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A Fast Multipole Transformation for Global Climate Calculations

J. A. Holmes, Z. Wang, J. B. Drake, B. F. Lyon, and Wen-Tao Chen

ABSTRACT

A fast multipole transformation is adapted to the evaluation of summations that occur in
global climate calculations when transforming between spatial and spherical harmonic
representations. For each summation, the timing of the fast multipole transformation scales
linearly with the number of latitude gridpoints, but the timing for direct evaluations scales
quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast
multipole method faster than direct evaluation for transformations involving greater than
approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is
accurate to machine precision. As the resolution in global climate calculations continues to
increase, an increasingly large fraction of the computational work involves the transformation
between spatial and spherical harmonic representations. The fast multipole transformation offers
a significant reduction in computational time for these high-resolution cases.






1. INTRODUCTION

Numerical global climate calculations involve the evolution of nonlinear partial
differential equations in space and time."” Typically, the dynamical equations. describe the
evolution of physical fields such as temperature, fluid velocity, pressure, density, or moisture
content.. These are solved in a spatial domain that consists of a spherical shell defined to include
the earth’s atmosphere, ocean, land surface, and/or ice pack. The description of this domain is
conveniently given in terms a coordinate system (1),0,A), wheren| is some chosen monotone
function of the height or depth in the medium (or spherical radius), (-t /2 <O <w /2)1s the
angle of latitude, and A(0 < A < 2m) is the angle of longitude. An alternative description can be
achieved by using a complete set of functions,** such as the spherical harmonics, to replace the
spherical surface coordinates¢ and A, while retaining the vertical coordinaten). Both
representations prove useful for solving the dynamical equations. The nonlinear terms, such as
advection, are most conveniently calculated by direct evaluation at the gridpoints in the
(M,9,A) coordinate system. However, these terms take the form of unwieldy convolutions when
evaluated in terms of a function space expansion, such as spherical harmonics. - Linear terms,
such as diffusion, are compactly represented in function space. Derivatives in the ¢ and

A coordinates can be evaluated exactly using recursion relations between the spherical
harmonics, but an evaluation of derivative terms in the (1,0,A) coordinate system introduces

discretization errors.® Linear eigenfunctions also tend to be localized in terms of a small number
of spherical harmonics; their calculation in the (1,9,A) coordinate system requires the full
functional representation in the coordinate domain. Apart from computational considerations,
the coordinate and function space representations provide useful and complementary diagnostic
information. Visualization and intuitive understanding of many phenomena-are best seen in
coordinate space; however spectral and turbulent dynamical questions are best studied in
function space.

In order to utilize the advantages of both representations discussed above, computational
schemes have been developed to solve the nenlinear pieces of the dynamics in coordinate space
and the linearized pieces in function space."” To couple the nonlinear and linear pieces together,
it is necessary to transform between coordinate. and function space representations. The
spherical . harmonics consist of products of  complex exponential functions of the

longitude e™ and associated Legendre functions P™ (W) of the latitude (U = sin¢), where m

and n are integers. Note that on a spherical surface the complex exponentials are periodic
functions of longitude with period 21t / m, and hence are well defined. Thus the function space
representation factors into products of functions of longitude and functions of latitude, and the
transformation between coordinate and function space can also be factored into separate
longitude and latitude transformations.

The longitude transformation relates the fields expressed as functions of A to their

expressions as Fourier series in "™ . This transformation can be carried out very efficiently

using the method of fast Fourier transforms (FFTs).”® For each field these FFTs reduce the
computational work from O(N - M Y to O(N-M:-ln M), where N represents the number of

latitude gridpoints, M represents the number of longitude gridpoints, and O denotes that the
computational work scales as its argument.

The latitude transformation relates the fields expressed as functions of ¢ to their

expressions as series in P (lL). Numerically this transformation can be carried out using the



properties of the associated Legendre functions,*’ together with Gaussian integration
techniques,® which will be discussed later. With straightforward evaluation of the resulting
expressions, the scaling of computational work with the number of gridpoints for the

transformation of each field is O(M - N?), so that for higher resolutions this transformation

increasingly dominates the computational work. Although it is not in general possible to derive
fast versions of transformations between function and coordinate representations, it will be
shown in this report that a fast transformation can be derived between functions of ¢

and P"(l). Such a transformation will be obtained by combining the transformation just

described with a fast multipole algorithm developed for particle simulations.” This method
combines partitioning of the domain of [ with Taylor series to obtain a transformation that

scales as O(M - N) in computational work. Because of the convergence of the Taylor

expansions used here, the fast multipole algorithm can be made to converge to the direct
summation, limited only by machine precision. Because of the computational overhead
associated with the fast multipole method, a direct evaluation of the summations is most efficient
for transforming between coordinate and function space representations in low-resolution
calculations. However, the favorable scaling of the fast multipole technique leads to a
substantial reduction in computing time for high-resolution calculations. In addition to
demonstrating the above scalings, and other properties of the fast multipole transformation that
will be derived later, this work shows that the resolution at which the fast multipole method
becomes more efficient than the direct summation is at approximately 300 latitude gridpoints.
Such resolutions are now being used in grand challenge global climate calculations.

The remainder of this discussion is organized as follows: the occurrence and form of the
latitude transformation in climate calculations will be presented in Sect. 2 as a motivation for the
fast multipole algorithm; the details of the fast multipole algorithm will be considered in Sect. 3;
numerical calculations will be presented in Sect. 4 to demonstrate and compare the properties of
the fast multipole algorithm with those of direct summation; and Sect. 5 will highlight our
conclusions.



2. MOTIVATION

The dynamical equations in global climate calculations involve the transport of various
physical quantities, such as mass, momentum (or velocity), pressure, temperature, moisture
content, or salinity, to name a few, through various media, including the atmosphere, ocean, or
cryosphere (ice). These equations are derived and discussed in great detail by various authors,'
and a detailed treatment will not be given here. For the purpose of motivating the fast multipole
transform, let us consider a ‘generic’ transport equation, one that embodies the basic
characteristics present in all the transport equations, as pertains to the fast multipole transform.
Assuming a physical field f(n,|1,A,t), where ¢ is the time, the generic dynamical equation

takes the form

df /9t =—0f /o -dn/dr~1/{a(1-p>)}-dUf)/dh—1/a-d(Vf) /L v -Vis+q, (1)

where a is the radius of the earth, U is the longitudinal velocity, V is the latitudinal velocity,
V is aconstant, s is a potential function for f , and ¢ is a source function for f . Hence on the
right-hand side of Eq. (1), the potential and source terms are linear, but the advective terms (the
first term in the vertical velocity component and the second and third terms in the horizontal
velocity components U and V') are nonlinear.

The vertical, or radial, dynamics is superfluous to the present consideration, namely, the
transformation between coordinate space and function space on spherical surfaces. For this
reason we drop the radial terms (7 dependence) from Eq. (1) and consider the simpler “shallow

water equation”
of /ot =-1/ {a(l-—uz)}~8(Uf)/87t-1/a-a(Vf)/ap.~—v Vis+gq, )

where now the operator V?=1/a"-[0/3u{(1~n*)-9/9u}+1/1-p?)-92 /3N }is
restricted to the spherical surface of radius a. Equation (2) is sufficiently general to illustrate
the issues that lead to the fast multipole transformation.

Equation (2) is written in the coordinate representation with independent variables L,

and A and fields f,U,V,s, and g that are functions of the independent variables. To express

Eq. (2) in function space, we expand all fields in terms of associated Legendre functions and
complex exponentials as follows (suppressing the functional dependence on f): For any
function y(l,A,?7) we have

yun =3 3 e

mz oo pr=iml

= 3y e,

M=o

3)




where y” (W) = z y, P"(u). When written in a function space representation using Eq. (3)

n=lml

and the orthogonality and projection properties of complex Fourier series and associated
Legendre functions,* Eq. (2) takes the following forms:

i df" 1 dr- PM(W) =~im/ {a(l=p)}- Y, (UOTE(W=1/a- Y, (V)rdP(w)/ du

n={nd n=ini nfrm
+w/a’- i n(n+1)s"P" (1) + i qr P (n)
n=jni ne{m
4)
or
of "(1) /3t = —im/ {a(1-pn*)}-(UF)" (W) ~1/a-0(Vf)"(n)/op ©

—v/a®-[d/3u{(1-p?)ds™ () /ou} —m* / (1= p2)-s™ (W) +q™ (1),

where the nonlinear terms are evaluated in coordinate space and projected as combined quantities
in function space. If, in the nonlinear terms, each factor, U and f for example, is independently

projected in function space, then each multiplication becomes a convolution over a large set of
contributing terms. The simplicity of the term involving s in Eq. (4) is a result of the fact that
the associated Legendre functions satisfy the equation {V? +n(n + 1)}(&"‘(;1)(3"'")‘) =0. The
simplicity of Egs. (4) and (5) is the primary factor motivating this form of the coordinate to
function space transformation.

To solve the above equations numerically it is necessary to work with finite
representations, both through discretization of the coordinate representation and truncation of the
function space representation. Because of the necessity of retaining full information in
transforming between the two representations, there is a relationship between the number of
spatial gridpoints and function space terms retained. A discussion of this problem, known as
aliasing, is given in Hamming® Let us assume a discretization of the spherical coordinate grid
having / longitude gridpoints and J latitude gridpoints, and let us also assume a truncation of
the function space, with ~M <m < M constraining the A coefficients and |r14 <n< N(m)

limiting the associated Legendre function series. For interfacing with the FFT routines, the
longitude gridpointsA,,i =0,...,I are chosen to be equally spaced, and [ is taken to be a power

of 2, I =2°, where s is an integer. Periodicity in A requires that point O be equivalent to
point I. To avoid the loss of information associated with aliasing it is also necessary to to
choose I 23M +1, so the number of Fourier amplitudes that can be meaningfully retained is
limited by the spatial resolution. The amount of computational work in carrying out the

longitude transformations using FFTs is of the order /-In(J) at each latitude N, compared

with order 12 using direct methods. Thus the total work for all latitudes is of order J -1 -In(I)

or J-I* for the FFT and direct transformations, respectively. Similar considerations apply to
the latitude grid and the associated Legendre functions, as we now describe.

The transformation between the latitude grid and the associated Legendre function
representation is conveniently carried out using Gaussian integration. This requires the latitude



coordinates W ;,j=1,..,J to be Gaussian points, namely, the J roots of the Legendre

polynomial P,(t). To avoid aliasing, J must be chosen to be greater than some value
determined by the details of the function space truncation scheme. For example, a triangular

truncation scheme requires J > (3N +1)/2. Starting with a function y™ (L) = Z yr P (W),

n=iml
the coefficients y,' can be projected using the identity
1
[BrayPrdn =8 (n+m)V {(n+1/2)(n~m)!) ©)
~1
to get
1
yr =(n+1/2)(n-m)!/ (n+m)!jy’"(u),Pn'"(u)du. . @)
~1
The integral in Eq. (7) is evaluated using Gaussian integration to give
J
yr=m+12)n-mY (n+m)Y y" (W BN ()W, | (8)
j=1

where the quantities w; are the Gaussian integration weights w; = 2(1- !»13) I{J-P,_(n j)}z.
Equation (8) can be regarded as a projection operation for y” when y™(lL) is defined on the
coordinate grid of Gaussian points {1 ;. To obtain all coefficients y," in this way requires work

of order N - M -J , as does the inverse transformation from y." to y” (). For high-resolution

calculations, the work associated with this transformation can become dominant, and it is
precisely the replacement of this transformation by a fast technique that is the subject of this
paper.

Assuming a Gaussian point latitude coordinate grid, Eq. (8) can be used in Egs. (4) and
(5) to.obtain

df," | dr-== im(UF)" ()PP (W) = (V)™ () HY (1))
Jj=

xw; (n+1/2)(n—-m)Y {a(1—p2)(n+m)!}) ©)
+w/a’ nn+1)sT+q",
where H™(p) = (1-p?)0P"(n)/0n. Equation (9) contains simple linear terms in s” and

g, and nonlinear terms involving (Uf)™ and (Vf)™ and either associated Legendre functions

or linear differential operators acting on associated Legendre functions. Thus the general
nonlinear term takes the form



L’ :z(gh)m(ﬂj)'D(PJ"(uj))'Wj/{a(l-«ui)} , (10

j=1

where gand h are functions such as U, V, or f, and D is a linear differential operator

acting on P (p). As stated above, the work associated with this transformation is of order

N - M- J, and it is this quantity that we seek to reduce here. To do this, let us carry out the
inverse projection on Eq. (10) to obtain

N(m)
T"(u)= YT P,
njm‘ N(m) (11)
= (gh)" (W) w, /H{a(l—p)}-{ X, P (1) D(P" (1, )}
k=1 n=|m|

The next step in obtaining a fast method arises from the possibility of simplifying the summation
involving the associated Legendre functions. For many simple linear differential operators, D,
including those that appear in the dynamical equations of global climate models, simplifications
are possible. As an example, consider the simplest of all operators, namely D = I, where [ is
the identli;y operator. In this case, the summation can be reduced, using the Christoffel-Darboux
formula,'®"

v ena {PVa () PY ()~ PY (R D PYL (RO (B — )
> PI(u )P (u,) = MR, (12)
i €7 PRt () PR (,) = P (M PR (DL, =

where €' = \/(n2 —m?*)/(4n* —1) . Substituting Eq. (12) into Eq. (11), with D =1, gives

()= (g™ (n,) -w, /{a(l-p})ler,,

k=1,k#j
X{P:H(H,-)P:(llk)" P;Q'I(H,)P:H(Hk)}/(ll, "“"P»k) (13)
+Hgh)" (L) w, [ {a(l=p2))en, (P va(u )Py ()= Pu (W) Py, (n )}

which can be written compactly in the form

T"(;) = Ay(R))

n ) S . Lo (14)
+[BN(uj) sz(Mk)*"CN(Ilj) ZCN(“:()]/(“,"”&)-

k=1k#j k=1k#j

In Eq. (14) the coefficients Ag(K;), By(K;),by(K;),Cy(K;),and cy (1 ;) actually depend

on N +1 aswellason N, butsince N +1 can be viewed as a function of N, we can correctly
write the coefficients as shown.



Equation (14) was derived from Eq. (10) under the assumption that the operator D is
the identity. This derivation was originally given by Jakob."" For other commonly occurring

differential operators, such as D=(1-p*)o/ou and
D=V?=1/a’{0/ou[(1-pn*)d /du]—m’ / (1—pu?)}, expressions similar to Eq. (14) are
easily derived. The primary difference between the equations for these latter operators and Eq.
(14) involves the power of |1 ; — W, appearing in the denominator of the summation. For the

operator D = (1—1?)d /9, the denominator involves (L ;= W)% for D=V? we obtain

(n, —u ). These results will be detailed in an extension of the present work. Hence a

dynamical equation such as Eq. (9) can be rewritten in the form

Of ()3t = AT () + AT (1) Naruw )/ (e, -n,)

k=lke#j

g
+AT (L) Das () (1, — 1) +... (15)

k=lk#j

J
AT () Dag ) (B =R, s

k=lhks)

where the subscript p denotes the power of W, — [, appearing in the denominator, the
dependence on N is suppressed, and the series in p usually terminates after one to three terms.
The quantity of work associated with solving the dynamical equations in the form of Eq. (15) is
seen to be proportional O(M -J?), which shows no advantage compared with the
O(N - M -J) required for the solution of Eq. (9). The purpose of casting the dynamical

equations in the form of Eq. (15) arises from the possibility of reducing the computational work
through the application of fast multipole techniques to the summation terms. The discussion in
the next section will show that the use of these techniques reduces the scaling of work with the
size of the problem to O(M - J), which does provide significant gains for large problems.



3. FAST MULTIPOLE TRANSFORMATION IN ONE DIMENSION

Fast multipole techniques were originally developed to provide fast methods to compute
sums of pairwise force terms that appear in computer particle pushing.” Such sums are typically
of the form

J
F =0, Yaq,-f(x;~x) (16)

k=lk#j

where the total number of particles is J, the indices jand k denote particles, F; is the total
force on particle j due to all the other particles, Q; is a charge or strength associated with the

force on particle j,q, is a charge or strength associated with the generation of force by particle
k,and f(x ; — %) is a function of the distance between particles. The naive evaluation of the
summation in Eq. (16) for all the particles j requires computational work proportional to the
number of particles squared. For common force or potential distance functions f(x; —x,) itis

possible to partition the coordinate domain into bins and to utilize Taylor series expansions about
selected points within these bins to derive arbitrarily accurate evaluations of the forces that, in
the limit of many particles, scale as the number of particles to the first power. The approach is
derived in detail and an algorithm given for a two-dimensional (2-D) coordinate space by
Greengard and Rokhlin.?

This applicability of Taylor expansion is the real motivation for writing the dynamical
climate equations in the form of Eq. (15). We see that the terms in Eq. (15) are of the same form

as the force term in Eq. (16), with the coefficients A;"(u ;) and a;"(u «) playing the roles of

the charges Q, and g,, and the coordinates |, and W, serving as x; and x,. The force

functions f(x; —x,) take the form 1/()L; —W,)” and are conducive to the fast multipole
approach. The coordinate domain associated with Eq. (15) is ~1<p ,u, <1. It is not the

purpose of this section to repeat the entire development of the fast multipole algorithm given by
Greengard and Rokhlin.” Rather, we will adapt their procedure to the case at hand: namely, the
evaluation of summations having the form of Eq. (16) in a one-dimensional (1-D) coordinate

domain with ~1< x;,x, <1 and force distance functions f(xj -x)=1/(x; —x, ). The

purpose of this section is to describe a fast method to evaluate summations of the form

J
szQj qu/('xj—xk)p ) a7n

k=lk#j

where 1< jok<J, 1< XX, <1, and p is a positive integer. By a fast method, we mean one
in which the operation count in the evaluation of Eq. (17) for all J terms scales with large

values of J as J, rather than J?, as in the naive method. Although our application here is the
evaluation of terms in global climate equations, we will use the particle, charge, and force
terminology in the discussion of this section because of its intuitive clarity.

The convergence of the fast multipole method as applied to Eq. (17) will depend on the
convergence properties of the Taylor series expansion of the function



= =1+ .
1/(1*x)":2(.p “}'. (18)

i=0.\!

which has a radius of convergence of |xl< 1. If the series in Eq. (18) is truncated to retain terms

through x” , then the remainder is given by R? =1/(1-x)” — 87, where

1/(1-x)" —i(.p“Hl}r‘l
=0 l

B

A straightforward analysis of Eq. (19) shows that the remainder term can be rewritten as

il

RP

(19)

RP

(20)

(p+n . .
1/(1~x)"2(’_’ J(l—-x)’x"*""
j=0\J

Equation (20) provides an expression for the absolute error made in using the Taylor series
expansion (Eq. (18)), truncated to n+1 terms, to evaluate 1/(1—x)?. Dividing both sides of
Eq. (20) by 1/(1—x)? shows that the relative error is just the summation. In the dynamical
equations of global climate calculations, we typically have terms for which 1< p<3. If we
restrict |x| S r <1, then straightforward manipulation of Eq. (2) yields the upper error bounds
shown in Table 1. Hence the Taylor series expansion shown in Eq. (18) converges to

Table 1. Error bounds on 7+ 1 term Taylor series approximation of 1/ (1— x)”

Relative error Absolute error
p=1 rm! r(=r)
p=2 (n+2)r™ (n+2)r"" /(1=r)?
p=3 (n+3)(n+2)r"*' 12 (n+3)n+2)r™" 1[2(1-1r)?)

1/(1—-x)? for |x] sr<1, and Table 1 gives a practical upper bound for the truncation error
shown in Eq. (20).

The fast multipole algorithm consists of forward and backward sweeps. The forward
sweep begins by partitioning the coordinate domain into equal-sized bins into which the particles
are gathered. Then the totality of the individual forces due to the particles in each bin is replaced
by an equivalent “multipole force” expressed as a function of distance from the center of the bin.
This situation is achieved through the use of a Taylor expansion for 1/(x - x )" about the bin

center, as will be discussed later. The convergence properties of the Taylor expansion then
guarantee rapid convergence of the multipole series for points x well removed from the local bin



containing x,. The forward sweep proceeds by collecting the multipole forces from each bin

into successively larger bins, each time re-expressing the force as a multipole series about the
larger bin center. This force is strongly convergent for points well outside the bin. The reverse
sweep distributes these collected multipole forces back to successively smaller bins, this time by
Taylor expansions of the multipole contributions of “remote” bins about the centers of the
smaller bins. The inclusion of multipole forces only from remote (nonadjacent) bins guarantees
rapid convergence of the series. Upon completion of the reverse sweep, the remaining forces due
to individual particles in the same and adjacent bins are summed explicitly. To reduce
computational work using the fast multipole algorithm, the number of nearby particles with force
terms to be evaluated explicitly must be small compared with the total number of particles.
Hence there must be many bins at the most local level. We will now fill in some of the details in
this description of the fast multipole algorithm.

In the forward and backward sweeps described above, each step involves either the
combination of two bins into one or the separation of one bin into two. For that reason we begin

with 2° bins, where s is an integer. Grouping the forces generated by the particles inside each
bin to create a bin multipole force is carried out as follows: consider bin b with radius r, and

center Xx,, so that particles having coordinates x, —r, < x, < x, +r, lie inside bin b. We then

obtain
Y (x=x)" =3 [q, [ (x=x,)")-{1/[1-(x, = x,) [ (x— x,)]"}
keb keb
ntp . (21)
= me [(x=x,)",
i=p
where

i—1 ,
M, = ('._ szqk (x, = x,)77 . (22)

! keb

This result comes from making a Taylor expansion of 1/[1-(x, —x,)/(x-x,)]”, and
truncating at n+1 terms. For particles with coordinates x, inside the bin, ‘xk - xb| <7, and

for evaluation points x outside the bin, |x - xbl > r,, the Taylor expansion converges. In the
fast multipole algorithm presented here, the field point x is always taken to lie outside bin b and
even outside the bins adjacent to bin b. Hence |x - xbl >3-r, is satisfied,
(x, =x,)/(x—x,)<1/3. Thus in the error analysis in Eq. (20) and Table 1, the value
r =1/3 is approriate for this algorithm. The coefficients m,, in the expansion of Egs. (21) and
(22) are the multipole moments of the particles in bin b; hence the force field generated by the
multipole moments located at the bin center 7, is equivalent, up to the error in the truncated

Taylor expansion, to the force field of the actual particles in the bin. Therefore, this algorithm is
known as a fast multipole method.

The second part of the fast multipole procedure involves the forward sweep, in which the
multipole fields associated with each bin are expressed as expansions about the centers of
successively larger bins. This process is carried out in a pairwise fashion, with the fields from
pairs of adjacent bins expressed relative to the center of the combined bin consisting of the two

10



bins together, and summed. Thus, each iteration in the forward sweep halves the number and
doubles the size of the resulting bins. Assume that bin b and its adjacent bin b combine to
make bin B with radius R, =2-r, and center X ;. Then the center of bin B lies at the edge
between bin b and its adjacent partner b , and the radius of bin B extends to cover bin b on one

side bin b on the other. The contribution of the particles in bin b to the Taylor series for the
multipole expression about X , proceeds as follows:

n+p

qu I(x=x,)" =3 m, [ (x=x,)
keb i=p
n+p ) '
=3 [my, /(x= X)) V1= (x, = X )/ (x = x,)] (23)
i=p
n+p

Ezijgl(xMXB)ja
i=p

where

L(j-1 -
M,,= 2[1 )mi‘,b('xb =Xz . (24)

i=p ]—“l‘

The quantities M ; ; are the multipole moments for the field of the particles in bin b referenced
to the center of bin B. The addition to Eq. (24) of a similar expression for the adjacent bin b
then gives the multipole expansion about X, of the force fields of all the particles in bin B .
Again, the field point x is assumed to lie outside bin B and its adjacent bins. Therefore, in Eq.
(23), Ix - XB] >3-R, and be - XBi =7, = Ry /2, so that taking the ratio of these terms gives
r =1/6 in the convergence analysis of Eq. (20) and Table 1. The forward sweep is repeated a
total of s~ 2 iterations, so that finally only four bins cover the entire domain and the centers are
at the 1/8, 3/8, 5/8, and 7/8 locations in x. About the center of each bin is the multipole
expansion for all the particles in that quarter of the domain.

The reverse sweep is carried out to accumulate the contributions of all multipoles at
sufficiently remote field coordinates that the radius of convergence requirements are satisfied.

Consider a bin B and a nonadjacent bin B, both with radius R, and with bin centers at X "

and X ., respectively. Let the field coordinate x be in bin B, so that lx-— X B.I <R, and
|X s X B.l 24-Ry. Then it is possible to expand the multipole field due to the particles in bin

B about the point X . in bin B’ as follows:
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qu /(x=x,)f ;—ZM;',B /(x“XB)j
keB J=p
n+p ] )
=Y AIM, (X, = XY LU =(x- X )/ (Xz - X)) (25)

j=p

= Zo:C",B,B' ) (x - XB' )i ’

where

n+p-i

(i+j—1 i
Cian = Z(-l)'(jf] jM,-,B/(XEv~XB)'*’. (26)
J=pP

Because contributions to bin B come from nonadjacent bins B, the Taylor series expansion of
Vl-(x—-X_ )/ (X - X, )) in Egs. (25) and (26) satisfies 7 = 1/ 4 in the error analysis of
Eq. (20) and Table 1. In the reverse sweep, bins are evenly subdivided at each step. This doubles
the number and halves the size of the bins in the partition. Then at each stage Egs. (25) and (26)
are used to gather the contributions to each bin from nonadjacent bins that have not previously
contributed. For the contributions of larger bins already gathered in previous iterations, it is
necessary to recenter the expansion of Eqs. (25) and (26) to the new bins b. Assume that bin b
with center x, and radius 7, is obtained in the subdivision of bin B.  Then

|xb~—XB[:rb =Ry /2, and

3 o (x=X,) = 3 Cp 0= 5,) + (5 = X))

n 27)
= Zc}‘.b '(x"xb)j '
j=0
where
n i o
Cip = Z Ci,B (j)(xb - XB)'-J . (28)
i=j

The backward sweep is applied for a total of s— 2 iterations, so that at the end we have once

again arrived at 2° bins, and in each of these bins an expression of the form Eq. (27) gives the
contribution of the fields of all particles, except those in the given and immediately adjacent bins,

J

tqu,, /(x—x,)?. The final part of the fast multipole algorithm involves the completion of the
k=1

summation by specific evaluation of Eq. (27) multiplied by (), at point x, for each particle j,

together with the direct evaluation of the remaining terms due to particles in the same or adjacent
bins.

12



Before describing our findings using the fast multipole algorithm in actual calculations,
let us review some properties of the algorithm. First, let us consider the number n+1 of terms
to retain in the three truncated Taylor expansions used in the procedure. All three take the form
of expansions of 1/(1- x)" and are thus described by Eq. (20) and Table 1. The values of the
convergence parameter r , in the notation of Table 1, were shown to be r = 1/3, 1/6, and 1/4 for

the three expansions, respectively. Because the error estimates in Table 1 all vary as r", an
approximate estimate of the number of terms required to obtain a relative error-less than € can

be made by requiring r" <€, or equivalently n>log(e)/log(r). For r=1/3, the largest

value of r occurring in the algorithm, and€ = 107" this inequality requires n > 32; while

fore =107, the required value is 7 >17 . Because of the exponential dependence of the error
on n, these estimates provide approximate guidance to the number of terms required in practice.
We will see in the following that the actual convergence of the fast multipole algorithm to direct
summation in the evaluation of Eq. (16) is somewhat slower than this simple estimate. This is
due to the fact that the present error estimate applies to the individual terms in the summation,
and the error is compounded when these terms are summed.

Let us now consider the scaling of computational work involved in evaluating Eq. (16)
forall j and k by the fast multipole algorithm. Clearly, in the direct evaluation of Eq. (16) the

work involved scales as the number of pairs, namely J(J +1)/2 (or simply as J?). In the fast
multipole method, the relevent parameters are the number of particles, J, the number of bins at

the finest level, 2° (or simply the bin parameter, s5), and the number of terms retained in the
Taylor expansion, n. The first step involves the multipole expansion of all the particle forces
about the centers of their local bins [Egs. (21) and (22)] and requires a summation of
approximately n terms for each of J particles, so the work scales as J-n in this step. The
second step is the forward sweep, which involves the combination of bins into fewer, larger bins
to gather the multipole expansions. Equations (23) and (24) show that this step takes about

n® /2 operations for each bin combined. The number of bins so combined is 2° on the first
iteration, 2°”' on the second iteration, and so on until 2> =8 bins are merged into 4 bins on the

last pass. Summing all of these bins gives approximately 2°*' for the total number of bins
operated upon. Hence the computationa] work in the forward sweep scales as

2°".n?/2=2°-n*. In the third phase, or backward sweep, of the algorithm Egs. (25) and
(26) show that each contribution of one bin to another involves about n’ /2 operations. The
number of contributions of one bin to another in level [, where [ =2,...,s during the backward
sweep, is 3(2' —2). Summing this over all the levels and multiplying by n”/2 vyields

computational work scaling as 3(2*"' —2s)-n® /2 = 3(2° ~5)-n® during the backward sweep.

The final part of the fast multipole algorithm involves an evaluation of the expansion at the field
points and the summation of near-neighbor terms not involved in the multipole expansions. The
work associated with the evaluation of the multipole series scales as J-n. Assuming the

number of particles per bin is the average number of J/2°, then the work in evaluating the

near-neighbor terms explicitly scales as 3J-J/2° =3J%/2° , where the factor 3 arises from
the inclusion of the particles in adjacent bins. Collecting the scalings from all the parts together
into a single expression gives the overall scaling

Work o< (3/25)J* + 2n)J + (2°** - 35)-n? . (29)

13



Upon first examination, Eq. (29) appears to give an operation count that scales as J 2, rather than
J, in which case the complications of the fast multipole approach would yield no gain.
However, Eq. (29) depends on the three parameters J, n, and s. Clearly, J is determined by
the number of particles, and n is fixed by the desired accuracy of the multipole expansion.
However, the number of bins, 2°, is still free to choose. In order to minimize the amount of
work in Eq. (29), we differentiate with respect to s and equate the result to zero. The result is
n?[4-3/(2°-In(2)]-3(J /2°)* =0 and, assuming 2° is significantly greater than 1, we
obtain the result

2 =37/(2n) . (30)

Substituting Eq. (30) back into Eq. (29) and ignoring 3s in comparison with 2°*>, we find that
the overall work in the fast multipole method scales as

Work o< J(2n)(1+2+/3) . 31)
Hence for any desired precision, determined by 7, the work scales linearly with the number of
particles in the fast multipole method (Eq. (31)), provided that the number of bins is determined
by Eq. (30).

This section completes our description of the 1-D adaptation of the fast multipole
method and its properties. The next section presents numerical studies that both demonstrate the
properties of the fast multipole method and evaluate the tradeoff between its computational
overhead and linear scaling in comparison with direct summation of Eq. (16).

14



4. RESULTS

In order to study and compare the evaluation of Eq. (16) for all particles j =1,...,J by

the fast multipole algorithm described in Sect. 3 and by direct summation, both of these methods
were coded in Fortran on an IBM 580 RS-6000 work station. Using the notation of Sect. 3, aset
of problems was defined by various choices of particle numbers J , coordinates x ;» strengths O,

and g, , and spatial dependence powers p. Specifically, values of J =30, 100, 300, 1000,
3000, and 10000 were studied. The coordinates x ; Wwere chosen to be random numbers lying

between -1 and +1 in most of the calculations, but cases were also carried out using the Gaussian
points 1 as the coordinates. In all cases the strengths Qj and g, were assigned as random

numbers, and powers of p =1, 2, and 3 were used. Unless stated otherwise, the results shown
will use random number generation of the coordinates x ; and p =1 for the spatial dependence

of the forces. Convergence and timing studies of the summation algorithms are nearly
independent of these choices so long as the coordinates aren’t extremely bunched in one region
of the domain and p isn’t extremely large.

The first question we consider is the convergence of the fast multipole algorithm with
increasing number of terms n retained in the Taylor expansion. The results are plotted for
J =100, 1000, and 10000 particles in Fig. 1, which shows that the error decreases exponentially
with n, consistent with Table 1, until leveling off at large values of n. The relative error here is
defined to be that of the standard deviation of the results of Eq. (16) between fast mutltipole and
direct summations, namely

J
(Error)z - Z[(ijasl _ Fjdirecl ) / Fjdirec! ]2 /(., - 1) ) (32)

j=1

It should be noted that not all the error in Eq. (32) lies with the fast multipole method; the direct
summation is subject to roundoff error, and contributes to the result. For all three values of J
the curves are parallel in the exponential decreasing phase, and the slope of the curves is
consistent with a value of r =045 in Table 1. The figure shows that for 1000 particles the
relative error reaches 10® at about n =22 and 10" at n=35. It is interesting that, for the
results obtained here, the relative errors become independent of nfor n > 35, and also that the
relative errors become larger for increasing numbers of particles. The former effect is a function
of the machine precision. In the calculations shown, double precision was used throughout. A
similar survey using single precision resulted in the error being independent of n for 1> 22, at
which value the relative error was about 10® for 1000 particles. The increase in relative error
with increasing number of particles is fairly uniform as a function of n. Studies with varying
numbers of bins (parameter s) and with different selections of coordinates x ; and particle

charges (), and g, show little or no dependence upon these parameters. The relative error

estimates in Table 1 pertain to individual terms in the summation of Eq. (16). As the number of
particles increases, so does the number of terms and the accumulated errors, both for the direct
and fast multipole summations. Although the same J behavior of convergence was observed in
single precision, we note that the improvement in convergence in going from single to double
precision (about a six order-of-magnitude reduction in relative error) was independent of J .
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Fig. 1. Relative error in fast multipole expansion vs n for various numbers of particles.

The execution times of the fast multipole algorithm are shown as functions of the
number of terms retained in the Taylor series expansion in Fig. 2. The several curves correspond
to various choices of the bin parameter s. We note that each curve for the execution time
corresponds to Eq. (29), with J and s fixed as n is varied. Consistent with Eq. (29), the curves
show a parabolic behavior with increasing n . For any given values of J and n, Eq. (30) can be
used to obtain the optimal value of s with respect to minimization of work. For J = 10000, Eq.
(30) gives the following values of optimal s as a function of n: (n,s) = (10, 9.8), (20, 8.8),

(30, 8.2), (35, 8.0), (40, 7.8), (45, 7.6), and (50, 7.4). Since the fast multipole algorithm
constrains § to be an integer, the results of Eq. (30) predict the observed set of optimal s:
(n,s) = (10, 10), (20, 9), (30, 8), (40, 8), (45, 8), and (50, 7). These results are completely

consistent with the timings presented in Fig. 2. We note that the combination of the convergence
requirements discussed above and the optimal timing indicate “best case” parameters for J =
10000 when (n,s) = (35-40, 8). For such cases the fast multipole algorithm completes the

summation of Eq. (16) for all j in about 5 to 6 s of cpu time. Although the results presented
here are for cases with p =1 and randomly selected coordinates and charges, the errors and

timings are similar for other selections of these parameters (including gaussian integration
coordinates).
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Effect of Multipole Expansion and Bin Parameter s on Execution Times for 10000
Particles
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Fig. 2. Execution times of fast multipole algorithm for 10000 particles plotted vs 71 for varicus
choices of bin parameter s .

Figure 3 plots the execution time for the fast multipole algorithm as a function of the bin
parameter s for n =40 and various numbers of particles J. According to Eq. (29), for large

values of s the computational work becomes approximately proportional to n®-2° and
independent of J, so that for fixed n the work doubles each time s is increased by 1. This
scaling with s 1s obeyed quite accurately by the points having minimum execution time and
525 in Fig. 3. For these points, the increase in execution time with s is nearly linear on the

logarithmic scale of Fig. 3, and the resulting scaling is f e 2.08°. The other noteworthy feature
that can be observed in Fig. 3 is the location of the minimum execution time as a function of §
on each curve of fixed J. According to Eq. (30) with n =40, the optimum values of s for
given J are as follows: (J,s)=(50, 0.1), (100, 1.1), (300, 2.7), (1000, 4.4), (3000, 6.0), and
(10000, 7.8). Again restricting s to integer values, these results are: (J,s) =(50, 0), (100, 1),
(300, 3), (1000, 4), (3000, 6), and (10000, 8). These results are completely consistent with those
shown in Fig. 3. For J =50 and J =100, the algorithmic constraint of s22 precludes
observing the minima. In cases having such small numbers of particles the fast multipole
algorithm is not competitive with direct summation, and the results of Eq. (30) that place s
outside the sensible range serve to indicate this fact.
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Execution Time vs Bin Parameter
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Fig. 3. Fast multipole algorithm execution time vs bin parameter s for various numbers of particles J.

The comparison between the prediction of Eq. (30) for the optimal bin parameter s,
given J particles in the summation and n terms in the truncated Taylor expansion, and the
observed optimal value is plotted in Fig. 4 for J =30 - 10000 and n =20 and 40. Given the
constraints of the fast multipole algorithm that s is an integer and s 2 2, the agreement between
the observed and theoretical curves is exact: the observed values are as close as possible to the
theoretical results.

The results to this point have been in the nature of tuning and studying the behavior of
the fast multipole algorithm. The convergence of the truncated multipole expansion to the results
of direct summation has been studied as a function of the number n of terms retained. Also, the
systematics of execution time with the number of particles J, number of expansion terms n,
and bin parameter s have been examined. In both these areas, the results have been
demonstrated to agree with the predictions of Sect. 3. We conclude this study by comparing the
timings of the fast multipole algorithm with those obtained by direct summation. The scaling
and magnitude of these quantities with the number of particles J constitutes the central question
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Opfimnal Bin Parameter s: Theoretical and Observed
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Fig. 4. Theoretical and observed optimal bin parameter s vs number of particles J for n = 20 and n = 40.

Timing Comparison - Fast Multipole vs Direct Summation
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Fig. 5. Execution times for direct summation and fast multipole algorithms (with Taylor series
truncation n = 20 and n = 40 ) vs number of particles J.
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considered in this work. The answer is shown in Fig. 5, which plots the execution times for the
fast multipole algorithm and for direct summation as a function of J from J =30 - 10000. In
the fast multipole calculations, cases were carried out with the Taylor series truncated to n =20
and n = 40 terms, and optimal values of bin parameter s were used throughout. As predicted in

Sect. 3, the execution time is proportional to J* for the direct summation method and to J for
the fast multipole algorithm. For small values of J the direct summation of Eq. (16) is faster
than its evaluation by fast multipoles because, for few enough particles, the overhead involved in
connstructing and executing the steps of the fast multipole algorithm exceeds the work involved
in simply carrying out the summation. However, for large numbers of particles the fast multipole
algorithm is much faster than direct summation, and the speed advantage of the fast multipole
approach increases with J . For example, when J = 10000 the fast multipole algorithm requires
more than an order of magnitude less computer time than direct summation. Figure 5 indicates
that the crossover point at which the fast multipole approach becomes faster than direct
summation is in the vicinity of J =300 to 500 particles. Hence for more than about 500
particles, or latitudes in the global climate models, it is advantageous to use the fast multipole
algorithm to carry out summations of the form of Eq. (16).
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5. CONCLUSIONS

This research demonstrates the applicability of a 1-D fast multipole transformation to the
evaluation of summations occurring in dynamical global climate equations. These equations are
written and evaluated in spherical coordinates, for which a natural set of basis functions is the
spherical harmonics, or equivalently, the complex exponential functions with integral
coefficients in the longitudinal angle multiplied by the associated Legendre functions in the angle
of latitude. We discussed the desirability of evaluating linearized terms in function space and the
nonlinear terms in coordinate space, and the transformation that this necessitates. This
transformation can be separated into two parts: namely, the evaluation of fast Fourier transforms
between the longitude angles and the complex exponentials, and the transformation between
angles of latitude and the associated Legendre functions. The computational work associated
with the latter transformation was shown to scale as O(N - M -J), where M and N are the

numbers of functions in longitude and latitude, respectively, and J is the number of latitudes in
the coordinates space. Through the use of Christoffel-Darboux'®'' identities and Gaussian
integration techniques, the latitude to associated Legendre function transformation was recast in
terms of summations in the form of Eq. (16). . Direct evaluation of the resulting sums yields

computational work scaling as O(M - J?), which represents no gain over the original form.

We then considered the evaluation of summations in the form of Eq. (16) using an
adaptation of a fast multipole algorithm derived by Greengard and Rokhlin® for particle
simulations. The adaptation involves the replacement of the individual particles within
preselected bins by equivalent multipole forces located at the bin centers. These forces are then
accumulated into larger and larger bins, and then distributed out to successively smaller bins in
forward and reverse sweeps that result in the summation of all terms involving nonlocal particles.
The force terms due to local particles are then evaluated explicitly. We studied the numerical
convergence of the fast multipole algorithm to the direct summation method as a function of the
number of terms n retained in the multipole expansion; we also examined the scaling of
computational work in terms of n, the bin parameter s, and number of particles J. From these
studies we predicted, for given J, values for parameters n and s required for convergence and
optimal timing. Numerical studies confirmed the predicted parametric behaviors for convergence
and scaling of work, as well as the predicted optimal values.

The most important result of this research involved determining and comparing the
scalings of computational work with number of particles J for both the direct and the converged
optimized fast multipole summation methods. For each summation over all j in Eq. (16), the

timing of the fast multipole transformation scales linearly with the number of latitude gridpoints,
while timing for direct evaluation scales quadratically. In terms of the overall scaling of the
latitude to associated Legendre function transformation, the use of the fast multipole algorithm
yields computational work scaling as O(M - J), which for large values of J should represent a

significant reduction of work. In spite of a larger computational overhead, the numerical
calculations show that this scaling advantage renders the fast multipole method faster than direct
evaluation for transformations involving greater than approximately 300 to 500 gridpoints. The
advantage of the fast multipole algorithm is greater than a factor of 10 for J =10000.
Convergence of the fast multipole transformation is accurate to machine precision. As the
resolution in global climate calculations continues to increase, an increasingly large fraction of
the computational work will involve the transformation -between spatial and spherical harmonic
representations.  The fast multipole transformation will offer significant reduction in
computational time for these high-resolution cases.
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