server CGl and hence
were located on the Web server.

‘0

67

Various database server resident utilities allow some of the parameters in Table 21 to be
optionally defined via command arguments. When such arguments are included i n the
command for a utility, they override setup. s h ’ s parameter values.

Web server update based utilities also “source” setup files to obtain parameters.” A routine.
set-update-params, must however be separatelq executed5’ to insert the parameters
into the SQL scripts used by these utilities.

4.2 CREATING AND LOADING THE SYBASE DATABASEs3

_ 1

Ihe data in the actual forin received from a data source provider is referred to here as the
“raw” data.i4 This data underwent some preprocessing to convert it to the “original” data
shown i n Fig. 38. Each Fig. 38 data source-s original text data is a set of ASCII ‘1. delimited
files”, that is, files that are sometimes referred to herein as bcp files and possiblq a set of gif
(image) files. Ideally, the preprocessing of this raw data and the loading of the original data
derived from it should be a one time thing for each data source with updates then being done
via the data source update programs.”

The amount of preprocessing differed from data sourcc to data source. It was carried out (in
part) by a set of routines that were (except for part of the EC96 processing) initiated
manually. Thcre are two tqpes of such routines, those of a general nature that have been
adapted for the NSDB (though one of them maq be currently only used for one data source)
and routines written specially for particular data sources. Table 22 lists the three general
routines, and Table 23 lists the data-source-specific routines. 1 he routine dbf dump was used
to convert raw text data dbf and fpt files to ASCII ‘1. delimited files for the ATAPD. GCA,
GIDC, EC96. and SEAMS data sources. while the routine ps-ascii. awk was used to
convert the racv KTA data to a bcp file. The routine blnk. awk was used for all data sources
at some point i n their preprocessing subsequent to their raw data being converted to ASCII
files

Cotton Incorporated, KTA, and EC96 data sources required specially written data-source-
specific preprocessing routines. The Cotton Incorporated raw data were processed directly to
bcp tiles by const. awk and dir . awk. After bcing processed by the general routine
ps-ascii . awk. the KTA raw data then underwent some further manual processing (and
manual and ktal . awk checks) and conversions through ktaO . awk and read. awk to
produce its bcp files. The EC96 data source preprocessing was in part done automatically and
is described latter in this section.

The user interface and certain other pilot Web server-based utilities use a set of files that define parameter < I

values (i.e., Nsdb.pm. sybasesh, and various setup.sh files). These parameter definition files and the
setupsh file in the Sybase database server must be kept consistent to ensure proper working of an NSDB
installation. ’’ This routine must then be run anytime parameters referred to by the update utilities change. ’; ‘This does not apply to the LAMDB data source that was implemented in a Minerva database.
54 The raw data for data sources other than Cotton Inc. and KTA was received in sets of dbf files with EC96
having in addition a set of fpt files. a set of gif files. and an Excel spread sheet (the company fpt and dbf files
were received in a zipped file or files with one or more such zipped files per company). Cotton Inc.‘s data
were received in a set of non-dbf files created by MS Filemaker, and KTA‘s came in a Postscript file.
’’ Each such file has one record per line with the field delimiter in the records being a vertical line, that is ,
a - 1 ‘ .

electronic form such as in EC96. During the pilot, ATAPD changed its format. which required rewriting
some of the code related to that data source as well as loading the new data.

i 0 Practically this may not be the case. particularly where individual companies provide the data in

68

Parameter

NSDHDIR

NSDBSYBASE

SY BASEDBNAME
SY RASEDEVICE
SY BASELOGDEVICE
DBSIZF,
LOG SIZE

NSDUMSSQL

MSSOLDBNAME

USER1
USER2
USER3

GUEST

EC96SOURCEHOST
EC96SOUKC ED1 R

EC‘96KEPORT

ACCESSSQLFI LE

BCPDATADI R

Table 21. Pilot NSDB parameters
Description

Path to utilities directory i n Sybase database server

Name of NSDB Sybase database server entry in Sybase Interfaces
Table (i.e.. Syhase database server pointer)j7
Name of Sybase NSDB database
NSDB Sybase database device name
NSDW Sybase database log device name
NSDB Sybase database size in MB
NSDB Sybasc database log size in MB

Name of NSDB MS SQL database server entry in Sybase Interfaces
‘Table (i.e., MS SQL Servcr database server pointer)
Name of NSDB MS SOL Server database
NSDB MS SQI., Server database device name
NSDW MS SQL Server database log device name
NSDB MS SQL Server database size in MI3
NSDB MS SQL Server database log size ill M B

First id for database user
Second id for database user
Id for w e for web server queries (corresponds to SybaseUser
parameter 011 web server)
Id for user with “giiest” privileges

Address of host on which -‘raw” EC96 Companies data is located.
Directory on EC96 “raw” data host in which the “raw” data is
located.
File into which the EC96 report is written

Name of file into which scripts for creating stand-alone Access
database will be written
Name of directory into which files of NSDB database tables data
will be written

These pointers need not, and in the pilot do not, have the same names in the Web and NSDB Sybase 57

servers’ Sybase interface tables. Their entries in these tables must however be consistent.

69

Table 22. General routines used in preprocessing
of raw data source data

reformats first of two raw data files to ASCII ' 1 .
delimited files
reformats second of two raw data files to ASCII
' 1 ' delimited files

Table 23. NSDB data-source-specific routines for

AWK

AWK

I const.awk
c o t to I 1 I I1 c

provides names to ASCII file of KTA data
renames lines in kta.awk produced file
checks line lengths i n kta0.awk produced file
creates three ASCII ' 1 ' delimited files from
kta0.awk outout

I dir.awk

AWK
AWK
AWK
AWK

KTA kt a. a w k
kt a 0. aw k
kta 1 .awk"
read.awk

converts a somewhat manually reformatted
ASCII f i l e containing the EC96 classifications
exported from an Exccl worksheet into an

EC96 ec96 2.awk AWK

I bld cls.prg
ASCII file formatted as a "classification tree"
creates two dbf files59 from ec96 2.awk output

recessing of raw data source data
F 11 n ct i o n I Language

I

Foxpro

The utility do - nsdb creates and loads the primary NSDB Sybase database, using the
"original" data source files, created by the preprocessing, as its input. The routines it uses are
listed i n rable 24. It first creates a Sybase database," via a call to createdb, which i n turn
executes nsdb-new. s q l , 011 a specific database server (currently the server a s h at
ORNL). Hefore creating this database on the database server, nsdb new. sql deletes (i.c.,
drops) any database with the same name. The11 it creates data types,defaults. and thc

~

5s Two versions. ktal .awk and kta?.awh, of this program were written and are included in the utilities

These files are included in the Foxpro EC96 data entry program (see Sect. 4.8.4). They are also
distribution (where this distribution is loaded via the procedures of Sect. 5.2.1 .)

included. after conversion to bcp files through use of dbfdump. a.i part the EC96 data source "original"
data.

Here we mean by creation. the assignment o f a name to a database. the recording of it in the master
database tables. the inclusion in the database of system tables required of every database. the definition of
its maximum size, etc. This does not include the creation of its tables for holding data source data, which
is referred to here as table creation and consequently does not include loading of data into those tables.

i o

13 0

7 0

database table ~ ~ s o i ~ r c e s ~ ~ ~ ’ (see Sect. 2) and grants perniissions to various users.62 After
creation of the database, do-nsdb successively calls the data-source-specific
“do - source’’ routines (e.g., do-auburn and do-ec96) listed in l’ablc 24. These
routines create and populate the required data source database tables.

k‘unction

defines ptrraiiieters
dc~temiines modifications to be n z d e to certcriri
parunicter;, hmcd on coninland arguments
i?r.serts pamnielers inlo n d b ncw.syl duttrbase creation
S Q L script and executes n5db netv.sqI

inserts additional dutabuse pumtrietc,rs including
chtiihcwe user ids into nsdb nc~7.syl
create,r duttrbtxse m d “ J O M ~ C ~ S ’’ table
creates and loads A‘TAPD data source’s database tables
creates and loads Cotton Incorporated data source’s
database tables
creates and loads EC96 data source’s database tables
creates and loads GCA data source’s database tables
creates and loads GlDC data sourcc’s database tables
creates and loads K‘TA data source’s database tables
creates and loads SEAMS data source‘s database tables
creates and loads TC2 data source’s database tables

inserts dutuhase iianie inlo nsdb new.syl

Rout i 11 e Latig~age

Borne sl2cll
A IVK

BWPW shell

A WK
A W’K

SQL
Rome shell
Borne shell

Borne shell
Borne shell
Borne shell
Borne shell
Borne shell
Borne shell

sctzcp. s h”’
options. awk

puranietem awk

nsdb new.,rql
do auburn
do-cotton

do ec90
do gca
do gidc
do kta
do seams
do tc2

Typically, a do-source routine called by do-nsdb

1. creates a set of temporary text tables (c-tmp . sql);
2. loads them with the data source’s data from data source original data tiles;
3 . creates the permanent tables required for the data source‘s datao5 (tables . sql):

Currently the “sources” table is not used by the NSDB Wcb user interface. It is meant to contain d l

information about the data sources that has not been completely supplied as of now.
(” It is assumed here that thc systems administrator will run do it nsdb, do-it-ms, and redo-nsdb. Some
of thc permissions that these routines attempt to grant can be granted only by the system administrator.
Although another user might execute these routines, the granting of the permissions with respect to the
created database w i l l then have to be subsequently done by the systems administrator (and error messages
will be output when one of these routines being run by someone other than the system administrator
attempts to grant these permissions).

which contains installation parameter definitions and database user id’s. It iq provided so that changes
made in a configuration require only a change in setupsh to effect all thc routines (see Sect. 4.1.2).
Common routines. those executed by more than one other routine, are listed in tables in italics throughout
this description.

description. routines executed by a routine listed above them will be indented by one space morc than that
routine.

53 The routine setup.sh listed in Tables 24 through 28 is a common routine, sourced by various utilities,

The following three routines in the table are executed by createdb. Throughout the tables i n this 61

It also provides id’s for the permanent table records and cross-reference tables as required. 65

71

4. sorts, restructures, and copies tlie data from the temporary tables into the permanent
tables (load. sql), and

5 . deletes the temporary tables (drop. sql).

-

Each of tlie pre\ iously listed functions is carried out by routines called by the data-source-
specific do-source routine, except for tlie loading of the temporary database tables from
tlie original data source files. which is done via the Sybase bulk copy (bcp) facility. These
routines. \z hose names are included i n parenthesis in tlie preceding list and are listed i n ‘fable
35, are themsel\cs data source specific (i.e., each data source has its own routines, for
example, each has a different load. sql routine). ‘I‘he teniporar) database tables are
created to facilitate rearranging the data source-s input \\bile loading it into the permanent
tables.

defines purunieters
deternirne~ riiodirfications to be iiiude to certain
parameterc\ based oii coniniund urgunients
insert3 user idc and path to utilities directory into
do source routine’s c twpsql, table~.sql, loud.sql and
drOp.Ayl SQL script3
insert5 user ids and path to utilities directory into an SQL

Tahl

creates teniporarq database tables
creates permanent tables
loads database perinanent tables w itli rearranged contents
of temporary tables
deletes the database temporary tables

I Routine

SQL
SQL
SQL

SQL

e 25. Routines used by typical “do-source” routines
F unction I Lancuarre I

I

do source setup I ii i d s g Ius. m -k

Borne Shell

Boriie Shell

dropsq 1

The do-source routines do-auburn, do-cotton. do-gca, do-gidc, do - seams,
and do - tc2 each use four SQL routines of the type listed in Table 25, where each routine is
specific to tlie particular do-source routine that uses it. Because of tlie relative simplicity
of the KTA data source, its do-source routine does not usc temporary tables but loads the
data from the KTA data source‘s “original” files directlq into the created permanent tables.
Consequently, it uses onlq one routine, its data-source-specific tables. s q l routine, out of
tlie four types of routines listed in ’fable 25.

The EC96 data source do - source routine, do-ec96, given the relative complexity of
the EC96 data source, uses a number of EC96-specific routines beyond the types listed in
’lable 25. The routine does the following

1 . Creates temporary product classification tables (c-tmp . sql).
3. Loads temporary product classification tables with tlie data source‘s product classification

data.
3. Creates permanent tables required for classification data and for companies‘ data. that is,

company and product data (tables. sql).
4. Sorts, restructures. and copies tlie classification data from the temporary classification

tables to the permanent classification tables66 (load. sql).

7 2

5 . Creates temporary tables for both forms of EC96 companies’ text data, that is, company
data and product data (f ox-tmp. sql).

6. Company by company:

(a) preprocesses and loads a company’s company data and product data into temporary

(b) sorts, restructures, and copies company’s company and product data into permanent

(c) creates a temporal? reference table for renamed company gif files. renames

tables;

tablesh6 (f ox-load. sql);

references to gif files in the company’s text data and enters old and new names of
each company gif file into the temporary reference table (r ename . sql); and

(d) renames the company’s gif files according to data i n the reference table, drops the
reference table, and empties company data and compaiiies’ product data tcniporary
tables (rename. awk);

7. Deletes temporaiy classification and companies’ company data and product data tables
(drop. sql).

‘T’lie EC96 specific routines used i n accomplishing Steps 1 through 7 i n the immediately
precedding list are noted in parenthesis in that list and are included in Table 26. The
temporary tables are loaded via the bcp facility from files that are the result of the
preprocessing.

EC96’s raw data were received in a different manner than any of the other data sources’ raw
data. One part of the EC96 raw data, the classifications, was received electronically from the
data source provider in the form of an Excel spread sheet. Each EC96-listed company then
scnt its data in the form of dbf, fpt, and gif files to the data source provider’s agent, who
placed it in a directory on an ORNI, machine. The companies either used the EC96 data
entry program (see Sect. 4.8.4) to enter their text data or created dbfand fpt files with the
formats of the EC96 data entry program’s created files.

The raw EC96 classification data were first preprocessed using ec9 6-2 . awk into a form for
input into a PC-based preprocessing program. bld-cls . prg , which created classification
dbf files for the EC96 data entry program. ‘These dbi‘ files were then further preprocessed by
dbf dump to create the bcp files that provided the classification data input to do - ec 9 6.
The EC96 companies’ text data did not undergo manually initiated preprocessing but was
autoinatically processed into bcp tiles by do-ec9 6 ’s use of dbf dump and b l a n k . awk
(the same routines with those names used i n preprocessing of other raw data source data).67

Each of the do - source routines used by do-nsdb (see ‘fable 24) can be run separately.
Thus the primary NSDB Sybase database can be added to one data source at a time, which is
particularly useful i n expanding the NSDB databasc as new data sources become available.

‘The creation of stored SQL procedures (sec Sects. 2 and 3.4) i n the primary NSDB Sybase
database is implemented external to the do-nsdb utility via the Create-SQL routine (see
Sect. 4.5).

Also provides id’s to permanent table records.
Consequently, raw companies’ text data are effectively part oftlie original EC96 data depicted in Fig. 38.

66

67

7 3

Table 26. Routines used by do-ec96

SOUTCC' 1-

4.3 CREATING REPLICATE NSDB DATABASES

T'he generation of the NSDB MS SQL Server and NSDH Access databases is carried out with
utilities that use the primary NSDB Sybase database as input. 'I'he NSDB MS SQL Server
database is generated automatically by the iitiliQ do-it-ms. This utility may also be used
to create replicate NSDB Sybase databases.68 The NSDB Access database is generated i n a
multistep process starting with the creation of a set of files by the utility do-it-access.
These files are loaded into a system containing an Access DBMS, and then a small number of
iiiaiiual operations are performed using the Access facilities to provide the operational NSDB
Access database.

The Sybase versions of the NSDR database use some features that are not available in the MS SQL
Server database management system. Running do-it-ms to create an M S SQL Server replicate will lead to
an NSDB database that lacks these features. Providing a particular optional parameter when entering the
command to execute do-it-ins leads to do-it-ins executing nsdb-new.sql rather than nsdb-newpnis.sql
and, when targeting a Sybase DBMS, provide? the additional Sybase features to the NSDB database
replicate.

68

74

The stored procedures from the NSDR Sybase database are riot replicated in the NSDB MS
SOL Server and NSDB Access databases via these utilities; instead, they are loaded into the
NSDB MS SQI, Server database the same way they are loaded into the primary NSDB Sybase
database, that is, via the Create-SQL routiiic (see Sect. 4.5). The NSDB stand-alone does
not include stored SQL procedures to retrieve data from the database. Its user interface
queries of the NSDB Access database are irnplernented in its visual C+-i- code.

NSDB Sybase
Database -

An unconventional feature of the NSDB database "rcplication" utilities is their use of code
creation routines. This feature was included in these utilities so that they would need
essentially no knowledge of the database schema (except that which is incorporated i i i

tables . sql routines used in the creation of the primary NSDB Sybase database's data
source tables""). Each utility uses a routine that, utilbing the primary NSDB Sybase database
as input, creates another routine for exporting that database's data. In the case of
do - - it ms , the created routine also imports this data into the NSDB MS SQL Server
replicate. The utility do-it-access generates, in addition, a set of Access SQL scripts for
the creation of the NSDB Access database's user tables.

-
table

names

+
1 data .+

The utility do-it-ms can be run on any Unix platformi0 that is networked with the NSDB
Sybasc and MS SQL Server database servers and has the appropriate supporting software
installed. The utility communicates via isql with the Sybase NSDB database and the MS
SQL Server UBMS. Figure 40 illustrates this setup, and Table 27 lists the routines used by
do - - it ms (uhich are also shown in Fig. 40).

Sybase Database
Server

(Unix System)

1 do-it-ins
nsd b-ne w-m s.sq I
titbles.syl routines
make load.sql 1
create;* routine
load-all

Unix System

Fig. 40. Possible setup for implementing

MS SQL Server

source tables Server
Database I

MS SQL Server
DB Server

(NT System)

MS SQL Server replicate.

In do-itaccess, even the tablessql routines are not used.
In the setup now used at ORNL, the utility is usually run on the system that acts as the Sybase database

6')

7u
,

server.

7 5

Routine s w
options. uw k

uidsylus. awk

Table 27. Koutiries used by do-it-ms
F 11 n ct i o ti I Language

I
&fines partrmetei-s
detertilines tirodrjicutions to he niude to certuin
par*unieters bused on conimcrwd iirgutiients
inserts pcrrunwters into the dutabuse crcution SQL
script nsdb neM‘ nis.sql and executes thut scrip1
inserts dutahuse nume into nsdb new ms.sqI
inserts udditioncrl chtahuse yurameters includiiig
uyer ids into tis& new tmsql.
creates replicate database and its “sources” table
inserts dulahase parwnieters iricluding user ids inro
tuhles.sql routines.
creates data sources‘ database tables
inserts database names and database server pointers
into make load.sql
creates the routine load all
exports NSDB Sybase database data and imports it into
the NSDB MS SQL Server database

Borne shell
AWK

Borne shell

A WK
A WK

SOL
A WK

SQL
AWK

SQL
Borne shell

The utility do-it-ms:

1 . creates a database on the MS SQL Server database server and creates the “sources“ table
within that database, via execution of createdb, which in turn executes
nsdb-new-ms. sql;”
creates the data sources’ databasc tables through execution of the tables. sql routines
for each data source (these are the same routines used by the do-source routines in the
creation of the NSDB Sybase database);

3 . creates a routine, load-all, for exporting the NSDB Sybase database’s data and
importing it into the NSDH MS SQL Server database, via the execution of
make load. sql; and
loads Ge NSDB Sybase database data into the creatcd NSDH MS SQL Server database by
executing load-all ;

2.

4.

-,
thereby completing the replication.’ ’

The tables.sql routines listed in Tables 27 and 30b are the same ones referenced in Tables 25 and 26.
They are not italicized in any of these tables despite being common routines (ix.. used by more than one
utility) because that might give the impression that they are a single routine rather than a set of routines. ’’ Optionally, do-it-ms can be used to create a Sybase replicate of the primary NSDB Sybase database.
Inclusion of an optional argument in the command for its execution leads do-it-ins to, via createdb.
execute nsdb-new.sql rather than nsdb-new-ms.sql. These two SQL routines differ slightly with
nsdb---new.sql, including certain features in the NSDB database it creates that are not available for an M S
SQL Server database.
’.’ Update tables created i n the batch update process described in Sect. 4.6 are not included in the
replication processes.

71

7 6

The creation of the NSDB Access database replicate is carried out in the following two sets of
steps:

1.

2.

development of a set of files based on the primary NSDH Sybase database (through w e of
the utility do-it - access) and
use of this sct of files within a system containing the Access DBMS to create and load the
NSDB Access database tablcs.

I n step I, the utility do-it-access running on a Uiiix platform accesses the NSDB
Sybase database and, using that database a5 input,

(a) generates a file containing a set of Access SQL queries for creation of the NSDB

(b) exports the Sybase NSDB database‘s data to a set of ASCII ‘‘1” delimited files (one per
Access database tables and

database table).

I n the second step:

(a) the files developed i n the first step are loaded into the systetn with the Access DRMS,
(b) a database is created using an Access utility,
(c) the generated SQL queries are copied froin the file they were written to and pasted

(d) the queries are executed to create the database’s data source tables, and
(e) the contents of the Sybase NSDB database’s tables are imported into the crcated

Access database from the set of files to which they were exportcd

into queries associated with the created database,

completing the rep l ica t i~n .~’

A possible setup for carrying out these steps to create the NSDR Access Database is shown in
Fig. 41, and Table 28 lists the routines used by do-it-access (which are also shown in
Fig. 41).

The do it access utility, through use of the routine rplct . sql, queries the NSDB Sybase
database to determine the tables within that database and generates Access SQL statements
for creating these tables. I t then generates the routine bcp-f or-access by executing the
routine make-bcp . sql. This generated routine is then executed to export the contents of
the NSDB Sybase database to a set of ASCII ‘LI’’ files.74

The routine bcp-foraccess generates a file for each database table and names these files in a numerical
sequence to facilitate an aspect of the loading process. I t is very similar to the routine bcp-out, which is
discussed in Sect. 4.4, when bcpou t is used for a single database. except that bcp-out creates files whose
names are the same as the table names from which the data are exported.

71

77

NSDB Sybase
Da tabase

Sybase Database
Server

(IJnix System)

Stand-alone
dashed paths indicate actions developnient system
\+hich rcquiru inanual initiation

tables’

1 created \L routine
bcp-for-access

data 1
file with el ~

Unix System

w

I Access DBMS

NSDB Access
Database

Fig. 41. Possible setup for implementing the NSDB Access Database.

Routine

set up. s h6 ’
options . aili k

rplct.sql

accessawk

make-bcp.sql

bcr, for access

Table 28. Routines used by do-it-access
Function

defines purcmielei-.$
deter’iiiines niodijications to be inade to certain puranieters
based on conininnd arguments
queries the NSDH Sybase database and generates set of
Access SQL scripts for creating Access replicate of NSDB
Sybase database
inserts NSDB Sybase database name and name of directory
into which files with the database‘s data are to be placed
into make bcp.sql
queries NSDB Sybase database and generates shell script to
bcp out all data in that database
created by make-bcp.sql, it exports all data in the Sybase
database into ASCII ‘‘1’. delimited files

4.4 BACKUP AND RESTORATION OF THE NSDB SYBASE DATABASE

The backup and restoration utilities listed i n Table 20, that is,

Language

Borne shell
A WK

A W K

SQL

Borne shell

1 . bcp-out.
2. reload-nsdb. and
3 . redo-nsdb,

78

provide for the export of the primary NSDR Sybase databasel’ to ASCII ‘.I*’ delimited (i.e.,
bcp files) and the restoration of the database front thesc files. The utility bcp o u t exports
the database76 to bcp files while tlie utility reload-nsdb imports tlie data f& these files
into an existing database. 1 he utility redo-nsdb creates an NSDB Sybase database and its
tables and loads the database from the files crcated by bcp - out.
from a previous database state are required, reload-nsdb can be used to restore the
database. whereas redo - nsdb must be used if the databas and tables have to be created as
well as loaded.

7 7 When only the data

4

4
NSDB Sybase

Database

The utility bcp-out, a companion routine bcp - i n . and a routine truncate. sql are
created by another routine, llie utility generator brn-bcp, based on the names of the tables
in the NSDB Sybasc database. Figure 42 illustrates the crcation of the routines bcp-out,
bcp - in, and truncate. sql; the export of data from and import of data to the NSDB
Sybase database; and the reimplementation of that database. As shown in Fig. 42 , subsequent
to any change in the database’s set of table names.7y the routine b r n bcp must be run
before any of the utilities i s executed for backup and/or restoration p&poses.

1 -! create data
SOurCeS 3 tables nsdb-ti orn-ocp

database table names

I bcp out

. . , I redo-asdh

+ta blessql routines
les i

1ew.sql

I I I l a c t -

Sybase Database

(Uni -
I

reload-nsdb - _

....... . delimited
f i les 1 I truncate tables Server I 1

ix System) I I
I I

dashed lines with arrow indicate program flows for
redo-nsdb and reload-nsdb utilities

Fig. 42. Backup and restoration of the NSDB Sybase Database and creation
of routines for backup and restoration.

These utilities could also be used for backup and restoration of the NSDB MS SQL Server and
sccondary NSDB Sybase databases. However, since it is desirable to maintain one primary NSDB
database, the NSDB MS SQL Server and secondary NSDB Sybase databases should be restored through
replication of the priniaiy NSDB Sybase database (i.e., through use of do-it-ms).

I >

The stored procedures are not included in this export.
The implementation of the primary NSDB Sybase database through the execution of redo-nsdb tahes

Keprogramming is not required to iniplement new data import and export utilities after changes are made

70

77

much less time than i t s initial implementation through execution of donsdb .

to the databases that modi5 the set of database table names. T’he utilities are recreated to account for such
changes by running brn bcp. One or more of the t ab le sq l scripts and/or the nsdb-newsql routines will
require changes for proper operation of the redo nsdb utility when structural changes are made to the
database. IIowever. the required changes to thcsc Sol, scripts will have already been made to create the
modified database.

’is

7 9

The utility reload - nsdb uses bcp-in to load data into the NSDB Sjebase database after
truncating all of the database‘s tables by executing truncate. sql. The utility
redo - nsdb uses the nsdb new. sql routine and the data source’s tables. sq l
routines (tlie same ones used ihen do - nsdb i s executed) to create the database and its
tables. It then loads tlie database througli the execution of bcp-in.

Jetup. sh
option5. uwk

Table 29 lists the routines used by tlie utility generator brn-bcp. The routine brn-bcp is
a general routine’(’ that can accept a string of database names as arguments (although if no
databases are iiipiit as arguments, it will crcate routines for a single database whose name is
provided by setup. s h) . It:

defines puraineters Borne shell
deterniines modifications to be n i d e to certain A WK-

I .

2.

?
3 .

4.
5 .

makesql

creates temporary SQL procedures, tmpout . sql and tmpin. sql, for generating thc
export code (i.e., bcp-out) and tlie import code (i.e., bcp - in) for each database in
the input arguments (or tlie default database taken from setup. sh) ;
executes tlie temporary SQL procedure tmpout . sql for creating tlie export code for
each database (i.e., creates bcp-out j;
executes the temporary SQL procedure tmpin. sql for creating the import code for
each database, (i.e., creates bcp - i n) ;
creates the SQL procedure truncate. sql; and
executes the export code, bcp-out. to ptoduce the ASCII ‘ 1 ’ delimited files with the
databases‘ data.x”

parurireters based on comiirund ui-.qunienf.s
creates (recreates) stored SQL procedure sp makebcp SQL

sp-makebcp created stored procedure which generates code to export
or import database table data to or from ASCII ‘ 1 ’
delimited files

SQL

truncate.awk
bcp-out

creates truncate.sq I Borne shell
created by and executed by brn-bcp to export all data in Borne shell
databases into ASCII ’‘1’. delimited files

tmpout.sq 1 I created procedure which successively uses sp-makebcp to I SQL
create bcn out

tmpinsql I created procedure which successively uses sp-makebcp to I SQL
create bcD in

7s
The routine brn-bcp was created for use in a number of ORNL projects including the NSDB project.

While it is described here in a general sense, it is anticipated that when it will be used for the NSDB, it
will only generate routines for one database, the primary NSDB Sybase database. The generated routines
when described subsequently. with reference to Table 30 are described for the case of a single database.

Backup and restoration procedures ignore update files created in the batch update process described in
Sect. 4.6.

Y O

80

In creating the temporarq SQL procedures. brn-bcp uses the SQL script make. sql to
create (recreate) the stored procedure sp - makebcp and store it in cach database. The
temporary SQ1, proccdures for creating bcp-out and bcp - in then execute sp - makebcp
as part of their code creation functions. The crealion of truncate. sql is carried out by
executing the routinc truncate. awk, with bcp - in as its input.

setz1p. s 11
truncatesql
b cp- in

Table 30 lists the routines used by the reload-nsdb and redo-nsdb utilities. 7'hc SQL
script truncate. sql and shell script bcp-in listed i n 'Table 30a are created by
brn - bcp. The SQL script nsdb - new. sql and the tables. sql scripts listed in Table
30b are the same routines used respectively by do-nsdb and the do - source routines in
the original implementation of the primary NSDB Sybase database.

~

defines ptrrrmiclers Borne hell

loadLs NSDB dLrlubuse with ctdu froni files e.+cportcd to Borne shell
truncates database tables SQL

Table 30. Routines used by restoration utilities

sctup.sh
n d b new..sc/l

data source' '
hcp-in

tables.sql for each

Toble 30n. Routirws usetl hi. reload nsdh

Routine I Function I Language
1

defirles pcwunrerers Borne shell
creaks NSDB Syhtise dcntabase rrnd "soztrces '' table Borne shell
creates database tables for each data source SQL

louds NSDB dutubuse with dalcr fioni files exported to Borne shell

4.5 CREATION OF STORED SQL PROCEDURES

The utilities do-nsdb, do-it-ms, and redo-nsdb discussed previously create databases
and database tables and load the database tables. They do not however create the stored SQL
procedures used by the NSDB wer interface. A set of SQL scripts, one per data source, create
these stored procedures. In the pilot, these SQL scripts are located on the Web server. A
(Borne shell) utility, Create-SQL, successively calls each of these SQL scripts after
setting a poiliter to the database's data server and inserting the database name into the SQL
scripts. Table 31 lists the routines used by Create-SQL.

81

Table 31. Routines used by Create-SQL to create a
databases’ stored SQL procedures

Rout i ne Function Lan puage

Borne sliell setii p . s h defines database user id and password, database server
Dointer and database name and sets database server minter

4.6 DATA SOURCE UPDATE PROGRAM

4.6.1 General

Data source updatc capability is provided through use of Microsoft Excel (vcrsion 5.0 or
higher). Excel workbooks, each containing the data from one of the data sources, are
generated from the data source’s data in the primary NSDB Sybase database. These
workbooks can then be modified (presumablj by the data source providers) and returned for
loading into the NSDB Sybase database. The loading procedure for this updated data. which
conies in a convenient predefined format. is simple compared to the initial loading procedure.

A set of export and import utility pairs exist for each data source in the Following subset of
the NSDB data sources:

1. ATAI’D,
2. Cotton Incorporated,
3 . EC96,
4. GCA,
5 . GIDC,
6. KTA, and
7. SEAMS.

There are no such utilities for the currently empty TC2 and USL-maintained LAMDB data
sources (consequently. no batch update capability exists for these data sourccs).

Figure 43 illustrates the update process. This process begins for a data source with the export
of its data into tab-delimited text files. These files are in a form that allows their data to be
imported via an Excel function into an Excel workbook; consequently, they sometimes arc
referred to herein as “Excel input” files. The files’ data are imported into a workbook, one
worksheet per file, and a minor amount of manual reformatting of the workbook is done to

82

enhance its presentation of the data." The workbook is manually updated, and the updated
workbook is then exported via an Excel function into tab-delimited text files, one per-
worksheet, \.zhich should have the same record formats as the initial tiles (provided no
inadmissible changes are made to the workbook). These files, which sometimes are referred to
herein as "Eacel output" files or updated files. are then imported into the primary NSDB
Sybase database. Figure 44 is an example of a portion of a worksheet t h in a SEAMS
workbook (note the nanies of the workbook worksheets on the bottom tabs).

The loading of a data source's updated data into the NSDB Sybase database's permanent
tables (i.e., those that are accessed by the user interface) is actually a two-step process (after
the Excel workbook has been updated and then exported to the "updated" data source tcxt
files of Fig. 43). These steps are:

I . importing the data from the updated data source text files into ternpvrary tables ("update
tables") in the database and

2. rcstructuring thc data from the update tables and loading them into pernianent database
tables.

There is a one-to-one correspondence between the workshcets of a data source's workbook
and the data source's database update tables. However, the organization of the worksheets in
a data source's workbook is geared to:

1. placing data froni database "text" fields in separate worksheets froni those with data from
other fields and

2. facilitating the manual updating of the workbook

dashed lines indicate operahns with manual
components beyond program initiation Data Source

Updating

Data Source

Text Files Workbook

.........I

I ~t Saveas Ft
Text Files Output,, I..." Data Source

IJ ti I i ty

Fig. 43. Data source update process.

81 This manual worksheet reformatting consists of the following:

1.

2.

3 .

'I hc work sheet column widths are autofonnatted, the size of the worksheet name in the second column
ofthe first line is increased. and the name is italicized.
The worksheet nanie cell and the second row of the work sheet (eucluding the first column) are back
shaded, and their color is changed to white.
The first two rows are frozen.

83

, '

, , ; *

Sybase data or to create the update tables. Table 32 lists the general routines that are used in
the import and export processes.

Routine

Table 32. General routines used in update exports and imports

Function I 1,aiiguape

Extends path and defines environinental variable to set up
for access to the SYBASt, database server
Defines directory for subdirectories in kvhich update text tiles
are placed and sliould be found.

sybase.sh F setupsh

Borne shell

Borne
shell

Routine 1.11 nc t io n I Language

Tab le .G et

Table.Create

Tab I e. Load

Text.Assernble

text.get

Creates an update table within the database - table name is
determined by logical table whose name is passed to
TabkCreate
Loads an update table i n the database from ‘‘1’- delimited text
file
Keassetnbles fields with id and sequence numbers into text

Tab 1 e. G e t Te x t

Dataln.Clean

textspl it

fields
Reformats data from tab delimited text files exported from
worksheets into “1’’ delimited text files for loading into the
database

Per1

Data0ut.C lean

Retrieves database data which is not contained in text fields -
data retrieved is determined by the SQL script whose logical
table name is passed to Table.Get
Enhanced vcrsion of portion of isql used by ’Table.Get for
querying the database
Retrieves database data which is contained i n text fields -
data retrieved is determined by the SQL script whose logical
table name is passed to TabkCietText
Enhanced version of portion of isql used by TablcGetText
which splits retrieved text fields into a set of fields and
supplies each set with an id and each nieinber of the set with
the id and a sequence nurnber
Reformats data into tab delimited text files for input into an
Excel worksheet -includes worksheet name and formatting

Borne shell

C t t

Borne
shell

C U

Per1

TubIe 32c. Generd routine3 used by cl’Lrtu-.source-s~ecific This . Load utililies

Routine I Function 1 1,anguape
I

Borne
shell

Borne
shell
Per1

8 5

‘The main general routines used by the utilities are T a b l e . G e t and T a b l e . G e t T e x t ,
T a b l e . C r e a t e , T a b l e . L o a d and T e x t . A s s e m b l e . T a b l e . G e t retrieves data
from tlie primary Sybase NSDB database for a workbook worksheet by executing the SQL
script corresponding to the “logical table”” name passed to it. It pipes the output of the SQL
routine tlirougli a routine, D a t a O u t . C l e a n , which reformats the output into a tab-
delimited text file for input into an Excel “update” worksheet. T a b l e . G e t T e x t is used
rather than T a b l e . G e t in retrieving text fields (since these fields may be greater than 255
characters). I t dices the data from a database text field into multiple fields of 255 characters
(or less for the last of the multiple fields), creating a record for each of the resulting fields. It
includes an id and sequence number in two additional fields i n such a record (the id relating to
the database text field from which the record‘s “main” field was created and the sequence
number giving tlie position of the “main” field relative to the other “main” fields created
from the text field).*3 This is required so that the contents of text fields in the database can
be exported into an Excel
have such tields, so T a b l e . G e t T e x t is executed only in exporting data from thesc data
sources.

Only the EC96. KTA. and SEAMS data sources

D a t a I n . C l e a n reformats the data i n an Excel output file into a bcp file for loading into a
database update table. T a b l e . C r e a t e creates an update table i n the prima9 NSDB Sybase
database, and T a b l e . L o a d loads the data from a bcp file (created by D a t a I n . C l e a n)
into an update table in the database. T e x t . A s s e m b l e assembles multiple fields of 255
characters or less into text fields. It uses these fields’ associated ids to detertnine which fields
should be used for creating each text field and their sequence numbers to determine the order
in wliich they are to be spliced together in creating a text field.

The routine s e t u p . s h is used respectively by T h i s . G e n e r a t e and T h i s . L o a d
utilities to determine the directory in which the Excel input files are to be placed and where
the Excel output files should be found. The routine sybase. s h is used by the utilities to
setup for access to the primary Sybase NSDB database server.

T a b l e . G e t uses the enhanced version of a portion of i sq l , t e x t . g e t , to query the
database. T a b l e . G e t T e x t uses t e x t . s p l i t to query the database where t e x t . s p l i t
returns diced text ficld data with id‘s and sequence numbers. T a b l e . C r e a t e uses the
standard isql for creating database tables, and T e x t . L o a d uses the standard Sybase bcp
facility for loading these tables. Table 3 3 lists the set of data-source-specific routines used in
the update processes.

A data source‘s T h i s . G e n e r a t e utility will execute:

1.

2.

T a b l e . G e t for each Excel input file to be created with data that i s not in text fields
and
T a b l e . G e t T e x t for each Excel input file to be created with data from text fields (if
such fields exist in any of the data source‘s database tables).

’’ The data retrieved by such an SQL script may come from one or more database tables and be all or part
of that table’s or those tables‘ data but for convenience is thought of as the total contents of a “logical
table.“

text field will start at zero and go up to one less than the number of segments created from the text field.

8; The id will be a string (e.& a company name) while the sequence numbers for the fields created from a

Excel spreadsheet cells hold no more than 255 characters. 84

86

Ta

update tables i n the primary NSDB Sybase database
Each .Get SQI, script rctrieves data for a specific Excel

t

shell
SQL.

Rout i nc

This.Cknerate

input file from the prirnarv NSD13 Sybase database
Each .Create SQL script crcates a specific update table in
the primary NSDB Sybase database
Loads data from the data source‘s database update tables

‘Th is . Load

SQI,

SQL

.Get routines

.Create routines

x-U pd . sq I
where x is a data
source label

)le 33. Typical data-source-specific utilitiedroutines
fur data source update

Borne I she1 I
Creates a set of tab delimited text flies, i.e. Excel input
files, containing its data source’s primary NSDB Sybase
database data I
Creates and loads data from tab delimited text files into I Borne

into its permanent database tables - supplies ids to
permanent table records

It does this by first executing Table. Get for each entry in a list it has of -’logical table”
names, passing Table .Get the logical table name as an input parameter. Then. if the data
source has tables with text fields. it executes Table. GetText for each entrq in a second
list of logical table nanies passing Table. GetText the logical table name as an input
parameter. The This .Generate utility will direct output of Table .Get or
Table. GetText to a file with a riame corresponding to the logical table name, for
example, if the logical table name is CompanyProfile, then the output will be directed to a
file named Companyprof ile. txt.

The Excel input files created for a dala sourcc wil l all be placed in the same directory defined
by the data source‘s This .Generate routine. Each such directory will be a subdirectory of
a common directory defined in setup. sh (e.g., if the setup. sh defined directory is
/itsr/saturn/www/Nsdb/update, then the SEAMS data source Excel input files bv i l l be placed in
/~isrlsaturtilwww/Nsdb/update/Seam s).

Any This. Generate utility nmy be run to generale a subset of its data source’s Excel
input text files. This is accomplished by including the names of the logical tables for those
files as parameters in the command for executing the utility. Including no parameters in the
command will lead to the generation of the whole set of the data source‘s Excel input files.

‘There are two SQL scripts for each logical table, one for retrieving its data from the NSUB
Sybase database and one for creating an update table in the database (note that these SQL
scripts are not stored in the database8’). The two procedures have names that differ from the
logical table name only by their extensions, for example, if the logical table is named
CompanyProfile, then the scripts are respectively named

1. CompanyProfile.Get and
2. CompanyProfi1e.Create.

8 5 Storing SQL procedures improves response time and therefore is important for the on-line system. The
longer response tinies from not using stored procedures in the utility routines are not significant for these
off- 1 ine operations.

87

All tlie logical tables have capital letters in their iiames, so their Exccl input f i l e names will
also have capital letters. l'he Excel output files (the updated files) for a data source should be
given the same names as tlie Excel input files but with all lower ca5e letters (e.g., if the Excel
input file is Companyprof i l e . t x t , then tlie Excel output file should be named
companyprof i l e . txt). The) should be manually loaded into the same directory with
the Excel input files. Table 34 lists the data sources' SQL scripts used in tlie update process,
the names of the data sources' Excel input and output f i les, tlie relative names of the
directories for the Excel input and output files, and the names of the data source-s database
update tables.

Table 34. SQL scripts associated with Excel input and output files

Tuhlc 3'
Directory I SQL Scripts

Atapd I Coin pail y Mach Deta i I .Get

Company MacliDetai I.Create
CoiiipanyProducts.Get
Company Products.Create
C om pa t i y Profi le.Get
Company Profi le.Create
Coin pany TecliDetai I.Get

Coin pany Tech Detai I .C reate
ProductCategories.Get
ProductCategories.Create

I . ATAPD
File Names (Excel input/Excel output) or

dirtahcrse update tahlc
Coin pan 4 M ac h De t a i I . t xt /
c o m pan y in ac lid e t a i I . txt
Up A U C'oiiipanyMuchl~etuil
CompanyProducts.txt/ compaiiyproducts.txt
Up A U C'onipan yPwdzrcts
Company Profi le.txt/companyprofile.txt
C'p A U C'ompariyProfile
CompanyTecliDetai I .txt/
corn pan y te c h d e ta i I . t xt
Up AU CompanyTecliDetail
ProductCategories.txt/ productcatepries.txt
[Jp A C' Product('ategories

8 8

Directory
for Eilcs

EC96

Procedures File Naines (Excel input/Excel output) or
dutuhuse ztpciuie tcrhle

Classitication.Cret Classification.txt/

Classification .Creak Upd L6 ClurA$cution
CoProdDescription.Get CoProdDescription.txt/

coproddescription.txt
CoProdnescriptioii.Create CJpd E6 i'oPI.otlDe,\cription
Coin pan) Prod tic t s.G et CompaiiyProducts.txt/ companyproducts.txt
C o m pan y P rod 11 c t s . C rea t e Urd E6 ('onipcuiyi~roduct~
Company Profile.C;et Conipanyl'rofile.txt/coni pan) prof?le.txt
ConipanyProfiIc.~reate Lbd E6 C'ompcwyProfilc

c 1 ass i f i cat i on . txt

Directory
for Files

Procedures File Natnes (Excel input/bxcel output) or
Dutirhuse Updute 7iihle

GCA C om pa t i y Prod u c t s . (3; et

Company Profi le.Get
Company Profi le.Create [Jpd GC ' 'onipunyProfile

CoinpanyProducts.txt/ companyproducts.txt

C om pa ti y P r o f i I e . t xt /c om p any pro f i I e. t x t
Coin pany Products.Create UpcJ G(~,~oFilpcEn)j~'rodLlcts

L

Directory Procedures File Names (Excel inpuv'Excel output) or
for Files Dutahuse (Jpdale Tuhle

Gidc CompanyCapabil ities.Get CompanyCapabil ities.txt/
companycapabi I ities.txt
tipd GI CowipanvCu~ubilities CompanyCapabi 1 it ies.Create

Company Profile.Get CompanyProfile.txt/ coinpanyprofile.txt
, Coin pan y P ro fi I e .C reate , Upd Gi C 'ompnn yPwfi le

t I CompatiyProducts.Create

I

Directory
for Files

I Company Profi le.Get
I C~ornpanyProfile.Create

Procedures File Names (Excel input/Excel output) or
Database Update Tcrhle

CompanySecondCommenl.Gel

Coni pany SecondCorn inen t.Create

KTA ConipanyComment. txt/ Coni pany Cotnmen t.Get
coin pan y c o m in en t . tx t
C J ~ d KT C'omparivCornmei?t
CompanyProducts.txt/
coin pan y p ro d u c t s . t x t
Upd KT C'onipanyProu'zrcts
CompanyProfile.txt/ companyprofile.txt
@xi KT ('o nipan yYrofile
Coinpany SecondConiinent.txt/

L

C om pan y C o inrn e 11 t . C reate
Company Products.Get

cornpanysecondcominent.txt
CJpcJ KT SecondC'omnient

89

Tu h IC. 3 3g. SEA MS
Directory Procedures File Names (Lxcel input/Excel output) or
for Files Databnsc? Updure Trrhlr

I I

Seains 1 C om pa ti y Desc r i p t i on. G et I company [le sc r i pt i o ti. txti

4 data source's This .Load utility anticipates finding a text file corresponding to each of
the data source's Excel input f i l a (in the directory in uhich the Excel input tiles were placed
bq the data source's This .Generate utility). It first looks for input from files with names
that contain no upper case letters but other& ise have the same names as the corresponding
Excel input files. Should it not find such an anticipated file, it uses the corresponding Excel
input tile instead. For each anticipated file, a This .Load utility does the following:

1. Passes input from the file (or its corresponding Excel input file) to the DataIn. Clean
routine and either

(a) pipes the output of this routine through the Text .Assemble routine to a bcp file

(b) directs the DataIn-Clean output directly to the temporary bcp file
or

2. Creates a database update table for the bcp tile's contents, through use of
Table .Create.

3. Loads the contents of the bcp file into the created update table, through use of
Table .Load.

The T h i s .Load utility will first attempt to import data from files corresponding to entries
in a list of non text field logical tables. Then, if its data source's database tables have text
fields, it will attempt to import data from files corresponding to entries i n a list of text field
logical tables. Piping through the Text. Assemble routine is done for the files
corresponding to logical tables with text fields. Table. Create, through use of a table-
specific SQL table creation script, first drops any existing database update table for the file
and then creates (or recreates) the update table. When an Excel input file is used for
This. Load input (rather than an Excel output file), the effect is to not change the
database's data previously exported to that file.

Any This .Load utility may be run to import data for only a subset of its anticipated Excel
output files. This is accomplished by including the names of the associated logical tables as
parameters in the command for executing the utility. If the command is given with no
parameters, then data will be imported for the whole set of anticipated files.

90

4.6.3 Transferring Updated Data to “Permanent” Tables

setupsh
options. uwk

Upd.sql scripts for
each data source

The completion of the NSDB Sybasc update of a data source requircs execution of the data
soitrce’s Upd . sql script, which transfers the data from its itpdatc tables to its perinanent
database tables accessed by the user interface (see Table 3 i n Sect. 2). A utility,
Load - Update, provides a means for running all or any subsct of the data soiirces’
Upd . sql scripts.K0 Load-Update will accept an argument ‘-alI-datasources” or a set of
data source label arguments. It will thcn either execute all the Upd . sql scripts or each
script called for by a data soiirce label
Load-Update , and ‘fable 36 lists the relatioiiship among the data sources, the Upd. sql
routines, and the Load-Update data source arguments.

‘Table 35 lists the routines used bq

defines pcwiinieters Borne sheIl
deterniines miodificcrtions to be tiiuck to certuin
puwmeiers htised on contmcnzd ~rrgunien~s
transfer data from a data sources’ update tables to its
permanent tables 1

A WK

SOL

Update tables created by the Table. Create routines of the batch update process (i.e.,
tables whose names begin with “Upd ”) are not included i n any of the NSDH database
replicates produced by the iitililies de&ribed in thc prcceding sections or in an NSDB database
reproduced by the backup and restoration processs described in Sect. 4.4. However, these
tables remain in thc database after the Upd. sql scripts that use them as input are executed.
Therefore, the tables must be inanually dropped if it is desired to reniove them from the
database.

Data Source Load Routine Load Update Argument

AI’APD auburn IJpdsql auburn
Cotton Incorporated cotton Upd.sql cotton
EC96 ec96 U p d s q l ec96
GCA gca Upd.sq1 pca
GlDC gidc Updsql gidc
K‘TA kta (Jpd.sql kla
SEAMS seams Updsql seams .

Table 35. Routines used by Load Update

I I Rout i t i e F u n ct ion 1 1,aiiguage
I

Load IJpdate and the data source’s Upd.sql scripts reside on the Sybase server in the pilot system. All
of the previously discussed update programs reside on the Web server in the pilot system (see Sect. 4.6).

Loadupdate will run all of the data source’s Upd.sql scripts if the argument .‘all -datasources” is
included in its input arguments, regardless of the data source label argurncnts included. When the
“all datasources” argument is not included, then the data source label arguments determine which data
sources‘ IJpd.sql scripts are executed.

PI,

87

91

A tutorial was developed for assisting a user making updates to a data soiirce workbook. 'The
tutorial is described in the Sect. 4.8.2.

4.7 FURTHER ASPECTS OF THE MAIN UTILITY PROGRAMS

4.7.1 Insertion of Parameters into SQL Scripts

As noted it1 the previous sections, various utilities insert parameters into SQL scripts beforc
executing them or execute scripts that havc the parameters inserted into them via a
separate11 run program (in the case of some Web server-based update utilities). These
insertions are done via AWK scripts. The AWK scripts detect the SQL statements into which
the insertions are to be made through comments that are included on the statements' lines.
17ypicallq:

I . the existing SQL script to be used is copied to a temporary file,
2. the AWK script obtains its input froin the temporary file, and
3 . the AWK script outputs its results to the file froin which the SQL script was copied.'*

Each line that does not require parametcr insertion(s) is copied from the input to the output
file without modification. Each line requiring parameter insertion(s) has the current value of
its parameter(s) inserted into it in place of the existing string(s) i n the parameter place(s).
The resulting line incliiding its parameter indicating comment is then written to the output
file.

The comments used to indicate a parameter in the line are of the form:

/*InstallMarker string ividicating the form of the staterrlent *I ,
e.g.3

/*lnstallMarker3USER3,USER2,IISERI */

1 he pilot's Sybase database server-based utilities always insert the parameters in SQI, scripts
before exccuting the scripts. Similarly, the Web server based routine that executes SQL
scripts to create SQL-stored procedures (which are then executed by the user interfiice and
certain wais utilities) inserts the database name into these scripts before executing them.
However, the SQL scripts used by the Web server -based update utilities have their parameter
values inserted into them by a separately cxecuted routine, which, after any of these
parameter values are changed, must be run before an update utility is subsequently executed.89

88 Originally. these parameters were hard-coded into the SQI, scripts. which were thoroughly debugged.
The approach described here, used to reduce the number of places where changes would be required if the ') This should not be a major inconvenience. The parameters in these scripts are the primary database
name, which is unlikely to change, and database id's, which might at most iiifi-equently change.
Consequently. it is likely that the insertion program will only have to be infrequently run to keep the SQL
scripts' parameter values up to date.

arameters were modified, had the advantage of not requiring any code modification of the scripts.

92

4.7.2 Temporary Files

F ~ i i c t i on

Explains hobv to update data source Excel
workbooks
Provides data on how often the Web
NSDB has been used within a time
interval
Provides means for individual companies
to enter their "96 data and copy it to
flonnv disks

I n carrying out their fiinctions, a nuinber of the utilities, create files, for example, the
temporary files described i n the prcvious section. If' such a file does not contain code or data
that may be used by other routines ur by a utility uscr, it is nomially removed either by the
routine that creates it or by the routine that execiitcb the routine that creates it. Thus, some
of the code that is generated arid then executed by a uti l i9 will not be available to be perused
after the running of the utility code (e.g.. the tmpin . sql and tmpout . sql SQL scripts
created by brn-bcp are deleted before brn-bcp completes its execution).

Language

HTML,

Per1

Foxpro

4.8 MISCELLANEOUS UTILITIES

4.8.1 General

Five misccllaneous programs that were created for ccrtain NSDB-related functions are listed
in Table 37. The first two routines listed i n Table 37 are WWW accessible, while the third
runs on an IBM (or IBM-compatible) personal computer.

NSDB Batch
IJpdate Tutorial
NSDB Access
counts

EC96 Data
Entry Program

EC96 Data
Source Statistics
Web Server
Ins ta 11 at i o n
Setup

Table 3
lltility Name

i tid ex. 11 t tn I ')'

Chunts. DoGetcgi

en try. exe

class-report

I tis tal 1-Set up

. iMiscellaneous utilities

Provides information about the contents 1 Borne
of the EC96 data source
Sets environmental variables. creates
SQL, storcd procedures in primary NSDH
database, copies images to web server,
creates wais index, inserts parameters
into web server based batch update

shell
Borne
shell

4.8.2 Batch IJpdate Tutorial

The update tutorial" is an HTML form that consists of two fran~es.~ ' One of these frames,
the body frame, references a set of images of bxcel worksheets produced through use of the

This is the normal default file name for an HTML fonn (when a UIiL points to a directory).
The batch update tutorial is classified as a ulility here because it is convenient to describe it in this

A user must have a browser with frames support to use this utility.

YO

91

section.
92

93

procedures described i n the Sect. 4.6.2. The forms and images used by the tutorial are listed in
Table 38.

The tutorial provides the information necessary for a data source supplier to update its data
source Excel workbook. Its lJRL is:

11 t t p ://sat u r n .e p m . o r n 1. g ov/Ns d b/ u pcl at e / t u t o ria I/ .

Table 38. Forms and images used by NSDB batch

4.8.3 NSDB Access Counts

The Access Counts uti l i t~ displays a set of data about Web NSDB use. The display provides
the number of the following types of useso7 of the standard pilot NSDB and experimental
NSDB user interfaces during a specitic time interval:

1 . Web page home visits.
2. Web page launches,
3. Java applet launches,
4. Java total hits. and
5 . total NSDB hits.

The date and time of the beginning and end of the interval are included in the display. The
displayed access counts (or uses) are derived by counting relevant entries in the Web server
log. The beginning of the interval is the last time the log was purged,o4 and the ending of the
interval is the time the utility last extracted a set of relevant log entries. Accesses froin the

9; Definitions of the numbers displayed are as follows: Web page home visits is the number of times a user
downloaded the standard NSDB home page: Web page launches is the number of times a user called for
another NSDB form or a report froin any NSDB page (standard, frames ofjavdframes interface); Java applet
launches is the number of times an experimental Java applet was downloaded by a user: Java total hits is
the number of times any NSDB form. report, iinase or applet was downloaded using the java interface; and
total NSDB hits is the number of times any NSDB form, report, image or applet was downloaded using
any NSDB interface.

log was last purged on January 1 . 1997.

94 This date is currently hard-coded into the utility and should be changed each time the log is purged. The

94

seven government laboratorieb participating i n the DAMA project during FY 1996 are not
included in the displayed counts.

Nsd b.pni

setup.sh
Dama2.Search

Dama3.Search

N sd b. Searc h

The Access Counts utility can be coninianded to either display counts from:

Defines path to directory with rest of Table 39
routines and for ‘Table 40 files.
Defines path to Apache log
Gets entries from web sewer log indicating Darna2
Interface usages
Gets entries from web server log indicating counts
for Llama3 Interface usages
Gets entries from web server log indicating current
standard interface usages and prototype interface
wages

1. entries previously extractcd from tlie Web server log or
2. a newly extracted set of Web server log entries.

no. list

The lJRL

List of IP addrcsses whose log entries are to be
excluded from the usage counts

h t t p : //sat u r n .e p m . o r n I. go v/N s d b/C o u n t s .I) o G e t . c g i

yiclds counts from the latest previoubly extracted log entries. The I J K L

yields counts from an up-to-date set of extracted log entries. The time required to extract a
set of relevant log entries is fairly long (it has been a matter of a number of minutes when the
log has a few months of entries), so simply displaying counts from tlie latest previously
extracted set of entries can save significant time.Y5

l‘he Web NSDB Access Counts main routine, Counts. DoGet . c g i , uses the routincs and
list enumeratcd in Table 39. ‘The three “Search” routines listed in TabIe 39 gather log
entries on the use of different NSDU user interfaces. l’he routines place them in tiles from
where they are counted by Counts. DoGet . c g i to obtain the displayed counts. ‘These
files and a date tile used by the utility Counts. DoGet . c g i are listed in Table 40. The
utility executes the Search routines when it is coinnianded to iiiahe a new set of counts;
when it is not, it recounts the previous entries in the files of Table 40.

Table 39. Routines and iist used by Counts. DOG

KoutinelLisl \ I: unction
I

t.cgi
L m guageiFurmut

Per1

Borne shell
Borne shell

Borne shell

Borne shell

text

I’he pilot Web server serves a number of systems besides the NSDB. Therefore, many nun-NSDB 95 .
entries mu51 be examined but not extracted during the NSDB entry extraction process.

95

Table 40. Files used by Counts. DoGet . cgi

iava/fraines user interface page
Log entries of an) hit i n a current standard , frames, or javdfraines user
interface page
Log entries of Java applet launches i n the Java experiinental user
interfaces
Log entries of any hit in the Java interfaces
Time and date last usage counts were made

nsdb.out

nsdb2-applet.out

n sd b2 . OLI t
date.out

The l)ania2 and Darna3 interfaces listed in Tables 39 and 30 are previous standard interfaces
that Mere available for part of the pilot period. They have their log entries extracted by
Dama2. Search and Dama3 . Search. respectivel). Their URLs are now aliases for the
current standard interface. The current standard interface and the frames, the frames/Java,
original Java, and the current Java protot) pe interfaces have their log entries extracted by
Nsdb. Search. The file no. l i s t contains IP addresses that when i n NSDB log entries
will cause the entries to be excluded duritis the extraction process.

4.8.4 EC96 Data Entry Program

The EC96 data entry program runs on any DOS platform9" and is supplied i n a self-
extracting zipped file. Unzipping the file leads to the files listed in Table 41 being placed in
the directory into which the zipped file was loaded on the DOS machine.

The EC96 data entry program provides data entry forms to be filled in with a company's
EC96 text data. Two different types of forms are provided: company data forms and product
data forms. A company can fill in one company data form and a multiple number of product
data forms, one for each product it wants listed in the EC96 data source. The program will
allow only one record per product (although a product name may be used multiple times if it
used with a different classification each time) and will not allow a product name to be entered
without a classification. Using Foxpro functionality, it provides for viewing and editing any
previously entered data. It also provides for outputting its data to a flop
file. EC96DATA. Z I P , which unzips into the following three data files:

disk i n a zipped !si

A DOS 3.3 or higher platform with 3 M R of available hard drive space and a color monitor is required.
I he program was written to run on such a simple platform to maximize the chance that any member of the
AAMA's AMC, which includes man! small companies. would have a platform available on which to run
the entry program. Meeting the requirement of running on such a platfomm resulted in a few program aspects
that are not as user friendly as would have been possible with a more sophisticated platform.

The number of products that a company may input is unbounded. However. the program limits the
number that can be entered before having to be copied to a floppy disc. Therefore, multiple floppy discs
must be used when a company wants to enter more products than the program allows on a single floppy

')h

97

96

I . Conipany.dbf,
2. Productdbf, and
3. Prod u ct . fp t .

File

AMC cls.dbf
AMC-lst.dbf

AMC Ist.idx
Conipany.dbf

These files are written into by the utility during the data entry process. The utility used to
process and load the EC96 data into the primary Sybase NSDB database, do-ec96,
anticipates finding these files in the format provided by the data entry program. 98

Coin in en t

File contaiiiing classification “cids” lbr each admissible classitications’”’
File with partial cids’”” (ids for group, classification, etc.) and text
description of these partial cids.
Index file for partial classification cids
file for company data

disc. Once a product’s data are copied to a disc after the limit is reached, the product’s records must be
deleted from the program’s files if more product data is to be entered (which can be clone via a positive
response to a program prompt after the data are copied to disc). Once the records are deleted, the program
cannot prevent entry ofa product with an identical name and classification from one that has been deleted.

In the procedure for loading the NSDB Sybase database. a company subdirectory of a common directorj
accessible to the routine do-ec96 is created for each company. Various subdirectories of a company’s
(sub)directory might also be created. A company’s EC96 data entry program data output liles are then
copied into the company’s directory or that directory’s subdirectories. One floppy disc’s data may be
included in the company’s directory and other floppy disc’s data i n its subdirectories. one disc’s data per
subdirectory. Company gif files may be included in the company directory or any of its subdirectories
(subdirectories of only giffiles and empty subdirectories can be handled by do ec96). The data for all the
companies are loaded into the database firom the coninion directory (see Sect. 4.9.4). Dbf and fpt files
created according to the format of the EC96 data entry program and zipped into a single zip file by some
other means (than the data entry program) may also be used in the load procedure.

AMC cls.dbf and AMC-lsl.dbfare the files that after preprocessing provide the classification input for
the clo-ec96 routine that loads the NSDB Sybase database.

Each primary group, category, class, and type are assigned a Four-character “partial cid” (with group
partial cid’s starting with A, category’s starting with B. etc.). bach perniissiblc classification is then
assigned a cid, which is a concatenation of its group, category, class, and type partial cids (separated in
AMC-cls.dbf by “l”’s).

98

99

100

97

4.8.5 EC96 Data Source Statistics

Rout i ti e

Statistics on the EC96 data source are developed by a routine. c lass - r e p o r t , which
queries the NSDB 51 base database to generate a report which contains

1 . a table ordered by classification id with the number of uses of each classification,'"
2. a classification use "histograin,"
3. a list of the classificatioiis ordered by the number of their uses,
4. a companyiproduct histogram,
5 . a list of the EC96 companies n i t h their number of products and number of distinct

products,"' and
6. a list of tC96 companies with the natnes of their products and the classifications (and

number of such classifications) used for each product name.

Function I Language

The classification histogram lists the number of EC96 classifications not used for- any product
names,
number of uses lists all the EC96 classifications not used for any product names, all the EC96
classifications used for one product, etc. The company/product histograin lists the number of
companies with a given number of products and distinct products (ordered primarily by
number of products and secondarily by thc number of distinct products"'). The utility uses
the routines shown in Table 42.

10; the number used for one product name etc., while the list of classifications by

setup.sh
opliom. awk

reportsq I

define5 purumeters Borne shell
delemines modijicutions io he mu& to certain parcmieter5
bused upon command crrgzrnients

A WK

generates an ec96 classification report SQL

'This list includes only the NSDB EC96 assigned id, not text giving the group, category, class, and
type associated with the id. The lists in items 3 and 6 contain the primary group, category. class and type,
and the id. This id is not the cid of Table 41 but is rather an id assigned sequentially starting with E61
(i.e., E61. E62. . ., E610, E61 I , . . .) by EC96's load.sql routine when it loads the database table
E6 Classification.

Here we consider a product to be a product nameiproduct classification pair. Therefore. a product name
that appears with n classifications is considered n products. The number of distinct products is the number
of unique product names.

An EC96 classification consists of a primary group, category, class, and type. A null for any one of
these classification levels is admissible provided all lower levels are also nulls (e.g., a n u l l class requires a
null type). Product names have at least one classification associated with them. A classification is
considered to be used for a product name each time it appears associated with a product name of a company.
If company A with a product named XYZ and company B with a product named XYZ each use a given
classification for the product nanied XYZ, then that constitutes two uses of the classification.

IO1

102 ~

I o i

98

4.8.6 Web Server Installation Setup

syhasc~.s h

Create SQL
setupsti' O 4

get-images

The installation of the Web sene r NSDB software and the stored SQI- procedures executed
by the user interface portion of this software is facilitated by use o f the Install-Setup
utility. This routine first includcs the path to the client side Sybase files i n the environment's
path. It then installs the SQL-stored procedures in the primary NSDB Sybase database,
generates the wais index for the cross-data source search, and iiiserts the primary database
name and user ids into the batch update SQL scripts.

Itrcliides p d h 10 clicnt si& Sybuw Ji1e.s iri
environment path
Installs stored procedures in primary NSDB database
Defines databasc name, pointer to database's database
server and database id and password
Copies image files from another server to the web
server

Borne shell

Borne shell
Borne shell

Borne shell

Table 43. Routines used by Install Setup

1 I Routine P u rp ose I Language
I

T h is . G en e rate' 'I'
1ndex.Build"'"
setup update parains

4 setup. s h ' '

Generates formatted files for input to waisindev Per1
Builds wais index Borne shell
Inserts database name and user ids in batch update Borne shell
SQL scripts
Defines directory paths, database name of primary Borne shell
NSDB Sybase database, pointer to that database's
database server, and database ids and passwords

The Install-Setup utility uses the routines shown in Table 43. The Create-SQL
routine in Table 43 is also used to iiistall the stored SOL procedures i n the MS SQL Server
database replicate (or any other NSDB Sybase or MS SQI- Server replicates that are made) of
the NSDB primary database. It must be executed subsequent to the execution of do-it-ms
or redo - nsdb to complete a database replication or recreation.

4.9 UTILITY FILE ORGANIZATION

4.9.1 General

The utilities, other than the NSDB Access Counts and EC96 data entry program and
classification dbf file creation routine, can run on any Unix platforni networked to the NSDB
Sybase server where the Unix platform has the required supporting software installed.
However, i t is convenient to also run the cross-data source enabling file creation utilities on
the Web server in part because they then can be easily setup to place files in directories where
the user interface will look for them. In thc pilot system, the utilities, excluding the EC96

The setup routines used by Create-SOL and setup update params are separate routines, each located in

This is thc blanket This.Generate routine dewibed in Sect. 3.6.2.
This is the 1ndex.Build routine described i n Sect. 3.6.2.

1n-i

the same directory a5 the routine that uses it.
105

I n6

99

programs noted earlier, were installed on the Web server and the Sybase database server. The
Web server holds the

1 . cross-data source enabling file crcation utilities and associated routines.
2. data source update utilities and associated routines (excluding the Upd. sql routines that

load NSDB database update table data into NSDB data source database pernianent tables).
3. NSDB Access Counts utility, and
4. installation facilitating utility and associated routines including SQL scripts to create the

stored SQL procedures.

The NSDH Sybase database server holds the

1 . primary NSDB Sybase database creation and load utilit) and associated routines, includiiig
the preprocessing routines:

2. database replicate creation utilities and associated routines;
3 . database backup and restoration utilities and associated routines;
4. data source update routines for loading database permanent tables froin database update

tables; and
5 . EC06 data source statistics routine.

4.9.2 Utility Files On Web Server

The directory structure for the utilities on the pilot Web Server is shown in Fig. 45. The
Nsdb directory, its data source, images and wais subdirectories, and the wais and images
directories' subdirectories shown in Fig. 45 are the same ones shown in Fig. 32, which depicts
the user interface directory structure. (These directories are italicized in Fig. 45 to indicate
that they are required for the user interface as well as for certain utilities.) The Nsdb
dircctory's update and access subdirectories and the update directory's subdirectories contaiii
files required only for certain utilities. Table 44 lists the files required by the Web
server-based utilities, which are i n the nondata-source-specific directories shown in f:ig. 45.
The files in the data-source-specific directories, which are required by the Web server-based
utilities, are enumerated iii subsequent paragraphs. Files shown i n italics are also required by
the user interface.

The file Counts. DoGet . cgi in the Nsdb directory contains the Web-accessible user
interface statistics utility. l'hat utility uses the Nsdb. pm file in the Nsdb directory as well as
the routines in the files in the access subdirectory. The access subdirectory is also the
directory into which the t'iles listed i n 'fable 40 are placed by Counts. DoGet . cgi. The
file Install - Setup in the Nsdb directory contains the utility that facilitates the Web
server installation procedure. That utility uses the routines in the files Create-SQL,
setup. s h , and sybase . s h i n the Nsdb directory. In addition, the routine uses the
get-images file in the images subdirectory and the set-update-params file i n the
update Subdirectory. The images subdirectory also contains an image file used by the update
tutorial, while the update subdirectory also contains files with the blanket This .Generate
and This .Load update utilities and a setup. sh file used by these utilities and by
set-update-params.

The bin subdirectory of the update directory contains the "general routines" used bq the data
source update utilities, while the tutorial subdirectory of the update directory contains the
tutorial top form as well as all the other forms and images used solely by the update tutorial.

100

access images

EC’96

Fig. 45. Web server NSDB utility directory structure.

The file Company. pm i n the wais subdirectory i s the company package defining the
company class, and the file Index. Build contains the routine that builds the “wais
index.” The T h i s . Generate file in this directory contains the blanket script that
provides the formatted data source tiles that are part of the input for Index. Build. The
remaining two files in the wais subdirectory, setup. sh and setup. pl, are used,
respectively, by Index. Build and by data-source-specific This. Generate routines
which are in data source subdirectories of the wais directory.

Tlic tile in the index subdirectory of the wais directory is the manually generated format file
required by Index-Build. The index subdirectory is also the directory into which the
“wais index” tiles will be placed when they are generated by 1ndex.Build (see Table 14 in
Sect. 3.6.2).

Each data source subdirectory of the Nsdb directory contains an SQL, script x.sp (e.g.,
Atapd. sp).Io7 ‘This is the script used (by Install-Setup) to create the stored
procedures executed by the user interface to query that data source’s database tables.

The Lamdb subdirectory of the Nsdb is not shown in Fig. 45 because that subdirectory does not contain I07

a Lamdb.sp script. This is because the Lanidb database does not contain stored SQL procedures (see Sect.
2)

101

Table 44. Nondata-source-specific utility files on Web server

Directory I Fi le(s) I Directory File(s)
I 1

N sdblu pdate

Nsd biu pdatei
tutorial

set u p . s Ii ' "
setup-update.. parains N sd biwaisl

I I index
Th is.Generate""
Th i s . Load ' '" I I Nsdbhnages

I
i n d e x. h t m 1

forins and images listed in
Table 38

N sdblu pdatel

routines & list ii i Table
39 other than Nsdb.pm

Coin pan y . p m

nsdb .,fill t

bluehall. P i f

get images

routines listed i n Tables
32b and 3 2 ~ " " -

Each data source subdirectory of the update director} contains the files with the routines for
creating the data source's Cxcel input files and loading the data source's Excel output files.
These routines include the data source's (data-source-specific) This .Generate and
This .Load update routines as well as the SQL scripts (see T'able 34) used by the
This. Generate routine.

Each data source subdirectory of the wais directory contains the files:

This-Generate and
wxyzCompany.pm,

where wxyz is the subdirectory name (e.g.. i n MaislAtapd, the file AtapdCompany. p m
would be the file corresponding to the second listed file). The first listed file contain? the data
source's utility for generating its data-source-specific cross-data source search enabling files.
The second item is the data source*s company class and contains the data source's new
method and Listcompanies routine. A wais data source subdirectory is also the directory
in which the data source's data-source-specific cross-data source search enabling files will be
placed when generatcd by the data source's This .Generate utilitj.

There are files named setup.sh in the Nsdb directory and its update and wais subdirectories. The
contents of these files are not identical, though they may have some overlap. These files, along with
sybase.sh in the Nsdb directory and setup.pl in the wais subdirectory, contain what have been referred to
Ereviously as setup routines.

'There are files named This.Generatc in the update and wais subdirectories and in the data source
subdirectories of these directories. These files contain different routines. Similarly, there are files named
This.Load in the update subdirectory and the data source subdirectories of this directory, and they contain
different routines.

I ox

The rountine text.get in this directory is actually a symbolic l ink to textget in Nsdb!bin. I I?1

102

The following additional files are required to support various utility routines and are available
on the Web server as part of the user interface:

1. the HTTP server (for the NSDB Access Counts and thc batch update tutorial),
2. the Sybase client sidc software including the tile interfaces and the directory

locales (for the data source update utilities and tlic cross-data source enabling file
creation utilities), and

3. the Per1 interpreter. 9

4.9.3 Utility Files On NSDB Sybase Server

The directory structure for the utilities on the pilot NSDB Sybase Server is shown in Fig. 46.
The subdirectories data dump of the bcp directory and access-data of the access directot-4.
shown in Fig. 46, are connected to their parent directories with dashed lines sincc these
subdircctories will not exist until the utility generating routine brn-bcp and the utility
do-it-access are. respectively, cxecrited.' I ' After the conipletion of the execution of
the routines that create them, these subdirectories will contain bcp files of data from the
primary NSDB Sybase database.

nsdb..new

N'I' access bcp prepros update auburn cotton ec96 gca gidc kta seams tc2

Fig. 46. Utility directory structure in NSDB primary Sybase database server.

The files in the nondata-source-specific directories of Fig. 46 are listed in Table 45. The
blank. a w k arid dbf dump routines in the subdirectory prepros are routines used in the
preprocessing of "raw data'' for more than one data source (see Sect. 4.2).

After the running of certain routines listed i n Table 45, other routines will have been created.
These are listed in Table 46. The created roulines will be in the directory of the routines that
create them, except in the case of the SOL procedure sp-makebcp, which will be stored in
the primary NSDB Sybase databasc. Note that the routine r p l c t . sql in the access

The utility do-it-access places the ASCII data files that it generates in a directory whose name is I l l

determined by a parameter that need not be accessdata. The pilot's default value for this directoiy is,
however, access.-data.

103

subdirectory of the nsdb-new directory creates Access SQL scripts that are intended to be run
i n the NSDH stand-alone (to create the NSDB Access replicate's database tables). These
scripts will be written into a file i i i the access subdirectory froin which they must be copied to
the stand-alone. Aside froin these Access SQL scripts, the only other created routines in
Table 46 that are used by other routines or that might be executed by themselves are
bcp-out, bcp-in, and truncate. sql. Consequently, they are the only routines
(besides the Access SQL scripts) that are not automatically removed after their creation and
execution.

The data-source-specific dircctories and ec96's subdirector> loadata contain files with the
routines used for creating and loading the data sources' primary NSDB Sybase database tables.
These are listed i n Table 47. The blank. awk and dbfdump entries in the ec96Aoadata
directory are sqinbolic links to the identically named files in the prepos directory. They are
in loadata because do - ec96, the EC96 database table creation and loading routine, uses
them for automatic preprocessing of certain EC96 data.

Executing do - ec96 causes the creation of t\vo other files in tlie ec96 subdirectory. These
are Company - Log and Image-Log. They contain, respectively, records of do-ec96's
processing of the data provided by each submitting company and subsequent processing of the
iinage files and iinage file references of each submitting company.

The gif subdirectory of the ec96 director-). (see Fig. 46) is the place where the do-ec96
routine places gif files that are part of the raw EC96 data. These filcs are renamed by
do-ec96 after being placed i n this subdirectory (from where they can be copied into a
directory on the Web servcr, i.e., into the directory Nsdb/images/EC96, for use by the NSDB
user interface).

Each data source's do-source routine, except for EC96, expects to find the set of bcp
files that constitute the "original" data source files (i.e., the data source files resulting from
preprocessing of the data source's raw data) in its data source directory's data subdirectory.
The do ec96 routine expects to find two bcp files with the EC96 classification data in
them inits data source directory's classification subdirectory (with the rest of the EC96 data
being found elsewhere). The specific sets of files expected i n each data source's data
subdirectory are listed in Table 48.

104

Directory

nsdb new

nsdb new/NT

Files

check rename checkgifzip
created b do nsdb
nsdb new. sy I optioiis.awk
renamc . aw k
uids plus.awk

do i t nis make 1oad.sql

rename i in ages

rectories

nsdb netvlaccess

nsdb new /bcp

nsdb new/update

nsdb newjprepros

clieckgi fzip.awk
do source setup
parameters.awk
setup. SI1

access.awk] do it a c c e s ~
rpl c t . sy 1 1
brn bcp make bcpsq 1
reload nsdb truncate.awk

Load Update
cotton Upd.sql ec96 IJpd.sq1
gidc Updsyl kta Upd.awli

dbfdump b l n k . a d

U pd . aw k

make load.awk

Directory

nsdb new/NT

nsdb newlaccess

nsdb new/bcp

make bcpsq 1

Creating Koutine(s) Creatcd Routine(s)

make load.sql load all

rplctsql Access SQL scripts
make bcp.sq 1 bcp for access

makebcpsql s p mahebcp' I 2

brn bcp tm pout .sq I ' '
brn bcp tinpin.sq~' l 2

tmpout.sq1 bcp out
tinpin.sql bcp i n
bm bcp truncatesql

redo nsdb

auburn Updsql
gca Updsql
seams Upd.sql

The makebcpsql SQL script creates the stored procedure sp .makebcp used by tmpoutsql and I12

tmpin.sql. The routine brti-bcp then includes sql coininands (via isql) i n tinpout.sql and tnipin to execute
sp- makebcp.

105

Table 47. Data-source-specific directories' files (containing routines
used in implementation of the NSDB databases)

I Directory Fi le(s)

nsd b new/au bum do auburn files with routines listed i n I able 35

nsdb new/cotton I do cotton
I I

I files with routines listed in '1-able 25

nsdb iiewipca do gca t'iles v it11 routines listed in Table 25

nsdb new/gidc

nsdb new/l\ta do kta tablessql

do gidc tiles uith routines listed in Table 25

nsdb new/seains do scams files with routines listed in Table 25

nsdb newltc2 do tc2 files with routines listed in Table 25

7'he directories cottonawk, ktaawk, and ecawk (see Fig. 46) contain the files with the
preprocessing routines that were used only for the Cottonlnc, K'I'A, and EC96 data sources.
respectively. These are listed in Table 49.

The Sybase client side software files including the file i n t e r f a c e s and the directory
l oca l e s are required to support the utility routines which are located on the NSDB Sybase
server.

106

Table 48. “Original” data source files

auburddata app cat.bcp it ern s . bc p vendniach.bcp
app p cat. be p prod iicc. bcp vendtech.bcp
aub.bcp

cotton /data I const95.bcp I dir95.bcp I
I I

gcaldala

gidcidata

I I I

ec9(i/cIassificationi ’ I 1 arnc cis I amc 1st I
1 1

category .bcp] company.bcp

coin pan y . be p
I
I

ktaidata

seamddata

company. bcp produce.bcp product.bcp

company.bcp lookup.bcp product.bcp

i, tcZdata I corn pany . bcp I product.bcp I

ec96/classification

Table 49. Files with preprocessing routines used only for one data source

ec96 2.awk”4

I I 1

ktdktaacvk

cot lo n / c o tt o n aw k I const.awk
I I

I dir.awk I

kta0.awk 1 ktal .awk read.awk
kta.awk I kta2.awk ps ascii.awk

The bcp files listed here for EC96 contain only the EC‘96 classification information. As noted earlier (see I I 3

Sect. 4.3) and as discussed further in Sect. 4.8.4. the cornpan) -specific EC96 raw data are used directly by
the do-ec96 routine.

I he preprocessing of the EC96 classification data also requires a PC-based program that creates dbf files
for the EC96 data entry program. These are then fiuther processed by dbfdunip to create clasrification bcp
files. Some minor manual processing of a text file with data exported from an kucel spread sheet (as noted
i n ec962.awk’s listing) is done before processing the file with ec962.awk. and ec96 2.awk’s output is
the input for the PC-based program.

114 - .

107

4.9.4 File Structure For EC96 Company Specific Data

'The routine that creates the NSDH Sybase database EC96 tables, do-ec96, expects to find
all the data specific to the EC'96-listed companies in a directory oil a remote server. The
subdirectorj structure of that directory is shown i n Fig. 47.

Each EC96-listed company has a subdirectory i n the directorj containing the EC96
companies' data (e.g., there is a Sunbrand subdirector) containing all the Sunbrand company's
data that will be in the EC96 data source). Each company subdirectory may have 0 to 1000
subdirectories, where each such subd irectoi) has the name diskabc (where abc may be any
number from 000 to 999).

The do - ec96 routine will process any file named EC96DATA.ZIP"' (uhere case is not
considered) or anj file having a gif extension that i s in a company subdirector) or is in a
disk.abc subdirectory. It will include each such file's data i n the NSDB EC96 data source.""

coin pa ti y - 1 -n ani e c om pa11y-2~n ani e coin pa ti y-ti-n am e

disk.OOO disk001 ... disk.xyz

Fig. 47. Directory structure for EC96 company raw- data input to do-ec96.

This is the name ofthe file produced by the EC96 data entry program, which -hen unzipped provides
the files product.dbf, product.f@, and company .dbf. These three files, confonning to the format produced by
the data entry program, may be produced in other ways than through the EC96 data entry program and then
zipped into a file named EC96DATAZlP and loadcd into a company subdirectory or a subdirectory of a
company subdirectory.

Data will not be included if they do riot meet certain consjstencq chechs niade during the loading
process.

I I 5

IIh

108

5. INSTALLATION

5.1 GENERAL

An iiistallation procedure for an NSDH Web system is provided i n this part of the systcm
description. ‘This procedure assumes the following: I I7

1.

2.
3 .

4.

5.

6.

7.

The remotely located data soiirccs have been installed at a single location i n a Minerva
database’ ’’ and are accessible via the Internet.
The system Web server will be a Unix platlorin.
Ail NSDB utilities currently residing on the pilot Web server will be installed on the
system Web server.
The installation will have only one “central” database server active a1 any one time;
therefore. each database server that might be the active central database server will
contain all the centrally located NSDB data sources’ data in one database.
The central database servers are some conibination of Sybase database scrvers arid MS
Sol. Server database servers with at least one kJnix-based Sybase server that serves as the
primary central database server.
All NSDH IJnix-based utilities not installed on the Web server will be installed on the
central primary Sybase database server.
Operating systems have been installed oii all computers that will be central NSDB servers
(Unix for the Web server and primary Sybase database server and NT for any MS SOL
Server database servers), and all these computers have access to the Internet.

5.2 DATABASE SERVER INSTALLATIONS

5.2.1 Central Primary Database Server

1. Install server side and client side run time Sybase files and

(a) in the Sybase file interfaces, make entries for each NSDH database that might be used

(b) set Sybase parameter “default sortorder id” to 54. (This is the oiily required
as the active NSDB database and

parameter. The full set used in the pilot is shown i n Appendix €3 for reference).

2. Add four Sybase accounts for NSDB users through use of the Sybase sp-addlogin function.
Grant the first three users all permissions, and grant the fourth user select permissions
only. (The id and password for the third of these four users should be considered to be
reserved for the Web server software).

3 . Install the NSDB database server distribution.

‘The assumptions arc in line with an installation that essentially conforms to the current pilot with the
exception that a different number or mix of replicate databaes (compatible with the existing user interface
command client network utility) may also be included.

I I7

The current user interface software anticipates that only the LAMDB is located on that server. I I?

109

the following parameters i n s e t u p . s h in tisdb-new:"'

NSDBDIR to tlie directory in which the database server distribution was installed.
NSDBSYBASE to the name given this database server entry i n the Sybase
i n t e r f a c e s file.
SYBASEDRNAME to the name that will be given to the primary NSDB database.
SYHASEDEVICE to the name of the device on which the primary NSDB database will
be located.
SYHASELOGDEVICE to the name of the log device for the primary NSDB database.
DBSIZE to the maximum size of the primary NSDB database.
LOGSIZE to the maximum size of the primary NSDB database's log.
NSDBMSSQL to the name given the database server entry in the Sybase
i n t e r f a c e s file for the database server on which a copy of tlie NSDB central
database is going to be created.
MSSQLDBNAME to the name that will be given to the copy of tlie NSDB central
database (usually should be the same as SYRASEDBNAME).
MSSQLDEVICE to the name of the device on which the copy of the NSDB central
database will be located.
MSSQLLOGDEVICE to the name of the log device for the copy of the NSDB central
database.
MSDBSIZE to the niasimum size of the copy of the central NSDB database.

(t i l) MSLOGSIZE to the maxiniuni size of the cGpy of the central NSDH database's log.
(t i) USER1 to the user id for the first account established in step 2.
(0) USER2 to tlie user id for the second account established in step 2.
(p) IJSER3 to the user id for the third account established in step 2.
(4) GUEST1 to the user id for the fourth account established in step 2.
(r) EC96SOUKCEIIOST to the address of tlie server on which tlie "raw company-s data"

for the EC96 data source is stored (e.g., re7alpha.epm.ornl.gov)."o
(s) EC96SOURCEDIR to the name of the directory on EC96SOURCEHOST i n which

the EC96 data source '*raw company's data" is stored (e.g., /usr2/tc2).
(t) EC96KEPORT to the file (which will be placed in the nsdb-new/ec96 directory) into

which the EC96's data source report is to be written.
(u) ACESSSQLFILE to the file (which will be placed in nsdb-new/access) into which the

Access SQL scripts will be written (where the scripts are for use i n implementing the
NSDB Access replicate).

table's data will be written (where the files are for use in implementing the NSDB
Access replicate).

(v) BCPDATADIR to the name of the directory into which files of NSDB database

Create the NSDR central database and NSDR central database tables, and load these
database tables'" by:

Not all these parameters will be required for a particular installation. Parameters a-g, and n-q are
required for any installation. Parameters h-m are convenient to have defined when an NSDB Web replicate
database(s) will be implemented. Parameters r-s are required if the EC96 data source is going to be
reimplemented (via the original implementation process), and parameters u-v are required if a stand-alone
NSDB database is to be created from this implementation's primary database.

user access to the EC96 raw data (analogous to the primary database server providing access to a Web
server user) in order for new EC96 data to be incorporated into the NSDB databases.
I" The NSDB database server distribution contains the routines and data files created by brn-bcp from an
NSDB database. After redo-nsdb creates the installations primary database tables. the data from these data
files will be imported by bcp-in when it is invoked by redo .nsdb.

11'1

The host on which the raw EC96 data will be stored will have to provide a primary database data server

110

(a) giving tlie
cd bcp

(b) and giving tlie

redo-nsdb <user database id> <user database password> .

6. Set up a system user account on tlie server for a user, and create a .rhosts file in the user's
home director) with an en tp providing for the user to remotely log on from tlie Web
server. ('This is to prepare for transferring image files lo the Web server and hence should
be the user accouiit that will be used in carrying out the Web server installation).

5.2.2 MS SQL Server Databases

1 . Install the server side run time MS SQL Server files.

-set MS SQL Server parameter "default sortorder id" to 54.

2. Add four accounts corresponding to those added to the primary database in step 2 of Sect.
5.2.1 (the id's, passwords, and permissions should be the same as in step 2 of Sect. 5.2.1).

3. On the primary database server, either:

(a) Change the current directory to nsdb-new/NT and give the command:

do-it-ms <user database id> <user database password>

(if the values of NSDBMSSQL., MSSQI,DEVICE, MSSQLLOGDEVJCE, MSDBSIZE,
and MSLOGSIZE i n s e t u p . s h on the primary database server are what is desired
for this NSDB MS SQL Server database-see step 4 of Sect. 5.2.1)

or

(b) i. Modify any of the parameters NSDRMSSQL, MSSQLDEVICE,
MSSQLLOGDEVICE, MSDBSIZE, and MSLOGSJZE in s e t u p . sh, which require
modification for this database replicate.

ii. Change the current directory to nsdb--new/NT and give the conimand:

do-it - ins <user database id> <user database password>

or

(c) Change the current directory to nsdb-new/NT, and then while including optional
arguments' 24 as shown subsequently for those parameters requiring different values
than in s e t u p . s h , give the coinmand:

It is assumed that nsdb-new is the current directory before this command (i.e,, that the current directory
is the directory that setup.sh is in and whose full path is given by the parameter NSDBDIK i n setup.sh)

The "<" and -->" should not be included in the command: they are used in this part of this description
to demark a parameter.

Only a subset of the six optional arguments, those after the user database password shown, need be
included. The values for the parameters associated with argunients that are not included will be those
provided i n setup.sti.

122

12i

I21

111

do-i t m s <user database id> <user database password>
-cdn<rcpl icate database iiatnc>
-cs<data server pointer for database replicate>
-cdv<name of device on which replicate database will reside>
-cdz<name of device on which replicate database-s log will reside>
-clv<maxiiiium replicate database size,
-cdz<nia?iiinuin size of replicate database>

5.2.3 Other Sybase Databases

1 . Install the server side Sybase files.

-set Sybase parameter "default sortorder id" to 54.

2. Add the same four accounts added to the primary database in step 2 of Sect. 5.2.1

3. On the primary database server, either:

(a) Change the current directory to nsdb-newM1' and give the command:

do-it-ins <user database id> <user database password> -cyb

(if the values of NSDBMSSQL, MSSQLDEVICE, MSSQLLOGDEVICE, MSDBSIZE, and
MSLOGSIZE in s e t u p . s h on the primary database server are what is desired for this
NSDB Sybase replicate database - see step 4 of Sect. 5.2.1)

or

(b) i. Modify any of llie parameters NSDBMSSQL, MSSQLDEVICE,
MSSQLLOGDEVICE. MSDBSIZE, and MSLOGSIZE in s e t u p . s h , which require
modification for this database replicate.

i i . Change the current directory to nsdb-new/NT and give the command:

do-it-ins <user database id> <user database password> -cyb

or

(c) Change the current directory to nsdb-new/NT, and then. while including optional
arguments"' as shown subsequently for those parameters requiring different

values'?' than in s e t u p . s h , give the comniand:

do-it-ms <user database id> <user database password> -cyb
-cdn<replicate database name>
-cs<data server pointer for database replicate>
-cdv<name of device on which replicate database will reside>
-cdz<naine of device on which replicate database's log will reside>
-c I\ <maxi m uni rep I icate database size>
-cdz<inaximum size of rep1 icate database>

"' The '--cyb." which indicates that a Sybase database replicate is to be produced, i s not optional here.

112

5.3 WEB SERVER INSTALLATION

1 . Install an HTTP Server that is capable of recognizing .cgi files (e.g., Apache H'TTP
Server).

--€'onfigure the Server by defining an alias for /Nsdb as the path to the directory into
which the NSDB distribution will be installed (e.g., in Apache 1. 1 . 3 define the
alias in the file conf /srm.conf).

i n Apache 1.1.3 add "Add1 landler cgi-script .cgi'" to the file srm.conf).
-Perform any operation(s) needed to ensure that the .cgi files are recognized (e.g..

2. Install the client side Sybase run time files.

-111 the Sybase tile in terfaces . make entries for each NSDB database that might
be used as tlie active central NSDB database.

3 . Install the client side m s q l riin time files.

4. Install Per1 5.003.

-It should be installed either i n the directory /iisr/local/bin, o r a symbolic link
to it should be placed i n that directory.

5 . Install the Free Wais-sf freewarc package.

6. Install the NSDH distribution (this will contain all the files for the standard user interface,
the Web server-based utilities and routines for completing the installation).

7 . Set the following parameters in the file Nsdb.pm in the top NSDB directory, Nsdb:

(a) $NsdbDir to the path to the directory Nsdb (i.e., the top NSDB directory).
(b) $SYBASE to the path to the directory i n which the Sybase run time files have been

installed.
(c) $DSQUERY to the name of tlic entry in the Sybase file i n t e r f aces for the

database that has been installed as the primary central NSDB database.'26
(d) $SybaseUser to the Web server user id established in the NSDB database installation(s)

(i.e., the value of IJSEK3 in step 2 Sect. 5.2.1).
(e) $SybasePassword to the Web server password established in the NSDB database

installation(s) (ix., the password provided to USER3 i n step 2 Sect. 5.2.1).
(f) $MINISQL to the path to the directory in which the m s q l riin time files have been

instal led.
(g) $LamHost to the name o f the Minerva database server (in which the LAMDR has

been implemented).

8. Set the following parameters i n the file sybase . s h in the directory Nsdb:

(a) SYBASE to tlie path to the sybase client side software.
(b) DSQlJERY to the name of the entry in the Sybase file i n t e r f aces for the

database that has been installed as the primary NSDB databasc.

Here it is assumed that the primary Sybase database will be used initially as the database for the NSDB. I26

This is the parameter that will be changed anytime a switch to a database on a different server i s made.

the following parameters in the file s e t u p . s h in the directory Nsdb:

DATABASE to the name of the primary Nsdb Sybase database.
SybaseUser to the Web server user id established in the NSDB database installation(s)
(i.e., the value of USER3 in step 2 i n Sect. 5.2.1).
SybasePassword to the Web server password established for the user in the NSDB
database installation(s) (i.e., the password provided to USEK3 in step 2 i n Sect. 5.2.1)

the following parameter in the file s e t u p . s h i n the directory Nsdb/wais:

NsdbDir to the path of the directory Nsdb (i.e., the top NSDB directory).

the following parameter i n the file s e t u p . pl in the directory Nsdb/wais:

$NsdbDir to the path of the directory Nsdb (i.e., the top NSDR directory).

the following parameters in the file s e t u p . s h i n the directory Nsdbhpdate:

NsdbDir to the path of the director) Nsdb (i.e.. the top NSDB directory).
SYBASE to tlie path to the sybase client side software.
DSQUERY to the name of the entry in the Sybase file i n t e r f a c e s for the
database that has been installed as tlie primary NSDB database.
DATABASE to the name of the primary Nsdb Sybase database.
SybaseUser to the third Web server user id established in the NSDB database
installation(s) (Le., the value given USER3 in step 2 in Sect. 5.2.1).
USEKl to the first Web server user id established in the NSDB database installation(s)
(i.e., the value given USER1 in step 2 i i i Scct. 5.2.1).
USEK2 to the second Web server user id established i n the NSDB database
installation(s) (Le., the value given USER1 in step 2 i n Sect. 5.2.1).

up for the NSDB access counts utility by setting LOG in the routine s e t u p e s h i n
directory NsdWaccess to the path to the Apache log.

The insrallation procedures for the primal?; NSDB database should huve been completed
before the next step of the Web server installation is curried out.

14. Install the stored SQL procedures in the primary Sybase database, copy the data source
image files to the Web server, create the cross-data source enabling files, and insert the
primary Sybase database name and user id’s into the batch update routines by giving the
corninand: ’ ”

1 tistall-Setup

The installation procedures for all the replicate NSDB databases should have been completed
bejbre the next step oj the Web server instulIarion is carried out.

15. Create the stored SQL procedures in each replicate NSDH database by giving the
command: ”’
Create-. SQL -sf<database server pointer> -sn<database name>

It is assumed here that before giving the specified command the current directory is Nsdb 127

114

for each replicate NSDB database

The installation i s now completeNote thal the wais indcx nizist he updated each time a datu
soiircc in /he NSDB is zpcluted und t h d ci set of iinages must he copied to the Web server
each lime n &IU source wiih irncigcs is i i pk i f~d in [he ATSDB. Rather thaw ret‘xeczde
IristLilI Setup (step 13). which cimong other thing, reconstructs all of the &tu source
enahlingfi1e.s and copies ull the iinuge files ,froni the prirnur-v d~itabuse swvt’r, the wciis imlex
tqduling and image copying CUYI he carried out onlj. jbr the &tu sources that huw been
r piutet l . For zpluting the wais i n k y $)r ~i chrtu source iv,uyz:

1. Make the current directory Nsdblwaisiwxyz .
2. Give the command This.Generate .
3 . Give the command cd .. .
4. Give the command IndexBuild wxyz/*.data

For copying datci source xyz’s inrages fi.onr the file ubcdhyz/gifs on (I chtu server named
“&serve ”:

1 .
2. Give the command

Make the web servers current directory Nsdb/images/xyz.

rsh duserve “/hin/sh -c ‘cd ubcd/iy?=/X.ifi: tar cf - *..gif”’ 1 tirr xvJn

(note here ubcd would he the vulzde ofNSDBDM in step 4 in I~‘Ll1).

115

APPENDUII A

NSDR DATABASE TABLES

APPENDIX A. NSDB DATABASE TABLES

A.l TABLE WITH RECORD FOR EACH DATA SOURCE

Table number 0.0: sources

Column-name Type"8

id strlO
provider-name str255
prvdr-phone str20
prvdr-f ax str20
prvdr-email str40
description text

.................... -------

data
logo

DB-name
path

text

str50
str50

abreviation str2

update-dat e editday

contact str50

title str50

phone
fax
email
address
city
state
zip
comment
last-updated

str2O
str20
str40
str40
str40
str2
str20
str255
editday

Length

l o
255
20
20
40

50
50

50

50

20
20
40
40
40
2
20
255
8

Object does not have any indexes.

No d e f i n e d keys for this object.

0
0
1
1
1

0
0

0

0

1

1

1
1
1
1
1
1
1
1
1

/ * any text
supplied by the
provider, * /
/ * image (.gif):
logo of data
provider * /
/ * Database name*/
/ * path from
/home/ptv to run
all scripts * /
/ * 2 characters
abbrev. used in
table names*/

/ * the date of the
last DB content
editing * /
/ * name of the
contact person * /
/ * title of the
contact person* /

types strxx. etc. are user dcfined var(xx) types.
a 0 means nulls not allowed in this column and a 1 nizans nulls are allowed in this column.

12%

129

A- 3

A.2 GCA (GARMENT CONTRACTORS ASSOCIATION OF SOUTHERN
CALIFOKNIA) TABLE

Table number 1.1: GC-Company

Column-name Type

id strlO
name str40
registration-number str2O
ceo str40
contact-name str40
address str40
city str20
state str2
zip strlO
phone str20
fax str20
joined-date date t ime
gca-account-number str5
company-type str50
number-of-employees int
number-of-machines int
min-number-of-units str40
sewing-system str50
price-and-quality str40
services-provided str255
material-capability str200
equipment str255
womens str255
mens str255
chi ldrens strl50
other-products str255
description str255
has-active-membership str2
comment strlOO
last-updated editday

Length

10
40
20
40
40
40
20
2
10
20
20

8
5
50
4
4
40
50
40
255
200
255
255
255
150
255
255
2

100
8

- - - - - - - -
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
NULL
blnk
blnk
NULL
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

todays-date

No defined keys for this object.

A-4

A.3 COTTONINC (COTTON INCORPORATED) TABLES

Table number 2.1: CI-Company

id
name
address 1
addres s2
addres s3
contact 1
contact2
contact 3
phone
fax
comment
last-updated

strlO
str50
str50
str50
str50
str50
str50
str50
str25
str25
strlOO
edit day

10
50
50
50
5 0

50
50
50
25
25
100
8

Nulls

0
1
1
1
1
1
1
1
1
1
1
1

index-name index-description

CI-Company-indx clustered, unique located on default
-__-------

No defined keys for this object.

Table number 2.2: CI-Produce

Colum-name

id
company-id
c ompany-name
category
subcategory
comment
last-updated

strlO
strlO
str50
str40
str40
strlOO
editday

Length
- - - - - - - -

10
10
5 0

40
4 0

100
8

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
b l n k
blnk

todays-date

Default-name
I-----------

blnk
blnk
blnk
blnk
blnk
blnk

todays-date

No defined keys for this object.

A- 5

A.4 AUBURN (ALABAMA TEXTILE AND APPAREL PRODUCERS DIRECTORY)
TABLES

Table number 3 . 1 : AU-Company

Column-name Type

id
old-id
name
annual-sales
parent-company
president
parent-address
parent-city
parent.__zip
parent-zip4
parentghone
parent-fax
data-contact
data-contact-title
address1
address2
city
state
zip
z ip4
county
phone
fax
data-address1
data-address2
da t a-c it y
data-state
data-zip
data-zip4
data-phone
date-founded
last-update
owners hip
knits
wovens
nonwovens
manufacturer
private-label
branded
commission
converter
contractor
full-package
cmt

strlO
float
str50
float
str4O
str40
str40
str25
strlO
str5
str20
str20
str40
str40
str40
str25
str20
strlO
strlO
str5
str20
str20
str20
str25
str25
str20
str2
str5
str5
str20
strlO
strlO
strlO
str2
str2
str2
str2
str2
str2
str2
str2
str2
str2
str2

Length
- - - - - - - -

10
8
50

8
40
40
40
25
10
5
20
20
40
40
40
25
20
10
10
5
20
20
20
25
25
20
2
5
5
20
10
10
10
2
2
2
2
2
2
2
2
2
2
2

Nulls

0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I-----

Def ault-name

blnk
NULL
blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

A- 6

fiber
yarn
textile-mill
convertor
dyeing-and-printing
unionized
percent-unionized
unionized-depts
total-employees
production-employees
admin-mgt-employees
factories
dun - and-bradstreet
bank-reference
assoc-memberships
refs
prod-certification
comment
last-updated

index-name

str2
str2
str2
str2
str2
str2
float
str200
float
float
float
str200
str20
str20
str200
str200
str200
strlOO

editday

2
2
2
2
2
2
8

200
8
8
8

200
20
20
200
200
200
100

8

index-description

No defined keys for this object.

Table number 3.2: AU-Product

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

C ol umn-name Type Length Nulls
- - - - - - - - ---_-- -------

id strlO 10 0
old-id str5 5 0
description str80 80 1
comment strlOO 100 1
last-updated editday 8 1

blnk
blnk
blnk
blnk
blnk
blnk
NULL
blnk
NULL
NULL
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk

todays-date

index-keys

id, name
---______

Default-name

blnk
blnk
blnk
blnk

todays-date

index-keys

id,
description

-- -_----_

No defined keys for this object.

A- 7

Table number 3.3: AU-Produce

Column-name
....................
id
company-id
company-name
product-id
description
capacity-perweek
minimum
weight
fiber
price-pt
1 ead-t ime
comment
last-updated

Type

strlO
strlO
str50
strlO
strlOO
float
float
strlO
strlO
str25
strlO
strlOO
editday

- - - - - - -
Length

l o
10
5 0
1 0
100

8
8

1 0
10
2 5

10
100

8

Nulls

0
0
1
0
1
1
1
1
1
1
1
1
1

Def ault-name

blnk
blnk
blnk
blnk
blnk
NULL
NULL
blnk
blnk
blnk
blnk
blnk

todays-date

index-name index-description index-keys

AU-Produce-indx clustered, unique located on default id ,
company-id,
product-id

No defined keys for this object.

A- 8

Table number 3.5: AU-CompanyMachDetail

company-id strlO
old-id float
c ompany-name str50
single-needle-lockstitch str5
multi - needle-lockstitch str5
overedge-serger str5
safety-stitch str5
chain-stitch str5
cover-stitch str5
cover-seamer str5
blindhemmer str5
felling-machine str5
bartack str5
iron-flat-press str5
form-pressing str5
buck-press str5
auto-button-holer str5
auto-button-sewer str5
auto-label-sewer str5
auto-beltloop-attacher str5
auto-pocket-setter str5
heatgress-label-attacher str5
snap-rivet-grommet str5
cuff - collar str5
toyota-sewing-sys str5
unit-production-sys str5
edi str5
elec-purchase-order str5
elec-advance-shipping str5
elec-invoice str5
barcoding str5
last-updated editday

10
8
50
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
8

0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

todays-date

index-keys

company-id,
company-name

No defined keys for this object.

A- 9

Table number 3 . 6 : AU_-CompanyTechDetail

Column-name Type
.................... -------
company--id strlO
old-id float
company-name str5O
design str5
manual-design str5
computer-design str5
sample-making str5
pattern-making str5
manual-pattern str5
computer-pattern str5
grading str5
manual__grading str5
marker-making str5
manualmarker str5
computer-marker str5
spreading str5
manual-spreading str5
computer-spreading str5
cutting str5
manual-cutting str5
computer-cutting str5
fusing str5
embroidery-design str5
embroidery str5
app 1 ique str5
embossing str5
pleating str5
qui 1 t ing str5
screen-printing str5
garment-dye str5

laundry str5

denim-processing str5

statistical-qa-processing str5
lab-testing str5
in-process-inspection str5
final-inspection str5
modular__team-sewing str5
progres sive--bundl.e str5
off shore str5
hanger-packing str5
flat-packing str5
pre-ticketing str5
ship-common-carrier str5
drop-shipping str5
own-t ruc k.-to-s hip str5

post-curing str5

stone-washing str5

quality-assurance str5

Length

10
8
50
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

- - - - - - - -
Nulls

0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Def ault-name

blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

A-10

other str5
storagegiece-goods str5
storage-finished-goods str5
sprinkler-system str5
size-less-50 str5
size-50-to-100 str5
size-greater-100 str5
comment strlOO
last-updated editday

5
5
5
5
5
5
5

100
8

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

todays-date

No defined keys fox this object.

Table number 3 . 7 : AU-Category

Column-name Type Length Nulls Def ault-name

id strlO 10 0 blnk
old-id int 4 0 NULL
name str50 50 1 blnk

---I---------------- ------- -------- ----------I-

No defined keys f o r this object.

Table number 3.8: AU-ProductCategory

Col umn-name Length Nulls Default-name

category-id
product-id

strlO 10
strlO 10

0
0

blnk
blnk

index-name index-description index-keys

AU-ProdCategory-indx clustered located on default
---------------- ------_--------I-

category-id,
product-id

No defined keys fo r this object.

A-1 1

A.5 KTA (KNITTED TEXTILE ASSOCIATION) TABLES

Table number 4.1: KT__Company

Column-name Type Length
.................... ------- - - - - - - - -
id
name
c OmPanY _.tY P e
addre s s
city
state
zip
phone
fax
contact 1
comment1
contact 2
comment 2
contact 3
comment 3
contact 4
comment4
contact 5
c ommen t 5
c omen t 0
branch
second-address
second-city
second-state
second-zip
second-phone
second---f ax
second-contact1
second-comment1
second-contact2
second-comment2
second--contact3
second-comment3
second-contact4
second-comment4
second-contact5
s e c ond-c o m e nt 5
second-comment0

i nde x-name

strlO
str80
str50
str40
str40
str20
str20
str20
str20
str25
str80
str25
str80
str25
str80
str25
str80
str25
str80
text
str5O
str40
str40
str20
str20
str20
str20
str25
str80
str25
str80
str25
str80
str25
str80
str25
str80
text

10
80
50
40
40
2 0
2 0
2 0
2 0
25
80
25
80
25
80
25
80
25
80
16
50
40
40
20
20
20
20
25
80
25
80
25
80
25
80
25
80
16

index-description

Nulls

0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

KT-Company-indx clustered, unique located on default

Default-name

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
NULL

index-keys

id, name
- - - - - - - - -

No defined keys for this object.

A-12

Table number 4.2: KT-Product

Column-name ___----_____________ -
id
name
fibers
product-type1
product-type2
product-type3
description

Type
----__
strlO
strlOO
str200
str255
str255
str255
str255

Length
____----

lo
100
200
255
255
255
255

Nulls

0
1
1
1
1
1
1

No defined keys for this object.

Table number 4.3: KT-Produce

Column-name Type Length Nulls
___-----____---_--__ ------- -I------ ------
c omp any-id strlO 10 0
product-id strlO 10 0
location str2 2 0

Default-name
----____----

blnk
blnk
blnk
blnk
blnk
blnk
blnk

index-keys

id, name

Default-name

blnk
blnk
blnk

index-keys

company-id,
product-id

No defined keys for this object.

A-1 3

A.6 SEAMS (SOIJTHEAST APPAREL MANUFACTURERS ASSOCIATION) TABLES

Table number 5.1: SM-Company

Column-name Type
-----1----1--------- -------
id strlO
name str40
account-number strlO
number-of-employees int
address 1 str25
addres s2 str25
state strlO
z ip strlO
phone str20
fax str20
c eo_-t i t le str40
ceo-name str40
company-type str50
number-of-sewing-machines int
number-of-operators int
has-cutting-tables str2
has-finishing-capability str2
makes-primarily str50
contact-name str25
contact-title str25
has--screen-printing str2
join-date dat et ime
join-note str5O
description text
memberships str40
has-warehouse str2
can-purchase str2
can-distribute str2
basic-equipment strlO
automatic-equipment strlO
flexible-equipment strlo
uses-computer-cutting str2
uses-manual-cutting str2
number-of-cutting-tables int
max-width-of-fabric float
max-length-of-marker float
special-cutting str5
has-_cut-binding str2
has-bias-cutting str2
has-cross-cutting str2
production str5
quality-control str40
packaging-capability str5
pressing-equipment str5
shipping-capability str5
comment strlOO

Length
- - - - - - - -

10
40
10
4
25
25
10
10
20
20
40
40
50
4
4
2
2

50
25
25
2
8
50
16
40
2
2
2
10
10
10
2
2
4
8
8
5
2
2
2
5
40
5
5
5

100

Nulls

0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

1
I
1
1
1
1
1
1
1
1

Default-name

blnk
blnk
blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
NULL
NULL
blnk
blnk
blnk
blnk
blnk
blnk
NULL
blnk
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
NULL
NULL
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

A-I4

last-updated editday 8 1 todays-date

No defined keys for this object.

Table number 5.2: SM-Product

id
code
category
subcategory
description
comment
last-updated

strlO 10
str5 5
str40 40
str40 40
str80 80
strlOO 100
editday 8

No defined keys for this object.

Table number 5.3: SM-Produce

Column-name Type Length Nulls
------- -------- ...-----

company-id strlO 10 0

product-id strlO 10 0

last-updated editday 8 1
comment strlOO 100 1

blnk
blnk
blnk
blnk
blnk
blnk

todays-date

index-keys

id ,
description

Default-name
-___-----___

blnk
blnk
blnk

todays-date

index-keys

company-id,
product-id

No defined keys for this object.

A-1 5

A.7 'IT2 (TEXTILE CLOTHING TECHNOLOGY CORPORATION) 'TABLES

TC2 tables currently empty.

Table number 7.1: TC-Company

Column-name Type Length Nulls Default-name
.................... ------- - - - - - - - - ------ ------------
id
name
company-type
address
city
state
zip
phone
fax
contact 1
comment1
contact 2
comment2
contact 3
c omen t 3
description
production
comment
last.-updated

strlO
str80
strlOO
str40
str40
str20
str20
str20
str20
str40
str80
str40
str80
str40
str80
text
strlOO
str255
editday

10
80
100
40
40
2 0
20
20
20
40
80
40
80
40
8 0

100
2 55

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Table number 7.2: TC-Product

Column-name Length

id
name
type
description
comment
last-updated

strlO 10
strlOO 100
strlOO 100
text
strlOO 100
editday

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

blnk
blnk

today-date

Nulls Default-name

0 blnk
0 blnk
1 blnk
1
1 blnk

-----I ------------

todays-date

A-16

Table number 7.3: TC-Produce

Column-name Length Nulls Default-name

company-id
product-id
comment
last-updated

strlO 10
strlO 10
str255 255
editday

blnk
blnk
blnk

todays-date

Table number 7.4: TC-Category

index-name index-description index-keys

TC-Category-indx clustered,' unique located on default id, name
---------- -------I-

Table number 7.5: TC-ProductCategory

Column-name Length Nulls Default-name

category-id
product-id

strlO 10
strlO 10

0
0

blnk
blnk

i ndex-n m e index-description index-keys

TC - ProductCategory-indx clustered, product-id,
unique located on default c ategory-id

---------- ----------

A-17

A.8 EC96 (ELECTRONIC CATALOG 96) TABLES

Table number 8.1: E6-Company

Column-name
....................
id
name
street0
city0
state0
zip0
phone0
f ax0
email0
url
name 1
inf 01
street1
city1
state1
zip1
phone 1
f ax1
emaill
name2
inf 02
street2
city2
state2
zip2
phone2
f ax2
ernail2
inf 03
street3
city3
state3
z ip3
phone3
f ax3
email3
description
comment
last-updated

Type

strlO
str80
str40
str40
strlO
strlO
str20
str2O
str40
strl50
str80
str80
str40
str40
strlO
strlO
str20
str20
str40
str80
str80
str40
str40
strlO
strlO
str20
str20
str40
str80
str40
str40
strlO
strlO
str20
str20
str40
str255
strlOO
editday

- - - - - - -
Length
- - - - - - - -

10
80
40
40
10
10
20
20
40
150
80
80
40
40
10
10
20
20
40
80
80
40
40
10
10
20
20
40
80
40
40
10
10
20
20
40
255
100

Nulls

0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1
1
1
1

1
1
1

Default-name

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

todays-date

A-18

Table number 8.2: E6-Product

Column-name
-----------_________
id
product
classification-id
company-id
contact-name
phone
fax
emai 1
bulletl
bullet2
bullet 3
bullet4
bullet5
bullet6
bullet 7
bullet 8
bullet9
bullet 10
bulletl 1
bullet 12
description
graphics
ur 1
cominent
last-updated

index-name

Type

strlO
str80
strlO
strlO
str80
str20
str20
str4O
str80
str80
str80
str80
str80
str80
str80
str80
str80
str80
str80
str80
text
str20
strl50
strlOO
editday

- - - - - - -
lo
80
10
10
80
20
20
40
80
80
80
80
80
80
80
80
80
80
80
80

20
150
100

index-description

Table number 8.3: E6-Classification

Column-name Type Length

id strlO 10
primary-group str80 80
category str80 80
class str80 80

type str80 80
comment str1OO 100
last-updated editday

- - - - - - - - ----_-_________---c- --_____

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

blnk
blnk
blnk

todays-date

index-keys

id, product
----_----

Default-name

blnk
blnk
blnk
blnk
blnk
blnk

todays-date

Object does not have any indexes.

No defined keys for this object.

A-19

A.9 GIDC (GARMENT INDUSTRY DEVELOPMENT CORPORATION) TABLE

Table number 9.1: GI-_-Company

Column-name Type Length

id strlO l o
CompanyJame str80 80
Company-Category str255 255

.................... ------- - - - - - - - -

NY-Registration-Number str20 20
Contact-Person
Contact-Title
AddressNumber
Address-Street
Suite
City
State
zip
Years-in-Business
Employees
Principal
Size-Faciltiy
Yearly-SalesVolume
Current-Customers
Turnarount--Time
Order-Size
Minimum--quan t i t y
Product ion-c apac ity
Pr oduc t._L ine
Market

str80
str20
str20
str40
strlO
str20
str5
strlO
strlO
strlO
strlO
strld
strlO
strlO
strlO
strlO
strlO
strlO
str80
str40

80
20
20
40
10
20
5
10
10
10
10
1 0
1 0
10
10
10
10
10
80
40

Merchandise--Categories str255 255
Service-Provided str255 255

What-countries-801 str80 80
Percent-Business-807 strlO 10

Do-you-import str5 5
Percent-Business-imported strlO 10

Do-you-export str5 5

Do-you-purchase-piece-goods str5 5
Warehouse-Facilities str5 5

Final-Inspection str5 5

What-Countries-imported str80 80

What-percent-business-Exported strlO 10
What-countries str80 8 0

Other-Services str80 80
Machinery str255 255

Inspectors-per-operation str40 40
Inspection-Process str80 80
Piece-Goods-Inspection str80 80
House-testing str80 80
Inspection-documentation str80 80

Nulls

0

0
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Default-name

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

A-20

Overall-quality-level str40
Packaging-Shipping str20
Ship-Assorted-Pack str5
Sort-Prepacks str5
Pressing-Equipment str80
Cutting-Capabilities str20
Number-of Cutting-Tables strlO
Maximum-Fabric-Width strlO
Maximum-Fabric-Length strlO
Special-Situations str40
Phone str20
Shipping str20
Defect-Rate strlO

40
20
5
5
80
20
10
10
10
40
20
20
10

1
1
1
1
1
1
1
1
1
1
1
1
1

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

index-keys

id,

Company-Name

A-2 1

A.10 LOUISIANA APPAREL MAKERS DATABASE (LAMDB) TABLE

Louisiana (usL)'~'
remotely located at the University of Southwestern

Column-name

id
name
address
city
state
zip
phone
fax
email

ceo
contact
type
employees
machines
units
sewing
price
unionized
percentage
cutting
width
length

-----------_--

www

s2_.1
s 2-2

s2__3

s2--5

s2__7

s 2-4

s 2-6

s 2-8
s2-9
s2-10
s2-11
s2-12
s2--13
s2-14
s3-1
s3-2
s3-3

Type

int
char
char
char
char
char
char
char
char
char
char
char
char
int
int
int

char
char
char
int
int
int
int

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

Length

4
8 0

1 6 0
40

2
1 0
10
1 0
40
8 0
40
40
40

4
4
4

40
40
1
4
4
4
4
6
3
4
5
3
6
4
3
3
9
3
3
4
7

1 0
8
8

Not Null
- - - - - - - -

Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Key

Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

The 1,AMDB was created by lJSL in a Minerva database that is maintained at USL as an NSDB I i o

external data source The previous tables are part of databases created and maintained at ORNL in a Sybase
database and MS SQL Server and Access replicates o f the Sybase database

A-22

s 3-4
s4-1
s 4-2
s 4-3
s 4-4
s4-5

s4-7

s 4-9

s 4-6

s4-8

s4-10

char
char
char
char
char
char
char
char
char
char
char

4
6

2 4
7
7
4
7
3
9

1 8
9

N
N
N
N
N
N
N
N
N
N
N

N
N
N
N
N
N
N
N
N
N
N

A-23

APPENDIX R

PILOT NSDB SYBASE DATABASE PARAMETERS

APPENDIX B. PILOT NSDB SYRASE DATABASE PARAMETERS

Table 8-1.
r

name

recovery interval
allow updates
user connections

memory

open databases

lochs

open objects

procedure cache
fill factor
time slicc
database size
tape retention
recovery flags
nested trig‘gers
devices
remote access
remote logins

remote sites

remote connections

pre-read packets

upgrade version

default language

language in cache
iriax online engines
rnin online engines
engine adjust interval
cpll flush

default sortorder id

~

‘The pilot central NSDB Sybase database server Iiosts a set of databases other than the NSDH.
‘I’hc parameters used for the NSDB Sybase database were thosc that were iii place for other
databases on the system except for the default sortorder id. ‘Ilie paranieters follow i n Table
13- 1.

Pilot NSDB Sybase Database parameters
in i n i in uni maxim LI m config value run value

I 32767 0 5
0 1 0 0
5 214748364 0 25

3850 2 I4748364 24576

5 214748364 0 12

5000 2 14748364 2500 2500

100 214748364 0 500

1 0 9 0 20
0 100 0 0
50 1000 0 100
2 10000 0 2
0 365 0 0
0 1 0 0
0 I 1 1
4 256 0 I00
0 I 1 1
0 214748364 0 20

0 214748364 0 10

0 214748364 0 20

0 214748364 0 3

0 2 14748364 100 1 1001

0 255 54 54
0 214748364 0 0

3 100 3 3
1 32 1 1
1 3 2 1 1
1 32 0 0
1 21 4748364 200 200

7

7

7

7

7

24576

7

7

7

7

7

7

7

B-3

B-4

INTERNAL DISTIUHlJTION

1 . J . Barhen
2- 4. W. C. Grirnmell

5 . W. L. Jackson
6- 7. R. W. Lee

8 . M. A. Miller
9 . L. E. Parker

10-1 1 . S . Petrov
12. E. C. [Jberbacher
13. H. A. Worley
14. Central Research Library
15. OKNL Laboratory Records - RC

16- 17. ORNL Laboratory Records - OSTI

EXTERNAL DISTIUBU T ION

18. Lenda Jo Anderson, Spidle Hall> Auburn Ilniversity, Auburn, Alabama 360 1-5602

19-20. L. D. Chapinan, Sandia National Laboratories, 15 15 Eubank S G , Albuquerque,
New Mexico 87 123-0746

2 1 . Steve Freudenthal, Millikeri & Company, 920 Milliken Road, M-482, Spartenburg,
South Carolina. 29301

22. Denis Gracanin, University of Southwestern Louisiana, A-CIM Center,
24 1 East I.ewis St., Rougeou Hall, Room 1 1 5 , Lafiyette, Louisiana 70503

23. David Koegel, Department of Energy, Office of Energy Research, ER-32,
19901 Germantown Road, Germantown, illaryland 20874

24-26. J. L. Lovejoy, [.IC]’, 21 1 Gregson Drive, Cary, Nortli Carolina 2751 1-7909

2 7. Barbara Meloche, Sandia National Laboratories, , Sandia Natioiial L,aboratories,
15 15 Eubank SE. Albuquerque. Ncw Mexico 87123-0746

28. J. A. Stutts, 264 Ikerd Drive, SE, Concord, North Carolina 28025

29. K. E. Washington, Sandia National Laboratories, 15 I5 Eubank SE, Albuquerquc,
New Mexico 87 123- I 137

