CKHEED MARTIN ENERGY RESEARCH LIBRARIES

MATEATIRIT

3 yy5L 04454493 5

JOBNL/TM-13678 .
(DAMA-G-6-98}

DAMA National Sourcing
Database System Description

Bill Grimmell
Ron Lee
Sergey Petrov

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors trom the Office of Scientitic and
Technical Information. P.O., Box 62. Oak Ridge. TN 37831: prices available
from (613) 376-8401.

Available to the public from the National Technical Information Service. U.S.
Deparment of Commerce. 32835 Port Royal Fr.. Springficld. VA 22161

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency (hereof. nor any of their employees. nor any of their contractors.
subcontractors. or their employees. makes any warranty. express or implied. or
assumes any legal tiability or responsibility for the accuracy. completeness. or
usefulness of any information. apparatus. product. or process disclosed. or
represents that its use would not infringe privately owned rights. Reference
herein 1o any specific commercial product. process. or service by trade name.
trademark. manufacturer. or otherwise. does not nccessarily constitute or imply
its endorsement. recommendation. or favoring by the United States Government.
any agency thereot or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government. any agency thereof or any of their contractors.

ORNL/TM-13678
DAMA-G-6-938

DAMA NATIONAL SOURCING DATABASE
SYSTEM DESCRIPTION

Bill Grimmell
Computer Science and Mathematics Division

Ron Lee
Computational Physics and Engineering Division

Sergey Petrov
Life Sciences Division

Date Published: September 1998

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6285

managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-960R22464

LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES

PRI

3 Y45L O4y5493 5

l

CONTENTS

Page

LIST OF FIGURES ... oo et ettt e e e e et e e aaee s e e e ae e e s e e reeeans vii
LIS T OF T A B LS oo e ettt e e e e e et s e e s e eeaaees ix
A R OIN Y M S e e e e e e et e et e e e e e e e e e X1
F O R W A R DD et e et e e e e e e e rea—r e XV
ACKIN OW L E DG M E N T S . e e et e et rae s xvil
T INTRODUGCTION Lot et e e 1
Lol OV E RVIE W e e e e e e e e 1
1.2 PILOT IMPLEMEN T A TTION S et ee e e e 2
1.3 RELATED STAND-ALONE SY STEM . .. ittt e 4
Lo U T T S ettt s ettt e e e ae s e e e e e e e e aaaas 5

2. N S D DA T A B A S S ettt et et e et e e e et st ett e e et rraer et e e e e avaan 7
3 USER INTERFEACT oottt ee et ae e e ee e e e e e aeens 11
3.1 GENERAL STRU CTURE .ot 11
3.2 DATA SOURCE OBJECT DATA FLOW .ot iieeeoeeeeeeeeeeeeae e e aeaeveaaan 13
3.3 NS DB TOP . et e e e e e e en e e e aaean 14
3.4 NSDB DATA SOURCES ... e e e 18
AT GENETAL. ... i e ae e 18

3. AT AP D et 19

4.3 SE A S e 22

344 COttONINC it et e e e s aas 23

3d. S R T A et e et 24

Fi4.6 GOA e e 24

34T GIDC e e e e e 27

3.8 L AMDD B e 28

349 B0 i e ettt ettt st r e 29

3.4.10 Example of NSDB Data Source Web Pagesc..ccccevvviiiireenieiinniieeeeennenn 31

3.5 EXTERNAL DATA SOURUCES ..ot 38
3.6 CROSS-DATA SOURCE SEARCH ..o ee v 38
3.6.1 0 GENEIaAl. oo 38

3.6.2 Creating Cross-Data Source Enabling File Set..........oooocoiiiiine, 38

3.6.3 On-line Cross-Data Source Searchcoooiviue it 42

ili

CONTENTS (continued)

Page

3.7 MULTIPLE WINDOWS et 48
3.8 NSDB PERL PACKAGE. ... e 49
3.9 NSDB PILOT COMMAND CLIENT NETWORK UTILITIES ..., 50
3.10 INTERFACE FILE ORGANIZATION. ...t 51
3.11 DISTRIBUTED NSDBo...iiiiiiiiiiiies e e et eeae s eenaaene e 54
K I I B Tt T) O U U PPN 54
3.11.2 Distributed Data Sources in Sybase and/or MS SQL Server Databases 54
3.11.3 General Distributed Data Source Configuration..........cc.cccviiiieiiiiicierene.n. 55
3.11.4 Inclusion of the LAMDB Data SOUICE.........oiveeeiiiiiiiiiiiieiiiiiivianeieinieaeeeaeanes 56
3.11.5 Distributing NonteXt Media ...t 57

3.12 LINKING TO NSDB REPORTS FROM EXTERNAL WEB PAGES 57
3.13 POTENTIAL INTERFACE ENHANCEMENTS ..o 60
U LT TS e 65
4.1 GENERAL. ...ttt 65
4.1.1 Major Database UtIItIesccoovvrriuiiiiiiee e 65
4.1.2 General Aspects of the Utility Layout and Operationcccccoveeennnn. 67

4.2 CREATING AND LOADING THE SYBASE DATABASE. ..., 68
4.3 CREATING REPLICATE NSDB DATABASES. ... i 74
4.4 BACKUP AND RESTORATION OF THE NSDB SYBASE DATABASE.............. 78
4.5 CREATION OF STORED SQL PROCEDURESccoiiii e 81
4.6 DATA SOURCE UPDATE PROGRAM. ...t 82
4.6.1 General......ooooiiii e 82
4.6.2 Export and Import of Data.......ccooiiiiiiiiii e 84
4.6.3 Transferring Updated Data to “Permanent” Tables...............coeoceiiii. 91

4.7 FURTHER ASPECTS OF THE MAIN UTILITY PROGRAMSccooivie. 92
4.7.1 Insertion of Parameters into SQL ScriptS......ccccoivciciiiiiiiiimiiniiiiiiieeeieceeenens 92
4.7.2 Temporary FIles. ..o 93

4.8 MISCELLANEOUS UTILITIES ..ottt 93
4.8.1 General .o o 93
4.8.2 Batch Update Tutorial........cooeeiiiiiiiiiii e e e 93
4.8.3 NSDB ACCESS COUNTS ..oiiiiiiii ettt e et eeeee e eeceenen s 94
4.8.4 EC96 Data Entry Programo.ooieiiiiiiiiiectceeceie e 96
4.8.5 EC96 Data Source StatiSTiCSeuuumuueiurriiriiieniiiieiiiiiecreeirenetieneisaeiiereeeeeerenes 98
4.8.6 Web Server Installation Setup.......ccccccoviiiiiiiii 99

4.9 UTILITY FILE ORGANIZATION. ..ottt e e e 99
A9, General ... s 99

v

CONTENTS (continued)

Page
4.9.2 Utility Files On Web Server.......c..uiiiiiiiiiiiiiiiiiiiiiiiiiieitieeeeeeeen 100
4.9.3 Utility Files On NSDB Sybase Server........coooivieiiiiecriiiciens 103
4.9.4 File Structure For EC96 Company Specific Data..........cccccococciiiinnniiinnns 108
5. INSTALLATION ottt ettt et 109
5.1 GENERAL ettt e e e e e e e eeer e e e e e e e ne et 109
5.2 DATABASE SERVER INSTALLATIONS L.t 109
5.2.1 Central Primary Database SEervercoovioiociirieeirieice e aee e ee e 109
5.2.2 MBS SQL Server Databasesuuiceeeriiiieiiiieiiee s erresis e e reenaai e e eneane 111
5.2.3 Other Sybase Databases........ccccccciiviiiiiiiiiiee e 112
5.3 WEB SERVER INSTALLATION ... oot e e 113
APPENDIX A. NSDB DATABASE TABLES.o A-1
A.l TABLE WITH RECORD FOR EACH DATA SOURCE. ..o A-3
A.2 GCA (GARMENT CONTRACTORS ASSOCIATION OF SOUTHERN
CALIFORNIA) TABLE. ... ettt A-4
A.3 COTTONINC (COTTON INCORPORATED) TABLES ..o A-5
A.4 AUBURN (ALABAMA TEXTILE AND APPAREL PRODUCERS DIRECTORY)
TABLES e et ee et A-6
A5 KTA (KNITTED TEXTILE ASSOCIATION) TABLES ... A-12
A.6 SEAMS (SOUTHEAST APPAREL MANUFACTURERS ASSOCIATION)
A B E S et ettt e e e e s e A-14
A.7 TC2 (TEXTILE CLOTHING TECHNOLOGY CORPORATION) TABLES.....A-16
A.8 EC96 (ELECTRONIC CATALOG 96) TABLES ..., A-18
A.9 GIDC (GARMENT INDUSTRY DEVELOPMENT CORPORATION)
TABLE ..o OSSOSO OSSOSO A-20
A.10 LOUISIANA APPAREL MAKERS DATABASE (LAMDB) TABLE............... A-22
APPENDIX B. PILOTNSDB SYBASE DATABASE PARAMETERSccccoocciiiiinniins B-1

o000 1 LW —

QW W W NN O N NI = = e e e e e

34.

35.
36.
37.
38.
39.
40.
41.
42.

43.

LIST OF FIGURES

Figure Page
Conceptual view of the WWW NSDB.......... |
Representation of original pilot implementation ..., 3
Representation of the cucrent pilot implementation..........occoeiiiniiniin s 4
Flow from NSDB tOD PAZE .. oeeiiieree ettt re s e e e e e e s e re e esar e eeeans 12
FOIIM OBJECT ettt 13
REPOTT ODJECT. ..ttt 13
Representative data source object data flow ... 13
Web NSDB top page WelCOmE.......cooiiiiiiiiiiiiiiiiie e 15
Portion of Web NSDB top page sourcing area dir€ctory......oocoviivieiiriniireeniiiceniiieenns 16
Web NSDB top page data sources and functions..........cccocoeeviiiiiinii 17
Web NSDB top page explanatory information links ... 18
ATAPD object data flowc.ooooiiiiiiiiiiii e 20
SEAMS object data floW.....c.ooiviiiiiiieiiiiiiii e 22
Cotton Incorporated object data flow ... 24
KTA object data floWcociiiiiiiiiiiiiciiiiic e 25
GCA object data flow......coeeverreiieccenirecreene J U U PSS PUUUUPURRPPUURIN 26
GIDC object data flOW.......ocviieiiiiiiiiiii e 27
LAMDB object data fIow.......ccccciiviiiiiiiiiiiii e 28
EC96 object data flow........... e neneeeeeeerereeereettteaaattttatetaaas ettt i ee e ae e e nes 30
ATAPD top FOFMLi ittt e 32
ATAPD category TOM.uuiiiiiiiree ittt e e 33
ATAPD product FOTM ..ot 34
ATAPD company fOrM......ccoooiiiiiiiiiiiiiaiic et 35
Beginning of ATAPD 1epOrt ..ottt 36
References and Machinery sections of part of an ATAPD report...........coooiiiiiin, 37
Creation of cross-data source enabling file set........ooooiiiiiiii e 39
Cross-data source search major object data flowc..coooeieiiiiiiiiiini e, 43
Cross-data source search form.........c.ccccoiiiiiiiiiiii e 44
Cross-data source search company/data source list.........cccoiviiiiiiiiiiiii s 45
Cross-data source search wizard object data flow ..o 47
Cross-data source search wizard field (Step 1) page....cccccovevciiiiivciimmini e 48
NSDB Web user interface directory Structurecoooeeeiiiiciiiimcnciiiiiiiiiiieeeee e eviesvnnans 51
Representation of distributed NSDB with all database management systems
compatible with a single command client network utilitycoooeeiiniiie. 55
Representation of distributed NSDB with sets of database management systems
where each set requires a different command client network utility ..o 56
NSDB Frames prototype user interface display ... 61
NSDB Java-Frames user prototype interface display ..o, 62
NSDB Java prototype user interface display.......ccooivoiiii 63
Major utilities (excluding data source update related utilities)oooooeeiininni 66
Update UHIIES ..ooiiviiiiiiii it 67
Possible setup for implementing MS SQL Server replicate..............coooniiiinn 75
Possible setup for implementing the NSDB Access Database...........ccoooiiiinn 78
Backup and restoration of NSDB Sybase Database and creation of routines for the
backup and reStOrAtION.covcuiiiiii et 79
Data source update PrOCESSoiiiiiimiiiriiie it eeiree et a et e e 83
Portion of SEAMS worksheetl......ooooiiiiimiiiiieeei e 84

44,

vii

LIST OF FIGURES (continued)

Figure Page
45. Web server NSDB utility directory SIruCtureooooiiiiiiiireeeininicreeeesiiiniiinnieeces 101
46. Utility directory structure in NSDB primary Sybase database server.......................... 103
47. Directory structure for EC96 company raw data input to do_ec96cccoccverennne. 108

viii

LIST OF TABLES

Table : Page
1. Data Sources i Pilot......ccioiiiiiiiiiiiiiii e e 2
2. Aspects of current pilot SYSIEM ...c.ooviiiiiiiiiiiiiir 5
3. Data source database tables ... 8
4. SQL procedures used by the user interface ... 9
5. ATAPD objects, methods, templates, and proceduresccoeeiiiiiiiiniiiinnis 21
6. SEAMS objects, methods, templates, and procedures..............oo 23
7. Cotton Incorporated objects, methods, templates, and proceduresccoeeeeiiinnene 25
8. KTA objects, methods, templates, and proceduresc.ocoveiiiiiiiiiniieeiinnene 26
9. GCA objects, methods, templates, and procedures 27

10. GIDC objects, methods, templates, and procedures...........cocoeviivvviiiiiieciiene 28

11. LAMDB objects, methods, templates, and procedures.........oooieniiiiiniiiiiiiniinee. 29

12. EC96 objects, methods, templates, and procedures.........cocoooeiiiiiiie 31

13. Objects, methods, templates, and procedures used in creating the cross-data source

search enabling file Se. ... 40

14. Noncompany-specific cross-data source search files.............. 43

15. Objects, methods, procedures, form, etc., for cross-data source search 46

16. Report methods used by cross-data source search ... 46

17. Objects, methods, and forms for cross-data source search wizard..........oooon 47

18. Nondata-source-specific files in Nsdb directory and its subdirectoriescceeeinniine 52

19. General form of URLs to externally link to NSDB reports.........ooooviivviiniiiiinin, 59

20. NSDB database general Utilities ..o 66

21. Pilot NSDB Par@meters......occvuetiriueeiiiiieiressiiieiasstiiseesines e e s sinaareseessessrnaesesasssraaasnns 69

22. General routines used in preprocessing of raw data source datacooeviiiiiininns 70

23. NSDB data-source-specific routines for preprocessing of raw data source data............. 70

24, Routines used by do_NSAD . ..ot 71

25. Routines used by typical “do_source” routines.........ccocevirieiiiiiiinniieniie s 72

26. Routines used DY dO_ @006 .iiiiiiiiiiiiiiiiien i 74

27. Routines used by do_ It IMS....ccccciiiiiiiiiiiiiiii e 76

28. Routines used by Ao 1t ACCESS iiiiiiiiiiiiiii e 78

29. Routines used by brn_bep to create backup and restoration utilities and

DACKUP FHES. .o e 80

30. Routines used by restoration Utilities........ccooeviiiiiiiiiiiiii e 81

31. Routines used by Create SQL to create a databases’ stored SQL. procedures............ 82

32. General routines used in update exports and IMPOILScccccviiiiinniiiiimiinii s 85

33. Typical data-source-specific utilities/routines for data source update...........cocevnrnnen. 87

34. SQL scripts associated with Excel input and output files...........c.c.oooooviiieinn 88

35. Routines used by Load Update.....ccoiiiiiiiiiiiiiiiniiiie e 91

36. Update routines that load database permanent tables............ccoooiiiiiiiniii 91

37. Miscellaneous ULHIIES ...coevee ettt 93

38. Forms and images used by NSDB batch update tutorial (excluding home page)............. 94

39. Routines and list used by Counts.DoGet.Cgi .o 95

40. Tilesused by Counts.DOGEL .CL .. 96

41. EC96 data entry program files.......cccovviiiiiiiiiiiiiiiiiii e 97

42. Routines used by c1ass _Teport . 98

43. Routines used by INStall SetUP ..ottt 99

44. Nondata-source-specific utility files on Web server...........ccooooonn, 102

ix

LIST OF TABLES (continued)

Table Page
45. Files in nondata-source-specific direCtOriesoocciriiiiiioiiii e 105
46, Created FOULIMES.....oiiiiiiiiit ettt e ettt e e e s eetee e st ee e e e et e e e e e raanaaeeeeneaes 105
47. Data-source-specific directories’ files (containing routines used in implementation

of the NSDB databases)............oooiiiiiiiiiiiiiiiii e e 106
48, ~“Original™ data source fIes ..o e 107
49. Files with preprocessing routines used only for one data source...........ccceeoveeiiinnnennee. 107
B-1. Pilot NSDB Sybase Database parameters....o....uuueueeriruereraiiivanrinensnnersrensessaesaareeaeeees B-3

AAMA
AAPN
A-CIM

AMC
AMTEX™
ATAPD
ATMI
ASCII

bep

CBM

CGl

cid
Cottonlnc

DAMA
DB
DBMS
dbf

DOE
DOS

EC94
EC96
EC97

fpt

GCA
GIDC
gif

o

HTML
HTTP

ACRONYMS

American Apparel Manufacturers Association

American Apparel Producers Network

Apparel Computer Integrated Manufacturing (University of Southwestern
Louisiana)

Associate Member Congress (of the AAMA)

American Textile Partnership

Alabama Textile and Apparel Producers Directory

American Textile Manufacturers Institute

American Standard Code for Information Interchange (used here to designate
text files where the characters are represented in ASCII format)

bulk copy (a facility of the Sybase Database Management System—also used
here to refer to ASCI1 database-related files that are created by use of the bep
facility)

Cooperative Business Management (task in the Demand Activated
Manufacturing Architecture Project)

Common Gateway Interface (software that processes requests from a browser
and provides the responses to these requests through a Hypertext Transfer
Protocol Server)

classification id—ids used for EC96 classification in EC96 database tables
Cotton Incorporated

the Demand Activated Manufacturing Architecture (Project)

database

database management system

database file (used here to designate files in a dbf format, which is the format
of some of the raw data from data source suppliers that were received by the
National Sourcing Database developers)

U.S. Department of Energy

Disc Operating System

1994 Electronic Catalog (produced by the AMC of the AAMA)
1996 Electronic Catalog (produced by the AMC of the AAMA)
updated EC96 provided by Internet Tradeline Inc.

Foxpro memo file(used here to designate files in an fpt format, which is the
format for some of the raw data for the 1996 Electronic Catalog data source
that were output by its data entry program and received by the National
Sourcing Database developers)

Garment Contractors Association of Southern California

Garment Industry Development Corporation

graphic interchange format (used here to refer to image files that use a gif
format)

Hypertext Markup Language
Hypertext Transfer Protocol

xi

ITC

ITI
KTA
LAMDB
msql

MB
Mhz

MS

NSDB
NT

ORNL
oS

pC

SEAMS
SOL

[TCY
USITC
USL

URL

VICS

WAIS

ACRONYMS (continued)

identification (used here primarily to refer to database record identifications
and user identifications)

Internet Protocol (used here in the term “IP address,” which refers to an
Internet network node address)

Integrated Textile Complex (set of fiber producers, textile producers, textile-
containing fabricated product producers, suppliers to these producers, and
retailers of textile containing fabricated products)

Internet Tradeline Incorporated

Knitted Textile Association
Louisiana Apparel Makers Database

miniSQL (command client network utility through which a subset of SQL
commands/queries can be submitted to a Minerva database management
system)

megabytes (where a megabyte is 1024 bytes)

megahertz

Microsoft

National Sourcing Database

New Technology (as used in Microsoft's Windows NT operating
system—also used here to refer to software designed specifically to run under
that operating system)

Oak Ridge National Laboratory
operating system

personal computer (used here to refer to IBM and IBM clone personal
computers)

Southeastern Apparel Manufacturers and Suppliers Association
Structured Query Language (language used for sending commands/queries to
certain relational data base management systems)

company formally known as the Textile and Clothing Technology
Corporation (where the DAMA project director is employed)

United States Integrated Textile Complex (those ITC facilities located in the
United States)

University of Southwestern Louisiana

universal resource locator [can be viewed as a Web address with possibly added
information for a process (program) that might be at that address]

Voluntary Industry Commerce Standards
Wide Area Information Servers (here it refers to a software package WAIS-sf,

which is used to index an information set and then to search via the index for
particular information within the set)

x11

ACRONYMS (continued)

WWWwW World Wide Web (can be viewed as sets of software using the Internet to
transmit hypertext documents from servers to clients)

Xiii

FORWARD

A Demand Activated Manufacturing Architecture (DAMA) National Sourcing Database
(NSDB) pilot system was maintained by Oak Ridge National Laboratory (ORNL) for slightly
over three years, from June 1, 1995 through June 19, 1998 subsequent to the conclusion of
the Voluntary Industry Commerce Standards (VICS) 1998 conference and exhibition. The
system that supported this pilot provided a web accessible means for searching a set of
databases with information about suppliers to textile and apparel and apparel retailing
companies. During the pilot this system evolved and the final pilot system represents a
partial implementation of a far reaching concept and a design for implementation of that
concept. This report describes the final system and utility software developed to support that
system. It also describes aspects of the design beyond the current implementation and
includes some historical notes concerning the pilot evolution.

During the spring of 1995, Mr. Jim Lovejoy, the DAMA project director, asked ORNL and
other DOE laboratory DAMA project participants about the possibility of implementing an
Internet accessible version of a PC sourcing database known as the Alabama Textile and
Appare! Producers Database (ATAPD). ORNL offered to create a rapid prototype of a World
Wide Web (WWW) accessible ATAPD. Mr. Lovejoy, subsequent to his viewing the rapid
prototype, then asked ORNL to initiate consideration of a web accessible database utilizing
data from a number of different data suppliers. After a meeting in Oak Ridge in which a
number of such suppliers, most of whom produced hard copies of the data they gathered, were
introduced to the concept of a national sourcing database, ORNL began the design and
implementation of what was to become the DAMA NSDB. [t officially became available on
June 1, 1995 with data from five sources, the ATAPD, the American Textile Manufacturers
Institute (ATMI), Cotton Incorporated, and the Davison’s Blue Book and Gold Book. The
initial pilot system provided maximum integration of the data from the various sources. This
degree of integration did not meet with data provider approval' and hence a new less
integrated design was developed and implemented toward the end of 1995. Data displayed by
the new system were always readily identified with the data provider from whom it came.
Data from three of the original data providers were not included at the provider’s request’
and additional data were added so that in January of 1996, the NSDB contained data from the
ATAPD (an updated set), Cotton Incorporated, the Garment Contractors Association of
Southern California (GCA), the Knitted Textile Association (KTA), the American Apparel
Manufacturer’s Association (AAMA) 1994 Electronic Catalog (EC94), and the Southeastern
Apparel Manufacturers and Suppliers Association (SEAMS).

During the remainder of 1996, a “cross-data source search” was included which allowed users
to search for data through all of the data regardiess of the provider (though data displayed
could still be readily linked to the data’s provider). This allowed for some measure of
integration over the various sources of data, but not the degree of integration of the original
pilot system which some of the providers objected to. The design of the NSDB was extended
to include data which could be located on multiple database servers and in databases of
different database management systems, data from AAMA’s EC96 replaced the EC94 data
and data from the Garment Industry Development Corporation (GIDC) was included in the
system. Three additional user interfaces, a Frames, a Frames-Java, and a Java interface were

' Some of the data providers wanted to maintain a visible connection between the displayed data and the
rovider of that data.

“ These providers switched to a commercial provider of web pages and requested direct links to their pages

from the NSDB. Davison’s wanted to still be able to charge users for the right to see all of its data, a

feature which was not part ot the NSDB

XV

created (the standard NSDB interface was a pure HTML interface). In addition, at the DAMA
project director’s request, a stand-alone PC based version of the NSDB was developed to run
under a variety of PC operating systems.

The ORNL NSDB team and the DAMA project director worked with the Associate Member
Council (AMC) of the AAMA in creating EC96. They provided advice to the AMC during
the EC96 planning, created a data entry program for AMC members to facilitate the data
preparation and worked with personnel at [TC)’, the company which employed the DAMA
project director, in loading the EC96 data into the NSDB. EC96, which was the first NSDB
source of data that included images and links to company web pages, was introduced by the
AMC at the September 1996 Bobbin show in Atlanta.

During 1997, the utilities supporting the NSDB were enhanced to provide for a possible
porting of the NSDB to systems outside of ORNL and support was provided for [TC]” efforts
to commercialize the system. resulting in an updated commercial version of EC96 (called
EC97) being created by Internet Tradeline Incorporated (ITI). The first remotely located set
of data, the Louisiana Apparel Manufacturer’s Database (LAMDB), which was in a different
database management system than previous NSDB data, was included in the system, and the
cross-data source search user interface was improved to provide a guided step by step
construction of search criteria.

During 1998 only minor changes such as addition and modification of links to external
relevant data and cosmetic changes to some forms were made in the NSDB. It was maintained
in operation so it was available for various DAMA project functions such as its display at the
VICS 1998 conference and exposition. ORNL’s obligation to the DAMA project to maintain
the NSDB expired at the end of that conference and exposition® though the system will
remain in operation for some time beyond June 1998 and the technology embodied in it may
find its way into other DAMA work.”

A full documentation of the NSDB was first produced at the end of 1996. It was updated a
number of times since as the system evolved though never formalized as a report. This report
contains the final update.

* Since the NSDB pilot began a number of the data suppliers have, in part inspired by the NSDB,
implemented web accessible databases of their own. These data suppliers however have been inclined to
keep these databases accessible only through their own interfaces. [TC]" has therefore expanded an ITI
development and produced a web page (referred to as the “Sourcing Mall™) which links to these and other
sources of data relevant to fiber, textile, apparel and apparel retailing companies.

* A small quantity fabric sourcing database has been suggested as a potential valuable tool by a number of
small apparel companies visited as part of another DAMA activity. Latter this year the business case for and
viability of such a sourcing database will be investigated by DAMA. If this investigation leads to a
decision to create such a web accessible database, NSDB technology will be utilized for its creation

Xvi

ACKNOWLEDGMENTS

The DAMA NSDB has as an ancestor a PC textile and apparel producers database created at
Auburn University. We would be remiss if we did not acknowledge the role that Auburn’s
Professor Lenda Jo Anderson and her colleagues and students played in creating that database
and the role that that database played in leading to the creation of the DAMA NSDB.

Jim Lovejoy, the DAMA project director, first communicated to us a concept of web
accessible sets of “sourcing” data which we subsequently evolved into the concept, design and
implementation described in this report. Mr. Lovejoy also was a source of continuous advice
as our worked progressed and he lined up suppliers of appropriate data for inclusion in the
NSDB.

Numerous ORNL colleagues provided helpful guidance as our work progressed. Two who made
contributions to the work deserve special mention. Rao Surapaneni (formerly of ORNL)
provided the bulk of the effort expended in the implementation of the configurable PC stand-
alone version of the NSDB noted in this report and Bill Jackson did the major portion of the
work required to include data remotely located at the University of Southwestern Louisiana
(USL) into the NSDB.

The data located at USL is in a database server at that university’s Apparel Computer
Integrated Manufacturing (A-CIM) center. The A-CIM center created the database as part of
a university DAMA program. We should like to acknowledge the work of USL’s Professor
Denis Gracanin and his students in creating that database and Professor Gracanin’s assistance
in the implementation of the NSDB’s access approach to that database.

Qur colleagues from other United States Department of Energy (DOE) Laboratories engaged
in the DAMA project’s Cooperative Business Management (CBM) task provided thoughtful
critiques of our work. We especially would like to thank Ken Washington of Sandia
Laboratory, the CBM task leader during the NSDB development, for his ideas,
encouragement, and advocacy for our efforts.

Many people in the apparel and related industries and industry associations critiqued our
efforts as well as provided data for the NSDB. We were particularly pleased that the AAMA’s
AMC invited us to advise and work with them in the creation of their 1996 Electronic
Catalog (EC96), their first electronic catalog designed specifically for the World Wide Web.
Dick Yardley of the AAMA and the AMC officers who, with Mr. Yardley, lead the effort
have our thanks for setting up this collaboration.

[TCT is the Research, Education, and Technology Transfer company that is the industry lead
organization for the DAMA project. Along with Jim Lovejoy, the DAMA project director,
other [TC)® staff have assisted us as the NSDB evolved. We want to particularly thank
Dupree Jones (a former [TC] staff member) for his work in testing the EC96 data entry
program we developed and then loading AMC companys’ output from the program into an
ORNL server.

The ORNL work in the DAMA project has been supported by the DOE. The majority of the
support came from the department’s Office of FEnergy Research’s then existing Laboratory
Technology Transfer program. Later portions of the work were supported by DOE’s Defense
Programs’ Office of Development and Technology Transfer and by Energy Research’s
Office of Basic Energy Science. We wish to express our gratitude for this support.

xvii

1. INTRODUCTION

1.1 OVERVIEW

The World Wide Web (WW W)-accessible National Sourcing Database (NSDB) provides a
means for users to obtain information about suppliers to (sources for) the Integrated Textile
Complex (ITC). The main components of the NSDB are

e databases and
e a user interface.

The NSDB databases consist of a set of “data sources” in which the type of data included
differs to varying degrees from data source to data source. The WWW NSDB design provides
for the distribution (by data source) of the NSDB databases through more than one database
server. However, the design does require that a data source not be distributed, that is, that all
the data associated with any single NSDB data source reside on only one server.

Figure 1 depicts the WWW NSDB councept. A central server or servers house the user
interface and possibly a set of NSDB data sources. Other NSDB data sources are located on
remote database servers. Supplier sites where additional information (about a supplier and/or
the supplier’s specific products and services) is available, may be linked to from NSDB data
sources. In addition, supplier web pages may provide links that, when selected, lead to the
NSDB generation and display of specific reports containing NSDB data source data. Finally.,
the NSDB user interface links to external (non-NSDB) data sources that contain other
sourcing data of potential interest to the 1TC.

[BHemotely Located MNSIBE
dats Sonra

T Crihior so 2
Main NSDEB Scorv reE sourcing data

]
2
<

Sappsibor Sites Bupplier Sites

Lisers

Fig. 1. Conceptual view of the WWW NSDB.

The external ITC-oriented data sources viewed during the early NSDB development were
apparently collections of web pages and did not use a database. The NSDB, in contrast to
these types of external data sources, generates forms and reports on the fly using data
retrieved from its database(s). [ts user interface maintains a certain commonality in the

forms and reports from NSDB data source to NSDB data source despite the data source
differences. However, information from external data sources linked to by the NSDB is
normally displayed without regard to NSDB conventions.

A pilot version of the WWW NSDB has been operating since June 1995. Its URL is:’
http://saturn.epm.ornl.gov/Nsdb/

The WWW NSDB has evolved based on availability of data sources, user and data-source-
provider feedback, and technology advances. The original and current pilot implementations
are discussed in Sect. 1.2.

1.2 PILOT IMPLEMENTATIONS

The pilot WWW NSDB currently uses three servers: a web server and a database server that
correspond to the main servers of Fig. 1, and a remotely located database server. The data
sources currently included in the NSDB are listed in Table 1. Until September 1997, all NSDB
data sources resided on the single centrally located database server. At the end of September
1997, the Louisiana Apparel Makers Database (LAMDB) was added as a remotely located
data source.’ [The Garment Industry Development Corporation (GIDC) data source, which
was added in November 1996, was the last centrally located data source to be added.]

Table 1. Data sources in pilot

Data source Data source provider

Alabama Textile and Apparel Producers Directory | Auburn University
(ATAPD or Auburn)

AAMA Electronic Catalog 1996 (EC96 or American Apparel Manufacturers
AAMA EC96) Association

Cotton Incorporated Data Source (Cottonlnc) Cotton Incorporated

Garment Contractors Association (GCA) Data Garment Contractors Association of
Source Southern California

GIDC Data Source Garment Industry Development

Corporation

Knitted Textile Association (KTA) Data Source Knitted Textile Association

LAMDB University of Southwestern Louisiana
Southeastern Apparel Manufacturers and Suppliers | Southeastern Apparel Manufacturers and
(SEAMS) Data Source Suppliers Association

* Three other URLS are aliases for the this URL: http://avalon.epm.ornl.gov/Dama2/.
http:/avalon.epm.ornl.gov/Dama3/. and http://avalon.epm.ornl.gov/Nsdb/. The first two were URLs of
various major versions as the pilot evolved. These major versions, as well as the initial rendition of the
current major version, resided on the original NSDB Web server. The NSDB web server was changed in
the summer of 1997, consequently, avalon rather than saturn is present in the three aliases.

° The addition of the remotely located LAMDB was facilitated because in keeping with the NSDB design.
all that was required for distribution of data sources were minor changes to a single original pilot NSDB
user interface routine, the addition of entries in a table for each data source and database server, and
inclusion of required database server interface software as described in Sect. 3.11.

Although the data sources available before September 1997 all reside on a single active
database server, two mirrored database servers, a Sybase database server and an MS SQL
Server database server,” are maintained for these data sources. A system administrator can
select either server to be the pilot’s active central database server for these data sources. In
the following discussion, the server housing these data sources is referred to as the central
database server and the database server housing the LAMDB data source is referred to as the
remote database server.

Figure 2 is a representation of the original WWW NSDB, and Fig. 3 is a representation of the
current WWW NSDB. The Hypertext Transfer Protocol (HTTP) Web server currently used
is the Apace 1.1.3 HTTP Server (an acquired package). The Common Gateway Interface
(CGI) that communicates with the central database server was written specifically for the
NSDB. The command client network utility communicating with the Fig. 2 database server is
an enhanced version of a portion of Sybase’s isqgl and was written for the WWW NSDB
(isql is compatible with both Sybase and MS SQL Server databases).”

request/form ‘
submission formatted HITME

— ,'.,. forms inputs e —guery resulls
HTTPW b) B ':k;." L 7: N

. S 1(?" "le.é_); formatted HITMIL} CGI o query

. e - —

Command Client

WEB SERVER Network Utility

!

DATABASE
SERVER

Fig. 2. Representation of original pilot implementation.

7 The NSDB MS SQL Server version of the database was implemented to prepare for what initially was
considered to be an eventual transfer of the NSDB to [TC].” However, given Sybase functionality, creating
a Sybase database as the primary NSDB central database was easier and simplified certain utility
implementation.

® Actually an earlier version of the Apache Web server and isql were used in the original WWW NSDB,
but Apache 1.1.3 and the enhanced command client network utility were incorporated since the original
implementation.

The database server and command client network utility on the right of Fig. 3 are the same as
the database server and command client network utility in Fig. 2. The database server on the
left in Fig. 3 is located remotely at the University of Southwestern Louisiana (USL). This
remote database server uses a Minerva database. The command client network utility that
communicates with it is msgl (an acquired package), which is compatible with Minerva
databases.

The current Web server resides on a Unix platform as does the Sybase database server and the
USL. Minerva database server. The MS SQL Server database server runs under Windows NT
on a Pentium™ platform. Table 2 summarizes features of the current hardware and software.

e s encd e formatled HTME 1 VTED LA .
request/form ~ somewhere in Internet Land
submission
y forms inputs guery results
. -
HTTP (Web o R | R
() formatted HTML CG query
Server |a&
T gquery Client Network
¥t e . Chient Network |ege—-_.] -
WEB SERVER Utility (R) query g‘ggﬁiigr Utility (C)

Remote Central
DATABASE SERVER DATABASE SERVER

Fig. 3. Representation of the current pilot implementation.

1.3 RELATED STAND-ALONE SYSTEM

An NSDB stand-alone system has also been developed to run in Windows environments
(Windows 3.11, Windows NT 3.51, and Windows 95). This system can be configured to
contain any subset (including the full set) of the data sources that were in the WWW NSDB
in August 1997 (i.c., that are currently in the central database server). The stand-alone has
been written in Visual C++ and stores NSDB data in an Access database.

Table 2. Aspects of current pilot system

Table 2a. Software

Sottware Characteristics
HTTP Server Apache 1.1.3 HTTP Server
CGl Written primarily in Perl 5.003 scripts with some
Borne shell scripts—uses WAIS freeware routine
waisq
Command Client Network Utility (for | Enhanced subset of isql written in C using Sybase
central database server) DB Lib

Command Client Network Utility (for | msql 2.0.1
remote database server)

Database Management System (for Either 1. Sybase 4.10 or 2. MS SQL Server 4.2
central database server) (alternate mirrored servers)
Database Management System (for Minerva 2.0.1

remote database server)

Table 2b. Hardware and operating systems

Server Platform
Web Server Sun SPARC Server 20 with OS 4.1.4 operating system
Sybase database server Sun SPARC Server 20 with OS 4.1.4 operating system

Minerva database server | Silicon Graphics Indigo R4000 with: IRIX 6.2 operating system

MS SQL Server database | Pentium™ (90 Mhz) with NT 4.0 operating system
server

1.4 UTILITIES

A set of utilities (see Sect. 4) have been created in part to facilitate loading and updating of
centrally maintained NSDB databases.” One utility creates a “primary” NSDB Sybase database
and loads the contents of the “original” data source files into that database. Other utilities

1. backup and restore the primary NSDB Sybase database,

2. create and load NSDB MS SQL Server or “secondary” NSDB Sybase databases
corresponding to the primary NSDB Sybase database, and

3. create and load Access databases corresponding to the primary Sybase database.

An update utility extracts data from the primary Sybase database and with a minimal number
of manual operations creates Excel NSDB data source workbooks containing this data. An
NSDB workbook contains the Sybase database contents for a data source in a form that
facilitates modification/updating of the data source. Another utility loads text file versions of
the updated data source workbooks into the primary Sybase database.

? It has been assumed that remotely located data sources will be initially implemented and subsequently
maintained by the organization supporting the database server on which they reside. USL initially
implemented and currently maintains the LAMDB data source.

2. NSDB DATABASES

The NSDB’s centrally located data sources, as noted previously, have been maintained in
three database management systems. The pilot’s NSDB Sybase database is currently the
primary NSDB database for these data sources. Creation and loading of this database is
accompli%hed through a utility that uses Sybase SQL., Borne shell, and AWK scripts (see

Sect. 4. ”) Orlémal " data (data nearly in the form originally supplied by the data source
providers'") is loaded into the pilot NSDB gybasc database by this utlhty As noted previously
(and as dbcus‘;ed in Sect. 4.3), other utilities, using the NSDB Sybase database as their input,
automatically'' create and populate the pilot’s NSDB MS SQL Server and the stand-alone’s
NSDB Access databases.

The NSDB Sybase and NSDB MS SQL. Server databases contain:

1. a “sources” table in which information about each of the data sources is stored;

2. a set of tables for each NSDB data source, with the set (number of tables and type of
information) differing from data source to data source; and

3. aset of stored SQL procedures.

The NSDB Access database does not contain the stored procedures.

The database permanent tables for each data source are listed in Table 3. Appendm A
contains a complete descnptxon of each table in the NSDB databases. The [TC]’ data source
listed Table 3 is included in the centrally located NSDB databases but is not accessed by the
NSDB user interface because it is currently empty. (This data source was named for the
former Textile/Clothing Technology Corporation now known as [TC].%)

The set of stored SQL procedures included in the centrally located databases consists of
subsets with each subset specific to a data source. They are used by the NSDB Web user
interface in its quertes of the NSDB database. The remotely located Minerva database does
not provide for stored procedures. Therefore the SQL procedures executed by the user
interface for querying the Minerva database are housed in the Web server. The name of each
SQL procedure used by the interface starts with a data source indicating character string
followed by a “ ” (e.g., each stored SQIL. procedure that accesses the SEAMS data source’s
tables has a name that starts with “Seams_"). The “_” is in turn followed by a character
string indicating the procedure’s function (e.g., the procedure that retrieves the names of
companies listed in the SEAMS data source is Seams _ListCompanies).'” The data
source indicating character string is the same for each procedure in the subset specific to a
data source. -

The stored SQL procedures, and the corresponding SQL procedures for the LAMDB data
source are listed in Table 4 (and are noted in Sect. 3.4, “NSDB Data Sources,” where aspects
of the user interface relevant to each data source are described). Stored SQL procedures tor

" The “raw” data are preprocessed to create the “original” data (see Sect. 4.2).

"' NSDB MS SQL Server copies (as well as any secondary NSDB Sybase replicates) of the primary NSDB
Sybase database (excluding a set of stored SQL procedures) are produced completely automatically, while
creation of Access copies requires some manual commands (see Sect. 4.3).

" This naming convention is used to determine the command client network utility that will be used in
querying a data source’s database (and, in an expanded system where data sources that can be queried
through the same command client network utility are distributed over multiple database servers, it would
be used to determine a data source’s database server).

the [TC] data source database tables have not yet been written because, as noted earlier, this
data source is currently empty.

Utility programs (see Sect. 4) create various temporary tables in the primary NSDB Sybase

database. These temporary tables, except for “temporary update tables.” are generally
dropped by the utilities after the utilities finish using them.

Table 3. Data source database tables

Data source Tables

Alabama Textile and Apparel AU_Category AU Produce

Producer’s Directory (ATAPD or

Auburn)
AU Company AU Product
AU CompanyMachDetail | AU ProductCategory
AU CompanyTechDetail

Cotton Incorporated (Cottonlnc) Cl Company CI Produce

Garment Contractors Association GC_Company

(GCA)

Garment Industry Development Gl _Company

Corporation (GIDC)

AAMA Electronic Catalog 1996 E6_Classification E6 Product
(EC96 or AAMA EC96)
E6 Company
Knitted Textile Association (KTA) | KT Company KT Product
KT Produce

LLouisiana Apparel Makers Database | company

(LAMDB)
Southeastern Apparel Manufact’s SM_Company SM_Product
and Suppliers (SEAMS)
SM_Produce
Textile and Clothing Technology TC_ Category TC Product
Corporation (1TC2)
TC Company TC ProductCategory
TC Produce

Table 4. SQL procedures used by the user interface'’

Data Stored Procedures Data Stored Procedures
Source Source
ATAPD | Atapd GetCompanyProfile Cottonlnc | Cottonine GetCompanyProfile
Atapd GetMachDetail Cottonlnc_ListCategories
Atapd GetProdDetails Cottonlne ListCatProducts
Atapd GetTechDetail Cottonlnc_ListCompanies
Atapd ListCategories Cottonlne ListCoProducts
Atapd ListCatProducts Cottonlne ListProdCompanies
Atapd ListCompanies Cottonlne ListProducts
Atapd ListCoProducts
Atapd ListProdCompanies GCA GCA GetCompanyProfile
Atapd ListProducts GCA ListCompanies
GCA SearchChildrens
EC96 EC96 GetCompanyDetail GCA SearchEquipment
EC96 GetProductDetail GCA SearchMaterial
EC96 ListClassification GCA SearchMens
EC96 ListCompaniesByClass GCA SearchOther
EC96 ListCompaniesByDescr GCA SearchServices
EC96 ListCompaniesByName GCA SearchWomens
EC96 ListCompanyProducts
EC.‘)G_ListCoProdsByCompany GIDC Gide_GetCompanyProfile
EC96 ListCoProdsByProduct Gide ListCompanies
EC96 ListProductsByClass
EC96 ListProductsByCompany LAMDB [Lamdb ListCompanies.sql
EC96 ListProductsByDescr Lamdb GetCompanyProfile.sql
EC96 ListProductsByName
KTA KTA GetCompanyProfile SEAMS Seams GetCompanyProfile

KTA GetProdDetails

Seams GetProdDetails

KTA ListCompanies

Seams ListCategories

KTA ListCoProducts

Seams ListCatProducts

KTA ListProdCompanies

Seams ListCompanies

KTA ListProducts

Seams ListCoProducts

Seams_ListProdCompanies

Seams ListProducts

" Procedures with the sql extension are housed in the Web server. Others are stored procedures.
" This SQL procedure was included but then was not used in the current EC96 implementation.

_ 3. USER INTERFACE

3.1 GENERAL STRUCTURE

The CGI in the Web server (see Figs. 2 and 3):is the heart of the user interface. It receives
user input, and, in response to the input, it outputs reports and forms, querying the databases
as necessary and building the forms and reports. Procedures in the CGI are spawned by the
HTTP Web Server. These procedures are Perl 5.003 scripts, which build Hypertext Markup
Language (HTML) 2.0 reports and forms. Static forms used by the CGI were also
constructed in HTML 2.0. In addition stored and web server-based SQL. procedures are used
by the Perl scripts (see Sect. 2).

When a user enters the NSDB, the HTTP server displays the NSDB top page. The top page
of the NSDB provides the folowing:

1. means for selecting any NSDB data source,

2. entree to a high-level (cross-data source) search capability,
3. links to external data sources, and

4. links to information (including help) about the NSDB.

The flow from the top page is illustrated in Fig. 4 (excluding the links to external data
sources and information about the NSDB). A user choice of an NSDB data source allows the
use of search procedures specific to the chosen data source to locate reports with information
of potential interest to the user. The high-level cross-data source search capability provides a
list of company/data source pairs meeting a user-entered search criteria. From entries in this
list, specific company reports from the companies’ paired data sources can be obtained.
These are the same reports that can be obtained through data source specific search methods.
The main CGI function in reaction to input is, as implied previously, the generation of forms
and reports. Since the CGI was designed using an object oriented paradigm, its structure for
carrying out these functions is described in the following in terms of its object classes and the
objects that are instantiations of these classes. Three main object classes (excluding those
related to the cross-data source search) are used:

1. tops,
2. forms, and
3. reports.

The NSDB top object contains an HTML form, shtml.h, and a method, DoGet. The
DoGet method provides a means for implementing a user’s choice, through the form, of an
NSDB data source. A data source top object analogously contains an HTML form,
index.html, and a DoGet method. The data source’s top object provides the means for
selecting, through its form, a data source search approach and for implementing that choice
via its DoGet method. Most data sources have multiple search approaches, though some
have a single approach. Regardless, the data source’s search approaches are listed on the data
source’s top form and are initiated via a user choice from this form. A data source top’s

" The USITC is characterized by many small companies in its apparel manufacturing sector, companies
that to a large extent do not remain current regarding their computer technology. Therefore the user
interface was written to be compatible with most available browsers, not simply the most current set of
browsers. (Some exceptions were made late in the pilot for nonessential added functions.)

11

DoGet method will, based on the user-selected search approach, invoke a method from a set
of possible data source specific objects.

SDB Cross Data
Top Source Search
Data Source Data Source Data Source
n

~ N

(Report)

Fig. 4. Flow from NSDB top page.

A form object (Fig. 5) consists of an HTML template (html.h) and two methods:

1. Build, and
2. DoPost.

A report object (Fig. 6) consists of a Build method. A Build method creates and outputs,
the form or report, that is transmitted to the user in response to his or her input. A form
Build method initiates queries of a database if its form requires data from a database and
uses the query results to fill in a template, html .h,’® whereas a report Build method builds
a report without the use of a template. A DoPost method reacts to user input in response to
a displayed form and provides that input to another form or report object when invoking one
of the object’s methods.

' A Build method must also insert a “new window” indicator into the template to instruct the user’s

browser whether to display the resulting form in the current or a new window.

12

Fig. 5 Form object. Fig. 6. Report object.

3.2 DATA SOURCE OBJECT DATA FLOW

Figure 7 provides an illustration of the interactions of a top object, forms objects. and a
report object. (It is representative of a number of data sources in the NSDB.) A search
approach, either a product category, product name, or company name search is chosen by
the user from the data source top form. The data source top’s DoGet method is invoked,
which, based on the user’s input, invokes the Build method of either the CategoryForm,
ProductNameForm, or CompanyNameForm search form object.

DoPost

Build DoPost

A

DoPost

Fig. 7. Representative data source object data flow.

The search form object’s Build method may query the database and construct a list of
items for display (e.g., a set of the data source’s product categories), insert that list into the
object’s template, and display the resnlting form. Alternately, it may simply build and display

13

the object’s form with a field for inputting a string. User input via the displayed form is then
used by the form object’s DoPost method to invoke the Build method of the
ProductForm (when the input is via the category or product name forms) or Companykorm
(when the input is via the company name form) object.

The ProductForm’s Build method queries the database for products meeting the criteria of
the various preceding user input, builds a list of such products, inserts the list into the
ProductForm’s template and displays the resulting form. User input via the form then leads
to the invoking of the object’s DoPost method, which in turn invokes the Build method
of the CompanylForm object. The ProductForm’s Build method may also be invoked by
the CompanyForm’s DoPost method. In such a case, the ProductForm’s Build method
will build a list of the products of the companies selected by a user from a list of companies
built by the CompanyForm’s Build method.

The CompanyForm’s Build method (in complete analogy to the ProductForm’s Build
method) queries the database for companies meeting the criteria of the various preceding user
input, builds a list of such companies, inserts the list into the CompanyForm’s template and
displays the resulting form. User input via this displayed form leads to the invoking of the
object’s DoPost method. Depending on this input, the DoPost method will invoke either
the ProductForm’s or ReportForm’s Build method. (Note: the ProductForm’s Build
method will be invoked if the user asked for a list of products made by the user-selected
companies, and the Report’s Build method will be invoked if the user asked for a report on
the selected companies. Multiple companies may be selected from a company form, and a
user request for a company report will yield a report on all the companies selected. However,
a user request for a products list will vield a list of the products of only the first selected
company in the company list.) ‘

The Report’s Build method queries the database and in so doing acquires all the data
source’s data concerning the user-selected companies. These data are then used to build a
report for the companies, and this report is displayed. Each company’s part of such a report
will have sections that depend on the data source, for example, the ATAPD data source’s
reports have the following sections: company profile, company information, references,
product details, machine details, and technical details. When data for a report field for a
company is not included in the database, the field will be left blank in that specific company’s
part of reports (or in some cases the field will be not be included at all).

The objects used for most of the specific data sources differ from what has just been discussed.
They are dictated in part by the organization of the data within the data source’s database
tables, which in turn has been determined in part by the makeup of the data provided by the
data source provider.

3.3 NSDB TOP

The NSDB top form may be thought of as consisting of the following parts:

Welcome,

Sourcing Area Directory,

NSDB Data Sources and Functions, and
NSDB Explanatory Information Links.

BP0 —

14

Fig. 8. Web NSDB top page welcome.

The Welcome (Fig. 8) contains the Demand Activated Manufacturing Architecture (DAMA)
Project Logo and a welcome message. It is also used to provide links to prototype systems
related to the NSDB and may be used for short explanatory information.

The Sourcing Area Directory (Fig. 9) provides a set of links to areas of the form and directly
to both NSDB and external data sources. Near the top of this part of the form is a list of
sourcing areas (e.g., Apparel and Home Furnishings) and subareas. Selecting an area or subarea
(if the area entry contains a list of subareas) will cause a list of data sources containing
information about products in'the selected area or subarea to move to the top of the display.
Selecting any data source in such a list will bring up the top page of that data source.

These lists of data sources (for each area or subarea) make up portions of this part of the
form. Each such portion of this part of the form contains a link back to the top of the form,
in addition to links to data sources. In these lists, NSDB data sources are preceded by a green
ball, and external data sources are preceded by a red ball. '

At the top of this part of the form is a link to the “NSDB Data Sources and NSDB Cross-
Data Source Search.” Selecting this link will bring the Data Sources and Functions part of the
form to the top of the display. :

The Data Sources and Functions part (Fig. 10) provides for selection of NSDB data sources
from a set of buttons (one per data source), selection of the high-level cross-data source
search function, or selection of links to certain external data sources or Web sites. The NSDB
top’s DoGet method is invoked when an NSDB data source button is chosen and it causes the
display of the chosen data source’s top form. If the “Create New Window” indicator is
selected before an NSDB data source is selected, the data source’s top page will appear in a
new window.

15

Netscape: DAMA National Sourcing Database =

Looation: 1http 4 fsaturneprn.ornl.goy /Nsdb ¢

What's Mew?

what’s Conl? H Destinationz i Met Search H Peopls H Software i

? Sourcing Areas fo
Textiles

@ NSDE Data Sou urces and Crogs NSDBE&@ Source Search

@ Apparel & Home Furnishings

@ srrarel & Home Fursline Producls

@ oeaacae

r Apparel and Home Furnishings, Fiber, and 1 ’

o Apparel& Home Fumm}mw Pmduﬂs.
o Elecuonies & Softwar
o Fudinegz

o M%hmex v & Bauipment
o xpﬂzm Sewra Product anf&rmm\” & ‘Sﬁmﬁﬁ
9] %

| 5

w %ﬁbﬁma Textle mi sxpp«uex ?mm m Diree nm i.&T&sPik}

!m—-—n«’\

@ Gmmmum&mwm mmcmmn m‘ mﬁﬂﬂ'ﬁ&ﬁl l“&hmm;a I (s C»‘%}‘ o

‘@ﬁ Lousians s‘sppqrei l"Ia}se:f : Iix-m‘rsase

&

{ Sosciy e S

i @ iml' & t!ns Jwrer}

] “ e “wm_, o St

o Sonthessvan Apgwl I Imm“ Al mner” ami anpphem Azuommri £ SE S

edtwe

Fig. 9. Portion of Web NSDB top page sourcing area directory.

Selecting the high-level cross-NSDB data source search function from the Data Sources and
Functions part of the NSDB top form brings up the cross-data source search’s top form in
which a search criteria can be specified. A list of certain external Web sites with USITC-
related data is also contained in this part of the NSDB top form. A choice from this list
brings up the site’s top page (via a direct link).

16

Netscape: DAMA National Sourcing Databas

- {bttp:/ Faturn epm.ornl oy Misdh/

Aoy
! LAMDE SE.-'E.I%'ISJ

Fig. 10. Web NSDB top page data sources and functions.

Note that as indicated in Figures 9 and 10, NSDB data sources can be selected from the
Sourcing Area Directory or the Data Sources and Functions part of the NSDB top form
(producing the data source’s top form via a direct link or via the NSDB top’s DoGet method

respectively).

The Explanatory Information Links (Fig. 11) part of the NSDB top form contains links to
various information that should help a user understand what the NSDB is and how to use it. In
addition it provides a means for sending email to the NSDB developers and administrators and
a link to the top of the form.

17

Metscape: DAMA National Sourcing Database

- e -
S SRR € | ¥8 | :
Back . |Fuwrward] Home Reload | Images Oper:: {- Print. |} & Find .

Location: I http :/ fsaturnoeprin.ornl.goy ANsdb S |

|"t."hat’§ Mew > i l ‘fr."hat"s Cool? l] Destinations } l Met Bearch i l ‘ ‘F'eopk'_ 3 I | ﬁqft‘y{are]

..... .
‘ o L e

Aifionyg Svissinog.

@ yiDE Tuwdd
@ 1EDE Description snd Help
@ Descrption of HEDE Data Sources

@ e Mt Windows
@ o Project Web Poze.
@ DaMs Projet's NEDE Description

Corpnie s ah

SR AR TR S IR RS e

o

sst Modified on: Wi Sep /SRS EDT IS

5]

Fig.mll. Web NSDB top page explanatory information links.

3.4 NSDB DATA SOURCES

3.4.1 General

The last data source in the current version of the NSDB was added at the end of September
1997."7 bringing the total NSDB data sources to eight:

Alabama Textile and Apparel Producers Directory (ATAPD)
Southeastern Apparel Manufacturers and Suppliers Association (SEAMS)
Cotton Incorporated (Cottonlnc)

Knitted Textiles Association (KTA)

Garment Contractors Association of Southern California (GCA)
Garment Industry Development Corporation (GIDC)

Louisiana Apparel Makers Database (LAMDB)

Electronic Catalog ‘96 (I:C96)

R

The first seven data sources in this list may be thought of as having as their target a company
(companies) report that contains all the data source’s data on the company(ies) and its
(their) products and/or services. The last data source, EC96, has two types of targets,

" Links to NSDB data source provider and external data source Web pages have since been modified as
NSDB data source providers developed Web pages and external data source URLs were changed.

18

company reports (which include a list of a company’s products and/or services but not
information about these products and/or services) and product reports, which provide details
of a company’s products and/or services. In addition the first seven data sources contain at
most one level of product classification (categories), while EC96 has a four-level
classification hierarchy (primary group, category, class, and type).

Some features of the forms are common for all of the NSDB data sources. Each data source
has a top form that provides for a choice of search approaches. Searches yield forms with
lists from which selections can be made for further searching or for calling for reports.
Build methods construct the forms and reports. The first seven sources contain
instantiations of all or subsets of the following two sets of object classes:

1. a category form, a product name or search form, and a company name form and
2. a product form, a company form, and a report.

The EC96 contains the following objects:

1. a generalized search form and
2. a product name form, a company form, a company/product form, a company report, and
a product report.

Stored or Web server-based SQL procedures are used by the objects’ Build methods to
obtain data used in building the various forms and reports. Figures 12 through 19 illustrate the
object data flow for the data sources. The objects, along with their templates and:SQL
procedures, used for each data source are listed for further clarification in Tables 5 through
12. :

3.4.2 ATAPD

The ATAPD data source uses all of the object classes of the first seven data sources, as can be
seen from Fig. 12. In that figure, as in all the figures illustrating the object data flows, the
methods for each object are shown and the stored (or Web server—based) SQL procedures used
by each Build method are listed (e.g., the CompanyForm object’s Build method uses the
stored SQL procedures ListProdCompanies and ListCompanies). The data passed
to another object by each DoPost method is also shown (e.g., the CategoryForm object’s
DoPost method passes a category selected by the user to the ProductForm’s Build
method). A Build method does not necessarily use all of the stored procedures listed each
time it is executed, those used being dependent on the data input to the Build method (e.g.,
the CompanyForm’s Build method will use ListCompanies when it receives company
names and ListProdCompanies when it receives a product name).

In Table 5, as in all the corresponding tables for data sources, templates and stored procedures
used by a method are listed indented below the method. A stored procedure is indicated by a
“*” after its name, and those stored procedures that may be alternately used by the method
are listed with “-”’s in front of them. Normally no more than one “list” procedure will be used
at each running of a Build method (i.e., where multiple list procedures are listed for a
Build method, only one is used at each invocation of the Build method). The names of
the methods and stored procedures in Fig. 12, as in the corresponding figures for other data
sources, have been shortened with the full names being given in Table 5, as they are in the
corresponding tables for other data sources.

19

Build

ListCatProducts product
List Products
ListCoProducts
Bl-llld . B N
List Categories -
product name string company
Build
ListProdCompanes
ListCompanies
companies, |
product
company name string
Build
GetCompanyProfile
GetProdDetails
GetMachDetail

GetTechDetail

Fig. 12. ATAPD object data flow.

20

Table 5. ATAPD objects, methods, templates, and procedures

Object Method/Procedure/Form Language

Atapd.top index. html HTML

Atapd.top.DoGet.cgi Perl

CategoryForm CategoryForm.Build.cgi Perl
CategoryForm.html.h HTML

Atapd ListCategories * SOL

CategoryForm.DoPost.cgi ‘Perl

ProductNameForm ProductNameForm.Build.cgi Perl
ProductNameForm.html.h HTML

ProductNameForm.DoPost.cgi Perl

CompanyNameForm CompanyNameForm.Build.cgi Perl
CompanyNameForm.html.h HTML

CompanyNameForm.DoPost.cgi Perl

ProductForm ProductForm.Build.cgi Perl
ProductForm.html.h HTML

- Atapd ListCatProducts * SQL

- Atapd ListProducts * SQL

- Atapd ListCoProducts * ~ SOL

ProductForm.DoPost.cgi Perl

CompanyForm CompanyForm.Build.cgi Perl
CompanyForm.html.h HTML

- Atapd ListProdCompanies * SQL

- Atapd ListCompanies * SOL

, CompanyForm.DoPost.cgi Perl

Report Report.Build.cgi Perl

Atapd GetCompanyProfile * SQL

Atapd GetProdDetails * SOL

Atapd GetMachDetails * SQL

Atapd GetTechDetails * ‘ SQL

21

3.4.3 SEAMS

The SEAMS data source has instantiations of the same object classes and has the same object
data flow as the ATAPD data source (see Fig. 13). The structure of its reports is different
howevcr, as is indicated in part by its Report object’s Build method. which uses only a
GetCompanyProfile and a GetProdDetails stored procedure (see Fig. 13 and Table
6). whereas the corresponding ATAPD Report Build method also uses a
GetMachDetail and a GetTechDetail stored procedure.

Build
ListCatProducts
ListProducts
ListCoProducts

category

Build
ListCategories

company

ListProdCompanes
ListCompanies
‘ ” companics,
product

company name string

Build

GetCompanyProfile
GetProdDetails

Fig. 13. SEAMS object data flow.

22

Table 6. SEAMS objects, methods, templates, and procedures

Object Method/Procedure/Form ~ Language

Seams.top index.html HTML

Seams.top.DoGet.cgi Perl

CategoryForm CategoryForm.Build.cgi Perl
CategoryForm.html.h HTML

Seams ListCategories * SQL

CategorvForm.DoPost.cgi Perl

ProductNameForm ProductNameForm.Build.cgi Perl
ProductNameForm.html.h HTML

ProductNameForm.DoPost.cgi Perl

CompanyNameForm CompanyNameForm.Build.cgi Perl
' CompanyNameForm.html.h HTML

CompanyNameForm.DoPost.cgi Perl

ProductForm ProductForm.Build.cgi Perl
ProductForm.htmi.h HTML

- Seams_ListCatProducts * SQL

- Seams ListProducts * SQL

- Seams ListCoProducts * SQL

ProductForm.DoPost.cgi] Perl

CompanyForm CompanyForm.Build.cgi Perl
' CompanyForm.html.h ‘HTML

- Seams ListProdCompanies * SOL

- Seams ListCompanies * SQL

CompanyForm.DoPost.cgi Perl

Report Report.Build.cgi Perl

Seams GetCompanyProfile * SQL

Seams GetProdDetails * SQL

3.4.4 Cottonlnc

The Cotton Incorporated data source does not contain a Category object but contains objects
from all of the other object classes of the first seven data sources (see Fig. 14). In fact, there
are two product categories, woven and knit, in the data source. However, these categories are
accounted for by having two separate search method selections on the Cotton Incorporated
top form. Note that the ListCoProducts stored procedure is used by both the Cotton
Incorporated ProductForm and Report Build methods (it is listed twice in Table 7).

23

category

product name string

Build

ListCatProducts DoPost
ListProducts
ListCoProducts
J
company

Build
ListProdCompanes
ListCompanies

DoPost

companies,

product

Build

GetCompanyProfile
ListCaProducts

Fig. 14. Cotton Incorporated object data flow.

3.45 KTA

The KTA data source does not contain a CategoryForm or ProductNamelForm (see Fig. 15
and Table 8). The top of KTA allows for selection of a search based on an inclusive product
list built by the KTA ProductForm Build method (KTA has only a short list of products).

3.4.6 GCA

The GCA data source does not contain a CategoryForm or a ProductForm and contains a
ProductSearchform rather than a ProductNameForm (see Fig. 16 and Table 9). The
ProductSearchForm provides for a user selection of a category along with user input of a

product name string.

24

Table 7. Cotton Incorporated objects, methods, templates, and procedures

Object Method/Procedure/Form Language

Cottonlnc.top index.html HTML

Cottonlnc.top.DoGet.cgi Perl

ProductNamelForm ProductNameForm.Build.cgi Perl
ProductNameForm.html.h HTML

ProductNameForm.DoPost.cgi Perl

CompanyNameForm CompanyNameForm.Build.cgi Perl
CompanyNameForm.html.h "HTML

CompanyNameForm.DoPost.cgi Perl

ProductForm ProductForm.Build.cgi Perl
ProductForm.html.h HTML

- Cottonlne ListCatProducts * SQL

- Cottonlnc ListProducts * SOQL

- Cottonlnc ListCoProducts * SOQL

ProductForm.DoPost.cgi Perl

CompanyForm CompanyForm.Build.cgi Perl
CompanyForm.html.h HTML

- CottonInc ListProdCompanies * -SQL

- Cottonlne ListCompanies * SQL

CompanyForm.DoPost.cgi Perl

Report Report.Build.cgi Perl

Cottonlne GetCompanyProfile * SQL

Cottonlnc ListCoProducts * SQL

Build
| ListProducts
ListCoProducts

product

Build
ListProdCompanes

ListCompanies
R B e

company

companies,

company name string|

Build

Fig. 15. KTA object data flow.

25

GetCompanyProfile
GetProductDetails

product

Table 8. KTA objects, methods, templates, and procedures

Object Method/Procedure/Form Language
KTA.top index.html HTML
KTA.top.DoGet.cgi Perl
CompanyNameForm CompanyNameForm.Build.cgi Perl
CompanyNameForm.html.h HTML
CompanyNameForm.DoPost.cgi Perl
ProductForm ProductForm.Build.cgi Perl
ProductForm.html.h HTML
- KTA ListProducts * SQL
- KTA ListCoProducts * SQL
ProductForm.DoPost.cgi Perl
CompanyForm CompanyForm.Build.cgi Perl
CompanyForm.html.h HTML
- KTA ListProdCompanies * SQL
- KTA ListCompanies * SQL
CompanykForm.DoPost.cgi Perl
Report Report.Build.cgi Perl
KTA GetCompanyProfile * SQL
KTA GetProductDetails * SQL

category, product
name string Build

SearchChildrens
SearchEquipment
SearchMaterial
SearchMens

SearchServices
SearchWomens
SearchOther

ListCompanies

companies, category, product

company name string

Build
GetCompanyProfile

Fig. 16. GCA object data flow.

Table 9. GCA objects, methods, templates, and procedures

Object Method/Procedure/Form Language
GCA top index.html HTML
GCA top.DoGet.cgi Perl
ProductSearchlForm ProductSearchForm.Build.cgi Perl
ProductSearchForm.html.h HTML
ProductSearchForm.DoPost.cgi Per|
CompanyNameForm CompanyNameForm. Build.cei Perl
CompanyNameForm.html.h HTML
CompanyNamelForm.DoPost.cgi Perl
CompanyForm CompanyForm.Build.cgi Perl
CompanyForm.html.h HTML
-GCA SearchChildrens * SQL
- GCA SearchEquipment * SQL
- GCA SearchMaterial * SQL
- GCA SearchMens * SQL
- GCA SearchServices * SQL
- GCA SearchWomens * SQL
- GCA SearchOthers * SOL
- GCA ListCompanies * SQL
CompanyForm.DoPost.cgi Perl
Report Report.Build.cgi Perl
GCA GetCompanyProfile * SQL
3.4.7 GIDC

The GIDC data source has the simplest object data flow (see Fig. 17). It contains a
CompanyNameForm, CompanyForm and Report (see Fig. 17 and Table 10). The initial
search approach is by company name string (consequently, its top form provides only one
search choice).

company name string

Build

ListCompanies :
I

companies

Fig. 17. GIDC object data flow.

27

Build ;
GetCompanyProfile |

SRS S B R PR RAOTRPIS

Table 10.

GIDC objects, methods, templates, and procedures

Object Method/Procedure/Form Language

Gidc.top index.html| HTML
Gidc.top.DoGet.cgi

CompanyNameForm CompanyNameForm.Build.cgi Perl
CompanyNameForm.html.h HTML
CompanyNameForm.DoPost.cgi Perl

CompanyForm CompanvForm.Build.cgi Perl
CompanyForm.html.h HTML
Gide ListCompanies * SQL
CompanylForm.DoPost.cgi Perl

Report Report.Build.cgi Perl
Gide GetCompanyProfile * SQL

3.48 LAMDB

The LAMDB data source contains instantiations of the same object classes as the GIDC data
source (i.e., CompanyNameForm, CompanyForm and Report) and has the same object data
flow as that data source (see Fig. 18). as). As indicated by the lack of a “*” next to them in
Table 11, the SQL procedures used by LAMDB’s Build methods are not stored procedures
(and consequently reside in the Web server).

company name string

ListCompanies

companies

Build

GetCompanyProfile

Fig. 18. LAMDB object data flow.

28

Table 11. LAMDB Objects, methods, templates, and procedures

Object Method/Procedure/Form Language
Lamdb.top index.htm| ‘HTML
Lamdb.top.DoGet.cgi Perl
CompanyNameForm CompanyNameForm.Build.cgi Perl
CompanyNameForm.html.h HTML
ConmpanyNameForm.DoPost.cgi Perl
CompanyvForm CompanvForm.Build.cgi Perl
Company[Form.html.h HTML
Lamdb ListCompanies.sql ; SQL
CompanyForm.DoPost.cgi Perl
Report Report.Build.coi Perl
Lamdb GetCompanvProfile.sql SQL

3.4.9 ECY6

The EC96 data source is the most sophisticated of the NSDB data sources (see Fig. 19 and
Table 12). It contains only one initial search approach. This search approach however has a
number of options providing more search capabilities than other data sources with multiple
initial search approaches. The form built by the SearchForm’s Build method allows for
selection of options to search through “company data”™ or “product data™ and within that
data to search by “name” or “description.” 1t allows for input of a string to be searched for
within the company or product data and for the limiting of the search to products (or, when
searching through company data, to companies with products) that fall within a specified
classification. In addition, the EC96 data source has two report objects, a CompanyReport
and a ProductReport. Company reports contain lists of the company product names, which
are links (contain data which specify a method that here is the ProductReport’s Build
method) to reports for products of a company. (The dashed lines in Fig. 19 represent the
data flow via those links).,

A product, by the definitions of the EC96 data source, is a product name and classification. A
classification can be from one to four levels deep (with the levels being from the top:
primary group, category, class, and type). The possible names of successively lower levels
depend on the higher levels previously chosen. Therefore the SearchForm object provides for
selection from a generated list of the possible names for each successively lower level after
the name of the immediate higher level is chosen. This is why there is a path from the
SearchForm’s DoPost method to its Build method in Fig. 19. In setting up a classification
for search criteria, a full classification is not required. For example, if a primary group only is
selected, then the search will be through all products with classifications whose highest level is
the selected primary group regardless of what the lower levels of their classifications are. The
stored SQL procedure used by the ProductNameForm (CompanyForm) on receipt of data
from the DoPost method of the SearchForm is a {function of that data. If a null search
string is provided, the ListProductsByClass (ListCompaniesByClass)
procedure is used. If a non-null search string is provided, then when a search by name is
chosen the ListProductsByName (ListCompaniesByName) is used, and when a
search by description is chosen ListProductsByDescr (ListCompaniesByDescr)
is used. A “by description search on product” searches all the data in products’ description
and attribute fields. A “by description search on company™ searches all the data in
companies’ description fields.

29

Build
ListClassification

product
name,
classificatio

Build
ListCoProductsByProduct
ListCoProductsByCompany

classification,
name/description choice, product/ company choice,
search string

DoPost

classification,
name/description N
choice, Build
product name ListProductsByClass DoPost
string ListProductsByName companies
ListProductsByDescr
ListProductsByCompany GetC Detail
etCompanyDetails
companies, classification L;stCopanyPruduCts e
companies, classification product name/ 1
g J_ company!” """ TTTTTT
pairs !
classification, o
ame/descripti . product nam N
choice, o i compary P>| Build
s ListCompaniesByClass pairs GetProductDetails
company name ListCompaniesByName
string ListCompanies ByDescr

Fig. 19. EC96 object data flow.

As noted previously, a company report contains a list of the company’s product names
(generated by CompanyReport’s Build method). These provide links to a product report
that also may be called for from a “company/product” form. A product report (generated by
ProductReport’s Build method) will contain multiple product parts if the product name
selected has been classified in more than one way by the company. Each part is about a
product with the same product name as the other products in the report but with a different
classification (as noted earlier, a product is defined as a product name and a classification).
The product report begins with a set of links to the product parts of the report where each
link is represented by the product name. (This approach allows a company to provide
different information about a named product depending on the differing potential customers
for the classifications used.)

Table 12. EC96 objects, methods, templates, and procedures

Object Method/Procedure/Form Language

EC96.top index.html ‘ HTML

EC96.top.DoGet.cgi Perl

SearchForm SearchForm.Build.cgi Perl
Searchlorm.html.h ‘HTML

EC96 ListClassification * : SQL

SearchForm.DoPost.cgi Perl

ProductNameForm ProductNameForm.Build.cgi Perl
ProductNameForm.html.h HTML

-EC96 ListProductsByClass * SQL

-EC96 ListProductsByName * SQL

-BEC96 ListProductsByDescr * SQL

-EC96 ListProductsByCompany * SOQL

ProductNameForm.DoPost.cgi Perl

CompanyForm CompanyForm.Build.cgi Perl
CompanyForm.html.h ‘ HTML

- £C96 ListCompaniesByClass * SOL

- EC96 ListCompaniesByName * SOL

- EC96 ListCompaniesByDescr * SOL

CompanyForm.DoPost.cgi Perl

CompanyProductForm CompanyProductForm.Build.cgi Perl
CompanyProductForm.html.h HTML

- EC96 ListCoProdsByCompany * SOQL

- ECY96 ListCoProdsByProduct * SQL

‘ CompanyProductForm.DoPost.cgi Perl

CompanyReport CompanyReport.Build cgi Perl

EC96 GetCompanyDetail * SOL

EC96 ListCompanyProducts * SQL

ProductReport ProductReport.Build.cgi Perl

EC96 GetProductDetail * SQL

3.4.10 Example of NSDB Data Source Web Pages

The appearance of the Web pages for an NSDB data source depend on the type of data
available in the data source and the organization of the data source’s database tables.
Nevertheless. there is a measure of commonality of NSDB data source Web pages from data
source to data source. Particularly, each data source includes the following:

1. atop form with selection buttons for each of the data source’s search approaches;

2. scroll down lists on subsequent forms where the lists’ items are retrieved from the data
source’s database tables based on previous user entries and selections;

3. a “create new window” check box,'® links to the top form of the data source and to the
top page of the NSDB, and action buttons in an “actions area” for submitting user entered
and selected data on all forms; and

4. reports with links that case navigation through the reports’ parts and sections.

3]

FReload | images | Open | Print | Find

Location: [h+tp ¢ fsaturn.epr.ornl. g-:.vmedbfTopFurmDoGet.ogi?Atapd=AT.f».Pl:- |

Wik £ T nn G rraémgww

b

A TERD Sharcdh Aeptiouds

P'mduthategDﬁéé | Product Hames iCUmpaILj.?Names .

[] Crear Mew Window?

-E’t'?a- -!é’ MW"‘

@ s DE T’cp

Fig. 20. ATAPD top form.

Figures 20 to 25, are screen displays from the ATAPD data source that illustrate typical
aspects of NSDB data source pages. These screens resulted from a search, initiated via the
ATAPD’s product category search approach, for information about ATAPD-listed makers of
certain types of apparel. The end result of the search was the display of a report on two such
companics.

The NSDB ATAPD data source’s products are categorized in a one-level categorization
scheme. Thus, as seen in Fig. 20, the ATAPD top form, a search approach button for a
product categories approach is available, along with buttons for product name and company
name search approaches. The SEAMS data source has the same search approaches as
ATAPD:; consequently, its top page is essentially the same as the ATAPD top page. (Note
that where the data source supplier has a Web site, a link to that site is included on the data
source top page).

Figure 21 was displayed as a result of the choice of the “Product Categories™ search approach

in Fig. 20. The category “Intimate Apparel” was chosen in Fig 21. Clicking on the “List
Products™ button then resulted in the display of the form in Fig. 22.

32

Metscape: ATAPD Category Form :

hitp f /zaturn eprn.ornl gov MNsdb / Atapd S Atapd top DoGet ogi?Target

Children' =/Infan
Clothing/dncessories
Home Fuorndshings
Hoziery

Irdtmate Apparel
Mizcellan=ons

Other

Dutermear

4

List Products J

Fig. 21. ATAPD category form.

Had either the company or product name search approaches been chosen (in the Fig. 20
form), a form with a field for a search string and a “Search” button to activate a search would
have been displayed rather than the form in Fig. 21. In such a case, clicking on the form’s
“Search” button would have resulted in the display of a form containing a list with all the
product names (in the case of a product name search approach) or all the company names (in
the case of the company name search approach) that contain the search string. A blank
search string field would have resulted in all the data source’s company names or all the data
source’s product names being included in the list.

33

Metscape: ATHPD Product Form &

oy Form. DoPost.cgi

Lutnste dopenal

Links | Info]

If=n'=s & Boys' Briefs

ilen'=s & Boys' Nightwear

Robes (hesvyrmeight)

Tomen's & Girls' Hightwear

Momen'=s & Girls' Underwear (except bras)
Girls' Bras

|_n- W

B -1’{’{LiTEJ3‘{SEEZP§;cs" =] Info | |

 MEDE Top
4PT Top

ol _ | E=HE
Fig. 22. ATAPD product form.

The product name “l.oungewear” was chosen in the Fig. 22 form. Then, clicking on the “List
Companies™ button resulted in the display of the Fig. 23 form, which contains a list of all
ATAPD-listed companies that make loungewear.'®

" A user who wants to find manufacturers of such products but who does not know the exact name used in
the data source for these products can find them through the product category search method. If the user
knows the name used in the ATAPD data source, then simply inputting it via the product name search
method would save a step in getting to the list in Fig. 23. The product name search method with no input
string would yield a list of all the product names in the ATAPD: however, this would require inspecting a
much larger list than the list resulting from a category selection in the product categories search method.

34

- Netscape: ATAPD Company Form

http ¢ saturn epr.ornlgoy FHsdb £ Atapd /ProductForm DoPost ogi

{[CENTER STAR MANUFACTURING

| CLERURRE MANUFACTURING COMPANY
OUAR INLWSTRIEZ

DUTCHESS LINGERIE DBA SYLVESTER
BEM-DANDY

GULN UARUFACTURING CO.

LAFRERCE CORPUKATION

Tatl THDUSTRIES

Lizt Produets Geneeate Keport

Fig. 23. ATAPD company form.

Cleburne Manufacturing Company and Lawrence Corporation were selected in the company
list of Fig. 23. Clicking on the “Generate Report™ button then resulted in the display of the
report, which is partly shown in Figs. 24 and 25. Figures 23 and 24 illustrate that one or
more, up to all, of the companies in the list in the company form may be selected and that
all the companies selected will have their information included in the resulting report (with
the report being divided into parts and having a report part for each company).

35

Netscape: ATAPD Company Report

Location:]http 24 fzaturn eprn.ornl.goy /Nzdb £ dtapd SCompanyForm DoPost cgi

e 0 e e e mmwﬁwa Fekoh e ;w.kmw;* b ar e sams i e e
Selrsr FRRh 8 soctiur, ok e Efn’ﬁ;‘ﬁ‘&ﬂf&"»a’-‘{{mﬁ‘?-m I g e ;w*zammfmg ..J}.k ',mm.'r:
abwmt : .

AT ED Company Last

@ CLRBURNE MANUFACTURING COMPANTY
@ | WRENCE CORFORATION |

Bk Links

% MEDE Top
@ ATAPD Top

[Profile | Genersl | Befe | t!;it;):;iner}{;fl Tech B&ta{,;f—‘rﬁdﬁdt& 1 [Team

 CLEBURNE MANTE ﬂt‘]’fffbﬁ“sf“? Y vaﬁﬂé

de%&a’ . HIGHWAY 46 _
v PO ROX ST?
IEFLIN, L rCLEBUimz)

PR
82y 2
F"?E'.‘:.Z&fe:"ﬂf' :

i CQH'I‘?E‘T ,
' - M BEL
| Adrege o

z“ﬁmm -

PARENT COHPany o o
M KIET INTERNATIONAL =
Afdrass o {180 HATTEON AVERUE.
o CBEW YORE, WY 10015
Baome ¢ S1Z-mBR-VoRG
Fax

Fig. 24. Beginning of ATAPD report.

The beginning of the report (Fig. 24) lists the companies whose information comprises the
report (the list is immediately followed first by back links and then by the beginning of the
first company’s part of the report). Each company name in the list acts as a link to the
beginning of the company’s part of the report. Each company’s part of a report is divided
into sections (e.g., the ATAPD report sections are: Profile, General Information, References,
Machinery, Technical Data, and Company Products). The start of each company section
contains a set of links to other sections of the company’s part of the report, as well as a link
back to the list of companies in the report.

36

Netscape: ATAPD Company Report

Lucaﬂan http / =aturn.epr.ornl gov (Nsdb £ dtapd /Company Form DoPost cai #itermlFefs

V report.

g. 25. Reference and Machinery sections of part of an AT

Figure 25 contains the Reference and Machinery sections of the Cleburne Manufacturing
Company’s part ot the report. As can be seen from the Machinery section, some sections of
NSDB data source reports are essentially check lists that indicate, for example, what the
company’s equipment and capabilities are. In such a check list, a “Y” indicates the possession
of and a “N” the lack of possession of a check list feature.

37

3.5 EXTERNAL DATA SOURCES

External data sources are simply directly linked to from the NSDB top page. They need not
obey any of the conventions or requirements of an NSDB data source (e.g., their information
need not be in an SQL compliant database or in a database at all), they are not searched in the
NSDB high-level cross-data source search, and no interface functionality for them is provided
in the NSDB CGl. They are, however, included in the NSDB top’s Sourcing Area Directory to
provide an indication of their contents.

The data sources linked to at this writing are the
American Apparel Producers Network (AAPN),

American Textile Manufacturers Institute (ATMI), and
Davison’s Bluebook.

W) P

Davison’s Bluebook is accessed through the Apparel Exchange, the top page of which is also
linked to.

3.6 CROSS-DATA SOURCE SEARCH
3.6.1 General

The high-level cross-data source search capability has been implemented using the
FreeWAIS-sf freeware package, which includes two routines: waisindex and waisq.
The waisindex routine was used off-line in conjunction with scripts to develop a set of
files that enable the cross-data source search. This set of files was then integrated into the
NSDB and currently resides on the Web server. The set is searched with waisq. The result
of a search is a list of company/data source pairs, each pointing to information in the data
source about the company (or company’s products) that matches the search criterion. The
standard NSDB data source report capability is then used to display reports for user-selected
entries in the company/data source list.

3.6.2 Creating Cross-Data Source Enabling File Set

Figure 26 depicts the data flow in the creation of the files for enabling the NSDB cross-data
source search. This off-line process is carried out in part by scripts that were written to
retrieve information and create files (one per company per data source) for input to
waisindex. The set of script-generated files and a manually created format file are input
to waisindex to generate another set of files, the “wais index.” needed by waisq. The
waisindex input and output are then included in the set of NSDB files that enable a cross-
data source search.

In developing the scripts, a base class Company was created that defines a Write method.
Derived classes inheriting from Company. one per data source, were then created that use
the Write method to generate data source company data files compliant with the format
described in nsdb. fmt, the manually generated format file. The data source specific classes
each define a new method that queries the database in a data source specific manner to
retrieve company data that serves as the input to the Write method. Index.Build, a
method of the object Index, uses waisindex, to build the “wais index,” specifying

38

nsdb. fmt as the format file and the per company per data source data files produced by the
Write method as the waisindex input.”

NSDB
DATA-

ormatted
ata Source
n Files

e o

Fig. 26. Creation of cross-data source enabling file set.

Table 13 lists the methods, routines, and stored SQL procedures used in the creation of the
cross-data source enabling file set. At this stage, the LAMDB is not included in the cross-data
source search, so no entries for it are included in the table. The stored SQL procedures used in
the process are a subset of the set used by the on-line user interface and include all those
procedures used for report generation (see Sect. 3.4). A data source’s This.Generate
method serves simply as a calling routine for an inherited WriteAll routine. The inherited
WriteAll routine executes a data source specific ListCompanies method, a data source
specific new method, and the inherited Write method. Company.pm contains the
WriteAll method and Write method (inherited by the various data source specific
objects).

The routines setup.sh and setup.pl are sourced respectively by Index.Build and
the This.Generate methods (they are executed as part of these methods). Setup.sh
defines directory paths for the cross-data source search enabling files and certain methods
used in their generation and extends the process path to include the path to the waisindex
directory. Setup.pl defines the same directory paths as setup.sh and imports the
Nsdb . pm package, which in turn defines further directory paths, sets environment variables
required for accessing the NSDB database, and provides the Nsdb Perl package of
subroutines (note that the multiple setup.pl entries in Table 13 all refer to the same
routine).

" The object Index consists of two methods, Index.Build and Index.Query. It creates the “wais index”
with Index.Build and searches the index and associated files with Index.Query.

39

A “blanket™ This.Generate routine successively executes all of the data source specific
This.Generate routines. Either it can be used to generate all the data source files of

Fig. 26, or, alternately, data source specific This .Generate routines can be individually
executed to create their data source’s Fig. 26 files.

Table 13. Objects, methods, reutines and procedures used
the cross-data source search enabling file set

Table 13a. General methods and routines

in creating

Object/Object Class Method/Procedure/etc. |anguage
This.Generate This.Generate Perl
Company WriteAll Perl

Write Perl
Index Build Borne shell
setup.sh Borne shell
waisindex Acquired
Pkg. Utility
Table 13b. ATAPD methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language

This.Generate This.Generate Perl
setup.pl Perl

Atapd.Company ListCompanies Perl
Atapd ListCompanies SQL

Inherited WriteAll Perl

new Perl

Atapd GetCompanyProfile SQL

Atapd GetProdDetails SQL

Atapd GetMachDetails SQL

Atapd GetTechDetails SQL

Inherited Write Perl

Table 13c. Cottondnc methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language

This.Generate This.Generate Perl
setup.pl Perl

Cottonlnc.Company ListCompanies Perl
Cottonlnc ListCompanies SQL

Inherited WriteAll Perl

new Perl

Cottoninc GetCompanyProfile SQL

Cottonlnc ListCoProducts SQL

Inherited Write Perl

40

Table 13d. EC96 methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language
This.Generate This.Generate Perl
, setup.pl Perl
EC96.Company ‘ ListCompanies Perl
12:C96 ListCompanies SQL
Inherited Write All Perl
new Perl
EC96 GetCompanyDetails SOL
EC96 ListCompanvProducts SQL
EC96 GetProductDetails SOL
Inherited Write Perl

Table 13e. GCA methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language
This.Generate This.Generate Perl
setup.pl Perl
GCA .Company ListCompanies Per|
GCA_ListCompanies SOL
Inherited WriteAll Perl
new Perl
GCA GetCompanyProfile SQL
Inherited Write Perl

Table 13f. GIDC methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language

This.Generate This.Generate Perl
setup.pl Perl

Gide.Company ListCompanies Perl
Gide ListCompanies SQL

Inherited WriteAll Perl

new Perl

Gide GetCompanyProfile SQL

Inherited ‘Write Perl

41

Table 13¢. KTA methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language
This.Generate This.Generate Perl
setup.pl Perl
KTA.Company ListCompanies Perl
KTA ListCompanies SQL
Inherited WriteAll Perl
new Perl
KTA GetCompanyProfile SQL
KTA GetProductDetails SQL
Inherited Write Perl

Table 13h. Seams methods, procedures and routines

Object/Object Class Method/Procedure/etc. Language
This.Generate This.Generate Perl
setup.pl Perl
Seams.Company ListCompanies Perl
Seams ListCompanies SQL
Inherited WriteAll Perl
new Perl
Seams GetCompanyProfile SQL
Seams GetProdDetails SQL
Inherited Write Perl

Table 14 lists the noncompany specific files required for the cross-data source search
(nsdb. fmt and the Index.Build generated files). Their creation (except nsdb. fmt)
from the data sources’ company files is depicted in Fig. 26. The Table 14 files can also be
built incrementally, one data source at a time (with the files being appended to or updated
with each run of Index.Build), or in even finer increments, one company/data source
pair at a time.

3.6.3 On-line Cross-Data Source Search

The following are the main interface objects employed in defining and carrying out a cross-
data source search and in displaying reports selected from the search results:

e SearchForm

¢ HitsForm

* Index

e data sources’ Report objects

The major object data flow for a cross-data source search is depicted in Fig. 27.
SearchForm’s SearchForm.Build method builds a search form with an empty search

string (see Fig. 28) when a user requests the cross-data source search from the NSDB top (the
NSDB top form links to Wais.top’s index.cgi, which invokes SearchForm.Build).

42

Table 14. Noncompany-specific cross-data source search files

File Name Created

nsdb.fint Manually ‘

nsdb.dct by Index.Build (through use of waisindex)
nsdb.doc by Index.Build (through use of waisindex)
nsdb.fn by Index.Build (through use of waisindex)
nsdb.hl bv Index.Build (through use of waisindex)
nsdb.inv by Index.Build (through use of waisindex)
nsdb.sre by Index.Build (through use of waisindex)

nsdb field data.doc ’

by Index.Build (through use of waisindex)

nsdb field data.inv

by Index.Build (through use of waisindex)

nsdb field name.dct

by Index.Build (through use of waisindex)

nsdb field name.inv

by Index.Build (through use of waisindex)

nsdb field products.dct

by Index.Build (through use of waisindex)

nsdb field products.inv

by Index.Build (through use of waisindex)

nsdb field state.dct

by Index.Build (through use of waisindex)

nsdb field state.inv

by Index.Build (through use of waisindex)

company/source pairs

company

. »

Fig. 27. Cross-data source search major object data flow.

Datasource 1

SearchForm’s DoPost method invokes HitsForm’s Build method passing it the input

search criteria. HitsForm’s Build method invokes Index’s Index.Query method.

Index.Query

1. executes waisqg to query the wais index to generate a set of company/data source pairs,
2. passes the waisq output through Query’s Filter method, and
3. returns the filtered waisqg output to HitsForm’s Build method.

43

HitsForm’s Build method then, using HitsForm’s html .h template, constructs a form
containing the list of company/data source pairs (Fig. 29) with data meeting the search
criteria. HitsForm’s DoPost method invokes the Report Build method of the data source
from the user-selected company/data source pair, passing it the company name.

- Netscape: NSDB Cross Source Search Form

Lowation: ;http 14 fsaturn eprn.ornl.gov /Nsdb Swais £

[Coeste Mew Window

| Pegform Search ‘ Clear Stdng l

Fig. 28. Cross-data source search form.

The types of search criteria that a user can construct are indicated on the cross-data-source
search form, shown in Fig. 28. The criteria depend on fields that are defined by nsdb. fmt.
These fields are:

1. name (for company name),

2. state (for the states listed for a company),

3. products (for the name and other information about the products made by and services
provided by a company), and

4. data (for all other data about a company).

44

A search “word” (e.g., rayon). or search “word phrase” (e.g., “has cutting tables’) may be
looked for in one of the four cross-data source’s fields of a company’s data (e.g.,
products=rayon in a search criterion would lead to products’ fields being searched for the
string rayon). A wild card is permitted in a search word or word phrase (e.g., name=Bu*). In
addition, any search word or word phrase for which a ficld is not specified will be searched for
in all four fields of a company’s data (i.e., it leads to a “global” search). Compound search
criteria, using Boolean operators, may also be constructed for the cross-data source search
[e.g., (state=tn or al or ga) and ‘has cutting tables’ not “private label’ not name=ath*].

The result of a search is depicted in Fig. 29, which contains a list of company/data source
pairs (with the data source in parenthesis). Selection of a company/data source pair from the
list, followed by clicking on the “Generate Report” button, will cause a report on the
company to be displayed based on the data source’s data for the company.

The objects, methods, procedures, etc., excluding the report Build methods, used by the
cross-data source search are listed in Table 15. The report Build methods are listed in
Table 16.

Netscape: NSOB Cross Source Search Hits Form :

priv.ornl.gov ANsdb Sw ais SSearchform DoPast i

: Cd
(BMERTCAN & EFIBED, INC. (EC98)
:AMERTCAN TROUSER, INCORFORATED (ATAPIY
22 &IMF REECE (574)
thpparel achinery & Supply Company (EC96)
‘B P Apparel Inc. (SEAUIR)
[:Banmer Industries of RY ([SEALNS)

Ceperate Report [

Fig. 29. Cross-data source seérch company/data source list.

45

Table 15. Objects, methods, procedures, form,
etc., for cross-data source search

Object Method/Procedure/Form/etc. l.anguage
Wais.top index.cgi Perl
SearchForm SearchForm.Build Perl
SearchForm.html HTML
SearchForm.DoPost.cgi Perl
HitsForm HitsForm.Build.cgi Perl
HitsForm.DoPost.cgi Perl
Index Index.Query Borne shell
setup.sh’ Borne shell
waisq Routine from acquired package
Query Query.Filter Perl

Table 16. Report methods®'

used by cross-data source search

Data Source Object Method Language
ATAPD Report Report.Build.cgi Perl
Cottonlnc Report Report.Build.cgi Perl
EC96 CompanyReport CompanyReport.Build.cgi Perl

ProductReport ProductReport.Build.cgi Perl
GCA Report Report.Build.cgi Perl
GIDC Report Report.Build.cgi Perl
KTA Report Report.Build.cgi Perl
SEAMS Report Report.Build.cgi Perl

A “search wizard” is provided to facilitate the construction of search criteria. The wizard
provides for a term-by-term construction of the search criteria®® without the need to input
field name or logical operator strings for each term.”” The object data flow for the wizard is
depicted in Fig. 30,” and the objects, methods, etc., that it uses are listed in Table 17. The
wizard employs three “pages,” one to select a search term’s field, another to input text for
the search term, and a third to select a logical connection (“and,” “or,” or “not and”)
between the entered search term and any subsequent terms.

** Provides path to waisq.

*! These are the same methods used to generate reports called for by a user when searching through specific
data sources. They use stored procedures as noted in Tables 5 through 10 and in Table 12 but not listed in
this table.

** The cross-data source search wizard was added to the NSDB in September 1997. Because it is not
essential for the creation of the cross-data source search criteria and because it was more easily implemented
by using Java scripts rather than pure HTML, Java script was used as part of the forms built by all of the
.cgi methods shown in Fig. 30 and listed in Table 17. In addition, frames were used for the displayed
forms.

> Fields and logical operators are selected by clicking on buttons.

** The “Page™ objects shown in the figure are analogous to the Form objects and the Page object’s
methods are analogous to Build methods in previous figures except that they also incorporate the previous
figures’ DoPost method’s functionality in their Java scripts.

46

link from search form

scarch string

search string

search string,
search field

R <.M seirch string,
search string search lield

search string (criterion)

P to SearchForm’s Build Method

5

Fig. 30. Cross-data source search wizard object data flow.

Table 17. Objects, methods, and forms for
cross-data source search wizard

Object Method/Form/etc. Language
Wizard.top index.html HTML
js-top.html HTML
header.html HTML
warning.html HTML/Java Script™
FieldPage FieldPage.cgi Perl
TextPage TextPage.cgi Perl
ModePage ModePage.cgi Perl

Figure 31 is a display of the wizard’s step | (Field) page. At its top, as is the case for each
wizard form, there is a link (i.e., the button with the “?” in it) to an explanation of how to
use the wizard for the construction of search criteria.”® Below the button is the “form”
consiructed by the FieldPage method. The “Remove Last Term” button is displayed only
when the search string is not empty. The “Next” button leads to the display of the next
step’s (step 2°s) “page.”

** The wizard may be thought of as an object belonging to the SearchForm object with the objects
displayed in the figure belonging to the wizard.

* The HTML file jstop.htm] sets up two frames for each wizard page, with the top frame remaining
constant and the bottom frame containing the form built by one of the Page .cgi methods.

47

Netscape: NSDB Cross-Source Search Wizard

o W | G & g o
Back ¢zd| - Horne Re!qad‘ _Images Oper Frint Firid Sdop

Loca{ion,ihﬂp /zaturn.eprornl gow /Nzdb Swais fwizard £ je-top kil

Step 1: Select @ Search Field

Cnn;m_ Search prodvetz={denim) and state={ac)
5lobal (zearch on everyhing stored in the databaze)
(4 Company Name
Select Search Field State
g Froducts
Data (addresses, capabilitiez, equipiment)

l =Remove Last Texm] l Hext=]

Step 2: Enter Search Text

Step 3 Cheoose Search Logic

L2tk , =R
Fig. 31. Cross-data source search wizard field (Step 1) page.

Completion of wizard-constructed search criteria is indicated on the wizard’s step 3 (Mode)
“page.” This page contains a “Next” button and a “Finish™ button. When the “Next™ button
is clicked on, the step 1 (Field) page is displayed to start the definition of the next term

in the search criteria. When the “Finish” button is clicked on (to indicate completion of the
wizard’s use), the SearchForm.Build method is invoked. When the
SearchForm.Build method is invoked (from the wizard’s step 3 page), it receives the
wizard constructed search criteria as input and includes this search criteria in the search string
field of the search form it constructs. The search criteria can then be edited before clicking
on the “Perform Search™ button (see Fig. 28). When this button is clicked on, it initiates the
search.

The search criteria can be alternately constructed by direct input into the search string field
of the search form (Fig. 28). However, direct search criteria construction requires that the
user carefully follow the search criteria syntax noted in the search examples section of the
search form. The wizard, on the other hand, automatically follows this syntax. Careful user
attention to the syntax is also required when editing a search form’s search string field,
whether its search criteria was constructed directly or with the wizard.

3.7 MULTIPLE WINDOWS

A user may request that the next form or report be displayed in a new window when choosing
a data source from the Nsdb top form’s data source buttons (in the “Sources and Functions”
part of the top form: see Sect. 3.3) or when moving.to another form or report within a data
source or within the cross-data source search (see for example Fig. 10). Each DoGet and

48

DoPost method that is part of the user interface passes on a parameter to the Build
method required by the other user selections. The Build method places this parameter in a
header (after the string “Window-target:”) of the form or report it builds. The parameter is
then used by the user’s browser to determine whether the form or report is to be displayed in
the current window or in a new window.

Direct links from a form to a Build method lead to the display of a form or report in the
current window. Consequently, the top forms of each data source, when requested via links in
the “Sourcing Area Directory” of the NSDB top form, and the top form of the cross-data
source search are displayed in the current window.

3.8 NSDB PERL PACKAGE

As noted previously, the CGI has been written in Perl version 5.003 and uses stored or Web
server—based SQL procedures to retrieve data from the NSDB’s database(s). A package of
subroutines, which has been labeled the “Nsdb Perl Package,” was written to facilitate
implementation of the CGI for this environment. This package, whose development was
motivated by the needs of the NSDB CGl, is reusable and is likely applicable to many other
form-processing web interfaces (a degree of greater functionality than required by the NSDB
CGI has been included in some of the routines).

The package consists of the following nine routines:

1. Query()—executes a specified SQL procedure and returns results in a regular or associative
array depending on a parameter that is passed to it.

2. Listlsql()—strips column names and superfluous lines from command client network
utility output that contains a single column result and returns each row element as an
entry in an array.

3. Capturelsql()}—extracts column names and values for each row, returning each row as an
entry in an array.

4. BuildValues(}—converts results from Capturelsql() into an associative array indexed by
row number and column name.

5. Parselnput(}—reads an HTTP data block from an HTML form submission and returns an

associative array containing input values indexed by input value name.

CgiUnescape(}—replaces CGI escape sequences with ASCII characters.

BuildTabs()}—builds tabs line for report generation.

CgiEscape()—replaces special characters with CGI escape sequences.

GetTarget()—provides the parameter for a form or report header that determines

whether the form or report will be displayed in the current or a new window.

A e

The first four routines are used to retrieve and format data from the NSDB databases. Query
is called by Build methods and uses ListIsgl when returning a regular array and
CapturelIsql and Buildvalues when returning an associative array. The fifth and
sixth routines are used in converting user input to values in an associative array indexed by
the value names. ParseInput is called by DoPost methods and uses CgiUnescape to
convert the HTTP nonalphanumeric character representations to characters. The seventh
and eighth routines are used by Build methods, with BuildTabs being used by all Report
Build methods and CgiEscape being used by methods that construct URLs (currently
only in EC96’s CompanyReport Build method). The ninth routine is used by DoGet and
DoPost methods to obtain a parameter to be passed on to Build methods.

49

3.9 NSDB PILOT COMMAND CLIENT NETWORK UTILITIES

The routine text.get is the NSDB pilot command client network utility used to retrieve
data from seven of the eight NSDB data sources. It provides an enhancement to isql
functionality, which is useful for the Web NSDB user interface. The command client network
utility, msql, used to retrieve data from the eighth data source. is an acquired package.”” The
text.get isql enhancement overcomes an inconvenience for “downstream”™ NSDB
processing of retrieved data that would result from isql.”® Particularly, this is isql’s
treatment of text columns. The isgl command client network utility places any text field
on a separate line from all other values retrieved from a table row. The routine text.get,
however, places all values retrieved from a table row, including the text values (i.¢., values
from text fields) on a single line. The text . get routine was written in C and uses a set of
functions from the Sybase DB-Lib function library that is used by isql.

All user interface methods requiring data from the NSDB database retrieve the data through
calls to the routine Query in the Nsdb Perl package. Query's parameters, in addition
to a pointer to the Nsdb package, are:

1. an SQL procedure name,

2. a result-mode (cither a normal array, i.e., “list,” or an associative array, i.e., “values™),
and

3. aset of SQL procedure parameters.

Query determines which command client network utility is to be used from the SQL
procedure name passed to it. When it uses text.get, it creates a file and passes the file
name to text.get, where the file contains the following:

1. an SQL command to execute the stored SQIL. procedure whose name was passed to it and
2. the procedure’s parameters.

Query also passes a user id, a password, and, if the result-mode is “values,” a delimiter.
When Query uses msql, it creates and passes to msql a file containing an SQL procedure
constructed by Query from the procedure whose name was passed to Query. The command
client network utilities text.get and msgl, when executed by Query, establish a
connection to the required data source’s database server, submit an SQL command/query, and
retrieve the query’s results. The routine text.get also performs an intermediate
formatting of the SQL query results, while msqgl leaves such formatting for Query. Query
handles the msqgl output formatting through a call to a routine written specifically for
formaiting msql results.

*" Avaitable from Hughes Technologies, Main Beach, Gold Coast, Australia. See

http://www Hughes.com.au/.

* The original pilot data sources’ database tables did not have any text fields: as a result, “downstream”
processing routines were not written to account for these types of ficlds.

50

3.10 INTERFACE FILE ORGANIZATION

The directory organization of the Web NSDB user interface is illustrated in Fig. 32. All the
files containing the code written specifically for the NSDB and used by the user interface are
contained in the directories shown in the figure.”’

Nsdb

Atapd Cottonlne

EC96 GCA Gidc KTA Lamdb Seams

bin wais images help

K N EC96
Seams
I

el 6 ‘CA AR I T
Atapd Cottonlnc EC9 ¢ Cide KTA wizard

index help

Fig. 32. NSDB Wceb user interface directory structure,

The main Nsdb directory contains a bin subdirectory, a wais subdirectory, an images
subdirectory, a help subdirectory, and subdirectories for each data source. The wais directory
contains an index subdirectory, a wizard subdirectory, and subdirectories for each data source.
The images directory contains a subdirectory for each data source that includes images among
its data (only EC96 in the pilot).

Table 18 contains a list of the nondata-source-specific files in the Nsdb directory and its
subdirectories. Two files in Nsdb contain the NSDB top form and DoGet method
respectively. The third, Nsdb . pm, contains the Nsdb Perl package (see Ssect. 3.8). The
text.get entry in Nsdb/bin is the enhanced isql command client network utility written for
the NSDB. The wais subdirectory of the Nsdb directory (Nsdb/wais) contains all the nondata-
source-specific files (other than waisq) necessary to implement a cross-data source search,
while its wizard subdirectory (Nsdb/wais/wizard) contains all the files required for the wizard
construction of a cross-data source search criteria. The images subdirectory of Nsdb
(Nsdb/images) contains gif-formatted images used in Web NSDB forms. The help subdirectory
of Nsdb (Nsdb/help) has two files that contain, respectively, forms that provide a description
of the NSDB™ and of the NSDB data sources. The subdirectory contains a third file that is an
image used by the form containing the NSDB description. The help subdirectory of the wizard
directory (Nsdb/wais/wizard/help) contains a file that describes the wais wizard’s operation.

? As noted in Sect. 4.9.2, in the pilot implementation, various NSDB utilities that also run on the Web
server and routines associated with these utilities but not required by the user interface are in some cases
located in directories shown in Figure 32. These are not included in the file enumeration of this section.
* The NSDB top page, which has a link to this form (i.e., the link “NSDB Description and Help™), also
has a link to instructions on how to use multiple windows (i.e., the link “Using Multiple Windows™).
This latter link actually connects to a part of the form containing the “NSDB Description and Help.”

51

Table 18. Nondata-source-specific files in Nsdb
directory and its subdirectories

Directory File File

Nsdb index.shtml Nsdb.pm
TopForm.DoGet.cgi

Nsdb/bin text.get

Nsdb/wais HitsForm.Build Query.Filter
HitsForm.DoPost.cgi SearchForm.DoPost.cai
Index.Query SearchForm.html.h
setup.sh index.html

Nsdb/wais/wizard index.html FieldPage.cgi
js-top.html TextPage.cgi
warning.html ModePage.cgi
header.html

Nsdb/wais/wizard/help index.htm|

Nsdb/images dama.gif blue-ball.gif
left-spool.gif green-ball.gif
right-spool.gif orange-ball.gif
top-line.gif red-ball.gif
help-button-small.gif pager.gif
ling.gif netscape-js.gif

Nsdb/help index.html data-flow.gif
data-sources.html

Each data source subdirectory of the Nsdb directory (e.g., Nsdb/Atapd) contains all the
methods and templates that are listed in its tables (Tables 5 through 12 in Sect. 3.4) but not
necessarily the SQL procedures listed in those tables that, except for the LAMDB data
source, are stored in the central NSDB database (see Sect. 2).

The index subdirectory of the wais directory (Nsdb/wais/index) contains all of the files listed

in Table 14. As noted in Table 14, the file nsdb. fmt is created manually and all the other

files are generated through use of waisindex. These other files are automatically placed in
the index subdirectory during their generation.

Each data source subdirectory of the wais directory contains the company-specific files that
have been generated by data-source-specific routines used in building the set of cross-data
source enabling files. These files are named 0001 .data, 0002.data, . . .
wxyz.data, where wxyz is the total number of companies listed in the data source.

The EC96 subdirectory of the images directory (Nsdb/images/EC96) contains a set of gif files,
which are image files provided as part of the EC96 data source input. A link (or links) to
each of these files is included in company and/or product reports. The data source utilities
that load the EC96 data into the NSDB database create a set of sequential names, gfl.gif,

52

gf2.gif, . . . gfxyz.gif, where xyz image files had links included in the EC96 input data. The
created names are used to rename the image files provided by the listed companies and to
construct the links to them. These links are included in the data source’s tables in the central
NSDB database.”’ All the names in the sequence may not be present in the EC96
subdirectory. File names in the sequence are assigned as a utility processes the data source’s
input data and comes across references to image files. When gif tiles with the referenced
names are encountered on further processing, thcy are given the sequence names previously
assigned to their references. Should a referenced image file not be among the data source
images input, its name will not appear as the name ofa file in the subdirectory.’* Should
other data sources be implemented with gif image files, the names of these files would be
similarly generated and, if stored in the Web server, would be stored in a subdirectory of the
images directory (with the subdirectory name identical to the data-source-specific
subdirectory names in Nsdb).

In addition to including the files noted previously in the directories of Fig. 32, the following
items must be set up for the user interface to function:

1. The FreeWAIS-sf 2.1.1 freeware package utility waisq must be in a directory that
is accessible to the Index.Query method.

2. The Sybase file interfaces and directory locales must be in a directory accessible
to text.get, and locales must contain entries for each database that might at any
time be the active central NSDB database.

3. The Perl 5.003 package must be in a directory specified in the files that contain Perl
scripts that are part of the NSDB user interface.

4. The Apache 1.1.3 HTTP server must be installed and know the location of the Nsdb
directory.

5. Themsgl 2.0.1 software must be located in a directory accessible to Query.

Items 1 through 5 of the immediately preceeding list are accomplished in the current pilot
system, where the Nsdb directory path is /usr/saturn/www/Nsdb, by the following:

1. Having waisq in /ust/local/bin/wais (setup.sh used by Index.Query extends the
process path to include this directory).

2. Locating the Sybase file interfaces and directory locales in /ust/sybase (and
setting the variable ‘SYBASE’ in Nsdb.pm to this directory).”

3. Locating the Perl 5.003 package in /ust/local/bin (which is specified in the Perl script
files).

4. Installing the Apache 1.1.3 HTML Web server in usr/saturn/www (and 1nd1catmg in
its configuration file, i.e., usr/saturn/www/apache/conf/srm.conf, that /Nsdb is an alias for
/usr/saturn/www/Nsdb).

5. Installing the msgl 2.0.1 software package in /usr/Hughes (and setting the variable
‘MINISQL’ in Nsdb. pm to this directory).

>! Because the image file names are provided by each company, there could be duplicate names across
compames Therefore, the load utilities provide unique names for each image file that is part of EC96.

? Currently the EC96 data source image subdirectory will also contain ﬁles whose names are not names
from the sequence (unless these are removed manually). These result from image files provided as part of
the data source data input but not referenced in the data source text data.

* Entries for each database that might be used for the central NSDB database must also be made in the
Sybase “interfaces” file. In the pilot, a statement in Nsdb.pm that defines the variable $DSQUERY is set to
point to the NSDB Sybase or NSDB MS SQL Server database entry in “interfaces,” depending on which
of these is desired to be the active central NSDB database.

53

Note again that the directory structure and contents discussed in this section deal only with
the Web NSDB User Interface requirements and not with any of the off-line utility
requirements, for example, the files for the generation of the cross-data source search are not
included in this discussion (but are noted in Sect. 4.9.2). In the current implementation, many
of these utility files are included in directories described earlier.

3.11 DISTRIBUTED NSDB
3.11.1 General

The NSDB Web system design provides for the distribution of the data sources over a set of
NSDB database servers (with each data source’s text data residing completely on one database
server). However, until mid September 1997, the pilot implementation maintained all the
data sources on a single database server (either in a Sybase or MS SQL Server DBMS). It also
maintained all non-text media on the Web server. Discussed in the following sections are the
approaches to distributing data sources when (1) only Sybase or MS SQL database servers are
used, (2) a general set of database servers is used, and (3) the current pilot system with the
remotely located LAMDB data source is used. In the last section is discussed the anticipated
approach for distributing non-text data associated with data sources.

3.11.2 Distributed Data Sources in Sybase and/or MS SQL Server Databases

Only minor changes to the pre-September 1997 pilot system user interface are required to
deal with data sources distributed over database servers where the database servers are a
combination of only Sybase and/or MS SQL Server database servers.

The configuration shown in Fig. 33 is representative of such a Web NSDB system.”* The
general structure of the Web server remains the same as for the pre-September 1997 pilot
system (see Fig. 2). However, additional database servers are accessed through the enhanced
isql command client network utility. The utility is able to locate these database servers
through entries for each such server in the Sybase interfaces file.”> A data
source/database server table for determining a pointer to the database server in which a data
source’s tables reside (implemented, e.g., as a Perl associative array) is included in the
Nsdb.pm file for this situation. The name of the database server pointer for a data source is
extracted from the table and the process environment database pointer variable is set to this
pointer before access to the data source’s database tables is attempted. This approach can be
implemented with the pilot system through code changes to only the Nsdb Perl Package
routine Query. Query can be changed to:

** The configuration is also representative of a situation where database systems other than Sybase or MS
SQL Server are used but in which all the systems are compatible with a single command client network
utility (e.g.. a situation in which a multiple of Oracle databases housed data sources).

** This file in the pilot Web server currently has entries for the Sybase NSDB database server and the MS
SQL Server database server (the definition of the environmental variable DSQUERY made in Nsdb.pm is
changed by the database administrator when the active server is switched between the Sybase and MS SQL.
Server database servers).

54

* determine the data source from which it is to obtain data through the name of the stored
SQL procedure passed to it as a parameter,’®

* find the data source’s database server pointer name from the data source/database server
table, and

* set the DSQUERY environment variable to the data source’s database server pointer

before passing query parameters to the command client network utility (i.e., to text.get).

requestiurm formatied ML
enbisission

forms inpuls

HTTP —»
IR formatted FTHL A
(Web) |agoimotied T CGl
o LY 1
- Server

P Cmd Client |
WER SERVER Niwk Ut,i(;;y' guery resulis

-

DATABASE SERVER | DATABASE SERVEK n

Fig. 33. Representation of distributed NSDB with all database management
systems compatible with a single command client network utility.

3.11.3 General Distributed Data Source Configuration

When database servers other than Sybase or MS SQL Server database servers are included in
the NSDB, further modification of the Web server is necessary. Figure 34 is representative of
the situation in which NSDB data sources reside on a set of database servers, the set is divided
into subsets, and access to databases in different subsets requires different command client
network utilities.

The CGI, in the Fig. 34 situation, communicates with a multiple number of command client
network utilities. To retrieve information from a data source, the CGJ selects the compatible
command client network utility for the data source before passing it query parameters. A
database server command client network utility table can be included in Nsdb. pm along with
the data source/database server table described in Sect. 3.11.2 (this might also be implemented
by a Perl associative array, so the one associative array provides the database server pointer

* The SQL procedures for a particular data source all start with the data source identifier followed by an
underscore (see Sect. 2).

55

for a data source, and the second provides the command client network utility for the
database server). The software required to support the various command client utilities
(corresponding to the files in the pre-September 1997 pilot’s /usr/sybase directory) is
installed, and entries are made in appropriate tables/files/scripts to allow the command client
network utilities to locate the database servers that they must access. This approach can also
be implemented through code changes to only the routine Query. Query can be changed to
determine (1) the database server to be accessed (through use of the data source/database
server table) and (2) the command client network interface utility to be used (through use of
the database server/command client network utility table). Any particular required formatting
of commands to and responses from each command client network utility can also be
included in Query.

request/form| formatied HIML

subnission
WEB SERVER
HITP |
(Web) a0 | CGI
Server ‘J gquevy results r—— — q
Cmd Client emesmamnn Cmd Client
|. Ntwk Utility 1 Ntwk Utility n

DB SERVER DB SERVER
FON ¥y

DB SERVER
I

DB SERVER
11

Fig. 34. Representation of distributed NSDB with sets of database
manangement systems where each set requires a different command client
network utility.

3.11.4 Inclusion of the LAMDB Data Source

The LLAMDDB data source is maintained at the University of Southwestern Louisiana in a
Minerva database. Thus, inclusion of LAMDB in the pilot World Wide Web NSDB is a
special case of the general data source distribution discussed previously. Figure 33 represents
this situation. In this case, each of the two command client network utilities accesses only
one database server. Consequently. in the post-September 1997 pilot, the data
source/database server and database server/command client network utilities tables described
previously (for location in Nsdb.pm) were combined into a single data source/command
client network utility table (implemented as a Perl associative array).

56

The following modifications were made to the previous user interface to allow it to retrieve
and display data from LAMDB.

1. The command client network utility msqgl was loaded into the Web server to
communicate with Minerva databases.’’

2. An associative array providing a pointer to the command client network utilities used for
each data source was included in the constants in Nsdb. pm.

3. The routine Query was modified so that it determines whether to use the text.get or
msqgl command client network utility based on the SQL. procedure name passed to it, and
code was included in Query to command msgl and to format msql ‘s output.

4. Forms and cgi routines were included for LAMDB, and links to LAMDB were included in
the NSDB top page.

3.11.5 Distributing Nontext Media

Nontext media that is part of a data source is not stored in the NSDB databases. It is placed in
files that can be stored on either the NSDB Web server or other servers. Links included in a
data source’s reports provide the user access to these nontext files. In the pilot system, as
noted earlier, images are the sole available nontext media and they are currently provided
only in the EC96 data source. The files of these EC96 images are stored in the NSDB Web
server, and the links to them are included in the data source’s database files.

NSDB data sources’ nontext media files may be located on an NSDB server remote from the
NSDB Web server. However, all files for each type of a specific data source’s nontext media
must be located in a common directory on a single server (e.g., all of data source a’s image
files might be located on one server, and all of data source a’s video files might be located on
the same or another server). Should these nontext media files not be loaded on the Web
server, a file would be included in each data source’s Nsdb subdirectory (e.g., Nsdb/EC96 for
the EC96 data source), which would provide the location of each of the source’s types of
nontext media. Each data source’s report Build methods(s) would then be modified to use
this file to construct the report links to the files.

3.12 LINKING TO NSDB REPORTS FROM EXTERNAL WEB PAGES

Information from the NSDB can be linked to from an external Web page by providing links
to the NSDB cgi processes that dynamically generate HTML reports. The URL provided in

such a link must contain a set of parameters expected by the .cgi process.”® An example of a
URL with such parameters is

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi?Liberty+Division+Walls+Industries|Pioneer+Manuf
acturing|York+Sportswear&Rainwears& blank

*” Note that version compatibility must be maintained between the Minerva databases and the msql
command client network utility that accesses them.

** The submissions for obtaining reports are assumed in this section to be GET submissions. POST
submissions could also be used. However, they would require including the parameter names as well as
their values in the submission, thus requiring more knowledge of the .cgi processes that build the reports.

57

Selecting a link with this URL will lead to the display of a report from the ATAPD data
source on the three companies

1. Liberty Division Walls Industries,
2. Pioneer Manufacturing. and
3. York Sportswear.

The report will have the product Rainwear highlighted in the Products section of each
company’s part of the report, and the report will appear in a new window.

The following part of the URL provides the path to the ATAPD Report Build method:

saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.cgi

The ? in the URL indicates that a query string follows, where the query string contains the
parameters for the Build method. The parameters for the ATAPD Report Build method
are

a list of companies,

an optional product, and

an optional “target™ parameter that determines where the report will appear (if this
parameter is ©_blank,” the report will be displayed in a new window, if it is * _top™ or
“+,” the report will be displayed in the current window’’).

L P —

.

The parameters are separated by ampersands; that is, “&” serves as the parameter separator,
list items are separated by “|”’s, and blanks are replaced by “+7s in the query string. Thus, the
list of companies, the product. and the target parameter are given by the following,
respectively:

Liberty+Division+Walls+Industries
Rainwear, and
_blank.

Pioneer+Manufacturing|Y ork+Sportswear.

Lo N —

The general form of the URL for an ATAPD report is

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi? list of companies&optional product&optional
target parameter,

where list items are separated by “|”’s, blanks are replaced by “+s, and the query string may
be terminated after the last included parameter. Also, since any ampersand is considered a
parameter delimiter, all ampersands in a parameter are replaced by “%26” (e.g., The A&B
Company would appear in a company list as The+A%26B+Company). Since it is envisioned
that links to the NSDB would normally come from company sites, it might be expected that
the company list would contain only one company name and that probably no product
highlighting would be required in the report. A URL that would provide the ATAPD report
for York Sportswear, which would appear in a new window with no product highlighted, is:

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi?York+Sportswear&& blank

* It could be another value indicating another target for the report, for example, a frame in the current
window.

58

Note that the following URL will provide the ATAPD report on York Sportswear in the
current window:

http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.
cgi?York+Sportswear&&+

Table 19 contains the path and parameters of the URLs for all reports obtainable from the
NSDB with its current data sources. The ATAPD, Cottonlne, GCA, KTA, LAMDB, and
SEAMS Report URLSs all have a common query string format. The GIDC and EC96 Company
Reports have that same format except they do not include an optional product parameter.

Table 19. General form of URLs to externally link to NSDB reports

Report General Form of URL
ATAPD Report http://saturn.epm.ornl.gov/Nsdb/Atapd/Report.Build.cgi?/ist of
compuanies&optional product&optional targel parameter
Cottoninc Report http://saturn.epm.ornl.gov/Nsdb/Cottoninc/Report. Build.cgi?list of
companies&optional product&optional (arget parameier
EC96 Company http://saturn.epm.ornl.gov/Nsdb/EC96/CompanyReport.Build.cgi?/is
Report t of companies&optional _target parameter

EC96 Product Report | http://saturn.epm.ornl.gov/Nsdb/EC96/ProductReport.Build.cgi?
list of companies and product names&optional targer parameier

GCA Report http://saturn.epm.ornl.gov/Nsdb/GCA/Report.Build.cgi?list of
companies&optional product&optional target parameter

GIDC Report http://saturn.epm.ornl.gov/Nsdb/Gidc/Report. Build.cgi?/ist of
companies&optional target parameter

KTA Report http://saturn.epm.ornl.gov/Nsdb/KTA/Report.Build.cgi?/ist of
companies&optional product&optional target parameter

LAMDB Report http://saturn.epm.ornl.gov/Nsdb/KTA/Report.Build.cgi?list of
companies&optional product&optional target parameter

SEAMS Report http://saturn.epm.ornl.gov/Nsdb/Seams/Report. Build.cgi?list of

companies&optional product&optional target parameter

The EC96 Product Report’s first parameter is a list of company/product name pairs where
the company and product name are separated by two colons. An example of such a list is

Better+Methods+Alexander::Collar+Strips,+Stays|Better+Me

thods+Alexander::Pins,+T+Pins,+Straight+Pins|Sunbrand, +a
+Willcox+%26+Gibbs+Company: :Dennison+Fasteners

Thus to generate and display in the current window an EC96 report on the following
product names:

1. Collar Strips, Stays—sold by Better Methods Alexander
2. Pins, T Pins, Straight Pins—sold by Better Methods Alexander
3. Dennison Fasteners—sold by Sunbrand a Willcox & Gibbs Company,

the URL

http://saturn.epm.ornl.gov/Nsdb/EC96/ProductReport.
Build.cgi?Better+Methods+Alexander: :Collar+Strips,+

59

Stays|Better+Methods+Alexander::Pins,+T+Pins,+Strai
ght+Pins|Sunbrand,+a+Willcox+%26+Gibbs+Company: :Den
nison+Fastenersé&+

could be used.

3.13 POTENTIAL INTERFACE ENHANCEMENTS

The NSDB standard user interface was designed to produce HTML 2.0 compatible forms.
This was a requirement of the initial pilot interface implemented in June 1995, and given the
state of small USITC companies’ computer capabilities and sophistication,'” has been
essentially maintained as the pilot evolved.'' Navigation within the interface can be
improved through the use of frames and/or Java capabilities. Three NSDB “prototype
interfaces™ have been implemented to demonstrate the advantages accruing from the use of
these capabilities. Links to these prototypes are included in the top page of the NSDB
standard interface. The prototype interfaces and their URLs are as follows:

* a Frames interface http://saturn.epm.ornl.gov/Nsdb/frames/
* a Java-Frames interface http://saturn.epm.ornl.gov/Nsdb/tabframes/
* aJava interface http://saturn.epm.ornl.gov/Nsdb2/

* The apparel sector of the USITC is made up of a large number of small- and medium-sized enterprises

where many, if not the majority, of these companies have computer capabilities that are years behind
currently available capabilities. Some companies even continue to use systems that require DOS platforms.
(However, see the concluding paragraph of this section.)

' An exception is the cross-source search wizard, which, not being essential for creating cross-source search
criteria, was implemented using Java script and frames. Also, a “batch update™ tutorial (see Sects. 4.8.2
and 4.6), which runs independently from the user interface, employs the frames capability.

60

Netscape: NSDB - SEARMS =

f fzature eprniornl goy SMadb A frames SSeams S

{Thildren & infants
{ In-bhonse serwvices
jtaterials capabhility
Mo’z & boys
MHscellaneons ;
Other closing & accessories
Other products
Supplier product

Fig. 35. NSDB Frames prototype user interface display.

Each prototype is an implementation of all or part of the object-oriented design presented
earlier in tbis part of the system description. The first two use a large part of the standard
interface.”” The last is a pure Java implementation.*’

The frames capability (available, e.g., in Netscape 2.0 or later and in Explorer 2.0 or later)
allows a window to be divided into different areas or frames. User interface output can then be
sent to specifically targeted frames. The NSDB Frames interface has used this to provide
navigation links in a top frame while displaying standard interface forms within a main lower
frame (see Fig. 35). This cuts down on the number of user and, in some cases, Web server
interactions necessary for navigating through portions of the interface.

* The links to the “NSDB Top” or data source tops in these interfaces link to the standard interface top
and standard interface data source tops.
“ 1t implements the user interface functions for only a subset of the NSDB data sources.

61

- Netscape: DAMA National Sourcing Database

Location: %]http + fsaturn eprn.ornl.goy /Nsdb Stabfirames S |

Product Category

Categories [

Iritmate Apparel
Miscellaneouns
Other

Outermear

Services

Shirts and Dresses

Sportswear
Tailored Clothing

L ﬁ.m Produrt E[Clear |

ksl S [Eaz |
Fig. 36. NSDB Java-Frames user prototype interface display.

The Java-Frames interface uses Java routines to create “tabs,” graphics which resemble tab
card tops (see Fig. 36), for the link areas and at times provides three frames in a window.
This provides a potentially more user-pleasing navigation means, through the tabs, and
further simplifies navigation (via two levels of links with each level in a different frame).

The Java interface contains a further level of sophistication in displaying NSDB data.
Figure 37 shows a window from this interface in which the three lists generated for the
ATAPD data source are displayed in one window. A user may update the companies or
products list by making a selection(s) from another list (the categories list or companies list
for updating of the product list and the product list for updating of the company list) and
then selecting the appropriate button in the window. Company reports in the Java interface
are generated in separate windows.

The Java and frames features provide significantly improved interfaces that could make the

NSDB a more easily used and valuable tool. Although the small companies in the apparel
sector still remain well behind in computer technology. they have progressed

62

Search

Product Categories Products: YORK SPORTSWEAR

Children s/Infants’ g e s & B
Clothingifaccessories o : : Womwn & le Wear
Home Furnishings ;Palnwear

Hosiery | Women's & Girls Co
Initmate: Apparel - '
Miscellanedous
Other

Cuterwear

Services :
Zhirts and Dresses
Sportaswear 5
Tailored Clothing:

Companies: Rainwear
ELAUEE MANUFACUTORING COMP AN
HILTON SIMPLEX, DIV, OF ANT| | oo iy e,
LIBERTY DIVISION WALLS THNDUO |

PICONEER MANUFACTURING
QIHPLEF IND DIV OF HILTuN

List category products

"4 Unstated Jara: A;‘pw Sande o0
Fig. 37. NSDB Java prototype user mterface dlsplay

significantly over the last three years** and most who have computers now appear to have
browsers with Java and frames capabilities. Therefore, USITC sourcing systems should in the
future be expectcd to have user interfaces that use Java or Java Script "and that possibly use
frames features.’

“ See DAMA report DAMA-G-2-98 Version 2.0, Current Information Technology Needs of Small to
Medlum Sized Apparel Manufacturers and Contractors, April 1998.

* As aresult of an agreement between the DAMA and Internet Tradeline Inc. (IT1), in 1997 ITl in
cooperation with the NSDB developers implemented a commercialized version of a portion of the NSDB
(currently only a version of an updated EC96 data source, called EC97). ITI provided two interfaces, one
using Java capabilities and another that is pure HTML, where the latter is deemed necessary because of the
portion of the USITC that continues to use older browsers. (IT] has also implemented an on-line update of
its version of the EC96 data source.)

63

4. UTILITIES
4.1 GENERAL
4.1.1 Major Database Utilities

A set of utilities was created to facilitate the development and maintenance of NSDB
databases and to handle other non-user NSDB functions.*® The utilities from this set that
create the user interface’s cross-data source enabling files are described in Sect. 3.6.2. The
remaining utilities are described in this section and deal primarily with the following database-
related functions:

1. creating and loading the primary NSDB Sybase database(s) from the data source
providers’® “original” data;

2. creating and loading the NSDB MS SQL. Server, secondary NSDB Sybase, and NSDB
Access replicates of the primary NSDB Sybase database(s);

3. exporting the primary NSDB Sybase database(s) data to text files (both for backup and
for data source updating); and

4, recreating and importing the primary NSDB Sybase database(s) data from text files
(created for backup or for data source updating).

The routines that comprise the utility set have been written in different languages as deemed
most suitable for each routine’s function and the desire to minimize its development time.

Figure 38 illustrates the major database-oriented utilities’ and their functions (with the
exclusion of those associated with data source updates).*® These utilities are listed in Table
20.

Figure 39 illustrates the batch update procedure. A set of utilities, one utility per data source,
exports data from individual data sources in the primary NSDB Sybase database to text files
for input into Excel workbooks. A corresponding set imports data into the primary NSDB
Sybase database from text file output trom these Excel workbooks, after their modification
(updating). Two “blanket” utilities exist that, using the individual data source utilities shown
in Fig. 39, provide, respectively, for a complete update export of and import to the database
(see Sect. 4.6). As noted in Sect. 4.6, the data loaded into the NSDB database by an update
utility is loaded into “update tables.” It must then be subsequently loaded into the “permanent
tables” for the data source(s) that is (are) being updated.

* These utilities were not designed for data sources implemented originally in other than a Sybase
database. Therefore they are not directly applicable to the LAMDB data source implemented in a Minerva
database.

“7 The utilities named in Fig. 38, other than bcp_out, are short control routines that call a number of more
involved routines to carry out their functions.

*® A set of SQL scripts that create the SQL. procedures stored in central Web NSDB databases (see Table 4
for the list of these stored procedures) might also be considered as database-oriented utilities. There is one
such SQL script per data source (see Sect. 4.5).

65

“original”)
data source /—u do_it_ms NSDB MS
1 files >/ SQL Server
or secondary NSDB
Sybase
DB
RIS do_it access
original -
data source NSDB
nfiles | @ —™— 1 1 k. »\ Access DB
bep_out reload_nsdb redo nsdb
A
s — tl th to the Ac DB is dashed si
ASCII } Delimited s;;‘;an:asualcopgrcactsifms ar‘eS reaqsuiercdS]ill]lce
files with all data conjunction with the usc of do_it_access
from the database
Fig. 38. Major utilities (excluding data source update related utilities).
Table 20. NSDB database general utilities
Utility Function Language
do nsdb creates and loads (primary) Sybase NSDB database Borne shell
do_it_ms replicates NSDB Sybase database as an MS SQL Server Borne shell
database or as a (secondary) Sybase database
do_it_access | generates scripts and exports data to create and load tables Borne shell
of an Access replicate of primary NSIDDB Sybase database
bep_out’ exports primary NSDB Sybase database’s data to ASCII “|” Borne shell
delimited files
reload nsdb” | imports an NSDB Sybase database’s data from ASCII *|” Borne shell
delimited files
redo nsdb” creates an NSDB Sybase database and its tables and imports Borne shell
its data from ASCII “|” delimited files

™ The bep out utility and the routines bep in and truncate.sql are created by a routine brn_bcp as
discussed in Sect. 4.4. The reload nsdb utility executes truncate.sql and bep _in, and the redo nsdb utility
executes bep in. Thus brn_bep must have been executed subsequent to the last change in the NSDB
Sybase database if reload nsdb and/or redo _nsdb are to produce the latest version of the NSDB database.

66

data source text This.Load This.Generate data source text

files output from blanket routine blanket routine files for input to
update workbook .. J \ ~% update workbook
f TR ™ [, ST e workbook
data source This.Load : Il This.Generate | data source
I updated {|| for data source 1 - % || for data source 1 | i 1
files primary | files
' NSDB Y
SYBASE
DB f
i
data source i This.Load \ This.Generate ‘data source
n updated H| for data source n || i ¢ || for data source n n
files files

| —— - i H
....................... b H B P TN

Fig. 39. Update utilities.

4.1.2 General Aspects of the Utility Layout and Operation

The utilities outlined in the previous section could reside on any Unix system with the Sybase
client side software. In the pilot, the utilities

1. shown in Fig. 38 reside on the primary NSDB Sybase database server,

2. shown in Fig. 39 reside on the Web server, and

3. that transfer the data from the update tables loaded by the Fig. 39 utilities to the primary
NSDB database “permanent” tables (those queried by the user interface) reside on the
primary NSDB database server.””

SQL scripts that create stored SQL procedures reside on the Web server, miscellaneous
utilities (discussed in Sect. 4.8) reside on both the pilot’s Web and NSDB Sybase database
server, and a utility used in the generation of the EC96 data source runs on a PC. The file
layout of all of the pilot’s utilities, including the SQL scripts that create the stored procedures
but excluding the PC-based utility, is provided in Sect. 4.9.

Table 21 contains a set of parameters whose values may differ with the installation of the
NSDB software. These are defined in setup.sh on the pilot’s Sybase database server. This
setup.sh routine is “sourced” by utilities located on that server to obtain the parameters’
values. SQL scripts used by these utilities have the parameter values inserted into them before
they are executed.

50

The choice of location of these utilities in the pilot was made in line with the responsibilities of their
developers. The utilities that created, altered, and dropped tables that are queried by the user interface were
the main responsibility of the database administrator and hence were located on the darabase server. The
utilities dealing with the export of data for Excel workbooks and the import of data from updated versions
of these workbooks were the main responsibility of the major developer of the Web server CGl and hence
were located on the Web server.

67

Various database server resident utilities allow some of the parameters in Table 21 to be
optionally defined via command arguments. When such arguments are included in the
command for a utility, they override setup.sh’s parameter values.

Web server update based utilities also “source™ setup files to obtaln parameters.” A routine,
set_update_ params, must however be separately executed’” to insert the parameters
into the SQL scripts used by these utilities.

4.2 CREATING AND LOADING THE SYBASE DATABASE®™

The data in the actual form received from a data source provider is referred to here as the
“raw” data.”* This data underwent some preprocessmg to convert it to the “original™ data
shown in Flg 38. Each Fig. 38 data source’s original text data is a set of ASCII *|” delimited
files™, that is, files that are sometimes referred to herein as bep files and possibly a set of gif
(lmaue) files. Ideally, the preprocessing of this raw data and the loading of the original data
derived from it should be a one time th1n<T for each data source with updates then being done
via the data source update programs.”

The amount of preprocessing differed from data source to data source. It was carried out (in
part) by a set of routines that were (except for part of the EC96 processing) initiated
manually. There are two types of such routines, those of a general nature that have been
adapted for the NSDB (though one of them may be currently only used for one data source)
and routines written specially for particular data sources. Table 22 lists the three general
routines, and Table 23 lists the data-source-specific routines. The routine dbfdump was used
to convert raw text data dbf and fpt files to ASCII ‘" delimited files for the ATAPD, GCA,
GIDC, EC96. and SEAMS data sources, while the routine ps_ascii.awk was used to
convert the raw KTA data to a bep file. The routine blnk.awk was used for all data sources

at some point in their preprocessing subsequent to their raw data being converted to ASCII
files

Cotton Incorporated, KTA, and EC96 data sources required specially written data-source-
specific preprocessing routines. The Cotton Incorporated raw data were processed directly to
bep files by const.awk and dir.awk. After being processed by the general routine
ps_ascii.awk. the KTA raw data then underwent some further manual processing (and
manual and ktal.awk checks) and conversions through kta0.awk and read.awk to
produce its bep files. The EC96 data source preprocessing was in part done automatically and
is described latter in this section.

™ The user interface and certain other pilot Web server-—based utilities use a set of files that define parameter
values (i.e., Nsdb.pm, sybase.sh, and various setup.sh files). These parameter definition files and the
setup.sh file in the Sybase database server must be kept consistent to ensure proper working of an NSDB
mstal]atlon

~ This routine must then be run anytime parameters referred to by the update utilities change.

* This does not apply to the LAMDB data source that was implemented in a Minerva databasc.

* The raw data for data sources other than Cotton Inc. and KTA was received in sets of dbf files with EC96
having in addition a set of fpt files, a set of gif files, and an Excel spread sheet (the company fpt and dbf files
were received in a zipped file or files with one or more such zipped files per company). Cotton Inc.’s data
were received in a set of non-dbf files created by MS Filemaker, and KTA’s came in a Postscript file.

" Each such file has one record per line with the field delimiter in the records being a vertical line, that is ,
a |’

* Practically this may not be the case. particularly where individual companies provide the data in
electronic form such as in EC96. During the pilot, ATAPD changed its format, which required rewriting
some of the code related to that data source as well as loading the new data.

68

Table 21. Pilot NSDB parameters

Parameter Description

NSDBDIR Path to utilities directory in Sybase database server

NSDBSYBASE Name of NSDB Sybase database server entry in Sybase Interfaces
Table (i.e., Sybase database server pointer)’’

SYBASEDBNAME Name of Sybase NSDB database

SYBASEDEVICE NSDB Sybase database device name

SYBASELOGDEVICE NSDB Sybase database log device name

DBSIZE NSDB Svybase database size in MB

LOGSIZE NSDB Sybase database log size in MB

NSDBMSSOQL Name of NSDB MS SQL database server entry in Sybase Interfaces
Table (i.e., MS SQL Server database server pointer)

MSSQLDBNAME Name of NSDB MS SQL Server database

MSSOLDEVICE

NSDB MS SQL Server database device name

MSSQLLOGDEVICE

NSDB MS SQL. Server database log device name

MSDBSIZE NSDB MS SQL Server database size in MB

MSLOGSIZE NSDB MS SOQL Server database log size in MB

USERI First id for database user

USER2 Second id for database user

USER3 Id for use for web server queries (corresponds to SybaseUser
parameter on web server)

GUEST Id for user with “guest” privileges

ECO96SOURCEHOST Address of host on which “raw” EC96 Companies data is located.

EC96SOURCEDIR Directory on EC96 “raw” data host in which the “raw” data is
located.

EC96REPORT File into which the EC96 report is written

ACCESSSQLFILE Name of file into which scripts for creating stand-alone Access
database will be written

BCPDATADIR Name of directory into which files of NSDB database tables data

will be written

*" These pointers need not, and in the pilot do not, have the same names in the Web and NSDB Sybase
servers’ Sybase interface tables. Their entries in these tables must however be consistent.

69

Table 22.

General routines used in preprocessing

of raw data source data

Routine Function Language
dbfdump exports data from dbf and fpt files into ASCII *|* delimited C
files
bink.awk combs ASCII files removing extra blanks, replacing hard AWK
returns, etc.
ps_ascii.awk converts postscript files to ASCII files (with some AWK
limitations)
Table 23. NSDB data-source-specific routines for
preprocessing of raw data source data
Data Source Routine Function Language
Cottonlnc const.awk reformats first of two raw data files to ASCII *|" | AWK
delimited files
dir.awk reformats second of two raw data files to ASCIl | AWK
" delimited files
KTA kta.awk provides names to ASCII file of KTA data AWK
kta0.awk renames lines in kta.awk produced file AWK
ktal.awk™® | checks line lengths in kta0.awk produced file AWK
read.awk creates three ASCII °|” delimited files from AWK
kta0.awk output
EC96 ec96 2.awk | converts a somewhat manually reformatted AWK
ASCII file containing the EC96 classifications
exported from an Excel worksheet into an
ASCII file formatted as a “classification tree”
bld cls.prg | creates two dbf files’” from ec96 2.awk output | Foxpro

The utility do_nsdb creates and loads the primary NSDB Sybase database, using the
“original™ data source files, created by the preprocessing, as its input. The routines it uses are
listed in Table 24. It first creates a Sybase database.’’ via a call to createdb, which in turn
executes nsdb_new.sqgl, on a specific database server (currently the server ash at
ORNL). Before creating this database on the database server, nsdb new.sql deletes (i.e.,
drops) any database with the same name. Then it creates data types, defaults, and the

" Two versions, ktal.awk and kta2.awk, of this program were written and are included in the utilities
distribution (where this distribution is loaded via the procedures of Sect. 5.2.1.)
* These files are included in the Foxpro EC96 data entry program (see Sect. 4.8.4). They are also

included, after conversion to bep files through use of dbfdump, as part the EC96 data source “original™

data.

* Here we mean by creation, the assignment of a name to a database. the recording of it in the master
database tables. the inclusion in the database of system tables required of every database, the definition of
its maximum size, etc. This does not include the creation of its tables for holding data source data, which
is referred to here as table creation and consequently does not include loading of data into those tables.

70

database table “sources™' (see Sect. 2) and grants permissions to various users.®” After
creation of the database, do_nsdb successively calls the data-source-specific
“do_source” routines (e.g., do_auburn and do_ec96) listed in Table 24. These
routines create and populate the required data source database tables.

Table 24. Routines used by do_nsdb

Routine Function Language
setup.sh”” defines parameters Borne shell
options.awk determines modifications lo be made to certain AWK

parameters based on command arguments
createdb® inserts parameters into nsdb new.sql database creation Borne shell
SOL script and executes nsdb new.sql
wids plus.awk inserts database name inlo nsdb new.sql AWK
paramelers.awk | inserts additional database parameters including AWK
darabase user ids into nsdb new_ sql
nsdb new.sql creates database and “sources” table SOL
do auburn creates and loads ATAPD data source’s database tables Borne shell
do_cotton creates and loads Cotton Incorporated data source’s Borne shell
database tables
do ec96 creates and loads EC96 data source’s database tables Borne shell
do gea creates and loads GCA data source’s database tables Borne shell
do gide creates and loads GIDC data source’s database tables - Borne shell
do kta creates and loads KTA data source’s database tables Borne shell
do seams creates and loads SEAMS data source’s database tables Borne shell
do tc2 creates and loads TC?2 data source’s database tables . Borne shell

Typically, a do_source routine called by do_nsdb

1. creates a set of temporary text tables (c_tmp.sqgl);
2. loads them with the data source’s data from data source original data files;
3. creates the permanent tables required for the data source’s data®® (tables.sql);

' Currently the “sources” table is not used by the NSDB Web user interface. It is meant to contain
information about the data sources that has not been completely supplied as of now.

°* It is assumed here that the systems administrator will run do_it_nsdb, do it ms, and redo- nsdb. Some
of the permissions that these routines attempt to grant can be granted only by the system administrator.
Although another user might execute these routines, the granting ot the permissions with respect to the
created database will then bave to be subsequently done by the systems administrator (and error messages
will be output when one of these routines being run by someone other than the system administrator
attempts to grant these permissions).

* The routine setup.sh listed in Tables 24 through 28 is a common routine, sourced by various utilities,
which contains installation parameter definitions and database user id’s. It is provided so that changes
made in a configuration require only a change in setup.sh to effect all the routines (see Sect. 4.1.2).
Common routines, those executed by more than one other routine, are listed in tables in italics throughout
this description.

“ The following three routines in the table are executed by createdb. Throughout the tables in this
description, routines executed by a routine listed above them will be indented by one space more than that
routine.

" It also provides id’s for the permanent table records and cross-reference tables as required.

71

4. sorts, restructures, and copies the data from the temporary tables into the permanent
tables (load.sqgl), and
5. deletes the temporary tables (drop.sql).

Each of the previously listed functions is carried out by routines called by the data-source-
specific do_source routine, except for the loading of the temporary database tables from
the original data source files, which is done via the Sybase bulk copy (bep) facility. These
routines, whose names are included in parenthesis in the preceding list and are listed in Table
25, are themselves data source specific (i.e., each data source has its own routines, for
example, each has a different load.sql routine). The temporary database tables are
created to facilitate rearranging the data source’s input while loading it into the permanent
tables.

Table 25. Routines used by typical “do_source” routines

Routine Function Language
~
setup.sh” defines parameters Borne Shell
options.awk determines modifications to be made to certain AWK
parameters based on command arguments
do source setup | inserts user ids and path to utilities directory into Borne Shell

do _source routine’s c¢_tmp.sql, tables.sql, load.sql and
drop.sql SQL scripts

uids_plus.awk inserts user ids and path to wtilities directory into an SQL | AWK
script

¢ tmp.sql creates temporary database tables SQL

tables.sql”’ creates permanent tables SOQL

load.sql loads database permanent tables with rearranged contents | SQL
of temporary tables

drop.sqgl deletes the database temporary tables SOL

The do_source routines do_auburn,do_cotton,do_gca.do gidc,do_ seams,
and do_tc2 each use four SQL routines of the type listed in Table 25, where each routine is
specific to the particular do_source routine that uses it. Because of the relative simplicity
of the KTA data source, its do_source routine does not use temporary tables but loads the
data from the KTA data source’s “original™ files directly into the created permanent tables.
Consequently, it uses only one routine, its data-source-specific tables.sql routine, out of
the four types of routines listed in Table 25.

The EC96 data source do_source routine, do_ec96, given the relative complexity of

the EC96 data source, uses a number of EC96-specific routines beyond the types listed in
Table 25. The routine does the following

1. Creates temporary product classification tables (c_tmp.sql).

2. Loads temporary product classification tables with the data source’s product classification
data.

3. Creates permanent tables required for classification data and for companies’ data, that is,
company and product data (tables.sql).

4. Sorts, restructures, and copies the classification data from the temporary classification
tables to the permanent classification tables’® (load.sql).

72

5. Creates temporary tables for both forms of EC96 companies’ text data, that is, company
data and product data (fox_tmp.sqgl).
6. Company by company:

(a) preprocesses and loads a company’s company data and product data into temporary
tables;

(b) sorts, restructures, and copies company’s company and product data into permanent
tables®® (fox_load.sgl);

(¢) creates a temporary reference table for renamed company gif files, renames
references to gif files in the company’s text data and enters old and new names of
each company gif file into the temporary reference table (rename.sqgl); and

(d) renames the company’s gif files according to data in the reference table, drops the
reference table, and empties company data and companies’ product data temporary
tables (rename. awk);

7. Deletes temporary classification and companies’ company data and product data tables
(drop.sqgl).

The EC96 specific routines used in accomplishing Steps 1 through 7 in the immediately
precedding list are noted in parenthesis in that list and are included in Table 26. The
temporary tables are loaded via the bep facility tfrom files that are the result of the
preprocessing.

EC96’s raw data were received in a different manner than any of the other data sources’ raw
data. One part of the EC96 raw data, the classifications, was received electronically from the
data source provider in the form of an Excel spread sheet. Each EC96-listed company then
sent its data in the form of dbf, fpt, and gif files to the data source provider’s agent, who
placed it in a directory on an ORNL machine. The companies either used the EC96 data
entry program (see Sect. 4.8.4) to enter their text data or created dbt and fpt files with the
formats of the EC96 data entry program’s created files.

The raw EC96 classification data were first preprocessed using ec96_2.awk into a form for
input into a PC-based preprocessing program, bld _cls.prg, which created classification
dbf files for the ECI96 data entry program. These dbf files were then further preprocessed by
dbfdump to create the bep files that provided the classification data input to do_ec96.
The EC96 companies’ text data did not undergo manually initiated preprocessing but was
automatically processed into bep files by do_ec96 ’s use of dbfdump and blank.awk
(the same routines with those names used in preprocessing of other raw data source data).®’

Each of the do_source routines used by do_nsdb (see Table 24) can be run separately.
Thus the primary NSDB Sybase database can be added to one data source at a time, which is
particularly useful in expanding the NSDB database as new data sources become available.

The creation of stored SQL procedures (see Sects. 2 and 3.4) in the primary NSDB Sybase
database is implemented external to the do_nsdb utility via the Create_SQL routine (see
Sect. 4.5).

“ Also provides id’s to permanent table records.

*” Consequently, raw companies’ text data are effectively part of the original EC96 data depicted in Fig. 38.

73

Table 26. Routines used by do_ec96

Routine Function Language
setup.sh® defines parameters including location of EC96 company | Borne shell
specific raw data
options.awk determines modifications 1o be made to certain AWK
parameters _based on_command _arguments
do ec96 setup inserts parameters into all SQL scripts used by do ec96 Borne shell
do source setup | inserts user ids and path 1o utilities " directory into Borne shell
do source routine, ¢_tmp.sql, tables.sql, load.sql and
drop.sgl SOL scripts
wids plus.awk inserts user ids and path to utilities” directory into an SQL | AWK
script
start.sql cleans up database tables should do ec96 not have run to | SQL
completion at its last execution
create_ec96 executes ¢_tmp.sql and tables.sql, loads classification data | Borne shell
into temporary tables, and executes tables.sql
¢ tmp.sql creates temporary tables for classification data SQL
tables.sql71 crecates permanent tables SQL
load.sql loads permanent tables with classification data from SQL
temporary tables
dbfdump copies company’s company and product data dbf and fpt | C
files to bep files
blank.awk combs company and company’s product data bep files AWK
fox_tmp.sql creates temporary tables for company data and company | SQL
product data
fox_load.sql loads permanent tables with a company’s company and SQL
product data that is in temporary tables
rename.sql creates reference table for renaming a companies gif files | SQL
and renames references to the gif files
rename.awk renames gif files according to data in the reference table AWK
drop.sql deletes the temporary tables SQL

4.3 CREATING REPLICATE NSDB DATABASES

The generation of the NSDB MS SQL Server and NSDB Access databases is carried out with
utilities that use the primary NSDB Sybase database as input. The NSDB MS SQL Server
database is generated automatically by the utility do_it ms. This utility may also be used
to create replicate NSDB Sybase databases.®® The NSDB Access database is generated in a

multistep process starting with the creation of a set of files by the utility do_it access.
These files are loaded into a system containing an Access DBMS, and then a small number of
manual operations are performed using the Access factlities to provide the operational NSDB
Access database.

* The Sybase versions of the NSDB database use some features that are not available in the MS SQL
Server database management system. Running do_it ms to create an MS SQL Server replicate will lead to
an NSDB database that lacks these features. Providing a particular optional parameter when entering the
command to execute do_it_ms leads to do_it_ms executing nsdb_new.sql rather than nsdb_new ms.sqgl
and, when targeting a Sybase DBMS, provides the additional Sybase features to the NSDB database
replicate.

74

The stored procedures from the NSDB Sybase database are not replicated in the NSDB MS
SQL Server and NSDB Access databases via these utilities; instead, they are loaded into the
NSDB MS SQL Server database the same way they are loaded into the primary NSDB Sybase
database, that is, via the Create SQL routine (see Sect. 4.5). The NSDB stand-alone does
not include stored SQL. procedures to retrieve data from the database. Its user interface
queties of the NSDB Access database are implemented in its visual C++ code.

An unconventional feature of the NSDB database “replication” utilities is their use of code
creation routines. This feature was included in these utilities so that they would need
essentially no knowledge of the database schema (except that which is incorporated in
tables.sqgl routines used in the creation of the primary NSDB Sybase database’s data
source tables®). Each utility uses a routine that, utilizing the primary NSDB Sybase database
as input, creates another routine for exporting that database’s data. In the case of

do_ it ms, the created routine also imports this data into the NSDB MS SQL Server
replicate. The utility do_it _access generates, in addition, a set of Access SQL scripts for
the creation of the NSDB Access database’s user tables.

The utility do_it_ms can be run on any Unix platform’® that is networked with the NSDB
Sybase and MS SQL Server database servers and has the appropriate supporting software
installed. The utility communicates via isgl with the Sybase NSDB database and the MS
SQL Server DBMS. Figure 40 illustrates this setup, and Table 27 lists the routines used by
do_it_ms (which are also shown in Fig. 40).

table . v
names do_it_ms A s:;iizisq?aéi) *1 MS SQL Server
NSDB Sybase nsdb_new_ms.sql DBMS
Database tables.sql routines]
| make_load.sql 1| create data »] NSDB MS SQL
data createdV routine source tables Server
load_all data »/ Database
Sybase Database
Server L MS SQL Server
(Unix System) Unix System DB Server
- {NT System)

Fig. 40. Possible setup for implementing MS SQL Server replicate.

“In do_it_access, even the tables.sql routines are not used.
i ™ In the setup now used at ORNL, the utility is usually run on the system that acts as the Sybase database
server.

75

Table 27. Routines used by do_it_ms

Routine(s)

Function

Language

setup.sh®

defines parameters

Borne shell

options.awk

determines modifications to be made to certain
parameters based on command arguments

AWK

04
createdbh”

inserts parameters into the database creation SQL
script nsdb new ms.sql and executes that script

Borne shell

uids plus.awk inserts database name into nsdb new ms.sgl AWK

parameters.awk inserts additional database parameters including AWK
user ids into nsdb new ms.sql.

nsdb new ms.sql creates replicate database and its “sources” table SQL

wids plus.awk inserts database parameters including user ids into AWK
tables.sql routines.

tables.sql routines’' creates data sources’ database tables SQL

make load.awk inserts database names and database server pointers AWK

into make load.sql

make load.sql creates the routine load all SQL

load_all exports NSDB Sybase database data and imports it into | Borne shell

the NSDB MS SQL Server database

The utility do_it ms:

. creates a database on the MS SQL. Server database server and creates the “sources™ table
within that database, via execution of createdb, which in turn executes
nsdb new ms. sql:”
creates the data sources’ database tables through execution of the tables.sqgl routines
for each data source (these are the same routines used by the do_source routines in the
creation of the NSDB Sybase database);
3. creates a routine, load all, for exporting the NSDB Sybase database’s data and
importing it into the NSDB MS SQL Server database, via the execution of
make load.sqgl; and
4. loads the NSDB Sybase database data into the created NSDB MS SQL Server database by
executing load all;

29

thereby completing the replication.”

"' The tables.sql routines listed in Tables 27 and 30b are the same ones referenced in Tables 25 and 26.
They are not italicized in any of these tables despite being common routines (i.e.. used by more than one
utility) because that might give the impression that they are a single routine rather than a set of routines.
7 Optionally, do_it_ms can be used to create a Sybase replicate of the primary NSDB Sybase database.
Inclusion of an optional argument in the command for its execution leads do_it_ms to, via createdb,
execute nsdb_new.sql rather than nsdb_new ms.sql. These two SQL routines differ slightly with
nsdb_new.sql, including certain features in the NSDB database it creates that are not available for an MS
SQL Server database.

7 Update tables created in the batch update process described in Sect. 4.6 are not included in the
replication processes.

76

The creation of the NSDB Access database replicate is carried out in the following two sets of
steps:

1. development of a set of files based on the primary NSDB Sybase database (through use of
the utility do_it access) and

2. use of this set of files within a system containing the Access DBMS to ueate and load the
NSDB Access database tables.

In step 1, the utility do_it _access running on a Unix platform accesses the NSDB
Sybase database and, using that database as input,

(a) generates a file containing a set of Access SQL queries for creation of the NSDB
Access database tables and

(b) exports the Sybase NSDB database’s data to a set of ASCII “|” delimited files (one per
database table).

In the second step:

(a) the files developed in the first step are loaded into the system with the Access DBMS,

(b) a database is created using an Access utility,

(c) the generated SQL queries are copied from the file they were written to and pasted
into queries associated with the created database,

(d) the queries are executed to create the database’s data source tables, and

(e) the contents of the Sybase NSDB database’s tables are imported into the created
Access database from the set of files to which they were exported

completing the replication.”

A possible sctup for carrying out these steps to create the NSDB Access Database is shown in
Fig. 41, and Table 28 lists the routines used by do_it _access (which are also shown in
Fig. 41)

The do_it_access utility, through use of the routine rplct.sqgl, queries the NSDB Sybase
database to determine the tables within that database and generates Access SQL statements
for creating these tables. It then generates the routine bep _for_ access by executing the
routine make bcp.sql. This generated routine is then executed to export the contents of
the NSDB Sybase database to a set of ASCII <] files.”?

™ The routine bep_for_access generates a file for each database table and names these files in a numerical
sequence to facilitate an aspect of the loading process. It is very similar to the routine bep out, which is
discussed in Sect. 4.4, when bep_out is used for a single database, except that bep _out creates files whose
names are the same as the table names from which the data are exported.

77

Stand-alone
dashed paths indicate actions development system

which require manual initiation
Access DBMS
tables’
uc do_it
structure "(;Bllc-:.lsc:less NSDB Access
NSDB Sybase |——»make_bcp.sql Database
Database data created \ routine
»bep for_access 'y 7'y
J [flewih e
e wi H
files with| | Access i
e SQL [T P Access files with
database’s < SOL ,
data scripts _ Pdatabase’s
scripts | i data
Sybase Database f i
Server R
(Unix System) Unix System

Fig. 41. Possible setup for implementing the NSDB Access Database.

Table 28. Routines used by do_it_access

Routine Function [anguage
setup.sh® defines parameters Borne shell
options.awk determines modifications to be made to certain parameters | AWK

based on command arguments
rplet.sql queries the NSDB Sybase database and generates set of SQL

Access SQL scripts for creating Access replicate of NSDB
Sybase database

access.awk inserts NSDB Sybase database name and name of directory | AWK
into which files with the database’s data are to be placed
into make bcp.sql

make bcp.sql queries NSDB Sybase database and generates shell scriptto | SQL
bep out all data in that database

bep for access | created by make bep.sql, it exports all data in the Sybase Borne shell
database into ASCII “|” delimited files

4.4 BACKUP AND RESTORATION OF THE NSDB SYBASE DATABASE

The backup and restoration utilities listed in Table 20, that is,

I. bcp_out,
2. reload nsdb, and
3. redo nsdb,

78

provide for the export of the primary NSDB Sybase database” to ASCII “/” delimited (i.c.,
bep files) and the restoration of the database from these files. The utility bcp _out exports
the database’® to bep files while the utility reload_nsdb imports the data from these files
into an existing database. The utility redo_nsdb creates an NSDB Sybase database and its
tables and loads the database from the files created by bep _out.”” When only the data
from a previous database state are required, reload nsdb can be used to restore the
database, whereas redo_nsdb must be used if the database and tables have to be created as
well as loaded.

The utility bcp_out, a companion routine bcp_in, and a routine truncate.sqgl are
created by another routine, the utility generator brn_bcp, based on the names of the tables
in the NSDB. Sybase database. Figure 42 illustrates the creation of the routines becp_out,
bcp in, and truncate.sql; the export of data from and import of data to the NSDB
Sybase database; and the reimplementation of that datab&se As shown in Fig. 42, subsequent
to any change in the database’s set of table names.” the routine brn _bep must be run
before any of the utilities is executed for backup and/or restoration purposes.

create database

(& “sources” table)
1

redo_nsdb
nsdb_new.sql
tables.sql routines

@-! create data] brn_bep

sources’ tables

NSDB Sybase

database table names

created { routines

Sybase Database
Server

truncate tables

files

Database
» bep_out
data] + reload_nsdb
< = e I v
n ASCIL " truncate.sql
data delimited| YV V i

{Unix System)

dashed lines with arrow indicate program flows for
redo_nsdb and reload nsdb utilities

Fig. 42. Backup and restoration of the NSDB Sybase Database and creation
of routines for backup and restoration.

” These utilities could also be used for backup and restoration of the NSDB MS SQL. Server and
secondary NSDB Sybase databases. However, since it is desirable to maintain one primary NSDB
database, the NSDB MS SQL Server and secondary NSDB Sybase databases should be restored through
repllcatlon of the primary NSDB Svbase database (i.c., through use of do_it_ms).

° The stored procedures are not included in this export.

" The implementation of the primary NSDB Sybase database through the execution of redo_nsdb takes
much less time than its initial implementation through execution of do nsdb.

" Reprogramming is not required to implement new data import and export utilities after changes are made
to the databases that modify the set of database table names. The utilities are recreated to account for such
changes by running brn_bcp. One or more of the tables.sql scripts and/or the nsdb_new.sql routines will
require changes for proper operation of the redo_nsdb utility wheo structural changes are made to the
database. However, the required changes to these SQL scr ipts will have already been made to create the
modified database.

79

The utility reload_nsdb uses bcp in to load data into the NSDB Sybase database after
truncating all of the database’s tables by executing truncate.sqgl. The utility
redo_nsdb uses the nsdb_new.sqgl routine and the data source’s tables.sql
routines (the same ones used when do_nsdb is executed) to create the database and its
tables. It then loads the database through the execution of becp _in.

Table 29 lists the routines used by the utility generator brn_bcp. The routine brn_bep is
a general routine’” that can accept a string of database names as arguments (although if no

databases are input as arguments, it will create routines for a single database whose name is
provided by setup.sh). It

. creates temporary SQL procedures, tmpout.sgl and tmpin.sql, for generating the
export code (i.e., bcp_out) and the import code (i.e., bcp_in) for each database in
the input arguments (or the default database taken from setup.sh);

2. executes the temporary SQL procedure tmpout.sql for creating the export code for

each database (i.e., creates bcp_out);

executes the temporary SQL procedure tmpin.sqgl for creating the import code for

each database, (i.c., creates bcp_in);

4. creates the SQL procedure truncate.sql: and

L2

5. executes the export code, bcp_out, to produce the ASCII *|” delimited files with the
databases” data.”
Table 29. Routines used by brn_bcp to create backup
and restoration utilities and backup files
Routine Function Language

setup.sh defines parameters Borne shell
options.awk determines modifications to be made to certain AWK

parameters based on command arguments
make.sql creates (recreates) stored SQL procedure sp makebcp SQL
sp_makebep created stored procedure which generates code to export | SQL

or import database table data to or from ASCII |’

delimited files
tmpout.sql created procedure which successively uses sp_makebep to | SQL

create bcp out
tmpin.sql created procedure which successively uses sp_makebep to | SQL

create bep in
truncate.awk creates truncate.sql Borne shell
bep_out created by and executed by brn_bcep to export all data in Borne shell

databases into ASCII “|” delimited files

" The routine brn_bcp was created for use in a number of ORNL projects including the NSDB project.
While it is described here in a general sense, it is anticipated that when it will be used for the NSDB, it
will only generate routines for one database, the primary NSDB Sybase database. The generated routines
when described subsequently, with reference to Table 30 are described for the case of a single database.

* Backup and restoration procedures ignore update files created in the batch update process described in
Sect. 4.6.

80

In creating the temporary SQL procedures, brn_bcp uses the SQL script make.sql to
create (recreate) the stored procedure sp_makebcep and store it in each database. The
temporary SQL procedures for creating bep_out and bep_in then execute sp_makebep
as part of their code creation functions. The creation of truncate.sqgl is carried out by
executing the routine truncate.awk, with bcp _in as its input.

Table 30 lists the routines used by the reload nsdb and redo_nsdb utilities. The SQL
script truncate.sqgl and shell script becp _in listed in Table 30a are created by
brn_bcp. The SQL script nsdb_new.sql and the tables . sqgl scripts listed in Table
30b are the same routines used respectively by do_nsdb and the do_source routines in
the original implementation of the primary NSDB Sybase database.

Table 30. Routines used by restoration utilities

Table 30a. Routines used by reload nsdb

Routine Function , Language
setup.sh defines paramelers Borne shell
truncate.sql truncates database tables SQL
bep in loads NSDB database with data from files exported to | Borne shell

by bep out

Table 30b. Routines used by redo nsdb

Routine Function « Language
setup.sh defines parameters Borne shell
nsdb new.sql creates NSDB Sybase database and “sources” table Borne shell
tables.sql for each | creates database tables for each data source SQL
data source’’
bep in loads NSDB database with data from files exported to | Borne shell

by bep out

4.5 CREATION OF STORED SQL PROCEDURES

The utilities do_nsdb, do_it_ms, and redo_nsdb discussed previously create databases
and database tables and load the database tables. They do not however create the stored SQL
procedures used by the NSDB user interface. A set of SQL scripts, one per data source, create
these stored procedures. In the pilot, these SQL. scripts are located on the Web server. A
(Borne shell) utility, Create_SQL, successively calls each of these SQL scripts after
setting a pointer to the database’s data server and inserting the database name into the SQL
scripts. Table 31 lists the routines used by Create SQL.

81

Table 31. Routines used by Create_SOQL to create a
databases’ stored SQI. procedures

Routine Function Language

setup.sh defines database user id and password, database server Borne shell
pointer and database name and sets database server pointer

Atapd.sp creates ATAPD data source’s stored procedures SOQL

Cottonlnc.sp creates Cotton Incorporated data source’s stored SQL
procedures

EC96.sp creates EC96 data source’s stored procedures SQL

GCA.sp creates GCA data source’s stored procedures SQL

Gidc.sp creates GIDC data source’s stored procedures SQL

KTA.sp creates KTA data source’s stored procedures SQL

Seams.sp creates SEAMS data source’s stored procedures SQL

4.6 DATA SOURCE UPDATE PROGRAM

4.6.1 General

Data source update capability is provided through use of Microsoft Excel (version 5.0 or
higher). Excel workbooks, each containing the data from one of the data sources, are
generated from the data source’s data in the primary NSDB Sybase database. These
workbooks can then be modified (presumably by the data source providers) and returned for
loading into the NSDB Sybase database. The loading procedure for this updated data, which
comes in a convenient predefined format, is simple compared to the initial loading procedure.

A set of export and import utility pairs exist for each data source in the following subset of
the NSDB data sources:

ATAPD,

EC96,
GCA,
GIDC,
KTA, and
SEAMS.

AN S

Cotton Incorporated,

There are no such utilities for the currently empty TC2 and USL-maintained LAMDB data

sources (consequently, no batch update capability exists for these data sources).

Figure 43 illustrates the update process. This process begins for a data source with the export
of its data into tab-delimited text files. These files are in a form that allows their data to be
imported via an Excel function into an Excel workbook:; consequently, they sometimes are
referred to herein as “Excel input” files. The files’ data are imported into a workbook, one
worksheet per file, and a minor amount of manual reformatting of the workbook is done to

82

enhance its presentation of the data.®' The workbook is manually updated, and the updated
workbook is then exported via an Excel function into tab-delimited text files, one per
worksheet, which should have the same record formats as the initial files (provided no
inadmissible changes are made to the workbook). These files, which sometimes are referred to
herein as “Excel output” files-or updated files, are then imported into the primary NSDB
Sybase database. Figure 44 is an example of a portion of a worksheet from a SEAMS
workbook (note the names of the workbook worksheets on the bottom tabs).

The loading of a data source’s updated data into the NSDB Sybase database’s permanent
tables (i.e., those that are accessed by the user interface) is actually a two-step process (after
the Excel workbook has been updated and then exported to the “updated” data source text
files of Fig. 43). These steps are: '

1. importing the data from the updated data source text files into temporary tables (“update
tables™) in the database and

2. restructuring the data from the update tables and loading them into permanent database
tables.

There is a one-to-one correspondence between the worksheets of a data source’s workbook
and the data source’s database update tables. However, the organization of the worksheets in
a data source’s workbook is geared to:

1. placing data from database “text” fields in 'separate worksheets from those with data from
other fields and
2. facilitating the manual updating of the workbook.

Update :
EED o rtt Data Source @f}‘;ﬁtjg:}i Data Source
NSDB Utilit » “Excel Input” |~ (& shightly *Excel Workbook
Sybase Y Text Files refon;af)
Database
dashed lines indicate operations with manual
Y components beyond program initiation Data Source
Updating
Update ~ Updated Save as Updflted
InlDOTt Data Source Text Fi]eS Data Source
PN " LR " e pursansa 7 SRS P S P ‘
Utility “Excel Output” ¢ Excel
Text Files Workbook

Fig. 43. Data source update process.

*! This manual worksheet reformatting consists of the following:

1. The work sheet column widths are autoformatted, the size of the worksheet name in the second column
of the first line is increased, and the name is italicized.

2. The worksheet name cell and the second row of the work sheet (excluding the first column) are back
shaded, and their color is changed to white.

3. The first two rows are frozen.

83

8

QSN 2421121 JaylI3 0} Saulnod [eiauad Aq pajjes aue Aoy, s1duos 1OS B 32In0S Blep ay)
0} o>1j159ds saunod Jo 328 3y, ‘(sanin poduwr 1o 110dxa 221n0S BlRp SY1 JO U0 UBY) dJOwW
10 [AQ pasn s2u1InN0J JO 39S B JO Wed “<3'1) [BJOUd3 JWOS puk 30J10S BIEP) 0} 21J103ds dulos
‘sau1IN0J JO 1S B asn Sanjil PROTI STYL put 930I9Uan* STYL dy10ads-20Jnos-eyep ayl

(6€ 814 ul payduil se) A{uo 201n0s Blep 1Byl J0J ‘A[9A10adsal ‘elep uoduwr Jo eyep 1odxs 01
Apuspuadapul uni 3q Aew ANjIIN PROT* STYJ, JO 930IBUSDH " STY S,04N0S BIBP [BNPIAIpUL
uy “(sa1Ijn peoT - STYL d110ads- 20In0S-BIBP JO 195 € SN A)[1In pROT - STUL
19YUR|Q Y] PUB ‘SN SFIRISBUID * STYJL d1J100ds-20In0S-BIEP JO 135 B SIANDIXI AN [N
23eI9Uuss " STYJL 1OYUR[Q Y] “'2'1) SN 1ajUB[qQ S} SB JWEU JWES dU) dABY SAP[IN
1jue|q 3y Aq pasn samiun o1j109ds-301n0s-elep 3say |, "s9jqel s1epdn sseqeiep ojul sajif
ndino [30%q $,92IN0S BIEP Y} peO} 10 Sa[1J Indul [90Xg $,20IN0S BIBP Y] 21BI2UIT JBY) 92IN0OS
elep Jad auo ‘saiiin o1}102ds-321n0s-BIEP JO 135 B SIINIIXI A[IAISSIIONS SIN|IIN 353Y) JO Uoe]

(aduios [joys auwtog) podwi 3y Joj pROTITSTUL T
pue (3duos [jays swiog) Hodxs oy 10} 23RIDUSHSTYL |

-saninn Jayuelq,,
Buimo|[oy ayp Aq “A[9A1100dsal N0 paLLIed SI SI|1J 1X3) pajepdn WOI) BIBP SOIINOS BIRP 2]
11® Jo Jodw oy pue sajqe) aseqelep .SI2INOS BIBp GASN Y1 |[B WoJj elep 3y} JO Wwodxd ay .

eie(Jo 1aodwy pue prodxy 7°9'p
"S3]qe) 0UIIDJAI-$S0ID AUuB SPROL puR ‘S3jqe] Judurwiod papeo] Amau Yyl ul SpJodal
9] JO YoBa 10§ SJdqunu pi SOJEaId “30udpuodsaniod auo-03-2uo Jo yoe| Aue J0J SJUNOIDE

ssaooud siy3 auy ul dais puooas 3y sajqel aseqeiep SN Jusueuniad sy pue sajiy sepdn
$,924N08 BIBP 91} UM 22Udpuodsaliod sU0-01-2U0 B A[LIBSSIOIU JOU S| 21} ‘Y NsSdi B Sy

JIIYSHI0OM SINVAS JO uontod ‘p “Sig

) U7 18K Bey]
“-aui Buunoegriue gy Kejysy]
T divy s:m's'n;a 010Q345y!
‘dio’y 83n58|3 0:0G3ysYy|
5:|4de.19 umwnow/ 301 sasudiowz wy|
Ssweynsuo uoses)ddy|
77 auwzeBepy Kisnpu) jaseddy
aumzeBey Knsnpu| jaseddy
ARG - |d

5 PajmiBajui)3 muddns

“sswnisos soud-i8ddn 6 1ssniognuey)
exq0id Xajdiuos 1o SUNNG) YA JEISSE 0) aiqelisa

iy Swioy *jasedde Joj syanpoid :msma pajpisg jo mmpa‘nuew o

uBisap +§ ue jiny’ “61W31e8 paysiuy 1o 5pool NG uo S wuduaasss penucy’
) “Anysnpu [uedde ayy ul I BUnynsuod ' dremyos jo siddng:

“OIUNBNIOUNZ SIINPOIY UMST PUE (MOYS VAR &'
_ Pposuon ysabie) suoiey 3yi suzebéin Kisnpuy [aréddy jo I8YSHaNA
T punorewny 1dword s Kujend’
PeRueD:

g Miqeded Jajuid Jo105-0] Yusk

g Bunnioepnuew aedde uoneong

AL
el SS1 10y .(.nsnpul ~_s1onpoid Wass a4 g
o BU0G VNS Liadiy
Taueg uyg eary
=l samsnpm UJ){M

J-81Gnop elpoou-u&ns ‘sessaip
- 3dio] “EpUGq dipasu-3iBurs g

__ Pmiojis] 1o sexnog s_ua\uoh\"su!qi sse}p pue jiods suel jo Junpu}nuawl T
_lo-ind tPud 10 UIAOM [BLOYS g BLINS ENIBIE SUIUIOM JO J01OBIILOD LIND!

3|qepeas os(a Bursunos "5doy 0oady siuel "Sliiys-a31 J6 101380U05 LY

UG s aggeiiesr sabeyaed aiaidiucs jager ajeaig 1eam pom pue Burjio> oives niy Suaws jo sanideEjnuen.
"SUOYS g STEAMS “SUIYS-33] Lonse) j0 JaInidenue’

2sEaq fjr VO FOMIS puE soyddas " Blina esle saxlddns g sued ‘sauijoew Bumas pasn pus mau jo sauddng
%095 sjeuditu ubloig) die s10159Miy Paianaai & 9 'S 1 20 teiided Bupiiom ;6 Jopmoly:

‘Bunno |aleddtﬂ° sodine.

- QOO0ODOQO - [sH=H == =H=K=R = R =) olo}-,— [~}

*au) jaieddy 2qopy
Iu} reamsuads 22y
U Bnws
aurumg N Y
S1v|

ﬁuluno 10seddy | 0§ v o

KBojouyas] Buiioroemxe | 715 |

Sybase data or to create the update tables. Table 32 lists the general routines that are used in
the import and export processes.

Table 32. General routines used in update exports and imports

Table 32a. Setup routines used by This.Generate and This.Load utilities

Routine Function Language

sybase.sh Extends path and defines environmental variable to set up Borne shell
for access to the SYBASFE database server

setup.sh Defines directory for subdirectories in which update text files | Borne
are placed and should be found. shell
Table 32b. General routines used by data-source-specific

This.Generate utilities
Routine Function Language

Table.Get Retrieves database data which is not contained in text fields - | Borne shell
data retrieved is determined by the SQL script whose logical
table name is passed to Table.Get

text.get Enhanced version of portion of isql used by Table.Get for CH++
querying the database

Table.GetText | Retrieves database data which is contained in text fields - Borne
data retrieved is determined by the SQL script whose logical | shell
table name s passed to Table.GetText

text.split Enhanced version of portion of isql used by Table.GetText CH+
which splits retrieved text fields into a set of fields and
supplies each set with an id and each member of the set with
the id and a sequence number

DataOut.Clean | Reformats data into tab delimited text files for input into an | Perl

Excel worksheet -includes worksheet name and formatting
for later use bv Dataln.Clean

Tahle 32¢.

General routines used by data-source-specific This.Load utilities

Routine Function l.anguage
Table.Create Creates an update table within the database - table name is Borne
determined by logical table whose name is passed to shell
Table.Create
Table.Load Loads an update table in the database from “|” delimited text | Borne
file shell
Text.Assemble | Reassembles fields with id and sequence numbers into text Perl
fields
Dataln.Clean Reformats data from tab delimited text files exported from Perl

worksheets into “|” delimited text files for loading into the
database

85

The main general routines used by the utilities are Table .Get and Table.GetText,
Table.Create, Table.Load and Text.Assemble. Table.Get retrieves data
from the primary Sybase NSDB database for a workbook worksheet by executing the SQL
script corresponding to the “logical table™” name passed to it. It pipes the output of the SQL
routine through a routine, DataOut.Clean, which reformats the output into a tab-
delimited text file for input into an Excel “update™ worksheet. Table .GetText is used
rather than Table.Get in retrieving text fields (since these fields may be greater than 255
characters). It dices the data from a database text field into multiple fields of 255 characters
(or less for the last of the multiple fields), creating a record for each of the resulting fields. It
includes an id and sequence number in two additional fields in such a record (the id relating to
the database text field from which the record’s “main” field was created and the sequence
number giving the position of the “main™ field relative to the other “main™ fields created
from the text field).** This is required so that the contents of text fields in the database can
be exported into an Excel spreadsheet.** Only the EC96, KTA. and SEAMS data sources
have such fields, so Table .GetText is executed only in exporting data from these data
sources.

DataIn.Clean reformats the data in an Excel output file into a bep file for loading into a
database update table. Table.Create creates an update table in the primary NSDB Sybase
database, and Table.Load loads the data from a bep file (created by DataIn.Clean)
into an update table in the database. Text .Assemble assembles multiple fields of 255
characters or less into text fields. It uses these fields” associated ids to determine which fields
should be used for creating each text field and their sequence numbers to determine the order
in which they are to be spliced together in creating a text field.

The routine setup.sh is used respectively by This.Generate and This.Load
utilities to determine the directory in which the Excel input files are to be placed and where
the Excel output files should be found. The routine sybase.sh is used by the utilities to
setup for access to the primary Sybase NSDB database server.

Table.Get uses the enhanced version of a portion of isql, text.get, to query the
database. Table.GetText uses text.split to query the database where text.split
returns diced text ficld data with id’s and sequence numbers. Table.Create uses the
standard isql for creating database tables, and Text .Load uses the standard Sybase bep
facility for loading these tables. Table 33 lists the set of data-source-specific routines used in
the update processes.

A data source’s This.Generate utility will execute:

1. Table.Get for each Excel input file to be created with data that is not in text fields
and

2. Table.GetText for each Excel input file to be created with data from text fields (if
such fields exist in any of the data source’s database tables).

** The data retrieved by such an SQL script may come from one or more database tables and be all or part
of that table’s or those tables’ data but for convenience is thought of as the total contents of a “logical
table.”

* The id will be a string (e.g.. a company name) while the sequence numbers for the fields created from a
text field will start at zero and go up to one less than the number of segments created from the text field.
*" Excel spreadsheet cells hold no more than 255 characters.

86

Table 33. Typical data-source-specific utilities/routines
for data source update

Routine ' Function Language

This.Generate Creates a set of tab delimited text files, i.e. Excel input Borne
files, containing its data source’s primary NSDB Sybase shell
database data

This.Load Creates and loads data from tab delimited text files into Borne
update tables in the primary NSDB Sybase database shell

.Get routines Each .Get SQL. script retrieves data for a specific Excel SQL
input file from the primary NSDB Sybase database

.Create routines Each .Create SQL script creates a specific update table in SQL
the primary NSDB Sybase database

x_Upd.sql Loads data from the data source’s database update tables SQL

where x is a data | into its permanent database tables - supphes ids to

source label permanent table records

It does this by first executing Table.Get for each entry in a list it has of “logical table”
names, passing Table.Get the logical table name as an input parameter. Then, if the data
source has tables with text fields, it executes Table.GetText for each entry in a second
list of logical table names passing Table.GetText the logical table name as an input
parameter. The This.Generate utility will direct output of Table.Get or
Table.GetText (o a file with a name corresponding to the logical table name, for
example, if the logical table name is CompanyProfile, then the output will be directed to a
file named CompanyProfile.txt.

The Excel input files created for a data source will all be placed in the same directory defined
by the data source’s This.Generate routine. Each such directory will be a subdirectory of
a common directory defined in setup.sh (e.g., if the setup.sh defined directory is
/usr/saturn/www/Nsdb/update, then the SEAMS data source Excel input files will be placed in
/usr/saturn/www/Nsdb/update/Seams).

Any This.Generate utility may be run to generate a subset of its data source’s Excel
input text files. This is accomplished by including the names of the logical tables for those
files as parameters in the command for executing the utility. Including no parameters in the
command will lead to the generation of the whole set of the data source’s Excel input files.

There are two SQL scripts for each logical table, one for retrieving its data from the NSDB
Sybase database and one for creatmo an update table in the database (note that these SQL
scripts are not stored in the dalabdsc °). The two procedures have names that differ from the
logical table name only by their extensions, for example, if the logical table is named
CompanyProfile, then the scripts are respectively named

1. CompanyProfile.Get and
2. CompanyProfile.Create.

* Storing SQL procedures improves response time and therefore is important for the on-line system. The
longer response times from not using stored procedures in the utility routines are not significant for these
off-line operations.

87

All the logical tables have capital letters in their names, so their Excel input file names will
also have capital letters. The Excel output files (the updated files) for a data source should be
given the same names as the Excel input files but with all lower case letters (e.g., if the Excel
input file is CompanyProfile.txt, then the Excel output file should be named
companyprofile.txt). They should be manually loaded into the same directory with
the Excel input files. Table 34 lists the data sources’ SQL scripts used in the update process,
the names of the data sources’ Excel input and output files, the relative names of the
directories for the Excel input and output files, and the names of the data source’s database
update tables.

Table 34. SQL scripts associated with Excel input and output files

Table 34a. ATAPD

Directory SQL Scripts File Names (Excel input/Excel output) or
for Files database update table
Atapd CompanyMachDetail.Get CompanyMachDetail.txt/

companymachdetail.txt

CompanyMachDetail.Create Up AU CompanyMuachDetail

CompanyProducts.Get CompanyProducts.txt/ companyproducts.txt
CompanyProducts.Create Up AU CompanyProducts
CompanyProfile.Get CompanyProfile.txt/companyprofile.txt
CompanyProfile.Create Up AU CompanyProfile
CompanyTechDetail.Get CompanyTechDetail.txt/

companytechdetail.txt

CompanyTechDetail.Create Up AU CompanyTechDetail

ProductCategories.Get ProductCategories.txt/ productcategories.txt

ProductCategories.Create Up AU ProductCategories

Table 34b. Cotton Incorporated

Directory Procedures File Names (Excel input/Excel output) or
for Files database update table
Cottonine | Company.Get Company.txt/company.txt
Company.Create Upd CI Company
Produce.Get Produce.txt/produce.txt
Produce.Create Upd CIl Produce

88

Table 34c. EC96

Directory Procedures File Names (Excel input/Excel output) or
for Files database update table
EC96 Classification.Get Classification.txt/

classification.txt

Classification.Create

Upd E6 Classification

CoProdDescription.Get

CoProdDescription.txt/
coproddescription.txt

CoProdDescription.Create

Upd E6 CoProdDescription

CompanvyProducts.Get

CompanyProducts.txt/ companyproducts.txt

CompanyProducts.Create

Upd E6 CompanvProducts

CompanyProfile.Get

CompanyProfile.txt/companyprofile.txt

CompanyProfile. Create

Upd E6 CompanyProfile

Table 34d. GCA

Directory Procedures File Names (Excel input/Excel output) or
for Files Database Update Table
GCA CompanyProducts.Get CompanyProducts.txt/ companyproducts.txt
CompanyProducts.Create Upd GC CompanyProducts
CompanyProfile.Get CompanyProfile.txt/companyprofile.txt
CompanyProfile.Create Upd GC CompanyProfile
Table 34e. GIDC
Directory Procedures File Names (Excel input/Excel output) or
for Files Database Update Table
Gide CompanyCapabilities.Get CompanyCapabilities.txt/
companycapabilities.txt
CompanyCapabilities.Create Upd GI CompanyCapabilities
CompanyProfile.Get CompanyProfile.txt/ companyprofile.txt
CompanyProfile.Create Upd GI CompanyProfile
Table 34f KTA
Directory Procedures File Names (Excel input/Excel output) or
for Files Database Update Table
KTA CompanyComment.Get CompanyCemment.txt/

companycomment.txt

CompanyComment.Create

Upd KT CompanyComment

CompanyProducts.Get

CompanyProducts.txt/
companyproducts.txt

CompanyProducts.Create

Upd KT CompanvProducts

CompanyProfile.Get

CompanyProfile.txt/ companvyprofile.txt

CompanyProfile.Create

Upd KT CompanyProfile

CompanySecondComment.Get

CompanySecondComment.txt/
companysecondcomment.txt

CompanySecondComment.Create

Upd KT SecondComment

89

Table 34g. SEAMS

Directory Procedures File Names (Excel input/Excel output) or
for Files Database Update Table
Seams CompanyDescription.Get CompanyDescription.txt/
companydescription.txt
CompanyDescription.Create Upd SM CompanyDescription
CompanyProducts.Get CompanyProducts.txt/
companyproducts.txt
CompanyProducts.Create Upd SM CompanyProducts
CompanyProfiie.Get CompanyProfile.txt/ companyprofile.txt
CompanyProfile.Create Upd SM CompanyProfile

A data source’s This.Load utility anticipates finding a text file corresponding to each of
the data source’s Exce! input files (in the directory in which the Excel input files were placed
by the data source’s This.Generate utility). It first looks for input from files with names
that contain no upper case letters but otherwise have the same names as the corresponding
Excel input files. Should it not find such an anticipated file, it uses the corresponding Excel
input file instead. For each anticipated file, a This.Load utility does the following:

1. Passes input from the file (or its corresponding Excel input file) to the DataIn.Clean
routine and either

(a) pipes the output of this routine through the Text .Assemble routine to a bep file
or
(b) directs the DataIn.Clean output directly to the temporary bep file.

[\

Creates a database update table for the bep file’s contents, through use of
Table.Create.

3. Loads the contents of the bep file into the created update table, through use of
Table.Load.

The This.Load utility will first attempt to import data from files corresponding to entries
in a list of non text field logical tables. Then, if its data source’s database tables have text
fields, it will attempt to import data from files corresponding to entries in a list of text field
logical tables. Piping through the Text.Assemble routine is done for the files
corresponding to logical tables with text fields. Table.Create, through use of a table-
specific SQL table creation script, first drops any existing database update table for the file
and then creates (or recreates) the update table. When an Excel input file is used for
This.Load input (rather than an Excel output file), the effect is to not change the
database’s data previously exported to that file.

Any This.Load utility may be run to import data for only a subset of its anticipated Excel

output files. This is accomplished by including the names of the associated logical tables as
parameters in the command for executing the utility. If the command is given with no
parameters, then data will be imported for the whole set of anticipated files.

90

4.6.3 Transferring Updated Data to “Permanent” Tables

The completion of the NSDB Sybase update of a data source requires execution of the data
source’s Upd.sql script, which transfers the data from its update tables to its permanent
database tables accessed by the user interface (see Table 3 in Sect. 2). A utility,
Load_Update, provides a means for running all or any subset of the data sources’
Upd.sql scripts.”” Load Update will accept an argument “all_datasources™ or a set of
data source label arguments. 1t will then either execute all the Upd . sqgl scripts or each
script called for by a data source label argument.®” Table 35 lists the routines used by
Load_Update, and Table 36 lists the relationship among the data sources, the Upd.sqgl

routines, and the Load Update data source arguments.

Update tables created by the Table.Create routines of the batch update process (i.c.,
tables whose names begin with “Upd_") are not included in any of the NSDB database
replicates produced by the utilities described in the preceding sections or in an NSDB database
reproduced by the backup and restoration processes described in Sect. 4.4. However, these
tables remain in the database after the Upd.sqgl scripts that use them as input are executed.
Therefore, the tables must be manually dropped if it is desired to remove them from the

database.
Table 35. Routines used by Load Update
Routine Function Language
setup.sh defines parameters : Borne shell
options.awk determines modifications to be made to certain AWK

parameters based on command arguments

Upd.sql scripts for
each data source

transfer data from a data sources’ update tables to its SQL

permanent tables

Table 36.

Update routines that load database

permanent tables

Data Source

Load Routine

Load Update Argument

ATAPD auburn Upd.sql auburn
Cotton Incorporated cotton Upd.sql cotton
EC96 ec96 Upd.sql ec96
GCA oca Upd.sql aca
GIDC vide Upd.sgl gide
KTA kta Upd.sql kta
SEAMS seams Upd.sqgl seams

* Load_Update and the data source’s Upd.sql scripts reside on the Sybase server in the pilot system. All
of the previously discussed update programs reside on the Web server in the pilot system (sec Sect. 4.6).
¥ Load Update will run all of the data source’s Upd.sql scripts if the argument “all_datasources” is
included in its input arguments, regardless of the data source label arguments included. When the
“all_datasources” argument is not included, then the data source label arguments determine which data
sources’ Upd.sql scripts are executed.

91

A tutorial was developed for assisting a user making updates to a data source workbook. The
tutorial is described in the Sect. 4.8.2.

4.7 FURTHER ASPECTS OF THE MAIN UTILITY PROGRAMS
4.7.1 Insertion of Parameters into SQL Scripts

As noted in the previous sections, various utilities insert parameters into SQL scripts before
executing them or execute scripts that have the parameters inserted into them via a
separately run program (in the case of some Web server—based update utilities). These
insertions are done via AWK scripts. The AWK scripts detect the SQL statements into which
the insertions are to be made through comments that are included on the statements’ lines.
Typically:

the existing SQL script to be used is copied to a temporary file,
the AWK script obtains its input from the temporary file, and
the AWK script outputs its results to the file from which the SQL script was copied.®

L2 P =

Each line that does not require parameter insertion(s) is copied from the input to the output
file without modification. Each line requiring parameter insertion(s) has the current value of
its parameter(s) inserted into it in place of the existing string(s) in the parameter place(s).
The resulting line including its parameter indicating comment is then written to the output
file.

The comments used to indicate a parameter in the line are of the form:

/*InstallMarker string indicating the form of the statement */ |
e.g.,

/*InstallMarker3USER3,USER2,USER1*/. .

The pilot’s Sybase database server-based utilities always insert the parameters in SQL scripts
before executing the scripts. Similarly, the Web server-based routine that executes SQL
scripts to create SQL-stored procedures (which are then executed by the user interface and
certain wais utilities) inserts the database name into these scripts before executing them.
However, the SQL scripts used by the Web server-based update utilities have their parameter
values inserted into them by a separately executed routine, which, after any of these
parameter values are changed, must be run before an update utility is subsequently executed.®”

* Originally, these parameters were hard-coded into the SQL scripts, which were thoroughly debugged.
The approach described here, used to reduce the number of places where changes would be required if the
parameters were modified, had the advantage of not requiring any code modification of the scripts.

This should not be a major inconvenience. The parameters in these scripts are the primary database
name, which is unlikely to change, and database id’s, which might at most infrequently change.
Consequently, it is likely that the insertion program will only have to be infrequently run to keep the SQL
scripts” parameter values up to date.

92

4.7.2 Temporary Files

In carrying out their functions, a number of the utilities, create files, for example, the
temporary files described in the previous section. If such a file does not contain code or data
that may be used by other routines or by a utility user, it is normally removed either by the
routine that creates it or by the routine that executes the routine that creates it. Thus, some
of the code that is generated and then executed by a utility will not be available to be perused
after the running of the utility code (e.g., the tmpin.sgl and tmpout.sqgl SQL scripts
created by brn_bcep are deleted before brn_becp completes its execution).

4.8 MISCELLANEOUS UTILITIES
4.8.1 General

Five miscellaneous programs that were created for certain NSDB-related functions are listed
in Table 37. The first two routines listed in Table 37 are WWW accessible, while the third
runs on an IBM (or IBM-compatible) personal computer.

Table 37. Miscellaneous utilities

Utility Utility Name Function , | Language
NSDB Batch index.htm!” Explains how to update data source Excel | HTML
Update Tutorial workbooks
NSDB Access Counts.DoGet.cgi | Provides data on how often the Web Perl
Counts NSDB has been used within a time

interval
EC96 Data entry.exe Provides means for individual companies | Foxpro
Entry Program to enter their EC96 data and copy it to

floppy disks
EC96 Data class_report Provides information about the contents | Borne
Source Statistics of the EC96 data source shell
Web Server Install_Setup Sets environmental variables, creates Borne
Installation SQL stored procedures in primary NSDB | shell
Setup database, copies images to web server,

creates wais index, inserts parameters

into web server based batch update

utilities

4.8.2 Batch Update Tutorial

The update tutorial’’ is an HTML form that consists of two frames.”” One of these frames,
the body frame, references a set of images of Excel worksheets produced through use of the

* This is the normal default file name for an HTML form (when a URL points to a directory).

”! The batch update tutorial is classified as a utility here because it is convenient to describe it in this
section.

” A user must have a browser with frames support to use this utility.

93

procedures described in the Sect. 4.6.2. The forms and images used by the tutorial are listed in
Table 38.

The tutorial provides the information necessary for a data source supplier to update its data
source Excel workbook. [ts URL is:

http://saturn.epm.ornl.gov/Nsdb/update/tutorial/ .

Table 38. Forms and images used by NSDB batch
update tutorial (excluding home page)

Form/lmage Function Language/Format
contents.html contents frame with links to parts of body frame HTML
body.html tutorial text frame HTML
figure-1.gif update worksheet image aif
figure-2a.oif update worksheet image gif
figure-2b.gif update worksheet image oif
figure-3.gif update worksheet image gif
figure-4a.gif update worksheet image oif
figure-4b.gif update worksheet image oif
figure-4¢.gif update worksheet image oif
figure-4d.gif update worksheet image oif
figure-4e.gif update worksheet image oif

4.8.3 NSDB Access Counts

The Access Counts utility displays a set of data about Web NSDB use. The display provides
the number of the following types of uses’ of the standard pilot NSDB and experimental
NSDB user interfaces during a specific time interval:

Web page home visits,
Web page launches,
Java applet launches,
Java total hits. and
total NSDB hits.

Wb L —

The date and time of the beginning and end of the interval are included in the display. The
displayed access counts (or uses) are derived by counting relevant entries in the Web server
log. The beginning of the interval is the last time the log was purged,’* and the ending of the
interval is the time the utility last extracted a set of relevant log entries. Accesses from the

* Definitions of the numbers displayed are as follows: Web page home visits is the number of times a user
downloaded the standard NSDB home page; Web page launches is the number of times a user called for
another NSDB form or a report from any NSDB page (standard, frames of java/frames interface); Java applet
launches is the number of times an experimental Java applet was downloaded by a user; Java total hits is
the number of times any NSDB form, report, image or applet was downloaded using the java interface; and
total NSDB hits is the number of times any NSDB form, report, image or applet was downloaded using
any NSDB interface.

™ This date is currently hard-coded into the utility and should be changed each time the log is purged. The
log was last purged on January 1, 1997.

94

seven government laboratories participating in the DAMA project during FY 1996 are not
included in the displayed counts.

The Access Counts utility can be commanded to either display counts from:

1. entries previously extracted from the Web server log or
2. a newly extracted set of Web server log entries.

The URL
http://saturn.epm.ornl.gov/Nsdb/Counts.DoGet.cgi
yields counts from the latest previously extracted log entries. The URL
http://saturn.epm.ornl.gov/Nsdb/Counts.DoGet.cgi?build

yields counts from an up-to-date set of extracted log entries. The time required to extract a
set of relevant log entries is fairly long (it has been a matter of a number of minutes when the
log has a few months of entries), so simply displaying counts from the latest previously
extracted set of entries can save significant time.”

The Web NSDB Access Counts main routing, Counts .DoGet.cgi, uses the routines and
list enumerated in Table 39. The three “Search” routines listed in Table 39 gather log
entries on the use of different NSDI3 user interfaces. The routines place them in files from
where they are counted by Counts.DoGet.cgi to obtain the displayed counts. These
files and a date file used by the utility Counts.DoGet.cgi are listed in Table 40. The
utility executes the Search routines when it is commanded to make a new set of counts;
when it is not, it recounts the previous entries in the files of Table 40.

Table 39. Routines and list used by Counts .DoGet.cgi

Routine/List Function Language/Formut
Nsdb.pm Defines path to directory with rest of Table 39 Perl
routines and for Table 40 files.
setup.sh Defines path to Apache log Borne shell

Dama2.Search | Gets entries from web server log indicating Dama2 | Borne shell
Interface usages
Dama3.Search | Gets entries from web server log indicating counts | Borne shell
for Dama3 Interface usages

Nsdb.Search Gets entries from web server log indicating current | Borne shell
standard interface usages and prototype interface
usages

no.list List of IP addresses whose log entries are to be text

excluded from the usage counts

* The pilot Web server serves a number of systems besides the NSDB. Therefore, many non-NSDB
entries must be examined but not extracted during the NSDB entry extraction process.

95

Table 40. Files used by Counts.DoGet.cgi

File Items stored

dama2-home.out | Log entries of visits to the Dama2 home page

dama?2-launch.out | Log entries of launches from any Dama2 page

dama2.out Log entries of any hit in the Dama2 user interface

dama3-home.out | Log entries of visits to the Dama3 home page

dama3-launch.out | Log entries of launches from any Dama3 page

dama3.out Log entries of any hit in the Dama3 home page
nsdb-home.out Log entries of visits to the current standard (Nsdb) home page

nsdbs-launch.out | Log entries of launches from any current standard, frames, or
java/frames user interface page

nsdb.out Log entries of any hit in a current standard . frames, or java/frames user
interface page

nsdb2-applet.out | Log entries of Java applet launches in the java experimental user

interfaces
nsdb2.out Log entries of any hit in the Java interfaces
date.out Time and date last usage counts were made

The Dama2 and Dama3 interfaces listed in Tables 39 and 40 are previous standard interfaces
that were available for part of the pilot period. They have their log entries extracted by
DamaZ2 .Search and Dama3.Search, respectively. Their URLs are now aliases for the
current standard interface. The current standard interface and the frames, the frames/Java,
original Java, and the current Java prototype interfaces have their log entries extracted by
Nsdb.Search. The file no.list contains IP addresses that when in NSDB log entries
will cause the entries to be excluded during the extraction process.

4.8.4 ECY96 Data Entry Program

The EC96 data entry program runs on any DOS platform®® and is supplied in a self-
extracting zipped file. Unzipping the file leads to the files listed in Table 41 being placed in
the directory into which the zipped file was loaded on the DOS machine.

The EC96 data entry program provides data entry forms to be filled in with a company’s
EC96 text data. Two different types of forms are provided: company data forms and product
data forms. A company can fill in one company data form and a multiple number of product
data forms, one for each product it wants listed in the EC96 data source. The program will
allow only one record per product (although a product name may be used multiple times if it
used with a different classification each time) and will not allow a product name to be entered
without a classification. Using Foxpro functionality, it provides for viewing and editing any
previously entered data. It also provides for outputting its data to a ﬂopgy disk in a zipped
file, EC96DATA . ZTP, which unzips into the following three data files:”’

* A DOS 3.3 or higher platform with 3 MB of available hard drive space and a color monitor is required.
The program was written to run on such a simple platform to maximize the chance that any member of the
AAMA’s AMC, which includes many small companies, would have a platform available on which to run
the entry program. Meeting the requirement of running on such a platform resulted in a few program aspects
that are not as user friendly as would have been possible with a more sophisticated platform.

"’ The number of products that a company may input is unbounded. However, the program limits the
number that can be entered before having to be copied to a floppy disc. Therefore, multiple floppy discs
must be used when a company wants to enter more products than the program allows on a single floppy

96

I. Company.dbf,
2. Product.dbf, and
3. Product.fpt.

These files are written into by the utility during the data entry process. The utility used to
process and load the EC96 data into the primary Sybase NSDB database, do_ec96,
anticipates finding these files in the format provided by the data entry program.”®

Table 41. EC96 data entry program files”’

File

Comment

AMC cls.dbf

File containing classification “cids” for each admissible classifications' "’

AMC_[st.dbf

File with partial cids'” (ids for group, classification, etc.) and text
description of these partial cids.

AMC Ist.adx

Index file for partial classification cids

Company.dbf

file for company data

Entrv.exe

EC96 data entry program executive

Foxswap.com

Foxpro support software

Help.dbf EC96 data entry program help file
Pkzip.exe Standard pkzip utility
Product.dbf IFile for product data excluding product description field

Product.fpt.

File for product descriptions

Product.idx’

Index file for product data file

disc. Once a product’s data are copied to a disc after the limit is reached, the product’s records must be
deleted from the program’s files if more product data is to be entered (which can be done via a positive
response to a program prompt after the data are copied to disc). Once the records are deleted, the program
cannot prevent entry of a product with an identical name and classification from one that has been deleted.
** In the procedure for loading the NSDB Sybase database, a company subdirectory of a common directory
accessible to the routine do_ec96 is created for each company. Various subdirectories of a company’s
(sub)directory might also be created. A company’s EC96 data entry program data output files are then
copied into the company’s directory or that directory’s subdirectories. One floppy disc’s data may be
included in the-.company’s directory and other floppy ‘disc’s data in its subdirectories, one disc’s data per
subdirectory. Company gif files may be included in the company directory or any of its subdirectories
(subdirectories of only gif files and empty subdirectories can be handled by do_ec96). The data for all the
companies are Joaded into the database from the common directory (see Sect. 4.9.4). Dbf and fpt files
created according to the format of the EC96 data entry program and zipped into a single zip file by some
other means (than the data entry program) may also be used in the load procedure.

” AMC_cls.dbf and AMC_Ist.dbf are the files that after preprocessing provide the classification input for
the do_ec96 routine that loads the NSDB Sybase database.

" Each primary group, category, class, and type are assigned a four-character “partial ¢id” (with group
partial cid’s starting with A, category’s starting with B, etc.). Each permissible classification is then
assigned a cid, which is a concatenation of its group, category, class, and type partial cids (separated in
AMC cls.dbf by “’s).

97

4.8.5 EC96 Data Source Statistics

Statistics on the EC96 data source are developed by a routine, class_report, which
queries the NSDB Sybase database to generate a report which contains

. - - - . . 0l
a table ordered by classification id with the number of uses of each classification,’

1.

2. a classification use “histogram.”

3. a list of the classifications ordered by the number of their uscs,

4. a company/product histogram.

5. alist of the EC96 companies with their number of products and number of distinct

products,'** and
6. alist of EC96 companies with the names of their products and the classifications (and
number of such classifications) used for each product name.

The classification histogram lists the number of EC96 classifications not used for any product
names,'” the number used for one product name etc., while the list of classifications by
number of uses lists all the EC96 classifications not used for any product names, all the EC96
classifications used for one product, etc. The company/product histogram lists the number of
companies with a given number of products and distinct products (ordered primarily by
number of products and secondarily by the number of distinct products'®). The utility uses
the routines shown in Table 42.

Table 42. Routines used by class_report

Routine Function Language
setup.sh defines parameters Borne shell
options.awk determines modifications to be made to certain parameters | AWK

based upon command arguments
report.sql generates an ec96 classification report SQL

" This list includes only the NSDB EC96 assigned id, not text giving the group, category, class, and

type associated with the id. The lists in items 3 and 6 contain the primary group, category, class and type,
and the id. This id is not the cid of Table 41 but is rather an id assigned sequentially starting with E61
(i.e., E61, E62, . ., E610, E611, . ..) by EC96’s load.sql routine when it loads the database table

E6 Classification.

" Here we consider a product to be a product name/product classification pair. Therefore, a product name
that appears with n classifications is considered n products. The number of distinct products is the number
of unique product names.

" An EC96 classification consists of a primary group, category, class, and type. A null for any one of
these classification levels is admissible provided all lower levels are also nulls (e.g., a null class requires a
null type). Product names have at least one classification associated with them. A classification is
considered to be used for a product name each time it appears associated with a product name of a company.
If company A with a product named XYZ and company B with a product named XYZ each use a given
classification for the product named XYZ, then that constitutes two uses of the classification.

98

4.8.6 Web Server Installation Setup

The installation of the Web server NSDB software and the stored SQL procedures executed
by the user interface portion of this software is facilitated by use of the Install Setup
utility. This routine first includes the path to the client side Sybase files in the environment’s
path. It then installs the SQL-stored procedures in the primary NSDB Sybase database,
generates the wais index for the cross-data source search, and inserts the primary database
name and user ids into the batch update SQL scripts.

Table 43. Routines used by Install Setup

Routine Purpose Language

sybase.sh Includes path 1o client side Sybase files in Borne shell
environment path

Create SQL Installs stored procedures in primary NSDB database Borne shell

setup.sh' " Defines database name, pointer to database’s database | Borne shell
server and database id and password

get_images Copies image files from another server to the web Borne shell
server

This.Generate' - Generates formatted files for input to waisindex Perl

Index.Build'*® Builds wais index Borne shell

setup update params | Inserts database name and user ids in batch update Borne shell
SOL scripts .

setup.sh' ' Defines directory paths, database name of primary Borne shell

NSDB Sybase database, pointer to that database’s
database server, and database ids and passwords

The Install_Setup utility uses the routines shown in Table 43. The Create_ SQL
routine in Table 43 is also used (o install the stored SQL procedures in the MS SQL Server
database replicate (or any other NSDB Sybase or MS SQL Server replicates that are made) of
the NSDB primary database. It must be executed subsequent to the execution of do_it ms
or redo_nsdb to complete a database replication or recreation.

4.9 UTILITY FILE ORGANIZATION
4.9.1 General

The utilities, other than the NSDB Access Counts and EC96 data entry program and
classification dbf file creation routine, can run on any Unix platform networked to the NSDB
Sybase server where the Unix platform has the required supporting software installed.
However, it is convenient to also run the cross-data source enabling file creation utilities on
the Web server in part because they then can be easily setup to place files in directories where
the user interface will look for them. In the pilot system, the utilities, excluding the EC96

'™ The setup routines used by Create SQL and setup_update _params are separate routines, each located in
thse same directory as the routine that uses it.
" This is the blanket This.Generate routine described in Sect. 3.6.2.

" This is the Index.Build routine described in Sect. 3.6.2.

99

programs noted earlier, were installed on the Web server and the Sybase database server. The
Web server holds the

—

cross-data source enabling file creation utilities and associated routines,

2. data source update- utilities and associated routines (excluding the Upd.sqgl routines that
load NSDB database update table data into NSDB data source database permanent tables),
NSDB Access Counts utility, and

4. installation facilitating utility and associated routines including SQL scripts to create the

stored SQL procedures.

98]

The NSDB Sybase database server holds the

primary NSDB Sybase database creation and load utility and associated routines, including
the preprocessing routines:

database replicate creation utilities and associated routines:

database backup and restoration utilities and associated routines:

data source update routines for loading database permanent tables from database update
tables; and

5. EC96 data source statistics routine.

FSQR ST 0]

4.9.2 Utility Files On Web Server

The directory structure for the utilities on the pilot Web Server is shown in Fig. 45. The
Nsdb directory, its data source, images and wais subdirectories, and the wais and images
directories” subdirectories shown in Fig. 45 are the same ones shown in Fig. 32, which depicts
the user interface directory structure. (These directories are italicized in Fig. 45 to indicate
that they are required for the user interface as well as for certain utilities.) The Nsdb
directory’s update and access subdirectories and the update directory’s subdirectories contain
files required only for certain utilities. Table 44 lists the files required by the Web
server—based utilities, which are in the nondata-source-specific directories shown in Fig. 45.
The files in the data-source-specific directories, which are required by the Web server—based
utilities, are enumerated in subsequent paragraphs. Files shown in italics are also required by
the user interface.

The file Counts.DoGet.cgi in the Nsdb directory contains the Web-accessible user
interface statistics utility. That utility uses the Nsdb. pm file in the Nsdb directory as well as
the routines in the files in the access subdirectory. The access subdirectory is also the
directory into which the files listed in Table 40 are placed by Counts.DoGet.cgi. The
file Install Setup in the Nsdb directory contains the utility that facilitates the Web
server installation procedure. That utility uses the routines in the files Create SOL,
setup.sh, and sybase.sh in the Nsdb directory. In addition, the routine uses the

get images file in the images subdirectory and the set_update params file in the

update subdirectory. The images subdirectory also contains an image file used by the update
tutorial, while the update subdirectory also contains files with the blanket This.Generate

and This.Load update utilities and a setup. sh file used by these utilities and by
set update params.

The bin subdirectory of the update directory contains the “general routines™ used by the data
source update utilities, while the tutorial subdirectory of the update directory contains the
tutorial top form as well as all the other forms and images used solely by the update tutorial.

100

Nsdb

1 — 7\

Atapd Cottonlne ECY96 GCA Gide KTA Seams

access images

update EC96

——7/\\\,

bin Atapd Cottonlnc EC9% GCA Gidc KTA Seams tutorial

wais

index Atapd Cottonlne EC96 GCA Gide KIA Seams

Fig. 45. Web server NSDB utility directory structure.

The file Company . pm in the wais subdirectory is the company package defining the
company class, and the file Index.Build contains the routine that builds the “wais
index.” The This.Generate file in this directory contains the blanket script that
provides the formatted data source files that are part of the input for Index.Build. The
remaining two files in the wais subdirectory, setup.sh and setup.pl, are used,
respectively, by Index.Build and by data-source-specific This.Generate routines
which are in data source subdirectories of the wais directory.

The ftile in the index subdirectory of the wais directory is the manually generated format file
required by Index.Build. The index subdirectory is also the directory into which the
“wais index™ files will be placed when they are generated by Index .Build (see Table 14 in
Sect. 3.6.2).

Each data source subdirectory of the Nsdb directory contains an SQL script x.sp (e.g.,
Atapd.sp).'”” This is the script used (by Install _Setup) to create the stored
procedures executed by the user interface to query that data source’s database tables.

7 The Lamdb subdirectory of the Nsdb is not shown in Fig. 45 because that subdirectory does not contain

a Lamdb.sp script. This is because the Lamdb database does not contain stored SQL procedures (see Sect.
2)

101

Table 44. Nondata-source-specific utility files on

Web server

Directory File(s) Directory File(s)
Nsdb Counts.DoGet.cgi Nsdb/access routines & list in Table
39 other than Nsdb.pm
Nsdb.pm
sybase.sh Nsdb/wais Company.pm
setup.sh' This.Generate
Install Setup Index.Build
Create SQL setup.sh'""
setup.pl
Nsdb/update setup.sh'*®
setup_update params Nsdb/wais/ nsdb. fmt
index
This.Generate'"
This.Load'"” Nsdb/images blueball.gif
get images
Nsdb/update/ | index.html
tutorial
forms and images listed in Nsdb/update/ routines listed in Tables
Table 38 bin 32b and 32¢'"’

Each data source subdirectory of the update directory contains the files with the routines for
creating the data source’s Excel input files and loading the data source’s Excel output files.
These routines include the data source’s (data-source-specific) This .Generate and
This.Load update routines as well as the SQL scripts (see Table 34) used by the
This.Generate routine.

Each data source subdirectory of the wais directory contains the files:

* This.Generate and
* wxyzCompany.pm,

where wxyz is the subdirectory name (e.g., in wais/Atapd, the file AtapdCompany . pm
would be the file corresponding to the second listed file). The first listed file contains the data
source’s utility for generating its data-source-specific cross-data source search enabling files.
The second item is the data source’s company class and contains the data source’s new
method and ListCompanies routine. A wais data source subdirectory is also the directory
in which the data source’s data-source-specific cross-data source search enabling files will be
placed when generated by the data source’s This.Generate utility.

"% There are files named setup.sh in the Nsdb directory and its update and wais subdirectories. The

contents of these files are not identical, though they may have some overlap. These files, along with
sybase.sh in the Nsdb directory and setup.pl in the wais subdirectory, contain what have been referred to
reviously as setup routines.

* There are files named This.Generate in the update and wais subdirectories and in the data source
subdirectories of these directories. These files contain different routines. Similarly, there are files named
This.Load in the update subdirectory and the data source subdirectories of this directory, and they contain
different routines.

"' The rountine text.get in this directory is actually a symbolic link to text.get in Nsdb/bin.

102

The following additional files are required to support various utility routines and are available
on the Web server as part of the user interface:

1. the HTTP server (for the NSDB Access Counts and the batch update tutorial),

2. the Sybase client side software including the file interfaces and the directory
locales (for the data source update utilities and the cross-data source enabling file
creation utilities), and

3. the Perl interpreter.

4.9.3 Utility Files On NSDB Sybase Server

The directory structure for the utilities on the pilot NSDB Sybase Server is shown in Fig. 46.
The subdirectories data dump of the bep directory and access_data of the access directory,
shown in Fig. 46, are connected to their parent directories with dashed lines since these
subdirectories will not exist until the utility generating routine brn_bcp and the utility

do it access are, respectively, executed.''' After the completion of the execution of
the routines that create them, these subdirectories will contain bep files of data from the
primary NSDB Sybase database. ‘

nsdb_new

prad)

NT access bcp prepros update auburn cotton ec96 gca gide kta seams tc2

dafadump data data loadata |data data data|data data

access data cottonawk classification gif ec96awk ktaawk

Fig. 46. Utility directory structure in NSDB primary Sybase database server.

The files in the nondata-source-specific directories of Fig. 46 are listed in Table 45. The
blank.awk and dbfdump routines in the subdirectory prepros are routines used in the
preprocessing of “raw data” for more than one data source (see Sect. 4.2).

After the running of certain routines listed in Table 45, other routines will have been created.
These are listed in Table 46. The created routines will be in the directory of the routines that
create them, except in the case of the SQL procedure sp_makebcep, which will be stored in
the primary NSDB Sybase database. Note that the routine rplct.sqgl in the access

"' The utility do_it_access places the ASCII data files that it generates in a directory whose name is

determined by a parameter that need not be access_data. The pilot’s default value for this directory is,
however, access_data.

103

subdirectory of the nsdb_new directory creates Access SQL scripts that are intended to be run
in the NSDB stand-alone (to create the NSDB Access replicate’s database tables). These
scripts will be written into a file in the access subdirectory from which they must be copied to
the stand-alone. Aside from these Access SQL scripts, the only other created routines in
Table 46 that are used by other routines or that might be executed by themselves are

bcp out,bcp_ in, and truncate.sqgl. Consequently, they are the only routines
(besides the Access SQL scripts) that are not automatically removed after their creation and
execution.

The data-source-specific directories and ec96’s subdirectory loadata contain files with the
routines used for creating and loading the data sources” primary NSDB Sybase database tables.
These are listed in Table 47. The blank.awk and dbfdump entries in the ec96/loadata
directory are symbolic links to the identically named files in the prepos directory. They are
in loadata because do_ec96, the EC96 database table creation and loading routine, uses
them for automatic preprocessing of certain EC96 data.

Executing do_ec96 causes the creation of two other files in the ec96 subdirectory. These
are Company_Log and Image_ Log. They contain, respectively, records of do_ec96’s
processing of the data provided by each submitting company and subsequent processing of the
image files and image file references of each submitting company.

The gif subdirectory of the ec96 directory (see Fig. 46) is the place where the do_ec96
routine places gif files that are part of the raw EC96 data. These files are renamed by
do_ec96 after being placed in this subdirectory (from where they can be copied into a
directory on the Web server, i.e., into the directory Nsdb/images/EC96, for use by the NSDB
user interface).

Each data source’s do_source routine, except for EC96, expects to find the set of bep
files that constitute the “original™ data source files (i.e., the data source files resulting from
preprocessing of the data source’s raw data) in its data source directory’s data subdirectory.
The do_ec96 routine expects to find two bep files with the EC96 classification data in
them in its data source directory’s classification subdirectory (with the rest of the EC96 data
being found elsewhere). The specific sets of files expected in each data source’s data
subdirectory are listed in Table 48.

104

Table 45. Files in nondata-source-specific directories

Directory

Files

nsdb new

check: rename

checkgifzip

checkgifzip.awk

createdb

do nsdb

do_source setup

nsdb new.sql

options.awk

parameters.awk

rename.awk

rename images

setup.sh

uids plus.awk

nsdb new/NT

do it ms

make load.sgl

make load.awk

nsdb new ms.sql

nsdb new/access

access.awk

do it access

make bep.sql

rplct.sql
nsdb new/bep brn bep makebcp.sgl redo nsdb
' reload nsdb truncate.awk

nsdb new/update

Load Update

Upd.awk

auburn Upd.sql

cotton. Upd.sql

£¢96 Upd.sgl

gca Upd.sgl

gide Upd.sql

kta Upd.awk

secams Upd.sql

nsdb new/prepros

dbfdump

bink.awk

Table 46. Created routines

Directory

Creating Routine(s)

Created Routine(s)

nsdb new/NT

make load.sql

load all

nsdb new/access

rplet.sql

Access SOL scripts

make bep.sql

bep for access

nsdb new/bcp

makebep.sgl

sp makebep''”

brn bep tmpout.sql'"”
brn bep tmpin.sql' "
tmpout.sql bep out
tmpin.sql bep in

brn bep truncate.sql

112

sp_makebcp.

105

The makebep.sql SQL. script creates the stored procedure sp_makebep used by tmpout.sql and
tmpin.sql. The routine brn_bcp then includes sql commands (via isql) in tmpout.sql and tmpin to execute

Table 47. Data-source-specific directories’ files (containing routines
used in implementation of the NSDB databases)

Directory File(s)
nsdb new/auburn do auburn files with routines listed in Table 25
nsdb new/cotton do cotton files with routines listed in Table 25
nsdb new/ec96 do ec96 files with routines listed in Table 25
create ec96 do ec96 setup
class report | report.sql
nsdb new/ec96/loadata | fox.tmp.sql start.sql rename.sql
fox.load.sqgl blank.awk dbfdump
nsdb new/gca do gca files with routines listed in Table 25
nsdb new/gidc do gidc files with routines listed in Table 25
nsdb new/kta do kta tables.sql
nsdb new/seams do seams files with routines listed in Table 25
nsdb new/tc2 do tc2 files with routines listed in Table 25

The directories cottonawk, ktaawk, and ecawk (see Fig. 46) contain the files with the
preprocessing routines that were used only for the Cottonlnc, KTA, and EC96 data sources,
respectively. These are listed in Table 49.

The Sybase client side software files including the file interfaces and the directory
locales are required to support the utility routines which are located on the NSDB Sybase
server.

106

Table 48. “Original” data source files

Directory Files

auburn/data app cat.bcp items.bep vendmach.bep
app p cat.bep produce.bep vendtech.bep
aub.bep

cotton /data const95.bep ’ dir95.bep

ec96/classification’* [ame cls amc Ist

gca/data category.bep company.bep

oidc/data company.bep

kta/data company.bep ’ produce.bep product.bcp

seams/data company.bcp lookup.bep product.bcp

tc2/data company.bcp product.bep

Table 49. Files with preprocessing_routines used only for one data source

Directory Files
cotton/cottonawk const.awk dir.awk
ec96/classification ec96 2.awk' '
kta/ktaawk kta0.awk ktal.awk read.awk
kta.awk kta2.awk ps ascii.awk

" The bep files listed here for EC96 contain only the EC96 classification information. As noted earlier (see
Sect. 4.2) and as discussed further in Sect. 4.8.4, the company-specific EC96 raw data are used directly by
the do_ec96 routine.

" The preprocessing of the EC96 classification data also requires a PC-based program that creates dbf files
for the EC96 data entry program. These are then turther processed by dbfdump to create classification bep
files. Some minor manual processing of a text file with data exported from an Excel spread sheet (as noted
in ec96_2.awk’s listing) is done before processing the file with ec96 2.awk, and ec96 2.awk’s output is
the input for the PC-based program.

107

4.9.4 File Structure For EC96 Company Specific Data

The routine that creates the NSDB Sybase database EC96 tables, do_ec96, expects to find
all the data specific to the EC96-listed companies in a directory on a remote server. The
subdirectory structure of that directory is shown in Fig. 47,

Each EC96-listed company has a subdirectory in the directory containing the EC96
companies’ data (e.g., there is a Sunbrand subdirectory containing all the Sunbrand company’s
data that will be in the EC96 data source). Each company subdirectory may have 0 to 1000
subdirectories. where each such subdirectory has the name disk.abc (where abc may be any
number from 000 to 999).

The do_ec96 routine will process any file named EC96DATA.ZTP'"’ (where case is not

considered) or any file having a gif extension that is in a company subdirectory or is in a
disk.abc subdirectory. It will include each such file’s data in the NSDB EC96 data source.''®

companys_data

company 1 name company 2 name ... company n_name
disk.000 disk.001 ... disk.xyz disk.000 disk.001 ... disk.xyz

disk.000 disk.001 ... disk.xyz

Fig. 47. Directory structure for EC96 company raw data input to do_ec96.

""" This is the name of the file produced by the EC96 data entry program, which when unzipped provides
the files product.dbf, product.fpt, and company.dbf. These three files, conforming to the format produced by
the data entry program, may be produced in other ways than through the EC96 data entry program and then
zipped into a file named EC96DATA.ZIP and loaded into a company subdirectory or a subdirectory of a
company subdirectory.

"'* Data will not be included if they do not meet certain consistency checks made during the loading
process.

108

5.1

An

5. INSTALLATION

GENERAL

mstallation procedure for an NSDB Web system is provided in this part of the system

.. - ~ . 17
description. This procedure assumes the following:'"”’

1.

2.
3

0
o

5.2.

The remotely located data sources have been installed at a single location in a Minerva
database''® and are accessible via the Internet.

The system Web server will be a Unix platform.

A1l NSDB utilities currently residing on the pilot Web server will be installed on the
system Web server.

The installation will have only one “central” database server active at any one time;
therefore, each database server that might be the active central database server will
contain all the centrally located NSDB data sources’ data in one database.

The central database servers are some combination of Sybase database servers and MS
SQL. Server database servers with at least one Unix-based Sybase server that serves as the
primary central database server.

Al NSDB Unix-based utilities not installed on the Web server will be installed on the
central primary Sybase database server.

Operating systems have been instalied on all compulters that will be central NSDB servers
(Unix for the Web server and primary Sybase database server and NT for any MS SQL
Server database servers), and all these computers have access to the Internet.

DATABASE SERVER INSTALLATIONS
1 Central Primary Database Server

Install server side and client side run time Sybase files and

(a) in the Sybase file interfaces, make entries for each NSDB database that might be used
as the active NSDB database and

(b) set Sybase parameter “default sortorder id” to 54. (This is the only required
parameter. The full set used in the pilot is shown in Appendix B for reference).

Add four Sybase accounts for NSDB users through use of the Sybase sp_addlogin function.
Grant the first three users all permissions, and grant the fourth user select permissions
only. (The id and password for the third of these four users should be considered to be
reserved for the Web server software).

Install the NSDB database server distribution.

117

The assumptions are in line with an installation that essentially conforms to the current pilot with the

exception that a different number or mix of replicate databases (compatible with the existing user interface
command client network utility) may also be included.
""" The current user interface software anticipates that only the LAMDB is located on that server.

109

4. Set the following parameters in setup.sh in nsdb_new:'"”

(a) NSDBDIR to the directory in which the database server distribution was installed.

(b) NSDBSYBASE to the name given this database server entry in the Sybase
interfaces file.

(¢) SYBASEDBNAME to the name that will be given to the primary NSDB database.

(d) SYBASEDEVICE to the name of the device on which the primary NSDB database will
be located.

() SYBASELOGDEVICE to the name of the log device for the primary NSDB database.

() DBSIZE to the maximum size of the primary NSDB database.

(g) LOGSIZE to the maximum size of the primary NSDB database’s log.

(h) NSDBMSSQL to the name given the database server entry in the Sybase
interfaces file for the database server on which a copy of the NSDB central
database is going to be created.

(i) MSSQLDBNAME to the name that will be given to the copy of the NSDB central
database (usually should be the same as SYBASEDBNAME).

(j) MSSQLDEVICE to the name of the device on which the copy of the NSDB central
database will be located.

(k) MSSQLLOGDEVICE to the name of the log device for the copy of the NSDB central
database.

(1) MSDBSIZE to the maximum size of the copy of the central NSDB database.

(m)YMSLOGSIZE to the maximum size of the copy of the central NSDB database’s log.

(n) USERT to the user id for the first account established in step 2.

(o) USER?2 to the user id for the second account established in step 2.

(p) USERS3 to the user id for the third account established in step 2.

(q) GUEST] to the user id for the fourth account established in step 2.

(r) EC96SOURCEHOST to the address of the server on which the “raw company’s data”
for the EC96 data source is stored (e.g., re7alpha.epm.ornl.gov).'*

(s) EC96SOURCEDIR to the name of the directory on EC96SOURCEHOST in which
the EC96 data source “raw company’s data” is stored (e.g., /usr2/tc2).

(t) EC96REPORT to the file (which will be placed in the nsdb_new/ec96 directory) into
which the EC96°s data source report is to be written.

(u) ACESSSQLFILE to the file (which will be placed in nsdb_new/access) into which the
Access SQL scripts will be written (where the scripts are for use in implementing the
NSDB Access replicate).

(v) BCPDATADIR to the name of the directory into which files of NSDB database
table’s data will be written (where the files are for use in implementing the NSDB
Access replicate).

5. Create the NSDB central database and NSDB central database tables, and load these
database tables'’' by:

""'Not all these parameters will be required for a particular installation. Parameters a~g, and n—q are

required for any installation. Parameters h—m are convenient to have defined when an NSDB Web replicate
database(s) will be implemented. Parameters r—s are required if the EC96 data source is going to be
reimplemented (via the original implementation process), and parameters u—v are required if a stand-alone
NSDB database is to be created from this implementation’s primary database.

" The host on which the raw EC96 data will be stored will have to provide a primary database data server
user access to the EC96 raw data (analogous to the primary database server providing access to a Web
server user) in order for new EC96 data to be incorporated into the NSDB databases.

"' The NSDB database server distribution contains the routines and data files created by brn_bep from an
NSDB database. After redo_nsdb creates the installations primary database tables, the data from these data
files will be imported by bep_in when it is invoked by redo nsdb.

110

(a) giving the command:'??
cd bep

(b) and giving the command:'**
redo_nsdb <user database id> <user database password> .
6. Set up a system user account on the server for a user, and create a .rhosts file in the user’s
home directory with an entry providing for the user to remotely log on from the Web
server. (This is to prepare for transferring image files to the Web server and hence should

be the user account that will be used in carrying out the Web server installation).

5.2.2 MS SQL Server Databases

1. Install the server side run time MS SQL Server files.
—set MS SQL Server parameter “default sortorder id” to 54.

2. Add four accounts corresponding to those added to the primary database in step 2 of Sect.
5.2.1 (the id’s, passwords, and permissions should be the same as in step 2 of Sect. 5.2.1).

3. On the primary database server, either:
(a) Change the current directory to nsdb_new/NT and give the command:
do_it_ms <user database id> <user database password>
(if the values of NSDBMSSQL, MSSQLDEVICE, MSSQLLOGDEVICE, MSDBSIZE,
and MSLOGSIZE in setup.sh on the primary database server are what is desired
for this NSDB MS SQL Server database—see step 4 of Sect. 5.2.1)
or
(b) i. Modify any of the parameters NSDBMSSQL, MSSQLDEVICE,
MSSQLLOGDEVICE, MSDBSIZE, and MSLOGSIZE in setup.sh, which require
modification for this database replicate.
it. Change the current directory to nsdb_new/NT and give the command:
do_it_ms <user database id> <user database password>
or
(¢) Change the current directory to nsdb_new/NT, and then while including optional

arguments'>* as shown subsequently for those parameters requiring different values
than in setup.sh, give the command:

" It is assumed that nsdb_new is the current directory before this command (i.c., that the current directory
is the directory that setup.sh is in and whose full path is given by the parameter NSDBDIR in setup.sh)

"> The “<* and “>>* should not be included in the command: they are used in this part of this description
to demark a parameter.

! Only a subset of the six optional arguments, those after the user database password shown, need be
included. The values for the parameters associated with arguments that are not included will be those
provided in setup.sh.

111

do it ms <user database id> <user database password>
-cdn<replicate database name>
-cs<data server pointer for database replicate>
-cdv<name of device on which replicate database will reside>
-cdz<name of device on which replicate database’s log will reside>
-clv<maximum replicate database size>
-cdz<maximum size of replicate database>

5.2.3 Other Sybase Databases

|. Install the server side Sybase files.

-—set Sybase parameter “default sortorder id” to 54.

o]

Add the same four accounts added to the primary database in step 2 of Sect. 5.2.1.
3. On the primary database server, either:
(a) Change the current directory to nsdb_new/NT and give the command:

do it ms <user database id> <user database password> -cyb

(if the values of NSDBMSSQL, MSSQLDEVICE, MSSQLLOGDEVICE, MSDBSIZE, and
MSLOGSIZE in setup.sh on the primary database server are what is desired for this
NSDB Sybase replicate database - see step 4 of Sect. 5.2.1)

or

(b) i. Modify any of the parameters NSDBMSSQL, MSSQLDEVICE,
MSSQLLOGDEVICE, MSDBSIZE, and MSLOGSIZE in setup.sh, which require
modification for this database replicate.

ii. Change the current directory to nsdb_new/NT and give the command:
do it ms <user database id> <user database password> -cyb
or

(¢) Change the current directory to nsdb_new/NT, and then, while including optional
2 .. «
arguments'** as shown subsequently for those parameters requiring different
25 . .
values'? than in setup.sh, give the command:

do it ms <user database id> <user database password> -cyb
-cdn<replicate database name>
-cs<data server pointer for database replicate>
-cdv<name of device on which replicate database will restde>
-cdz<name of device on which replicate database’s log will reside>
-clv<maximum replicate database size>
-cdz<maximum size of replicate database>

"** The “-cyb.” which indicates that a Sybase database replicate is to be produced, is not optional here.

112

5.3 WEB SERVER INSTALLATION

1. Install an HTTP Server that is capable of recognizing .cgi files (e.g., Apache HTTP
Server).

—Configure the Server by defining an alias for /Nsdb as the path to the directory into
which the NSDB distribution will be installed (e.g., in Apache 1.1.3 define the
alias in the file conf/srm.conf).

—Perform any operation(s) needed to ensure that the .cgi files are recognized (e.g.,
in Apache 1.1.3 add “AddHandler cgi-script .cgi” to the file srm.conf).

2. Install the client side Sybase run time files.

—In the Sybase file interfaces, make entries for each NSDB database that might
be used as the active central NSDB database.

3. Install the client side msqgl run time files.
4. Install Perl 5.003.

—It should be installed either in the directory /usr/local/bin, or a symbolic link
to it should be placed in that directory.

5. Install the Free Wais-sf freeware package.

6. Install the NSDB distribution (this will contain all the files for the standard user interface,
the Web server—based utilities and routines for completing the installation).

7. Set the following parameters in the file Nsdb.pm in the top NSDB directory, Nsdb:

(a) $NsdbDir to the path to the directory Nsdb (i.e., the top NSDB directory).

(b) $SYBASE to the path to the directory in which the Sybase run time files have been
installed.

(¢) $SDSQUERY to the name of the entry in the Sybase file interfaces for the
database that has been installed as the primary central NSDB database.'”°

(d) $SybaseUser to the Web server user id established in the NSDB database installation(s)
(i.e., the value of USER3 in step 2 Sect. 5.2.1).

(e) $SybasePassword to the Web server password established in the NSDB database
installation(s) (i.e., the password provided to USER3 in step 2 Sect. 5.2.1).

(f) SMINISQL to the path to the directory in which the msgl run time files have been
installed.

(g) $LamHost to the name of the Minerva database server (in which the LAMDB has
been implemented). '

8. Set the following parameters in the file sybase.sh in the directory Nsdb:
(a) SYBASE to the path to the sybase client side software.

(b) DSQUERY to the name of the entry in the Sybase file interfaces for the
database that has been installed as the primary NSDB database.

"2 Here it is assumed that the primary Sybase database will be used initially as the database for the NSDB.

This is the parameter that will be changed anytime a switch to a database on a different server is made.

113

13.

Set the following parameters in the file setup.sh in the directory Nsdb:

(a) DATABASE to the name of the primary Nsdb Sybase database.

(b) SybaseUser to the Web server user id established in the NSDB database installation(s)
(i.e., the value of USER3 in step 2 in Sect. 5.2.1).

(c) SybasePassword to the Web server password established for the user in the NSDB
database installation(s) (i.e., the password provided to USER3 in step 2 in Sect. 5.2.1)

. Set the following parameter in the file setup.sh in the directory Nsdb/wais:

(a) NsdbDir to the path of the directory Nsdb (i.e., the top NSDB directory).

. Set the following parameter in the file setup.pl in the directory Nsdb/wais:

(a) $NsdbDir to the path of the directory Nsdb (i.e., the top NSDB directory).

. Set the following parameters in the file setup.sh in the directory Nsdb/update:

(a) NsdbDir to the path of the directory Nsdb (i.e., the top NSDB directory).

(b) SYBASE to the path to the sybase client side software.

(c) DSQUERY to the name of the entry in the Sybase file interfaces for the
database that has been installed as the primary NSDB database.

(d) DATABASE to the name of the primary Nsdb Sybase database.

(e) SybaseUser to the third Web server user id established in the NSDB database
installation(s) (i.e., the value given USER3 in step 2 in Sect. 5.2.1).

() USERTI to the first Web server user id established in the NSDB database installation(s)
(i.e., the value given USERI in step 2 in Sect. 5.2.1).

(g) USER2 to the second Web server user id established in the NSDB database
installation(s) (i.e., the value given USER1 in step 2 in Sect. 5.2.1).

Set up for the NSDB access counts utility by setting LOG in the routine setup.sh in
the directory Nsdb/access to the path to the Apache log.

The installation procedures for the primary NSDB database should have been completed
before the next step of the Web server installation is carried out.

14.

Install the stored SQL procedures in the primary Sybase database, copy the data source
image files to the Web server, create the cross-data source enabling files, and insert the
primary Sybase database name and user id’s into the batch update routines by giving the
command:'?’

Install_Setup

The installation procedures for all the replicate NSDB databases should have been completed
before the next step of the Web server installation is carried out.

15.

Create the stored SQL procedures in each replicate NSDB database by giving the
command:'?’

Create SQL -sf<database server pointer> -sn<database name>

"7 1t is assumed here that before giving the specified command the current directory is Nsdb.

114

for each replicate NSDB database.

The installation is now complete. Note that the wais index must be updated each time a data
source in the NSDB is updated and that a set of images must be copied to the Web server
each time a data source with images is updated in the NSDB. Rather than reexecute

Install Setup (step 13). which among other things reconstructs all of the datu source
enabling files and copies all the image files from the primary database server, the wais index
updating and image copving can be carried out only for the data sources that have been
updated. For updating the wais index for a data source wxyz:

Make the current directory Nsdb/wais/wxyz .
Give the command This.Generate .

Give the command cd .. .

Give the command Index.Build wxyz/*.data .

A=

For copying data source xyz’s images from the file abed/xyz/gifs on a data server named
“daserve’:

1. Make the web servers current directory Nsdb/images/xyz.
2. Give the command

rsh daserve “/bin/sh -¢ ‘cd abed/xyz/gifs; tar cf - *.gif"”

tar xvfB
(note here abcd would be the value of NSDBDIR in step 4 in IVB]).

115

APPENDIX A

NSDB DATABASE TABLES

APPENDIX A. NSDB DATABASE TABLES

A.1 TABLE WITH RECORD FOR EACH DATA SOURCE

Table number 0.0: sources

Column_name Type'?® Length Nulls'?®

id strlo 10 0

provider_ name str255 255 0

prvdr phone str20 20 1

prvdr_ fax str20 20 1

prvdr_email str40 40 1

description text /* any text
supplied by the

data provider, */

logo text /* image (.gif):

logo of data
provider */
DB_name str50 50 0 /* Database name*/
path str50 50 0 /* path from
/home/ptv to run
all scripts */
abreviation str2 0 /* 2 characters
abbrev. used in
table names*/

update_date editday 0
/* the date of the
last DB content
editing */

contact str50 50 1 /* name of the
contact person */

title str50 50 1 /* title of the
contact person*/

phone str20 20 1

fax str20 20 1

email str4o 40 1

address str4o0 40 1

city str40 40 1

state str2 2 1

zip str20 20 1

comment str255 255 1

last updated editday 8 1

Object does not have any indexes.

No defined keys for this object.

2

"2 types strxx, etc. are user defined var(xx) types.

2

“"a 0 means nulls not allowed in this column and a 1 means nulls are allowed in this column.

A-3

A.2 GCA (GARMENT CONTRACTORS ASSOCIATION OF SOUTHERN
CALIFORNIA) TABLE

Table number 1.1: GC_Company

Column_name Type Length Nulls Default name
id strlo 10 0 blnk
name str40 40 1 blnk
registration number str20 20 1 blnk
ceo str4o0 40 1 blnk
contact_name str40 40 1 blnk
address str40 40 1 blnk
city str20 20 1 blnk
state str2 2 1 blnk
zip strlo 10 1 blnk
phone str20 20 1 blnk
fax str20 20 1 blnk
joined date datetime 8 1 NULL
gca_account_number strb 5 1 blnk
company_ type str50 50 1 blnk
number of employees int 4 1 NULL
number of machines int 4 1 NULL
min number of units str40 40 1 blnk
sewing system str50 50 1 blnk
price and quality str40 40 1 blnk
services provided str255 255 1 blnk
material capability str200 200 1 blnk
equipment str255 255 1 blnk
womens str2b5 255 1 blnk
mens str255 255 1 blnk
childrens strl50 150 1 blnk
other products str255 255 1 blnk
description str255 255 1 blnk
has active membership str2 2 1 blnk
comment strl100 100 1 blnk
last_updated editday 8 1 todays_date

index name index description - index keys

GC_Company_indx clustered, unique located on default id, name

No defined keys for this object.

A-4

A3 COTTONINC {COTTON INCORPORATED) TABLES

Table number 2.1: CI_ Company

Column_name Type Length Nulls Default name
id strlo 10 0 blnk
name str50 50 1 blnk
addressl str50 50 1 blnk
address2 str50 50 1 blnk
address3 str50 50 1 blnk
contactl str50 50 1 blnk
contact?2 str50 50 1 blnk
contact3 str50 50 1 blnk
phone str25 25 1 bink
fax str25s 25 1 blnk
comment strl100 100 1 blnk
last updated editday 38 1 todays_date

index_name index description index_ keys

CI Company_indx clustered, unique located on default id, name

No defined keys for this object.

Table number 2.2: CI_Produce

Column_name Type Length Nulls bDefault name
id strlo 10 0 blnk
company_id stril0 10 0 blnk
company_name str50 50 1 blnk
category str40 40 1 blnk
subcategory str40 40 1 blnk
comment strl00 100 1 blnk
last_updated editday 8 1 todays_date

index_name index description index keys

CI_Produce indx clustered, unique located on default id, company id

No defined keys for this object.

A-5

A.4 AUBURN (ALABAMA TEXTILE AND APPAREL PRODUCERS DIRECTORY)
TABLES

Table number 3.1: AU Company

Column_name Type Length Nulls Default name
id strl0 10 0 blnk
old_id float 8 0 NULL
name str50 50 1 blnk
annual sales float 8 1 NULL
parent company str40 40 1 blnk
president str40 40 1 blnk
parent address str40 40 1 blnk
parent city str25 25 1 blnk
parent zip strlo 10 1 blnk
parent zip4 str5 5 1 blnk
parent_phone str20 20 1 blnk
parent fax str20 20 1 blnk
data_ contact str40 40 1 blnk
data contact title str40 40 1 blnk
addressl str40 40 1 blnk
address2 str25 25 1 blnk
city str20 20 1 blnk
state strl0 10 1 blnk
zip strlo 10 1 blnk
zip4 strb 5 1 blnk
county str20 20 1 blnk
phone str20 20 1 blnk
fax str20 20 1 blnk
data_addressl str2b 25 1 blnk
data_ address? str2b 25 1 blnk
data city str20 20 1 blnk
data_state str2 2 1 blnk
data zip str5 5 1 blnk
data zip4 str5 5 1 blnk
data_phone str20 20 1 blnk
date founded strlo 10 1 blnk
last_update strlo 10 1 blnk
ownership strlo0 10 1 blnk
knits str2 2 1 blnk
wovens str2 2 1 blnk
non_wovens str2 2 1 blnk
manufacturer str2 2 1 blnk
private label str2 2 1 blnk
branded str2 2 1 blnk
commission str2 2 1 blnk
converter str2 2 1 blnk
contractor str2 2 1 blnk
full package str2 2 1 blnk
cmt str2 2 1 blnk

A-6

fiber

yarn

textile mill
convertor
dyeing_and printing
unionized
percent_unionized
unionized depts
total employees
production employees
admin mgt employees
factories
dun_and_bradstreet
bank_reference
assoc_memberships
refs
prod_certification
comment
last_updated

index name

str2 2
str2 2
str2 2
str2 2
str2 2
str2 2
float 8
str200 200
float 8
float 8
float 8
str200 200
str20 20
str20 20
str200 200
str200 200
str200 200
strl100 100
editday 8

index_description

i T e R e R e e T e R T T T o Y S py Sy

AU_Company_indx clustered, unigque located on default

No defined keys for this object.

Table number 3.2: AU Product

Column_name

id

old id
description
comment
last_updated

index_ name

Type Length
strl0 10
str5 5
str80 80
strl00 100
editday 8

index description

AU_Product_indx clustered, unique located on default

No defined keys for this object.

blnk
blnk
blnk
blnk
blnk
blnk
NULL
blnk
NULL
NULL
NULL
blnk
blnk
blnk
blnk
blnk
blnk
blnk
todays_date

index keys

id, name

Default name

todays_date

index_keys

description

Table number 3.3: AU_Produce

Column_name Type Length Nulls Default_ name
id strlo 10 0 blnk
company id strlo 10 0 blnk
company_name strb50 50 1 blnk
product_id strlo 10 0 blnk
description strl0o0 100 1 blnk
capacity per week float 8 1 NULL
minimum float 8 1 NULL
weight strlo 10 1 blnk
fiber strlo0 10 1 blnk
price_pt str25 25 1 blnk
lead time strl0 10 1 blnk
comment strl00 100 1 blnk
last updated editday 8 1 todays_date
index name index description index_keys
AU Produce indx clustered, unique located on default id,

company_id,
product_id

No defined keys for this object.

A-8

Table number 3.5: AU CompanyMachDetail

Column_name Type Length Nulls Default_ name
company id strlo 10 0 blnk
old_id float 8 0 NULL
company_name str50 50 1 blnk
single needle lockstitch str5 5 1 blnk
multi_ needle lockstitch str5 5 1 bink
overedge_ serger strb 5 1 blnk
safety_stitch strb 5 1 blnk
chain_stitch strb 5 1 blnk
cover stitch str5 5 1 blnk
cover_seamer strb 5 1 blnk
blindhemmer str5 5 1 blnk
felling machine strb 5 1 blnk
bartack str5 5 1 blnk
iron flat press strb 5 1 blnk
form pressing str5 5 1 bink
buck press strb 5 1 blnk
auto_button holer strb 5 1 blnk
auto_button_sewer str5 5 1 blnk
auto label sewer strb 5 1 blnk
auto _beltloop_attacher str5 5 1 blnk
auto_pocket_setter strb5 5 1 blnk
heat press_label attacher strb 5 1 blink
snap rivet grommet str5 5 1 blnk
cuff collar strb 5 1 blnk
toyota_sewing sys str5 5 1 blnk
unit production sys strb 5 1 blnk
edi str5 5 1 blnk
elec_purchase order strb 5 1 blnk
elec_advance_shipping str5 5 1 blnk
elec_invoice str5 5 1 blnk
barcoding strh 5 1 blnk
last_updated editday 8 1 todays_date

index name index description index_keys

AU CompanyMaDet indx clustered located on default company id,

company name

No defined keys for this object.

A-9

Table number 3.6: AU CompanyTechDetail

Column name

company id

old id
company_name
design

manual_ design
computer design
sample making
pattern making
manual pattern
computer pattern
grading

manual grading
marker making
manual marker
computer marker
spreading

manual spreading
computer spreading
cutting
manual_cutting
computer cutting
fusing
embroidery design
embroidery
applique
embossing
pleating
quilting
screen_printing
garment_dye

post curing
laundry

stone washing
denim processing
quality_ assurance

strb

statistical ga processing

lab_testing

in_process_inspection

final inspection
modular team sewing
progressive bundle
offshore

hanger packing

flat packing

pre ticketing
ship_common_carrier
drop_shipping
own_truck to ship

strb
strb5
strb
str5
strb
str5
str5
strb
strb
strb
str5
strb

strb

[S 0O I G I G IS R G2 I G R S IR R C R ® G2 RS A RS SR L R A RS A S S SO R G RS) B 2RO RN S RS RS) R R NG R © R B RS B G RS SRS) S RN O IR S R R RO IR S R &) S

Nulls

[N e T T = T e S S e e e e R N T el e e T T S e e S e T R R aE a R E = T)

Default name

other strb 5 1 blnk
storage piece_goods str5 5 1 blnk
storage_finished _goods str5 5 1 blnk
sprinkler_ system str5 5 1 blnk
size_less_50 strb 5 1 blnk
size 50 to_ 100 str5 5 1 blnk
size greater_ 100 str5 5 1 blnk
comment strl00 100 1 blnk
last_updated editday 8 1 todays date
index_name index description index keys

AU_CompanyTeDet_indx clustered located on default company_id,
company_name

No defined keys for this object.

Table number 3.7: AU Category

Column_name Type Length Nulls Default name
id strl0 10 0 blnk
old_id int 4 0 NULL
name strb0 50 1 blnk

index_name index_description index_keys

AU Category_indx clustered, unique located on default id, name

No defined keys for this object.

Table number 3.8: AU_ProductCategory

Column_name Type Length Nulls Default name
‘category id str10 T o bink
product_id strl0 10 0 blnk

index_name index_description index keys
AU_ProdCategory_indx clustered located on default category id,

product_id

No defined keys for this object.

A5 KTA (KNITTED TEXTILE ASSOCIATION) TABLES

Table number 4.1: KT_Company

Column_name Type Length Nulls Default_name
id strlo0 10 0 blnk
name str80 80 1 blnk
company_type str50 50 1 blnk
address strd0 40 1 blnk
city str40 40 1 blnk
state str20 20 1 blnk
zip str20 20 1 blnk
phone str20 20 1 blnk
fax str20 20 1 blnk
contactl str25 25 1 blnk
commentl str80 80 1 blnk
contact2 str25 25 1 blnk
comment?2 str8o 80 1 blnk
contact3 str25 25 1 blnk
comment3 sStrs8o 80 1 blnk
contact4 str25 25 1 blnk
comment4 str8o 80 1 blnk
contact5 str25s 25 1 blnk
comment5 str8o 80 1 blnk
comment0 text 16 1 NULL
branch str50 50 1 blnk
second_address str40 40 1 blnk
second city str40 40 1 blnk
second_state str20 20 1 blnk
second zip str20 20 1 blnk
second_phone str20 20 1 blnk
second fax str2o 20 1 blnk
second_contactl str25 25 1 blnk
second_commentl stra0 80 1 blnk
second _contact2 str25 25 1 blnk
second_ comment?2 str80 80 1 blnk
second_contact3 str25 25 1 blnk
second_ comment3 str80 80 1 blnk
second_contact4 str25 . 25 1 blnk
second comment4 str80 80 1 blnk
second_contact5 str25 25 1 blnk
second_comment5 str80 80 1 blnk
second_comment0 text 16 1 NULL

index_ name index description index_keys

KT Company_ indx clustered, unique located on default id, name

No defined keys for this object.

Table number 4.2: KT_Product

Column_name

id

name

fibers
product typel
product_type2
product type3
description

index_name

KT Product indx

strlo

strl00
str200
str255
str255
str255
str255

index description

Nulls

clustered,

unigue located on default

No defined keys for this object.

Table number 4.3: KT Produce

Column_ name

company_id
product_id
location

index_name

KT _Produce_indx

nonclustered, unigue located on default

No defined keys for this object.

Default name

Default name

company_id,
product_id

A.6 SEAMS (SOUTHEAST APPAREL MANUFACTURERS ASSOCIATION) TABLES

Table number 5.1: SM_Company

Column_name Type Length Nulls Default name
id strlo 10 0 blnk
name str40 40 1 blnk
account_numbexr strlo 10 0 blnk
number_ of employees int 4 1 NULL
addressl str2s 25 1 blnk
address?2 str2s 25 1 blnk
state strlo 10 1 blnk
zip strlo 10 1 blnk
phone str20 20 1 bink
fax str20 20 1 blnk
ceo_title str40 40 1 blnk
ceo_name str40 40 1 blnk
company_ type str50 50 1 blnk
number of sewing machines int 4 1 NULL
number_ of operators int 4 1 NULL
has cutting tables strz 2 1 blnk
has finishing capability str2 2 1 blnk
makes primarily str50 ' 50 1 blnk
contact name str2b 25 1 blnk
contact title str25s 25 1 blnk
has_screen_printing str2 2 1 blnk
join_date datetime 8 1 NULL
join_note str50 50 1 blnk
description text 16 1 NULL
memberships str40 40 1 blnk
has_warehouse str2 2 1 blnk
can_purchase str2 2 1 blnk
can distribute str2 2 1 blnk
basic_equipment strlo 10 1 blnk
automatic_equipment strlo 10 1 blnk
flexible equipment strilo 10 1 blnk
uses computer cutting str2 2 1 blnk
uses_manual cutting str2 2 1 blnk
number of cutting tables int 4 1 NULL
max width of fabric float 8 1 NULL
max_length of marker float 8 1 NULL
special cutting strb 5 1 blnk
has cut binding str2 2 1 blnk
has bias cutting str2 2 1 blnk
has cross_cutting str2 2 1 blnk
production str5 5 1 blnk
quality control str40 40 1 blnk
packaging capability str5 5 1 blnk
pressing equipment str5 5 1 blnk
shipping_capability strb 5 1 blnk
comment strl00 100 1 blnk

last_updated

index name

SM_Company_indx

editday 8

index description

clustered, unique located on default

No defined keys for this object.

Table number 5.2:

Column_name

id

code
category
subcategory
description
comment

last updated

index name

SM_Product_indx

SM_Product

index description

clustered, unigue located on default

No defined keys for this object.

Table number 5.3:

Column_name

company_id
product id
comment

last _updated

index name

SM_Produce _indx

SM_Produce

index description

clustered, unique located on default

No defined keys for this object.

Type Length

strl0 10 0
strb 5 0
strd40 40 1
strd0 40 1
str80 80 1
str1l00 100 1
editday 8 1

-~ ————

Type Length

strl0 10 0
strlo0 10 0
strl00 100 1
editday 8 1

todays_date

index_keys

Default name

todays_date

index keys

description

Default name

todays_date

index_keys
company_id,
product_id

A.7 TC2 (TEXTILE CLOTHING TECHNOLOGY CORPORATION) TABLES
TC2 tables currently empty.

Table number 7.1: TC Company

Column_ name Type Length Nulls Default name
id stxrl0 10 0 blnk
name str80 80 1 blnk
company_type strl00 100 1 blnk
address str40 40 1 blnk
city str40 40 1 blnk
state str20 20 1 blnk
zip str20 20 1 blnk
phone str20 20 1 blnk
fax str20 20 1 blnk
contactl str40 40 1 blnk
commentl stxr80 80 1 blnk
contact? strdo 40 1 blnk
comment?2 str80 80 1 blink
contact3 str40 40 1 blnk
comment3 str80 80 1 blnk
description text 1
production str100 100 1 blnk
comment str255 255 1 blnk
last updated editday 1 today_ date

index name index description index_keys

TC Company indx clustered, unique located on default id, name

Table number 7.2: TC_Product

Column_name Type Length Nulls Default name
id strio 10 0 blnk
name strio00 100 0 blnk
type strl00 100 1 blnk
description text 1
comment strl00 100 1 blnk
last_updated editday todays date

index name index description index_keys

TC_Product_indx clustered, unique located on default id, name

Table number 7.3: TC_Produce

Column_name
company_id
product_id
comment
last_updated

index name

Type Length Nulls
strlo 10 0
strlo 10 0
str255 255 0
editday 1

index_description

TC_Produce_indx

clustered, unique located on default

Table number 7.4: TC Category

Column_name Type Length Nulls
id strlo 10
name str50 50 1
subcategory str50 50 1

index name

TC_Category indx clustered, unique located on default

Table number 7.5: TC_ProductCategory

Column_name Type Length Nulls
category id strlo0 10 0
product_id strl0 10 0

index_name

clustered,
unique located on default

TC ProductCategory_indx

Default name

todays date

index keys

company_id,
product_id

Default name

Default_name

product_id,
category_id

A8 ECY96 (ELECTRONIC CATALOG 96) TABLES

Table number 8.1: E6_ Company

Column name Type Length Nulls Default name
id strlo 10 0 blnk
name str8o 80 1 bink
street(str40 40 1 blnk
city0 str40 40 1 blnk
statel strl0 10 1 blnk
zip0 strlo 10 1 blnk
phone0 str20 20 1 blnk
fax0 str20 20 1 blnk
emailo str40 40 1 blnk
url strl50 150 1 blnk
namel str80 80 1 blnk
infol str8o 80 1 blnk
streetl str40 40 1 blnk
cityl str4o0 40 1 blnk
statel strlo0 10 1 blnk
zipl strlo 10 1 blnk
phonel str20 20 1 blnk
faxl str20 20 1 blnk
emaill str4o0 40 1 blnk
name2 str8o 80 1 bink
info?2 str80 80 1 blnk
street?2 str40 40 1 blnk
city2 str40 40 1 blnk
state2 strlo 10 1 blnk
zip2 strlo 10 1 blnk
phone2 str20 20 1 blnk
fax2 str20 20 1 blnk
email? str40 40 1 blnk
info3 str8o 80 1 blnk
street3 str40 40 1 blnk
city3 str40 40 1 blnk
state3 strl0 10 1 blnk
zip3 strlo 10 1 blnk
phone3 str20 20 1 blnk
fax3 str20 20 1 blnk
email3 str40 40 1 blnk
description str255 255 1 blnk
comment strl00 100 1 blnk
last updated editday 1 todays_date

index name index description index keys

E6_Company indx clustered, unique located on default id, name

Table number 8.2: E6_Product

Column_ name

id

product
classification id
company id
contact name
phone

fax

email
bulletl
bullet2
bullet3
bullet4
buillet5b
bulleté6
bullet?7
bullet8
bullet9
bulletl0
bulletll
bulletl2
description
graphics

url

comment
last_updated

index_name

E6_Product_indx

Type Length
strlo0 10
str8o0 80
strl0 10
strl0 10
str80 80
str20 20
str20 20
str40 40
str80 80
str80 80
str80 80
str80 80
str8o0 80
str80 80
str8o 80
str80 80
str80 80
str8o 80
str80 80
str8o 80
text
str20 20
stris0 150
stri00 100
editday

index description

Table number 8.3: E6_Classification

Column name

id

primary group
category
class

type

comment
last_updated

Type Length
strll 10
str80 80
str80 80
str80 80
str80 80
strl00 100
editday

Object does not have any indexes.

No defined keys for this object.

A-19

Il i i i I T e e e e T e e B = I R)

clustered, unique located on default

Nulls

todays_date
index_keys

id, product

Default_name

bink

A9 GIDC (GARMENT INDUSTRY DEVELOPMENT CORPORATION) TABLE

Table number 9.1: GI Company

Column_name Type Length Nulls Default name
id strlo 10 0 blnk
Company Name str80 80 0 blnk
Company Category str255 255 1 blnk
NY Registration Number str20 20 1 blnk
Contact_Person str8g0 80 1 blnk
Contact_Title str20 20 1 blnk
Address_Number str20 20 1 blnk
Address_Street str40 40 1 blnk
Suite strlo 10 1 blnk
City str20 20 1 blnk
State str5 5 1 blnk
Zip strl0 10 1 blnk
Years_in_ Business strlo0 10 1 blnk
Employees strlo 10 1 blnk
Principal strl0 10 1 blnk
Size Faciltiy strio 10 1 blnk
Yearly Sales Volume strlo 10 1 blnk
Current Customers strl0 10 1 blnk
Turnarount Time strlo 10 1 blnk
Order Size strlQ 10 1 blnk
Minimum_quantity strlo 10 1 blnk
Production capacity strl0 10 1 blnk
Product Line strgo 80 1 blnk
Market str40 40 1 blnk
Merchandise Categories str255 255 1 blnk
Service_ Provided str255 255 1 blnk
Percent_Business_807 strl0 10 1 blnk
What countries 807 str80 80 1 blnk
bo you import str5 5 1 bink
Percent Business imported strl0 10 1 blnk
What Countries imported str80 80 1 blnk
Do_you_export strd 5 1 blnk
What percent business Exported strl0 10 1 blnk
What countries str8o 80 1 blnk
Do _you purchase piece _goods strb 5 1 blnk
Warehouse Facilities str5 5 1 blnk
Other Services str80 80 1 blnk
Machinery str255 255 1 blnk
Final_Inspection str5 5 1 blnk
Inspectors per operation str40 40 1 blnk
Inspection_Process strg0 80 1 blnk
Piece_Goods_Inspection str8g0 80 1 blnk
House_ testing str80 80 1 blnk
Inspection documentation str80 80 1 blnk

A-20

Overall quality level str40 40
Packaging_Shipping str20 20
Ship Assorted_ Pack str5 5
Sort_Prepacks strb 5
Pressing Equipment str80 80
Cutting Capabilities str20 20
Number of Cutting Tables strl0 10
Maximum Fabric Width strl0 10
Maximum Fabric Length strl0 10
Special_ Situations str40 40
Phone str20 20
Shipping str20 20
Defect_Rate strlo 10
index_name index description

—— o o e i = A At Ao Bk et " i o - o o

GI_Company indx clustered, unique located on default

A-21]

O T T o T e Sy Sy Sy S Ry WP S

blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk
blnk

index_ keys

id,
Company Name

A.10 LOUISIANA APPAREL MAKERS DATABASE (LAMDB) TABLE

remotely located at the University of Southwestern
Louisiana (USL)"

Column name Type Length Not Null Key
id int 4 Y Y
name char 80 Y N
address char 160 N N
city char 40 N N
state char 2 N N
zip char 10 N N
phone char 10 N N
fax char 10 N N
email char 40 N N
www char 80 N N
ceo char 40 N N
contact char 40 N N
type char 40 N N
employees int 4 N N
machines int 4 N N
units int 4 N N
sewing char 40 N N
price char 40 N N
unionized char 1 N N
percentage int 4 N N
cutting int 4 N N
width int 4 N N
length int 4 N N
s2 1 char 6 N N
s2 2 char 3 N N
s2 3 char 4 N N
82 4 char 5 N N
s2 5 char 3 N N
82 6 char 6 N N
s2 7 char 4 N N
s2 8 char 3 N N
s2 9 char 3 N N
s2 10 char 9 N N
s2_11 char 3 N N
52 12 char 3 N N
s2 13 char 4 N N
s2_14 char 7 N N
s3_1 char 10 N N
s3_2 char 8 N N
s3 3 char 8 N N

130

The LAMDB was created by USL in a Minerva database that is maintained at USL as an NSDB
external data source The previous tables are part of databases created and maintained at ORNL in a Sybase
database and MS SQIL. Server and Access replicates of the Sybase database

A-22

s3 4
s4 1
s4 2
g4 3
s4 4
s4 5
54 6
s4 7
s4 8
s4 9
s4_10

char
char
char
char
char
char
char
char
char
char
char

A-23

N
(Lo lie SRR e JNE FS RIS B s I~ =) B =Y

[y

222232222222

Zz=Ez2=22222%2

APPENDIX B

PILOT NSDB SYBASE DATABASE PARAMETERS

APPENDIX B. PILOT NSDB SYBASE DATABASE PARAMETERS

The pilot central NSDB Sybase database server hosts a set of databases other than the NSDB.
The parameters used for the NSDB Sybase database were those that were in place for other
databases on the system except for the default sortorder id. The parameters follow in Table

B-1.
Table B-1.. Pilot NSDB Sybase Database parameters
name minimum | maximum config value run value

recovery interval 1 32767 0 5

allow updates 0 1 0 0

user connections 5 214748364 | 0 25
7

memory 3850 214748364 | 24576 24576
7

open databases 5 214748364 | 0 12
7

locks 5000 214748364 | 2500 2500
7

open objects 100 214748364 | 0 500
7

procedure cache 1 99 0 20

fill factor 0 100 0 0

time slice 50 1000 0 100

database size 2 10000 0 2

tape retention 0 365 0 0

recovery flags 0 | 0 0

nested triggers 0 | | 1

devices 4 256 0 100

remote access 0 1 | 1

remote logins 0 214748364 | 0 20
7

remote sites 0 214748364 | 0 10
7

remote connections 0 214748364 | O 20
7

pre-read packets 0 214748364 | 0 3
7

upgrade version 0 214748364 | 1001 1001
7

default sortorder id 0 255 54 54

default language 0 214748364 |0 0
7

language in cache 3 100 3 3

max online engines 1 32 1 1

min online engines 1 32 1 |

engine adjust interval 1 32 0 0

cpu flush 1 214748364 | 200 200

7

B-3

default character set id 0 255]]
stack size 20480 214748364 | 65536 65536
7
password expiration interval 0 32767 0 0
audit queue size 1 65535 100 100
additional netmem 0 214748364 | 8388608 8388608
7
default network packet size 512 524288 0 512
maximum network packet size | 512 524288 8192 8192
extent i/o buffers 0 214748364 |0 0
7
identity burning set factor] 9999999 5000 5000

o
t

18.

19-20.

21.

23.

24-26.

27.

28.

29.

?'\
D 00~ W —

INTERNAL DISTRIBUTION

. J. Barhen 10-11. S. Petrov
W. C. Grimmel! 12. E. C. Uberbacher
W. L. Jackson 13. B. A. Worley
R. W. Lee 14. Central Research Library
M. A. Miller 15. ORNL Laboratory Records - RC
. L. E. Parker 16-17. ORNL Laboratory Records - OSTI

EXTERNAL DISTRIBUTION

Lenda Jo Anderson, Spidle Hall, Auburn University, Auburn, Alabama 3601-5602

L. D. Chapman, Sandia National Laboratories, 1515 Eubank SE, Albuquerque,
New Mexico 87123-0746

Steve Freudenthal, Milliken & Company, 920 Milliken Road, M-482, Spartenburg,
South Carolina, 29304

. Denis Gracanin, University of Southwestern Louisiana, A-CIM Center,

241 East Lewis St., Rougeou Hall, Room 115, Lafayette, Louisiana 70503

David Koegel, Department of Energy, Office of Energy Research, ER-32,
19901 Germantown Road, Germantown, Maryland 20874

J. L. Lovejoy, [TC}, 211 Gregson Drive, Cary, North Carolina 27511-7909

Barbara Meloche, Sandia National Laboratories, , Sandia National Laboratories,
1515 Eubank SE, Albuquerque, New Mexico 87123-0746

J. A. Stuits, 264 lkerd Drive, SE, Concord, North Carolina 28025

K. E. Washington, Sandia National Laboratories, 1515 Eubank SE, Albuquerque,
New Mexico 87123-1137

