
David W. Vdalker
Steve Yd. Otto

hvsikb'o to DOE and DOF contractors from ii:e Oiiici of Scienljlic ~ n d Tecaiii-
cal Informaiiirn, !5.0. nox 62, Oak !? :z !g~, 'IN 37831; prices fi:.ai!,Bk frsiii (615)
576-940 1, FTS 626-840 1,

-..

ORNL/TM-12999

Computer Science and Mathematics Division

Mathematical Sciences Section

REDISTRIBUTION OF BLOCK-CY CLIC DATA

DISTREBUTIONS USING MPI

David W. Walker t
Steve W. Otto

t Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

Department of Computer Science and Engineering
Oregon Graduate Institute
Beaverton, OR 97291-1000

Date Published: June 1995

1
Research ww supported by the Advanced Research Projects
Agency under contract DAAL03-9 1-C-0047, administered by the
Army Research Office, and by National Science Foundation Grant
number ASC-ASC-9005933.

I I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Lockheed Martin Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840R21400

Contents

1 Introduction .
2 Data Distribution Transformations .

2.1 The Block Cyclic Data Distribution .
2.2 Redistribution Algorithms .

2.2.1 Redistribution Using Nonblocking Receives
2.2.2 Communication Schedules .
2.2.3 Redistribution using MPISENDRECV .

3 Performance Results .
3.1 Results on the IBM SP-1 .
3.2 Results on the Intel Paragon .
3.3 Comparison with other Collective Communication Operations
A More General Redistribution Algorithm . 4

5 Summary .
6 References .

1
1
1
2
4
7

10
14
14
16
18
19
20
20

... . 111 .

REDISTRIBUTION OF BLOCK-CYCLIC DATA

DISTRIBUTIONS USING MPI

David W. Walker

Steve W. Otto

Abstract

Arrays that are distributed in a block cyclic fashion are important for many applications
in the computational sciences since they often lead to parallel algorithms with good load
balancing properties. We consider the problem of redistributing such an array to a new
block size. This operation is directly expressible in High Performance Fortran (HPF) and
will arise in applications written in this language. Efficient message passing algorithms
are given for the redistribution operation, expressed in the standardized message passing
interface, MPI. The algorithms are analyzed and performance results from the IBM SP-1
and Intel Paragon are given and discussed. The results show that redistribution can be
done in time comparable to other collective communication operations, such as broadcast
and MPIALLTOALL.

- v -

1. Introduction

This paper presents different strategies for changing the distribution of an array from one

block-cyclic distribution to another. Implementations using the MPI standard message passing

interface are given, and performance results for different redistribution algorithms are presented

for the IBM SP-1 and the Intel Paragon. These results are interpreted in terms of a simple

performance model.

The block-cyclic data distribution is often used as a means of statistically load balancing

inhomogeneous computations. For example, it is used in the ScaLAPACK parallel software

library for load balancing dense matrix computations such as LU factorization (see [I] and

references therein). Often the optimal block-cyclic data distribution for successive phases of an

application will differ, hence redistribution is necessary to achieve the best performance. High

Performance Fortran (HPF) [3] contains a REDISTRIBUTE directive that can be used to change

from one block-cyclic distribution to another. Thus, we believe the work presented here will be

of value to researchers designing HPF compilers that use MPI as a target.

MPI is a standard message passing interface for use in parallel applications and software

libraries in message passing environments, particularly distributed memory concurrent comput-

ers. MPI is designed to be extensible and thread-safe, and to take advantage of features of the

hardware. In this paper it is not practical to give complete descriptions of each MPI routine

used in the redistribution routines. For this the reader is referred to the MPI specification [2].

The rest of this paper is arranged as follows. In Section 2 we discuss the block-cyclic

data distribution and describe algorithms for increasing the block size of such distributions by

an integer factor. The MPI kernels for performing these algorithms are given. In Section 3

performance results for redistributions on the IBM SP-1 and Intel Paragon are presented for the

different redistribution algorithms. In Section 4 we discuss generalizations to arbitrary block

sizes and multi-dimensional arrays. A summary is provided in Section 5.

2. Data Distribution Transformations

2.1. The Block Cyclic Data Distribution

The block-cyclic data distribution is widely used because it is both simple, and a good method

for achieving approximate static load balance in problems in which the computational load is

nonuniformly spread across a domain. Given a set of M items, P processes, and a block size

r , the block-cyclic data distribution first divides the objects into contiguous blocks of r items

each (though the last block may not be full). Then the blocks are assigned to processes in

round-robin fashion so that the mth block is assigned to process number rn mod P. Thus, the

block cyclic data distribution maps the global index rn to a process index, p , a block index, b ,

- 2 -

p o i 2 3 0 1 2 3 0 1 2 3 0 1 2 3 o . . .

P

Figure 1: Block-cyclic array redistribution for the case P = 1 and K = 3. B is the global block
index.

0 1 2 3 0 1 .._

local t o the process, and an item index, i, local to the block, with all indices starting at 0. The

mapping m (p , 6, i) may be written as

m H (B mod PI L:J, rn mod r) ,

where B = [rn/rJ is the global block index. It should be noted that Eq. 1 reverts to an

unblocked, cyclic distribution when r = 1, with local index i = 0 for all blocks. A noncyclic,

block distribution is recovered when T = r M / P] , in which case there is a single block in each

process with block index 6 = 0.

For multi-dimensional arrays, a block-cyclic data distribution is obtained by applying the

one-dimensional block-cyclic data distribution independently to the index set of each of the

array dimensions, having first specified the block size and the number of processes for each

dimension.

2.2. Redistribution Algorithms

We will now show how MPI may be used to transform a one-dimensional array from one block-

cyclic data distribution to another. We shall restrict our attention to the case in which the

block size increases by an integer factor, I<, from r to K r . The more general case of arbitrary

block size changes for multi-dimensional arrays is considered in Section 4.
We shall refer to a set of L = PI(successive blocks as a superblock. Thus the blocks

globally indexed by 0 to L - 1 are the first superblock, those indexed by L to 2L - 1 are the

second superblock, and so on. It should be noted that the communication pattern required

to redistribute each superblock is the same. Figure 1 shows an example of redistribution for

P = 4 and Ii' = 3. In this caSe the length of a superblock is L = 12 blocks and, as can be seen

in the figure, the communication pattern repeats after the first 12 blocks.

Each superblock is redistributed in exactly the same way, so it is sufficient t o describe a

- 3 -

1 2 P 3 1 ...

On process 2:

I 1
(b)

Figure 2: Using a derived datatype to transfer all superblocks together. In part (a), the
shaded regions denote the data sent by process 2 during one of the k steps of the redistribution
algorithm. Only the first two superblocks are shown; the pattern repeats for all superblocks.
In part (b), the same data movement is shown from the point of view of process 2. The process
sends every third block of its local array. The type extent that produces this effect is also
shown.

redistribution algorithm for just one superblock of L blocks. The last superblock may be in-

complete, and this may be handled either by inserting conditional statements into the basic

superblock redistribution code, or by redistributing the last superblock separately. We shall de-

scribe the algorithm for redistributing full superblocks, where each of the P processes originally

contains I< blocks of r elements and after redistribution contains one block of K r elements.

Since the communication pattern between processes is the same for each superblock, blocks

a t the same position within a superblock are always communicated between the same pair of

processes. This is shown in Fig. 2 for P = 4 processes, and an expansion factor of I< = 3.

The block a t position 2 in the superblock (shown shaded) is sent from process 2 to process

0 in each superblock. In the algorithms presented below the redistribution takes place in K

communication phases. In a phase, each process sends/receives one block from/into the same

position in each superblock. We also wish to do the entire communication, for all superblocks,

in K communication steps. To do this we can define an MPI derived datatype that picks out a

block at a given position in each superblock, as shown in part (b) of Fig. 2. This datatype can

then be passed to the MPI point-to-point communication routines to specify communication

for all superblocks simultaneously.

In Fig. 3 we present the MPI / Fortran code for creating the derived datatype, newtype,

which picks out one block from each superblock. newtype consists of a single block of data,

- 4 -

call mpi-comm-size (comm, p, ierr)
call mpi-type-extent (intype, sizeofdata, ierr)
call mpi-type-contiguous (r, intype, blocktype, ierr)
disp(1) = 0
disp(2) = sizeofdata*k*r
type(1) = blocktype
type(2) = MPI-UB
blen(1) = 1
blen(2) = 1
call mpi-typestruct (2 , blen, disp, type, neutype, ierr)
call mpi-type-commit (newtype, ierr)
call mpi-typefree (blocktype, ierr)

Figure 3: Fortran 77 code for creating the derived datatype newtype for redistributing an array
of type intype. We have assumed that all the superblocks are full, i.e., that m is divisible by
p*k*r, where p is the number of processes in tlie communicator corn.

but we have used the MPI-defined upper bound marker, MPI-UB, to set the extent of newtype

to K blocks. An alternative approach to creating a derived datatype that picks out one block

from each superblock is to use the MPI vector datatype constriictor, MPI-TYPE-VECTOR, with

a block length of T and a stride of K v elements.

2.2.1. Redistribution Using Nonblocking Receives

The simplest approach to designing a redistribution routine is to use wildcarded, nonblocking

receives. When receiving data in this way, each process needs to be able to identify the data

that it receives. One way to do this is to use “self-describing’’ messages - when sending a block

the source process uses the routine MPI-PACK to prefix the global block index to the data sent.

This global block index is extracted by the receiving process using the routine MPI-UNPACK

and is used to determine where to store the blocks received.

We shall first present two versions of the redistribution routine using nonblocking receives.

In version 1 only a maximumof one receive is outstanding (i.e,, is posted but not yet completed)

in each process. In version 2 a maximum of Ii‘ receives may be outstanding in each process. In

the former case the redistribution routine needs to provide buffering for only one message -

M / (I (P) data items. In the latter case buffering must be provided for K messages, i.e., M / P

data items. Thus, the buffering required is the same as the number of data items per process.

An outline of the MPI code for versions 1 and 2 of the redistribution routine is given in

Figs. 4 and 5, respectively. In version 1 each of the I< communication phases posts a receive,

sends data, and then waits for completion of the receive. Thus, each process is synchronized

with another on each pass through the loop. We shall therefore refer to this as the synchronized

- 5 -

create general datatype, newtype

nsuperblks = m/(p*k*r)
do istep=O,k-1

call mpi-irecv (rbuf , rbuf size, MPI-PACKED,

b - p*istep + myrank
soffset = istep*r

call mpi-pack (b, 1, MPI-INTEGER, sbuf, sbufsiz

call mpi-pack (a(soffset), nsuperblks, neutype.

dest = b/k
call mpisend (sbuf , pos, HPI-PACKED,

call mpi-wait (reqobj, status, ierr)

call mpi-unpack (rbuf , rbufsize, pos, b, 1.

roffset = r*mod(b,k)
call mpi-unpack (rbuf, rbufsize, pos, b(roffset1,

HPIANYSOURCE , tag, corn, reqob j , ierr)

pos = 0

pos, comm, ierr)

sbuf, sbufsize, pos, corn, ierr)

dest. tag, corn. ierr)

pos = 0

HPI-INTEGER, comm, ierr)

nsuperblks , newtype, COIPIP, ierr)
end do

Figure 4: Fortran 77 code for increasing the block size of a block-cyclic data distribution by a
factor k using nonblocking receives. p is the number of processes in the communicator comm.

nonblocking receive redistribution routine. In version 2 ail the K receives are posted and then

the corresponding IC sends are performed. Finally the routine waits until all the receives have

completed by calling MPI-WAITANY times. Less synchronization occurs in version 2, so we

shall refer to this as the unsynchronized nonblocking receive redistribution routine.

There are a couple of points to note about these two nonblocking receive redistribution

algorithms. First, in the synchronized case, in phase k a process receives local block k of the

source process. If we were to query the return status of each receive it would then be possible to

compute the global block index on the receiving process, and it would not be necessary to pack

the gIobaI block index into each message. In the unsynchronized case the packing/unpacking can

also be avoided, but it would be necessary for each process to keep a count of how many messages

it had received from each process. Then, taking advantage of the fact that MPI guarantees

non-overtaking messages between pairs of processes, i t is possible to find the local block index

on the source process and hence to find the global block index. Finally, in the unsynchronized

algorithm the data can be sent in ready mode, provided a barrier synchronization is performed

after posting all the receives. This may result in improved performance on some systems.

- 6 -

create general datatype, newtype

nsuperblks = m/(p*k*r)
do istep=O,k-1
j = istep*rbufsize/k
call mpi-irecv (rbuf (j) , rbuf size, MPI-PACKED,

MPI-ANYSOURCE, tag, comm. reqobj (istep) ierr)
end do
do istep=O,k-1
b = p*istep + rnyrank
soffset = istep*r
pos = 0
call mpi-pack (b, 1, WPI-INTEGER, sbuf, sbufsize,

call mpi-pack (a(soffset.1, nsuperblks, newtype,

dest = b/kpar

pos, comm, ierr)

sbuf, sbufsize, pos, comm, ierr)

dest, tag, COD, ierr)
call mpigend (sbuf, pos, MPISACKED,

end do
do istep=O,k-l
call mpi-aaitany (k, reqobj, indx, status, ierr)
pos = (indx-l)*rbufsize/k
call mpi-unpack (rbuf , rbufsize, post b, 1,

roffset = r*mod(b,k)
call mpi-unpack (rbuf, rbufsize, pos, b(roffset1,

WPI-INTEGER, cow, ierr)

nsuperblks, neotype. comm, ierr)
end do

Figure 5: Fortran 77 code for increasing the block size of a block-cyclic data distribution by a
factor k using nonblocking receives. p is the number of processes in the communicat,or corn.

- 7 -

2.2.2. Communication Schedules

In the synchronized algorithm, some processes have to wait €or others before they can receive

any data, thereby degrading communication performance. For example, in the P = 4, Ii' = 3

case process 3 does not receive its data until the other processes have received all their data.

A corollary of this is that there are hot spots in the communication - in the first step of

the algorithm the first max(K,P) processes all send data to process 0, for example. These

hot spots can also degrade communication performance. The unsynchronized version avoids

excessive synchronization overhead and so is faster than the synchronized version (see Section

3). However, the main drawback of the unsynchronized algorithm is its need for as much

buffering as data being redistributed. We have therefore attempted to find variants of the

synchronized version that are comparable in performance with the unsynchronized version.

The poorer performance that arises from excessive synchronization and communication hot

spots is largely due to the simple way in which the communication in the K stages of the

algorithm were scheduled. We shall refer to the local index of the block sent by process p in

stage k of the algorithm as the send black schedule, b (k , p) . Similarly, we shall refer to the rank

of the process to which process p sends data in stage k as the send process schedule, q (k , p) . In

the algorithms discussed so far we send local block k at step L, i.e.,

b (k , p) = k

An easy way to reduce the impact of synchronization and communication hotspots might

be to send the Ii blocks in random order. This is simple to do since the messages are self-

describing. At each stage we select at random a local block index from those that have not

yet been sent. Then, as before, we evaluate the corresponding global block index and the

destination process, and prepend the global block index to the data sent.

Although the random send block schedule improves the performance of the synchronized

nonblocking receive redistribution routine (see Section 3), we might expect even better perfor-

mance from a nonrandom schedule that ensures that each process receives data from exactly

one process in each of the IC communication phases. We shall refer to such a schedule as an

optimal schedule since it minimizes the effects of sychronization and communication hot spots.

For an optimal schedule, if we view the send block schedule B(C,p) as a matrix then we re-

quire that the rows be permutations of the process ranks, Le., permutations of the numbers

0,1, . . . , P - 1, and that the pth column be a permutation of the processes to which process p

must send data.

We shall now construct an optimal schedule. If B is the global block index and (p ,b) and

(9 , d) are the process and local block indices before and after redistribution, then

- 8 -

B = Pb + p = K(Pd + q) + t , (3)

where 0 5 t < I<. Here we regard each block after redistribution as having IC “slots” into which

blocks of size r are placed, One slot is occupied in each of the Ii‘ steps of the algorithm. Thus, t

in Eq. 3 is the slot index. Equation 3 means that block b in process p is sent to process q where

it is stored in slot t of block d . Since the communication is the same for each superblock we

can, without loss of generality, consider just the first superblock, i.e., d = 0, so Eq. 3 becomes,

To deduce the optimal schedule we shall first factor out the greatest common factor, g , of

P and Ii‘ from Eq. 4. We may write P = gP’ and Ii‘ = g K ‘ , where P’ and IC‘ are relatively

prime. We can also write p = gp’ + a (where 0 5 a < g) . Then we have,

g(P’b + p’) + a = K‘gq + t (5)

From Eq. 5 it follows that (1 - a) is divisible by g , so we can write t = gt’ + CY, and we have,

From Eq. 6 we can deduce that processes with the same values of p‘ communicate with

the same set of processes. Thus, the first g processes (corresponding to p’ = 0) communicate

with processes [P’b/KJ, for b = 0, 1, . . . , I(- 1. The next set of g processes communicate with

processes [(P’b + l) /K’J , and so on. Next we write b = IC‘P + b’, where 0 5 6‘ < IC’. Then we

have,

P‘IC‘P + P’b’ + p’ = K‘q + t‘
from which i t follows that q = P’p + q’, and hence,

As p’ takes the values 0 , 1 , . . ., P’ - 1 and t’ the values 0 ,1 , . , . , K’ - 1, then b’ = [(K’q’ +
t’)/P‘J takes the values 0 , 1 , . . . , IC’-1 and q’ = [(P’b’+p’)/K’J takes the values 0 , 1 , . . . , PI-1.

Equation 8 has been derived from Eq. 4 by factoring out g , and its solution gives the optimal

schedule for P‘ processes and an expansion factor of IC‘. Thus we have reduced the problem of

finding an optimal schedule for (K, P) to one of finding an optimal schedule for (K’, P‘), where

K’ and P’ are relatively prime. Once we have an optimal schedule for (IC‘, P’) we can generate

an optinial schedule for (K, P) by letting a and /3 take the values 0 ,1 , . . . , g - 1. For I-’ and

- 9 -

io (2‘

p, p, p, p-
2 1 0 2 0 1 2 3 2 1 0 3 2 2 2 2

b’

Figure 6: The optimal send schedule, q’ and b’, for given values of p‘ and t’ for K’ = 3 and
P‘= 4.

Table 1: Values of q and b for differing values of q‘, b’, and p when P’ = 4, IC’ = 3, and g = 4.

P’ relatively prime an optimal schedule is obtained by starting a t position (0,O) in the send

process schedule, and moving along the main diagonal, wrapping around in a periodic fashion

whenever we move off the edge of the matrix. As we move along the diagonal, we assign the

value 0 to the first I-’ entries, the value 1 to the next I-’ entries, and so on. The last Ii” entries

are assigned the value P’ - 1. In a similar way, the send block schedule is obtained by moving

periodically along the main diagonal assigning 0 to the first P’ entries, 1 to the next P’ entries,

and so on. Figure 6 gives an optimal schedule for IC’ = 3 and P‘ = 4.

To generate an optimal schedule for (K , P) , each of the entries in the optimal schedule for

(K’, P’) must be expanded into a g x g block by letting a and ,O take the vaiues 0 ,1 , . . . , g - 1.

For the send process schedule, as: ,D takes the values 0,1,. , . ,g - 1 we generate the columns

q = P’p + q’ for a given value of q’. Since q does not depend on a, different values of a from

0 to g - 1 generate the same columns. To ensure an optimal schedule we just have to reorder

the columns to ensure that each row is also a permutation of P‘p + q’ for p = 0 ,1 , . . .,g - 1.

Similarly for the send block schedule, as @ takes the values 0 ,1 , . . . ,g - 1 we generate the

columns b = K’p + b‘ for a given value of b’. Again the columns must be reordered to ensure

that each row is a permutation of K’p + b’.

For example, suppose P = 16 and I< = 12. The greatest common factor of P and IC is

g = 4, and P‘ = 4 and K’ = 3, as in Fig. 6. The va lue of q and B generated for different values

of q’ and b’, respectively, as p takes the values 0, 1, . . ., g - 1 are given in Table 1.

As Q takes the values 0 , 1 , . . . , g - 1 we generate the g x g “permutation” blocks for different

values of q’ and b’, as shown in Fig. 7. We generate an optimal schedule for (K , P) by replacing

the values of g’ and b’ in the optimal schedule for (IC’, P‘) with the corresponding permutation

- 1 0 -

q’ = 0

1 2 0 4 8
8 1 2 0 4
4 8 1 2 0

q‘ = 1

1 3 1 5 9
9 1 3 1 5
5 9 1 3 1

b’ = 2

1 1 2 5 8
8 1 1 2 5
5 8 1 1 2

Figure 7: Permutation blocks for different values of q‘ and b’ for P = 16 and K = 12.

block. Thus the optimal send schedule for P = 16 and K = 12 is as given in Fig. 8.

Note that a group synchronization must be performed before exiting the redistribution

routine to prevent “back masking.” That is, since the algorithm posts wild-card receives, we

don’t want some processes leaving the redistribution “early,” then sending other messages that

could be falsely interpreted as redistribution messages.

2.2.3. Redistribution using MPISENDRECV

If an optimal schedule is used to send the blocks in a predetermined order, then it is possible for

each process to determine from which process it will receive data in each of the K communication

phases. In this case messages do not have to be self-describing so there is no need to pack the

global block index at the start of each message. If each process knows a pn’ord which process

i t sends to and receives from in each phase, communication can be performed with the routine

MPISENDRECV, instead of using nonblocking receives. To use MPISENDRECV in this way to do

the communication we must determine the receive process and block schedules corresponding

to the send schedules deduced in Section 2.2.2. The receive process schedule for some process

q gives the process from which to receive data in each communication phase. The receive block

schedule gives the local slot index at which the process must store the data received.

The optimal receive schedule may be deduced from Eq. 8. First we must determine the

solutions of Eq. 8 given q’ and t ’ . For each value of q’ (0 , 1 , . . . , P’- 1) there are K’ solutions of

Eq. 8. These solutions are given in Fig. 9 where the entries at the same position in each I(’ x P’

matrix form one solution. As may be seen in Fig. 9, the solutions to Eq. 8 are enumerated

by running over the b’ and p’ matrices in column-major order. The first P’ entries in the b’

matrix are set to 0, the next P’ entries to 1, and so on. For the p’ matrix, successive sets of P’

entries are assigned the values 0 , 1 , . . . , P’ - 1. When the solutions are enumerated in this way

all entries in the the j t h column of the q’ matrix equal j . Similarly, the entries in the i th row

- 11 -

0 0 4 8 1 2

0 1 2 3 4 5 6 7
3 7 1 1 1 5

8 9 10 11
2 6 1 0 1 4

14 2 6 1 0 1 3
1 0 1 4 2 6
6 1 0 1 4 2
3 7 11 15

15 3 7 11
11 15 3 7
7 11 15 3
0 4 8 1 2

12 0 4
8 1 2 0
4 8 1 2 0

L 1,

12 13 14 15

1 5 9 1 3
1 5 9

9 1 3 1 5
5 9 1 3 1
2 6 10 14

14 2 6 10
10 14 2 6
6 10 14 2
3 7 1 1 2 5

8 1 5 3 7 1 1
4 1 1 1 5 3 7

7 1 1 1 5 3

2 5 8 1 1
1 1 2 5 8
8 1 1 2 5

2
3
4

6
7
8

10
11

5 8 1 1 2
0 3 6 9

1 1 2 0 4 8 1 5 3 7 1 1
8 1 2 0 4 1 1 1 5 3 7
4 8 1 2 0 7 1 1 1 5 3
1 5 9 1 3 0 4 8 1 2

5 1 3 1 5 9 1 2 0 4 8
9 1 3 1 5 8 1 2 0 4
5 9 1 3 1 4 8 1 2 0
2 6 1 0 1 4 1 5 9 1 3

9 1 4 2 6 1 0 1 3 1 5 9
10 14 2 6 9 13 1 5
6 10 14 2 5 9 13 1

9 0 3 6
6 9 0 3
3 6 9 0

~1 4 7 1 0
1 0 1 4 7
7 1 0 1 4
4 7 1 0 1

2 5 8 1 1

8 9 10 11112 13 14 15

1 4 7 1 0 0 3 6 9
10 1 4 7 9 0 3 6 I 7 1 0 1 4 6 9 0 3
4 7 1 0 1 3 6 9 0

1 4 7 1 0
11 2 5
8 1 1 2 5
5 8 1 1 2
0 3 6 9
9 0 3
6 9 0 3
3 6 9 0

8 1 0 1 4 7
7 1 0 1 4
4 7 1 0 1
2 5 8 1 1

6 1 1 2 5 8
8 1 1 2 5
5 8 1 1 2

Figure 8: (a) The optimal send process schedule for P = 16 processes and an expansion factor
of K = 12. Entry (k , p) in the table gives the process 6 (k , p) to which process p sends data in
step k. (b) The send block schedule for the same case. Entry (k , p) in the table gives the local
block index that is sent by process p in step k. The arrays are divided into 4 x 4 permutation
blocks.

- 12 -

q
q’
p’
t‘

p = o o
p = 1 1
p = 2 2
p = 3 3
P = O
P = 1
p = 2
P = 3
p = o o
p = 1 1
p = 2 2
p = 3 3

pi p, pq p,
0 1 2 3
0 1 2 3 0 1 2 2 2 1 0 3 2 2 2 2

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 2 2 2 2 3 3 3 3 0 0 0 0
2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 0 0 0 0 1 1 1 1 2 2 2 2

0 12 8 4 1 13 9 5 2 14 10 6 3 15 11 7
1 1 3 9 5 2 14 10 6 3 15 11 7 0 12 8 4
2 14 10 6 3 15 11 7 0 12 8 4 1 13 9 5
3 15 11 7 0 12 8 4 1 13 9 5 2 14 10 6

0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 2 2 2 2 3 3 3 3 0 0 0 0
2 2 2 3 3 3 3 0 0 0 0 1 1 1 1
3 3 3 0 0 0 0 1 1 1 1 2 2 2 2

Figure 9: The optimal receive schedule, p’ and t’, for given values of q’ for I(’ = 3 and P’ = 4.

Figure 10: Constructing the first row of the receive schedule for K = 12 and P = 16. The
first four rows show the value of q and the corresponding values of q’, p‘ , and t’. The next four
rows give the values of a. The values of p and t , shown in the next two sets of four rows, are
deduced froin CY and p.

of the t‘ matrix equal i .

The receive schedule of the factored system (Eq. 8) can be used to construct that of the

full system (Eq. 4) as follows. Consider first the receive process schedule. For each process, q ,

we find the value of p’ Corresponding to q’ = mod(q, P’) for each of the K’ rows of the receive

schedule. We then let cr and p take the values 0,1,. . . , g- 1 to expand the receive schedule of the

factored system to that of the full system. This is done by setting cr = mod([q/gJ + P, g) , and

p = gp’ + 0. The receive block schedule is constructed in a similar way, but taking t = gt’ + 0.

In Fig. 10 we show bow to expand the first row of the receive schedule for the factored system

into that of the full system. Repeating this process for each row of the factored system gives

the complete receive schdule of the full system, as shown in Fig. 11.

An outline of the redistribution routine using MPISENDRECV to communicate the data is

given in Fig. 12.

- 13 -

3 1 5 1 1 7
4 0 1 2 8 i 10

11

0 1 2 8 4 1 1 3 9 5
5 1 1 3 9 6 2 1 4 1 0

-
-

0
1
2
3
4
5
6
7
8
9

10
11

-

-

-

5 1 1 3 9
6 2 14 10
7 3 1 5 1 1
8 4 0 1 2
9 5 1 1 3 1 0

10 6 2 14
11 7 3 1 5

6 2 1 4 1 0
7 3 15 11
4 0 1 2 8
9 5 1 1 3

6 2 1 4
11 7 3 15
8 4 0 1 2

9 9 9 9
10 10 10 10
11 11 11 11

0 1 2 3 4 5 6 7
0 0 0 0 1 1 1 1
1 1 1 1 2 2 2 2
2 2 2 2 3 3 3 3
3 3 3 3 0 0 0 0
4 4 4 4 5 5 5 5
5 5 5 5 8 8 6 6
6 6 6 6 7 7 7 7
7 7 7 7 4 4 4 4
8 8 8 8 9 9 9 9

10 10 10 10
11 11 11 11
8 8 8 8

7 3 15 11
4 0 1 2 8
5 1 1 3 9

10 6 2 14
11 7 3 15
8 4 0 1 2
9 5 1 1 3

10 10 10 10
11 11 11 11

9 9 9 9

12 13 14 15
3 15 11 7
0 1 2 8 4
1 1 3 9 5
2 14 10 6
7 3 15 11
4 0 1 2 8
5 1 1 3 9
6 2 14 10

11 7 3 15
8 4 0 1 2
9 5 1 1 3

10 6 2 14

7 7 7 7 4 4 4 4
4 4 4 4 5 5 5 5
5 5 5 5 6 6 6 6

11 11 11 11
8 8 8 8

8 8 8 8 9 9 9 9
10 10 10 10

1 1 1 1 1 2 2 2 2
6 6 6 6 1 7 7 7 7

Figure 11: (a) The optimal receive process schedule for P = 16 processes and an expansion
factor of K = 12. In the receive process schedule (a) entry (k, q) in the table gives the process
p from which process q receives data in step k. In the receive block schedule (b) entry (k, q)
in the table gives the local block index a t which the data received by process q in step k are
stored.

- 14 -

create general datatype, newtype 1
nsuperblks = m/(p*k*r)
do istep=O,k-1

determine process and block schedules,
source, dest, sendoff set, recvoff set

call mpi-sendrecv (abendoffset), nsuperblks, newtype,
dest, tag, b(recvoffset), nsuperblks, newtype, source,
tag, corn, status, ierr)

end do

Figure 12: Outline of code for increasing the block size of a block-cyclic distribution by a factor
k using send and receive schedules and the routine MPI-SENDRECV.

3. Performance Results

This section presents results for runs on the IBM SP-1 and the Intel Paragon for the redistri-

bution algorithms described in Section 2.

3.1. Results on the IBM SP-1

We ran experiments on the IUM SP system located at Argonne National Laboratory. This

machine has 128 Power-1 nodes each with 128 Mbytes of memory connected by both an SP-2

switch and by ethernet. The machine is officially regarded as an SP-2, although it has only

Power-1 nodes. However, the implementation of MPI used in our work communicates over

the ethernet and not over the fast switch. Thus, our results are more representative of an

IBM SP-1 system, and we shall henceforth refer to the machine as such. Version 1.0.7 of the

MPICH portable MPI library developed at Argonne National Laboratory and Mississippi State

University was used.

The timing results for the IBM SP-1 are shown in Fig. 13 as a function of the expansion

factor, I (, for 3, 10, 16, 32, and 64 processors. Figure (a) shows results for the synchronized

and iionsynchronized nonblocking receive version of the redistribution routine. As may be seen

from this figure, the unsynchronized version of the routine is up to a factor of three times faster

than the synchronized version. IIowever, the main drawback of the unsynchronized algorithm

is its need for as much buffering as data being redistributed.

The reason for the poorer performance of the synchronized algorithm is that some processes

have to wait for others before they can receive any data. For example, in the P = 4, K = 3

case process 3 does not receive its data until the other processes have received all their data. A

- 1 5 -

0.0

0.0

2
8
c

.LI

0.c
.I c-.

0.c

0.

1 1 1 1 1 1 1 1 1 1
(a)

I--- synchronized

- unsynchronized

1 1 1 1 1 1 1 1 1 I
2 4 6 8 10 12 14 16 18 20

Expansion factor, K

Figure 13: Performance of redistribution
routines on the IBM SP-1. (a) non-
blocking receive algorithm with simple
send schedule; (b) and (c) synchronized
nonblocking receive algorithm with ran-
dom and optimal schedules, respectively;
and (d) sendrecv algorithm with optimal
schedule. The block size was fixed at
T = 4 and the number of blocks per pro-
cess at 800. Each graph is labeled by the
number of processes used.

0.02

9
8
0

C .- 0.01

F

32
16

10

0 2 4 6 8 10 12 14 16 18 20
0.0

32
10
3

I I I I I I I I I I
2 4 6 8 10 12 14 16 18 20

Expansion factor, K

0 2 4 6 8 10 12 14 16 18 20 22
0.01 I ‘ I I I I I I I I J

Expansion factor, K

- 1 6 -

related effect is that there are hot spots in the communication. The timings for the synchronized

algorithm vary dramatically as Ii is changed. We interpret this as variance in processor waiting

and communication hot-spotting as IC is changed.

Results using a random block send schedule for the synchronized version of the redistribution

routine are shown in Fig. 13(b). These results show that even though there is some additional

overhead in generating the random sequence, there is a substantial performance improvement

compared with results for the simple send block schedule, although the performance is still

not quite as good as for the unsynchronized algorithm. The behavior as a function of Ii is

also much smoother, pointing to less processor waiting and hot-spotting due to the randomized

schedule.

Another clear effect is the mild rise in redistribution time as K increases. This is simply

due to the number of communication phases increasing linearly with Ii. This means that the

number of message startups is rising linearly with Ii, even though the total amount of data

sent is independent of K.

Using an optimal schedule we get the performance results shown in Fig. 13(c). The optimal

schedule reduces the timings so they are comparable with the unsynchronized case. This is

to be expected since the optimal schedule avoids the synchronization and communication hot

spots that degrade the performance for other schedules.

The performance for the version of the redistribution algorithm using the MPISENDRECV

routine is shown in Fig. 13(d). Comparison with Fig. 13(a) shows that the version using

MPI-SENDRECV is comparable in performance with the unsynchronized version using nonblock-

ing receives.

3.2. Results on the Intel Paragon

The Intel Paragon used is located at Oak Ridge National Laboratory. It has 66 nodes, each

with 32 Mbytes of memory, connected in a two-dimensional mesh. As in the runs on the IBM

SP-1, version 1.0.7 of the MPICIS portable MPI library was used. Timing results are shown in

Fig. 14.
We give an interpretation similar to that for the IBM SP-1. The simple, synchronized

algorithm is slow and exhibits fluctuating timings due to processor waiting and communication

hot-spotting. Randomizing the send schedule smooths and improves the results, as shown in

Pig. 14(b). Using the optimal send schedule (but still within the non-blocking receive algorithm)

gives the good results shown in Fig. 14(c). Finally, using MPISENDRECV in place of separated

sends and receives, with the optimal send and receive schedules, leads to the best performance

results shown in Fig. 14(d).

- 17 -

- -

0.08

0.07

0.06

0.05

z
!!4
0.04 .-

i.=
0.03

0.02

0.01

0.c

0.01 -

0.03 0.03 I I I I 1 I I I 1 I 1 1 1 1 l l l ~ ~ ~

(dl

43 -
v,
0 .fi .-

8 0.01 - - 8 0.01 - -
h G

I I I I I I I I I ~ 0.0 I I f l I I I ~ I ~ 0.0

0 2 4 6 8 10 12 14 16 18 20 22
! 0.0

2 4 6 8 10 12 14 16 18 20 22
Expansion factor, K Expansion factor, K

Figure 14: Same as for Fig. 13 but for the Intel Paragon.

- 18 -

L
redist (2) L redist (20)

1 Paragon 1 bcast 1 1.2 1 5":; 1 3.2 1 4.3 1 1.1 1
alltoall 2.9 7.9 12.2 22.9
redist (2) 14.0 14.6 14.9 15.3 15.7
redist (20) 20.9 21.8 22.5 23.4 24.3

alltoall 2.4 4.4 5.0 8.1 15.2
IRM SP-1 bcast 1.8 3.6 4.6 5.4

7.1 7.6 8.0 8.5 9.0
10.8 12.1 12.3 15.0 15.8

Table 2: Timings in milliseconds for broadcast and all-to-all operations on the Intel Paragon
and IUM SP-1 using the MPI-BCAST arid MPI-ALLTOALL routines, respectively. Also shown are
the timings for the senclrecv version of the redistribution algorithm for the cases I(= 2 and
K = 20. In the broadcast case one process broadcasts 3200 integers to all processes. In the all-
to-all case each process broadcasts L3200/NpJ integers to each process, where Np is the number
of processes. For the redistributions each process contains 800 blocks of block size T = 4.

3.3. Comparison with other Collective Communication Operations

In this section, we compare the performance of the redistribution routines with that of MPI

collective communication routines. We wish to know how redistribution times compare to

other bulk data movement operations. In one case, a single process broadcasts data to all other

processes by calling the routine MPIBCAST. In the second case each process broadcasts data

to all other processes by calling the routine MPI-ALLTOALL. The all-to-all operation is similar

to the communication perfornied in the redistribution operation. Timing results for the Intel

Paragon and IBM SP-1 are presented in Table 2. For the broadcast case the number of elements

broadcast by the root equals the number sent by each process in the redistributions shown in

Figs. 13 and 14, i.e., 3200 integers. For the all-to-all case the amount of data communicated

between each pair of processes is the same as in the redistributions.

As might be expected, broadcast is faster than the all-teal1 and redistribution operations.

This is because the broadcast sends fewer messages so the likelihood of network congestion

is less, and communication latency is reduced. Comparing the redistribution and all-to-all

operations, we find that for a small number of processors (3 and lo) , redistribution is at least

three times slower. For more processors, the difference becomes smaller, and redistribution

becomes faster than the all-to-all case for I(= 2 on 64 processors. This is due to the fact that

not every possible pair of processors communicates in the redistribution algorithm (as long as

I(< P) , while they do in all-to-all. That is, all-to-all has more messages for P large.

4. A More General Redistribution Algorithm

In general, a block-cyclic data redistribution n a y involve

- 19 -

1. varying the block size;

2. changing the topology of the process group from one Cartesian topology to another. For

example, from a 4 x 3 process layout to a 2 x 6 process layout;

3. redistributing from one process group to another, where the number of processes in the

groups may differ.

In this paper we have restricted our attention to the case in which the block size is increased

by a factor of I< from r to K r , and the processes involved remain fixed in number and identity.

The algorithms presented in Section 2 may be readily modified to handle the case in which the

block size decreases by a factor of K from K r to r . To do this we just run the redistribution

algorithm “in reverse.” That is, in each of the I< communication phases we swap the source

and destination processes, and the block ofEsets fromlinto which the blocks are sentlreceived.

The general case of transforming from block size r l to r2 may then be handled in two phases.

Denoting the least common multiple of r1 and r2 by t = K l r l = K 2 r 2 , then the block size is

first expanded by the factor Ii‘l and then shrunk by the factor Ii‘z (or vice versa).

Changing the topology of the process group, or redistributing to another process group,

leads to another class of algorithms not considered in this paper.

Our redistribution algorithms can be extended to handle multi-dimensional arrays dis-

tributed across processes arranged with a virtual topology with the same number of dimensions

and the same number of processors in each dimension. To do this we simply apply the one-

dimensional algorithm to each direction in turn. Here we can take advantage of MPI’s ability

to create and manipulate subgroups of processes since it will be necessary to form communi-

cators whose associated groups are the rows and columns of the virtual topology. It is these

communicators that are used in the one-dimensional redistributions. In the multi-dimensional

case the blocks communicated will also be multi-dimensional. The datatype for the blocks can

be created in a straightforward way using MPI’s datatype constructor routines. As an example,

consider the case of a two-dimensiona1 array distributed over a mesh of P x Q processes. S u p

pose we want to change the block size from PI x c1 to r2 x c2. We first apply a one-dimensional

redistribution along the rows of the virtual topology which changes the block size to r1 x c2.

Then we apply a second one-dimensional redistribution along the columns of the topology which

changes the block size to r2 x c2.

5 . Summary

We have shown how communication schedules can be constructed that permit the efficient

redistribution of block-cyclic data distributuions. These schedules can be used to implement

a version of the redistribution algorithm using the MPI routine MPISENDRECV that requires

- 20 -

no extra buffering and so is more economical in its use of memory than the unsynchronized

version using nonblocking receives. It is also comparable in performance. The MPI specification

document an3 additional information about MPI may be obtained from the MPI Resource

Center a t Oak Ridge National Laboratory (h t tp : / / w w . epm. orn l . gov/’ aalker/rnpi/). The

source code for the algorithms described in this paper are available from the same location.

Acknowledgments

The authors acknowledge the use of the Intel Paragon XP/S 5 computer, located in the Oak

Ridge National Laboratory Center for Computational Sciences (CCS), funded by the Depart-

ment of Energy’s Mathematical] Information, and Computational Sciences (MICS) Division of

the Office of Computational and Technology Research (OCTR). The authors also acknowledge

use of the IBM SP system at Argonne National Laboratory. The authors are grateful for access

to these systems.

6. References

[l] J. J. Dongarra and D. W. Walker. Software libraries for linear algebra on high performance

computers. SIAM Review, 37(1), June 1995.

[2] Message Passing Interface Forum. MPI: A message-passing interface standard. Interna-

tional Journal of Supercomputer Applications, 8(3/4), 1994. Special issue on MPI.

[3] C. Koelbel, 1). Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High Performance

Fortraii Handbook. The MIT Press, 1994.

- 2 1 -

ORNL/TM-12999

INTERNAL DISTRIBUTION

1. B. R. Appleton 22. C. H. Romine

4. E. F. D’Azevedo 24-28. R. F. S‘ incovec
5. J. J . Dongarra 29-33. D. W. Walker
6. J. B. Drake 34. P. H. Worley
7. G. A. Geist 35. Central Research Library
8. L. J . Gray 36. ORNL Patent Office

9-13. M. R. Leuze 37. IC-25 Applied Technology Li-

2-3. T. S. Darland 23. T . H. Rowan

14. E. G. Ng brary
15. C. E. Oliver 38. Y-12 Technical Library
16. B. W. Peyton 39. Laboratory Records - RC

17-21. S. A. Raby 40-41. Laboratory Records Department

EXTERNAL DISTRIBUTION

42. Robert J . Allen, Daresbury Laboratory, S.E.R.C., Daresbury, Warrington, WA4
4AD, United Kingdom

43. Ed Anderson, Mathematical Software Group, Cray b e a r c h Incorporated, 655F
Lone Oak Drive, Eagan, MN 55121

44. Marco Annaratone, Digital Equipment Corporation, 146 Main Street MLO1-
5/U46, Maynard, MA 01754

45. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union Street,
S.E., Minneapolis, MN 55455

46. Robert Babb, Oregon Graduate Institute, Department of Computer Sci. and Eng.,
20000 NW Walker Road, P. 0. Box 91000, Beaverton, OR 97291-1000

47. Clive Baillie, University of Colorado, Computer Science Department, Campus Box
430, Boulder, CO 80309

48. Joseph G. Baron, IBM Corporation, AWS Advanced Product Development, 11400
Burnet Road, Austin, T X 78758-3493

49. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

50. Eric Barszcz, Mail Stop T-045, NASA Ames Research Center, Moffet Field, CA
94035

51. A. Basu, C-DAC, 2/1 Brunton Road, Bangalore 560 025, India

52. Ed Benson, Digital Equipment Corp., 146 Main Street, ML01-5/U46, Maynard,
MA 01754

I

- 22 -

53. Scott Berryman, Yale University, Computer Science Department, 51 Prospect
Street, New Haven, CT 06520

54. Biondo Biondi, Stanford University, Department of Geophysics, Stanford, CA
94305

55. Ken Birman, Cornel1 University, Computer Science Dept., 405 Upson Hall, Ithaca,
NY 14853

56. Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge,
MA 02138

57. Clemens H. Cap, University of Zurich, Department of Computer Science, Win-
terthurerstr. 190, CH-8057 Zurich, Switzerland

58. Trevor Carden, Parsys Ltd., Boundary House, Boston Road, London W7 2QE,
United Kingdom

59. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U S . Department of Energy, Washington, DC
20585

60. William Celmaster, Digital Equipment Corporation, Mail Stop MLOl-S/Bll, 146
Main Street, Maynard, MA 01754-2571

61. Hsing-bung Chen, University of Texas-Arlington, CSE Department, Box 19015,
Arlington, TX 76019

62. Jaeyoung Choi, Soongsil University, Department of Computer Science, Dongzak-
Ku, Sangdo5-Dong, Seoul, South Korea

63. Lyndon Clarke, Edinburgh Parallel Computing Centre, James Clerk Maxwell
Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United King-
dom

64. Robert Cohen, Department of Computer Science, Australian National University,
GPO Box 4, Canberra 2601, Australia

65. Jeremy Cook, Parallel Processing Laboratory, Dept. of Informatics, University of
Bergen, High Technology Centre, N-5020 Bergen, Norway

66. Manuel Eduardo C. D. Correia, Centro de Inforrnatica, Universidade do Porto
(CIUP), Rua do Campo Alegre, 823, 4100 Porto, Portugal

67. Jim Cownie, Meiko Limited, 650 Aztec West, Bristol BS12 4SD, United Kingdom

68. Michel Dayde, ENSEEIHT, 42 Avenue G. Coriolis, 31057 Toulouse Cedex, France

69. Mark Debbage, University of Southampton, Dept. of Electronics and Computer
Science, Highfield, Southampton SO9 5NH, United Kingdom

70. David DiNucci, Computer Sciences Corporation, NASA Ames Research Center,
M/S 258-6, Moffet Field, CA 94035

71. Jack Dongarra, University of Tennessee, 107 Ayres Hall, Department of Computer
Science, Knoxville, T N 37996-1301

- 23 -

72. John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

73. Dominique Duval, Telmat Informatique, BP 12, Rue de l’hdustrie, 68360 Soultz,
France

74. Anne Elster, Schlumberger Austin System Center, P.O. Box 200015, Austin, T X
78720-0015

75. Jim Feeney, IBM Endicott, 384 NY RT 3813, Endicott, NY 13760

76. Sam Fineberg, NASA Ames Research Center, M/S 258-6, Moffett Field, CA 94035-
1000

77. Jon Flower, Parasoft Corporation, 2500 E. Foothill Blvd., Suite 205, Pasadena,
CA91107

78. David ForsIund, Los Alamos National Laboratory, Advanced Computing Labora-
tory, MS B287, Los Aiamos, NM 87545

79. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

80. Lars Freilesen, Math-Tech Aps, Kildeskovsvej 67, 2820 Gentofte, DK - Denmark

81. Josef Fritscher, Technical University of Vienna, Computing Center, Wiedner Haupt-
strasse 8-10, A-1040 Vienna, Austria

82. Daniel D. Frye, IBM Corporation, Dept. 49NA / MS 614, Neighborhood Road,
Kingston, NY 12401

83. Kyle Gallivan, University of Illinois, CSRD, 465 CSRL, 1308 West Main Street,
Urbana, IL 61801-2307

84. Dennis Gannon, Indiana University, Department of Computer Science, Blooming-
ton, IN 47401

85. Robert van de Geijn, University of Texas, Department of Computer Sciences , TAI
2.124, Austin, T X 78712

86. A1 Geist, Oak Ridge National Lab, Bldg. 6012 / MS-6367, P. 0. Box 2008, Oak
Ridge, T N 37831-6367

87. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

88. Luc Giraud, CERFACS, Parallel Algorithms Team, 42 Av. Coriolis, 31057 Toulouse,
France

89. Ian Glendinning, University of Southampton, Dept. of Electronics and Comp
Sci., Southampton, SO9 5 N H , United Kingdom

90. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

91. Elana Granstoii, Rice University, CRPC/CITI, 6100 South Main Street, Houston,
T X 77005

- 24 -

92. Adam Greenberg, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142-1214

93. Robert Greimel, AVL List Gmbh., Department TSS, Kleiststrasse 48, A-8020
Graz, Austria

94. William Gropp, Argonne National Laboratory, Mathematics and Computer Sci-
ence, 9700 South C a s Avenue, MCS 221, Argonne, IL 60439-4844

95. Sanjay Gupta, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665-5225

96. Robert J. Harrison, Battelle Pacific Northwest Laboratory, Mail Stop K1-90, P.O.
Box 999, Richland, WA 99352

97. Leslie Hart, NOAA/FSL, R/E/FS5, 325 Broadway, Boulder, CO 80303

98. Tom Ilaupt, Syracuse University, Northeast Parallel Architectures Center, 11 1
College Place, Syracuse, NY 13244-4100

99. Michael Heath, University of Illinois, NCSA, 4157 Beckman Institute, 405 North
Mathews Avenue, Urbana, IL 61801-2300

100. Don Heller, Center for Research on Parallel Computation, Rice University, P.O.
Box 1892, Houston, TX 77251

101. Rolf Hempel, GMD, Schloss Birlinghoven, Postfach 13 16, D-W-5205 Sankt Au-
gustiii 1, Germany

102. Tom Henderson, NOAA/FSL, R/E/FS5, 325 Broadway, Boulder, CO 80303

103. Anthony J. G. Hey, University of Southampton, Dept. of Electronics and Comp.
Sci., Southampton, SO9 5NH, United Kingdom

104. Mark Hill, University of Southampton, Dept. of Electronics and Comp. Sci.,
Southampton, SO9 5NH, United Kingdom

105. Alex Ho, IBM Almaden Research Center, K54/802, 650 Harry Road, San Jose,
CA 95120-6099

106. C. T. Howard Ho, IBM Almaden Research Center, K54/802,650 Harry Road, Sail
Jose, CA 95120

107. Randy Holmes, IBM Corporation, High Performance Computing Services, 1507
LBJ Freeway, Dallas, TX 75234

108. Gary W. Howell, Florida Institute of Technology, Department of Applied Mathe-
matics, 150 W. Univeristy Blvd., Melbourne, FL 32901

109. Fred IIowes, Office of Scientific Computing, ER-7, Applied Mathematical Sciences,
Office of Energy Research, U. S. Department of Energy, Washington, DC 20585

110. Chengchang Huang, 2814 Beau Jardin, Apt. 301, Lansing, MI 48910

111. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U. S. Department of Energy, Washington, DC
20585

- 25 -

112. Steve Huss-Lederman, Supercomputing Research Center, 17100 Science Drive,
Bowie, MD 20715-4300

113. Joefon Jann, IBM T.J. Watson Research Center, P. 0. Box 218, Yorktown Heights,
NY 10598

114. Edgar 9‘. Kalns, Michigan State University, Advanced Computing Systems Lab,
Department of Computer Science, East Lansing, MI 48824

115. Malvyn €I. Icalos, Cornell Theory Center, Engineering and Theory Center Rldg.,
Cornell University, Ithaca, NY 14853-3901

116. Arkady Kanevsky, The MITRE Corp., 202 Burlington Rd., Bedford, MA 01730-
1420

117. John Kapenga, Department of Computer Science, Western Michigan Universuty,
Kalamazoo, MI 49008

118. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

119. Udo Keller, PALLAS GmbH, Hermuelheimer Strasse 10, D-W5040 Bruehl, Ger-
many

120. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

121 ~ Ronan Keryell, Ecole Nationale Superieure des Mines de Paris, Centre de Recherche
en Informatique, 35, Rue Saint-Honore, 77305 Fontainebleau Cedex, France

122. Chung-Ta King, National Tsing Hua University, Department of Computer Scienc,
Hsinchu 30043, Taiwan, R.O.C.

123. Shlomo Kipnis, IBM T. J. Watson Research Center, PO Box 218, Yorktown
Heights, NY 10598

124. Robert L. Knighten, Intel Corporation, supercomputer Systems Division, 15201
NW Greenbrier Parkway, Beaverton, OR 97006

125. Susan Kraus, NEC Systems Lab, Inc., 4800 Research Forest Drive, The Wood-
lands, T X 77381

126. Pierre Lagier, 24, Avenue de I’Europe, 78141 Velizy Villacoublay, France

127. Derryck Lamptey, National Transputer Support Centre, University of Sheffield,
Shefield, United Kingdom

128. Falk Langhammer, Parsylec Computer GmbII, Juelicher Strasse 338, D-5100 Aachen,
Germany

129. Randolph Langley, Florida State University, 400 SCL, B-186, Tallahassee, FL
32306

130. Bob Leary, San Diego Supercomputer Center, P.O. Box 85608, San Diego, CA
92186-9784

131. Eric Leu, IBM Almaden Research Center, 650 Harry Road K54/802, San Jose,
CA 95120-6099

- 26 -

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

David Levine, Argonne National Laboratory, MCS 221 C-216, Argonne, IL 60439

Yen-Chun Lin, IRM Almaden, K54/802, 650 Harry Road , San Jose, CA 95120-
6099

David Linden, Digital Equipment Corp., 146 Main Street, ML01-5/U46, Maynard,
MA 01754

Rik Littlefield, Battelle Pacific Northwest Laboratory, Mail Stop K1-87, P.O. Box
999, Richland, WA 99352

Miron Livny, University of Wisconsin, Department of Computer Science, 1210
West Dayton Street, Madison, WI 53706

David Loveman, Digital Equipment Corporation, Massively Parallel Systems Group,
MS ML01-5/U46, 146 Main Street, Maynard, MA 01754-2571

Rusty Lusk, Argonne National Laboratory, Mathematics and Computer Science
Div., 9700 South Cass Avenue, MCS 221, Argonne, IL 60439-4844

Neil MacDonald, Edinburgh Parallel Computing Centre, James Clerk Maxwell
Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United King-
dom

Arthur B. Maccabe, Sandia National Labs, Dept. 1424, Albuquerque, NM 87185-
5800

Peter Madams, nCUBE Corporation, 919 East Hillsdale Blvd., Foster City, CA
94404

Arnitava Majumdar, University of Michigan, Department of Nuclear Engineering,
Ann Arbor, MI 48109 .
Dan Cristian Marinescu, Computer Sciences Department, Purdue University, West
Lafayette, IN 47907

Oliver McBryan, University of Colorado at Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

Philip K. McKinley, Michigan State University, A714 Wells Hall, East Lansing,
MI 48824

Robert McLay, University of Texas at Austin, Dept ASE-EM, 60600, Austin, TX
78712

Moataz Mohamed, University of Oregon, Department of Computer Science, Eu-
gene, OR 97403

C. Robert Morgan, Digitial Equipment Corp., Massively Parallel Systems Group,
Mail Stop ML01-5/U46, 146 Main Street, Maynard, MA 01754

Pat Morre, NCUBE, 1825 N. W. 167th Place, Beaverton, OR 97000

Charles Mosher, ARC0 Exploration and Production Technology, 2300 West Plano
Parkway, Plano, TX 75075-8499

Andreas Mueller, Centro Svizzero di Calcolo Scientifico, Via Cantonale, CII-6928
Manno, Switzerland

- 27 -

152. Harish Nag, Intel Corporation, M/S C04-02, 5200 Elam Young Parkway, Hills-
boro, OR 97124

153. David Nelson, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U. S. Department of Energy, Washington, DC
20585

154. Dan Nessett, Lawrence Livermore National Laboratory, L-60, Livermore, CA
94550

155. Lionel M. Ni, Michigan State University, Dept. of Computer Science, A714 Wells
Hall, East Lansing, MI 48824-1027

156. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

157-161. Steve Otto, Oregon Graduate Institute, Department of Computer Sci. and Eng.,
20000 N W Walker b a d , P. 0. Box 91000, Beaverton, OR 97291-1000

162. Peter S. Pacheco, University of San Francisco, Department of Mathematics, San
Francisco, CA 94117

163. Cherri M. Pancake, Oregon State University, Department of Computer Science,
Corvallis, OR 97331-3202

164. Raj Panda, IBM Corporation, Mail Code E39/4305, 11400 Burnet Rd. , Austin,
T X 78758

165. Arnulfo Perez, Centro de Intelligencia Artifical, ITESM, SUC. De Correos "J" C.P.
64849, Monterrey N.L., Mexica

166. K . S . Perianayagam, Centre for Development of Advanced Computing, Pune Uni-
versity Campus, Pune 411 007, India

167. Matthew Peters, IBM UK Scientific Centre, Mailpoint 137, Hursley Park, Winch-
ester SO21 2JN, United Kingdom

168. Garry Petrie, Intel MS (305-01, 5200 NE Elam Young Parkway, Hillsboro, Oregon
971246497

169. Jean-Laurent Philippe, ARCHIPEL S.A., PAE des Glaisins, 1 rue du Bulloz, F-
74940 Annecy-le-Vieux, France

170. Paul Pierce, Intel Corporation, Supercomputer Systems Division, 15201 NW Green-
brier Parkway, Beaverton, OR 97006

171. Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
731 1, Wake Forest University Winston-Salem, NC 27109

172. Steve Poole, 11631 Lima, Houston, T X 77099

173. Angela Quealy, Sverdrup Technology, Inc., NASA Lewis Research Center Group,
2001 Aerospace Pkwy, Brook Park, OH 44142

174. Sanjay Ranka, Syracuse University, Northeast Parallel Applications Center, 1 I1
College Place, Syracuse, NY 13244-4100

- 28 -

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

Robbert van Renesse, Dept. of Computer Science, 4118 Upson Hall, Cornel1 Uni-
versity, Ithaca, NY 14853

Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

Carsten Rietbrock, Parsytec Computer GmbH, Juelicherstrasse 338,52070 Aachen,
Germany

Peter Rigsbee, Cray Research Incorporated, 655 Lone Oak Drive, Eagan, MN
55121

Guy Robinson, European Centre for Medium Range Weather Forecasting, Read-
ing, RG3 9AX, Berkshire, United Kingdom

Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

Eugen Schenfeld, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

Erich Schikuta, CITI/CRPC, Rice University, 6100 South Main, Houston, T X
77005

Ricardo A. Schmutzer, Pontificia Universidad Catolica de Chile, Department of
Computer Science, Laboratory for A.I. and Optimization (LIAO), Las Torcazas
212, Las Condes, Santiago, Chile

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Mark Sears, Division 1424, Sandia National Laboratories, P 0 Box 5800, Albu-
querque, NM 87185-5800

Chuck Simmons, 500 Oracle Parkway, Box 659414, Redwood Shores, CA 94065

Rich Simpson, Advanced Compiler and Software Engineering Technologies, Av.
Albert Einstein, 4, B-1348 Louvain-la-Neuve, Belgium

Ambuj Singh, University of California at Santa Barbara, Department of Computer
Science, Santa Barbara, CA 93106

Anthony Skjellum, Mississippi State University, Department of Computer Science,
Drawer CS, Mississippi State, MS 39762-5623

Marc Snir, IBM T. J. Watson Research Center, PO Box 218, Room 28-226, York-
town Heights, NY 10598

Karl Solchenbach, PALLAS GmbH, Hermuelheimer Strasse 10, D-5040 Briiehl,
Germany

Alain Stroessel, Institut Francais du Petrole, Parallel Processing Group, BP 311 -
92506 Rued Malmaison, France

Vaidy Sunderam, Emory University, Dept. of Math and Computer Science, At-
lanta, GA 30322

- 29 -

194. Mike Surridge, Univ. of Southampton Parallel Applications Centre, 2 Venture
Road, Chilworth Research Centre, Southampton SO1 7NP, United Kingdom

195. Alan Sussman, University of Maryland, Computer Science Department , A. V.
Williams Building , College Park, MD 20742

196. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

197. Clemens-August Thole, GMD-I1 .T, Schloss Birlinghoven, D-5205 Sankt Augustin
1, Germany

198. Bob Tomlinson, Los Alarnos National Laboratory, Group C-8, MS B-272, Los
Alamos, NM 87545

199. Bernard Tourancheau, Ecole Wormale Superieure de Lyon, Laboratoire de 1’Information
du Parallelisme, 69364 Lyon Cedex 7, France

200. Lew Tucker, Thinking Machines Corporation, 245 First Street, Cambridge, MA
02142- 1214

201. Ravi C. Venkatesan, Center for Development of Advanced Computing , TUL
Group, Ganeshkhind, Pune 411007, India

202. Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street, N.W.,
Washington, DC 20550

203. Linton Ward, 11400 Burnet Rd, Austin, TX 78758

204. Stephen It. Wheat, Dept. 1424, Sandia National Labs, Albuquerque, NM 87185-
5800

205. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, T X 77251

206. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663, MS-265, Los Alamos, NM 87545

207. Joel Williamson, Convex Computer Corporation, 3000 Waterview Parkway, Richard-
son, T X 75083-3851

208. Office of Assistant Manager for Energy Research and Development, U. S. Depart-
ment of Energy, Oak Ridge operations Office, P. 0. Box 2001, Oak Ridge, T N
37831-8600

209-210. Office of Scientific and Technical Information, P. 0. Box 62, Oak Ridge, T N 37830

