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REDISTRIBUTION OF BLOCK-CYCLIC DATA 

DISTRIBUTIONS USING MPI 

David W. Walker 

Steve W. Otto 

Abstract 

Arrays that are distributed in a block cyclic fashion are important for many applications 
in the computational sciences since they often lead to parallel algorithms with good load 
balancing properties. We consider the problem of redistributing such an array to a new 
block size. This operation is directly expressible in High Performance Fortran (HPF) and 
will arise in applications written in this language. Efficient message passing algorithms 
are given for the redistribution operation, expressed in the standardized message passing 
interface, MPI. The algorithms are analyzed and performance results from the IBM SP-1 
and Intel Paragon are given and discussed. The results show that redistribution can be 
done in time comparable to other collective communication operations, such as broadcast 
and MPIALLTOALL. 
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1. Introduction 

This paper presents different strategies for changing the distribution of an array from one 

block-cyclic distribution to another. Implementations using the MPI standard message passing 

interface are given, and performance results for different redistribution algorithms are presented 

for the IBM SP-1 and the Intel Paragon. These results are interpreted in terms of a simple 

performance model. 

The block-cyclic data distribution is often used as a means of statistically load balancing 

inhomogeneous computations. For example, it is used in the ScaLAPACK parallel software 

library for load balancing dense matrix computations such as LU factorization (see [I] and 

references therein). Often the optimal block-cyclic data distribution for successive phases of an 

application will differ, hence redistribution is necessary to achieve the best performance. High 

Performance Fortran (HPF) [3] contains a REDISTRIBUTE directive that can be used to change 

from one block-cyclic distribution to another. Thus, we believe the work presented here will be 

of value to researchers designing HPF compilers that use MPI as a target. 

MPI is a standard message passing interface for use in parallel applications and software 

libraries in message passing environments, particularly distributed memory concurrent comput- 

ers. MPI is designed to be extensible and thread-safe, and to take advantage of features of the 

hardware. In this paper it is not practical to  give complete descriptions of each MPI routine 

used in the redistribution routines. For this the reader is referred to the MPI specification [2]. 

The rest of this paper is arranged as follows. In Section 2 we discuss the block-cyclic 

data distribution and describe algorithms for increasing the block size of such distributions by 

an integer factor. The MPI kernels for performing these algorithms are given. In Section 3 

performance results for redistributions on the IBM SP-1 and Intel Paragon are presented for the 

different redistribution algorithms. In Section 4 we discuss generalizations to arbitrary block 

sizes and multi-dimensional arrays. A summary is provided in Section 5. 

2. Data Distribution Transformations 

2.1. The Block Cyclic Data Distribution 

The block-cyclic data distribution is widely used because it is both simple, and a good method 

for achieving approximate static load balance in problems in which the computational load is 

nonuniformly spread across a domain. Given a set of M items, P processes, and a block size 

r ,  the block-cyclic data distribution first divides the objects into contiguous blocks of r items 

each (though the last block may not be full). Then the blocks are assigned to processes in 

round-robin fashion so that the mth block is assigned to process number rn mod P. Thus, the 

block cyclic data distribution maps the global index rn to a process index, p ,  a block index, b ,  
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Figure 1: Block-cyclic array redistribution for the case P = 1 and K = 3. B is the global block 
index. 

0 1 2 3 0 1 .._ 

local t o  the process, and an item index, i, local to  the block, with all indices starting at  0. The 

mapping m ( p ,  6, i) may be written as 

m H ( B  mod PI L:J, rn mod r )  , 

where B = [rn/rJ is the global block index. It should be noted that Eq. 1 reverts to  an 

unblocked, cyclic distribution when r = 1, with local index i = 0 for all blocks. A noncyclic, 

block distribution is recovered when T = r M / P ] ,  in which case there is a single block in each 

process with block index 6 = 0. 

For multi-dimensional arrays, a block-cyclic data distribution is obtained by applying the 

one-dimensional block-cyclic data distribution independently to  the index set of each of the 

array dimensions, having first specified the block size and the number of processes for each 

dimension. 

2.2. Redistribution Algorithms 

We will now show how MPI may be used to transform a one-dimensional array from one block- 

cyclic data  distribution to another. We shall restrict our attention to the case in which the 

block size increases by an integer factor, I<, from r to  K r .  The more general case of arbitrary 

block size changes for multi-dimensional arrays is considered in Section 4. 
We shall refer to a set of L = PI( successive blocks as a superblock. Thus the blocks 

globally indexed by 0 to  L - 1 are the first superblock, those indexed by L to  2L - 1 are the 

second superblock, and so on. It should be noted that the communication pattern required 

to  redistribute each superblock is the same. Figure 1 shows an example of redistribution for 

P = 4 and Ii' = 3. In this caSe the length of a superblock is L = 12 blocks and, as can be seen 

in the figure, the communication pattern repeats after the first 12 blocks. 

Each superblock is redistributed in exactly the same way, so it is sufficient t o  describe a 
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Figure 2: Using a derived datatype to transfer all superblocks together. In part (a), the 
shaded regions denote the data  sent by process 2 during one of the k steps of the redistribution 
algorithm. Only the first two superblocks are shown; the pattern repeats for all superblocks. 
In part (b), the same data movement is shown from the point of view of process 2. The process 
sends every third block of its local array. The type extent that produces this effect is also 
shown. 

redistribution algorithm for just one superblock of L blocks. The last superblock may be in- 

complete, and this may be handled either by inserting conditional statements into the basic 

superblock redistribution code, or by redistributing the last superblock separately. We shall de- 

scribe the algorithm for redistributing full superblocks, where each of the P processes originally 

contains I< blocks of r elements and after redistribution contains one block of K r  elements. 

Since the communication pattern between processes is the same for each superblock, blocks 

a t  the same position within a superblock are always communicated between the same pair of 

processes. This is shown in Fig. 2 for P = 4 processes, and an expansion factor of I< = 3. 

The block a t  position 2 in the superblock (shown shaded) is sent from process 2 to process 

0 in each superblock. In the algorithms presented below the redistribution takes place in K 

communication phases. In a phase, each process sends/receives one block from/into the same 

position in each superblock. We also wish to do the entire communication, for all superblocks, 

in K communication steps. To do this we can define an MPI derived datatype that picks out a 

block at a given position in each superblock, as shown in part (b) of Fig. 2. This datatype can 

then be passed to the MPI point-to-point communication routines to specify communication 

for all superblocks simultaneously. 

In Fig. 3 we present the MPI  / Fortran code for creating the derived datatype, newtype, 

which picks out one block from each superblock. newtype consists of a single block of data, 
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call mpi-comm-size (comm, p, ierr) 
call mpi-type-extent (intype, sizeofdata, ierr) 
call mpi-type-contiguous (r, intype, blocktype, ierr) 
disp(1) = 0 
disp(2) = sizeofdata*k*r 
type(1) = blocktype 
type(2) = MPI-UB 
blen(1) = 1 
blen(2) = 1 
call mpi-typestruct (2 ,  blen, disp, type, neutype, ierr) 
call mpi-type-commit (newtype, ierr) 
call mpi-typefree (blocktype, ierr) 

Figure 3: Fortran 77 code for creating the derived datatype newtype for redistributing an array 
of type intype.  We have assumed that all the superblocks are full, i.e., that m is divisible by 
p*k*r, where p is the number of processes in  tlie communicator corn. 

but we have used the MPI-defined upper bound marker, MPI-UB, to  set the extent of newtype 

to  K blocks. An alternative approach to creating a derived datatype that picks out one block 

from each superblock is to  use the MPI vector datatype constriictor, MPI-TYPE-VECTOR, with 

a block length of T and a stride of K v  elements. 

2.2.1. Redistribution Using Nonblocking Receives 

The simplest approach to  designing a redistribution routine is to  use wildcarded, nonblocking 

receives. When receiving data in this way, each process needs to  be able to identify the data 

that it receives. One way to do this is to  use “self-describing’’ messages - when sending a block 

the source process uses the routine MPI-PACK to  prefix the global block index to the data sent. 

This global block index is extracted by the receiving process using the routine MPI-UNPACK 

and is used to determine where to store the blocks received. 

We shall first present two versions of the redistribution routine using nonblocking receives. 

In version 1 only a maximumof one receive is outstanding (i.e,, is posted but not yet completed) 

in each process. In version 2 a maximum of Ii‘ receives may be outstanding in each process. In 

the former case the redistribution routine needs to provide buffering for only one message - 

M / ( I ( P )  data items. In the latter case buffering must be provided for K messages, i.e., M / P  

data items. Thus, the buffering required is the same as the number of data items per process. 

An outline of the MPI code for versions 1 and 2 of the redistribution routine is given in 

Figs. 4 and 5, respectively. In version 1 each of the I< communication phases posts a receive, 

sends data, and then waits for completion of the receive. Thus, each process is synchronized 

with another on each pass through the loop. We shall therefore refer to this as the synchronized 
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create general datatype, newtype 

nsuperblks = m/(p*k*r) 
do istep=O,k-1 

call mpi-irecv (rbuf , rbuf size, MPI-PACKED, 

b - p*istep + myrank 
soffset = istep*r 

call mpi-pack (b, 1, MPI-INTEGER, sbuf, sbufsiz 

call mpi-pack (a(soffset), nsuperblks, neutype. 

dest = b/k 
call mpisend (sbuf , pos, HPI-PACKED, 

call mpi-wait (reqobj, status, ierr) 

call mpi-unpack (rbuf , rbufsize, pos, b, 1. 

roffset = r*mod(b,k) 
call mpi-unpack (rbuf, rbufsize, pos, b(roffset1, 

HPIANYSOURCE , tag, corn, reqob j , ierr ) 

pos = 0 

pos, comm, ierr) 

sbuf, sbufsize, pos, corn, ierr) 

dest. tag, corn. ierr) 

pos = 0 

HPI-INTEGER, comm, ierr) 

nsuperblks , newtype, COIPIP, ierr) 
end do 

Figure 4: Fortran 77 code for increasing the block size of a block-cyclic data distribution by a 
factor k using nonblocking receives. p is the number of processes in the communicator comm. 

nonblocking receive redistribution routine. In version 2 ail the K receives are posted and then 

the corresponding IC sends are performed. Finally the routine waits until all the receives have 

completed by calling MPI-WAITANY times. Less synchronization occurs in version 2, so we 

shall refer to this as the unsynchronized nonblocking receive redistribution routine. 

There are a couple of points to  note about these two nonblocking receive redistribution 

algorithms. First, in the synchronized case, in phase k a process receives local block k of the 

source process. If we were to  query the return status of each receive it would then be possible to  

compute the global block index on the receiving process, and it would not be necessary to pack 

the gIobaI block index into each message. In the unsynchronized case the packing/unpacking can 

also be avoided, but it would be necessary for each process to  keep a count of how many messages 

it had received from each process. Then, taking advantage of the fact that  MPI guarantees 

non-overtaking messages between pairs of processes, i t  is possible to  find the local block index 

on the source process and hence to  find the global block index. Finally, in the unsynchronized 

algorithm the data  can be sent in ready mode, provided a barrier synchronization is performed 

after posting all the receives. This may result in improved performance on some systems. 
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create general datatype, newtype 

nsuperblks = m/(p*k*r) 
do istep=O,k-1 
j = istep*rbufsize/k 
call mpi-irecv (rbuf ( j ) , rbuf size, MPI-PACKED, 

MPI-ANYSOURCE, tag, comm. reqobj (istep) ierr) 
end do 
do istep=O,k-1 
b = p*istep + rnyrank 
soffset = istep*r 
pos = 0 
call mpi-pack (b, 1, WPI-INTEGER, sbuf, sbufsize, 

call mpi-pack (a(soffset.1, nsuperblks, newtype, 

dest = b/kpar 

pos, comm, ierr) 

sbuf, sbufsize, pos, comm, ierr) 

dest, tag, COD, ierr) 
call mpigend (sbuf, pos, MPISACKED, 

end do 
do istep=O,k-l 
call mpi-aaitany (k, reqobj, indx, status, ierr) 
pos = (indx-l)*rbufsize/k 
call mpi-unpack (rbuf , rbufsize, post b, 1, 

roffset = r*mod(b,k) 
call mpi-unpack (rbuf, rbufsize, pos, b(roffset1, 

WPI-INTEGER, cow, ierr) 

nsuperblks, neotype. comm, ierr) 
end do 

Figure 5: Fortran 77 code for increasing the block size of a block-cyclic data distribution by a 
factor k using nonblocking receives. p is the number of processes in the communicat,or corn. 



- 7 -  

2.2.2. Communication Schedules 

In the synchronized algorithm, some processes have to wait €or others before they can receive 

any data, thereby degrading communication performance. For example, in the P = 4, Ii' = 3 

case process 3 does not receive its data until the other processes have received all their data. 

A corollary of this is that there are hot spots in the communication - in the first step of 

the algorithm the first max(K,P)  processes all send data  to process 0, for example. These 

hot spots can also degrade communication performance. The unsynchronized version avoids 

excessive synchronization overhead and so is faster than the synchronized version (see Section 

3). However, the main drawback of the unsynchronized algorithm is its need for as much 

buffering as data being redistributed. We have therefore attempted to find variants of the 

synchronized version that are comparable in performance with the unsynchronized version. 

The poorer performance that arises from excessive synchronization and communication hot 

spots is largely due to  the simple way in which the communication in the K stages of the 

algorithm were scheduled. We shall refer to the local index of the block sent by process p in 

stage k of the algorithm as the send black schedule, b ( k , p ) .  Similarly, we shall refer to the rank 

of the process to which process p sends data in stage k as the send process schedule, q ( k , p ) .  In 

the algorithms discussed so far we send local block k at step L, i.e., 

b ( k , p )  = k 

An easy way to reduce the impact of synchronization and communication hotspots might 

be to send the Ii blocks in random order. This is simple to  do since the messages are self- 

describing. At each stage we select at random a local block index from those that  have not 

yet been sent. Then, as before, we evaluate the corresponding global block index and the 

destination process, and prepend the global block index to the data  sent. 

Although the random send block schedule improves the performance of the synchronized 

nonblocking receive redistribution routine (see Section 3), we might expect even better perfor- 

mance from a nonrandom schedule that ensures that each process receives data from exactly 

one process in each of the IC communication phases. We shall refer to such a schedule as an 

optimal schedule since it minimizes the effects of sychronization and communication hot spots. 

For an optimal schedule, if we view the send block schedule B(C,p) as a matrix then we re- 

quire that the rows be permutations of the process ranks, Le., permutations of the numbers 

0,1, . . . , P - 1,  and that the pth column be a permutation of the processes to which process p 

must send data. 

We shall now construct an optimal schedule. If B is the global block index and (p ,b)  and 

( 9 ,  d )  are the process and local block indices before and after redistribution, then 
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B = Pb + p = K(Pd + q )  + t ,  (3) 

where 0 5 t < I<. Here we regard each block after redistribution as having IC “slots” into which 

blocks of size r are placed, One slot is occupied in each of the Ii‘ steps of the algorithm. Thus, t 

in Eq. 3 is the slot index. Equation 3 means that block b in process p is sent to  process q where 

it is stored in slot t of block d .  Since the communication is the same for each superblock we 

can, without loss of generality, consider just the first superblock, i.e., d = 0, so Eq. 3 becomes, 

To deduce the optimal schedule we shall first factor out the greatest common factor, g ,  of 

P and Ii‘ from Eq. 4. We may write P = gP’ and Ii‘ = g K ‘ ,  where P’ and IC‘ are relatively 

prime. We can also write p = gp’ + a (where 0 5 a < g ) .  Then we have, 

g(P’b + p’) + a = K‘gq + t (5) 

From Eq. 5 it follows that (1 - a )  is divisible by g ,  so we can write t = gt’ + CY, and we have, 

From Eq. 6 we can deduce that processes with the same values of p‘ communicate with 

the same set of processes. Thus, the first g processes (corresponding to p’ = 0) communicate 

with processes [P’b/KJ, for b = 0, 1, . . . , I( - 1. The next set of g processes communicate with 

processes [(P’b + l ) /K’J , and so on. Next we write b = IC‘P + b’, where 0 5 6‘ < IC’. Then we 

have, 

P‘IC‘P + P’b’ + p’ = K‘q + t‘ 
from which i t  follows that q = P’p + q’, and hence, 

As p’ takes the values 0 , 1 , .  . ., P’ - 1 and t’ the values 0 ,1 , .  , . , K’ - 1, then b’ = [(K’q’ + 
t’)/P‘J takes the values 0 , 1 , .  . . , IC’-1 and q’ = [(P’b’+p’)/K’J takes the values 0 , 1 , .  . . , PI-1. 

Equation 8 has been derived from Eq. 4 by factoring out g ,  and its solution gives the optimal 

schedule for P‘ processes and an expansion factor of IC‘. Thus we have reduced the problem of 

finding an optimal schedule for (K, P )  to  one of finding an optimal schedule for (K’, P‘), where 

K’ and P’ are relatively prime. Once we have an optimal schedule for (IC‘, P’) we can generate 

an optinial schedule for (K, P )  by letting a and /3 take the values 0 ,1 , .  . . , g - 1. For I-’ and 
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io (2‘ 

p, p, p, p- 
2 1 0 2  0 1 2 3  2 1 0 3  2 2 2 2  

b’ 

Figure 6: The optimal send schedule, q’ and b’, for given values of p‘ and t’ for K’ = 3 and 
P‘= 4. 

Table 1: Values of q and b for differing values of q‘, b’, and p when P’ = 4, IC’ = 3, and g = 4. 

P’ relatively prime an optimal schedule is obtained by starting a t  position (0,O) in the send 

process schedule, and moving along the main diagonal, wrapping around in a periodic fashion 

whenever we move off the edge of the matrix. As we move along the diagonal, we assign the 

value 0 to  the first I-’ entries, the value 1 to the next I-’ entries, and so on. The last Ii” entries 

are assigned the value P’ - 1. In a similar way, the send block schedule is obtained by moving 

periodically along the main diagonal assigning 0 to the first P’ entries, 1 to the next P’ entries, 

and so on. Figure 6 gives an optimal schedule for IC’ = 3 and P‘ = 4. 

To generate an optimal schedule for ( K ,  P ) ,  each of the entries in the optimal schedule for 

(K’, P’) must be expanded into a g x g block by letting a and ,O take the vaiues 0 ,1 , .  . . , g - 1. 

For the send process schedule, as: ,D takes the values 0,1,. , . ,g - 1 we generate the columns 

q = P’p + q’ for a given value of q’. Since q does not depend on a, different values of a from 

0 to  g - 1 generate the same columns. To ensure an optimal schedule we just have to reorder 

the columns to ensure that each row is also a permutation of P‘p + q’ for p = 0 ,1 , .  . .,g - 1. 

Similarly for the send block schedule, as @ takes the values 0 ,1 , .  . . ,g - 1 we generate the 

columns b = K’p + b‘ for a given value of b’. Again the columns must be reordered to ensure 

that each row is a permutation of K’p + b’. 

For example, suppose P = 16 and I< = 12. The greatest common factor of P and IC is 

g = 4, and P‘ = 4 and K’ = 3, as in Fig. 6. The va lue  of q and B generated for different values 

of q’ and b’, respectively, as p takes the values 0, 1, . . ., g - 1 are given in Table 1. 

As Q takes the values 0 , 1 , .  . . , g - 1 we generate the g x g “permutation” blocks for different 

values of q’ and b’, as shown in Fig. 7. We generate an optimal schedule for ( K ,  P )  by replacing 

the values of g’ and b’ in the optimal schedule for (IC’,  P‘) with the corresponding permutation 
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q’ = 0 

1 2 0  4 8 
8 1 2 0  4 
4 8 1 2 0  

q‘ = 1 

1 3 1  5 9 
9 1 3 1  5 
5 9 1 3 1  

b’ = 2 

1 1 2  5 8 
8 1 1 2  5 
5 8 1 1 2  

Figure 7: Permutation blocks for different values of q‘ and b’ for P = 16 and K = 12. 

block. Thus the optimal send schedule for P = 16 and K = 12 is as given in Fig. 8. 

Note that a group synchronization must be performed before exiting the redistribution 

routine to prevent “back masking.” That is, since the algorithm posts wild-card receives, we 

don’t want some processes leaving the redistribution “early,” then sending other messages that 

could be falsely interpreted as redistribution messages. 

2.2.3. Redistribution using MPISENDRECV 

If an optimal schedule is used to  send the blocks in a predetermined order, then it is possible for 

each process to  determine from which process it will receive data in each of the K communication 

phases. In this case messages do not have to  be self-describing so there is no need to pack the 

global block index at the start of each message. If each process knows a pn’ord which process 

i t  sends to and receives from in each phase, communication can be performed with the routine 

MPISENDRECV, instead of using nonblocking receives. To use MPISENDRECV in this way to do 

the communication we must determine the receive process and block schedules corresponding 

to the send schedules deduced in Section 2.2.2. The receive process schedule for some process 

q gives the process from which to  receive data in each communication phase. The receive block 

schedule gives the local slot index at  which the process must store the data received. 

The optimal receive schedule may be deduced from Eq. 8.  First we must determine the 

solutions of Eq. 8 given q’ and t ’ .  For each value of q’ ( 0 , 1 , .  . . , P’- 1) there are K’ solutions of 

Eq. 8. These solutions are given in Fig. 9 where the entries at  the same position in each I(’ x P’ 

matrix form one solution. As may be seen in Fig. 9, the solutions to Eq. 8 are enumerated 

by running over the b’ and p’ matrices in column-major order. The first P’ entries in the b’ 

matrix are set to  0, the next P’ entries to  1, and so on. For the p’ matrix, successive sets of P’ 

entries are assigned the values 0 , 1 ,  . . . , P’ - 1. When the solutions are enumerated in this way 

all entries in the the j t h  column of the q’ matrix equal j .  Similarly, the entries in the i th row 
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0 0 4 8 1 2  

0 1 2 3 4 5 6 7  
3 7 1 1 1 5  

8 9 10 11 
2 6 1 0 1 4  

14 2 6 1 0 1 3  
1 0 1 4  2 6 
6 1 0 1 4  2 
3 7 11 15 

15 3 7 11 
11 15 3 7 
7 11 15 3 
0 4 8 1 2  

12 0 4 
8 1 2  0 
4 8 1 2  0 

L 1, 

12 13 14 15 

1 5  9 1 3  
1 5  9 

9 1 3  1 5  
5 9 1 3  1 
2 6 10 14 

14 2 6 10 
10 14 2 6 
6 10 14 2 
3 7 1 1 2 5  

8 1 5  3 7 1 1  
4 1 1 1 5  3 7 

7 1 1 1 5  3 

2 5 8 1 1  
1 1 2 5 8  
8 1 1  2 5 

2 
3 
4 

6 
7 
8 

10 
11 

5 8 1 1  2 
0 3 6 9  

1 1 2  0 4 8 1 5  3 7 1 1  
8 1 2  0 4 1 1 1 5  3 7 
4 8 1 2  0 7 1 1 1 5  3 
1 5  9 1 3  0 4 8 1 2  

5 1 3  1 5  9 1 2  0 4 8 
9 1 3  1 5  8 1 2  0 4 
5 9 1 3  1 4  8 1 2  0 
2 6 1 0 1 4  1 5  9 1 3  

9 1 4  2 6 1 0 1 3  1 5  9 
10 14 2 6 9 13 1 5 
6 10 14 2 5 9 13 1 

9 0 3 6  
6 9 0 3  
3 6 9 0  

~1 4 7 1 0  
1 0 1 4 7  
7 1 0  1 4  
4 7 1 0  1 

2 5 8 1 1  

8 9 10 11112 13 14 15 

1 4  7 1 0  0 3 6 9 
10 1 4  7 9 0 3 6 I 7 1 0  1 4  6 9 0 3 
4 7 1 0 1 3 6 9 0  

1 4  7 1 0  
11 2 5 
8 1 1  2 5 
5 8 1 1  2 
0 3 6 9 
9 0 3 
6 9 0 3 
3 6 9 0 

8 1 0  1 4  7 
7 1 0  1 4  
4 7 1 0  1 
2 5 8 1 1  

6 1 1  2 5 8 
8 1 1  2 5 
5 8 1 1  2 

Figure 8: (a) The optimal send process schedule for P = 16 processes and an expansion factor 
of K = 12. Entry ( k , p )  in the table gives the process 6 ( k , p )  to which process p sends data in 
step k. (b) The send block schedule for the same case. Entry ( k , p )  in the table gives the local 
block index that is sent by process p in step k. The arrays are divided into 4 x 4 permutation 
blocks. 
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q 
q’ 
p’ 
t‘ 

p = o o  
p = 1 1  
p = 2 2  
p = 3 3  
P = O  
P = 1  
p = 2  
P = 3  
p = o o  
p = 1 1  
p = 2 2  
p = 3 3  

pi p, pq p, 
0 1 2 3  
0 1 2 3  0 1 2 2  2 1 0 3  2 2 2 2  

0 1 2 3 4  5 6 7 8  9 1 0 1 1 1 2 1 3 1 4 1 5  
0 1 2 3 0  1 2 3 0  1 2  3 0 1 2  3 
0 3 2 1 0  3 2 1 0  3 2 1 0  3 2 1 
0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0 

0 0 0 1  1 1 1 2  2 2 2 3 3 3 3 
1 1 1 2  2 2 2 3  3 3 3 0 0 0 0 
2 2 2 3  3 3 3 0  0 0 0 1 1  1 1  
3 3 3 0  0 0 0 1  1 1  1 2  2 2 2 

0 12 8 4 1 13 9 5 2 14 10 6 3 15 11 7 
1 1 3  9 5 2 14 10 6 3 15 11 7 0 12 8 4 
2 14 10 6 3 15 11 7 0 12 8 4 1 13 9 5 
3 15 11 7 0 12 8 4 1 13 9 5 2 14 10 6 

0 0 0 1  1 1 1 2  2 2 2 3 3 3 3 
1 1 1 2  2 2 2 3  3 3 3 0 0 0 0 
2 2 2 3  3 3 3 0  0 0 0 1 1  1 1  
3 3 3 0  0 0 0 1  1 1  1 2  2 2 2 

Figure 9: The optimal receive schedule, p’ and t’, for given values of q’ for I(’ = 3 and P’ = 4. 

Figure 10: Constructing the first row of the receive schedule for K = 12 and P = 16. The 
first four rows show the value of q and the corresponding values of q’, p‘ ,  and t’. The next four 
rows give the values of a. The values of p and t ,  shown in the next two sets of four rows, are 
deduced froin CY and p. 

of the t‘ matrix equal i .  

The receive schedule of the factored system (Eq. 8) can be used to  construct that  of the 

full system (Eq. 4) as follows. Consider first the receive process schedule. For each process, q ,  

we find the value of p’ Corresponding to q’ = mod(q, P’) for each of the K’ rows of the receive 

schedule. We then let cr and p take the values 0,1,. . . , g- 1 to expand the receive schedule of the 

factored system to that of the full system. This is done by setting cr = mod( [q/gJ + P,  g ) ,  and 

p = gp’ + 0. The receive block schedule is constructed in a similar way, but taking t = gt’ + 0. 

In Fig. 10 we show bow to expand the first row of the receive schedule for the factored system 

into that of the full system. Repeating this process for each row of the factored system gives 

the complete receive schdule of the full system, as shown in Fig. 11. 

An outline of the redistribution routine using MPISENDRECV to  communicate the data is 

given in Fig. 12. 
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3 1 5 1 1  7 
4 0 1 2  8 i 10 

11 

0 1 2  8 4 1 1 3  9 5 
5 1 1 3  9 6 2 1 4 1 0  

- 
- 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

- 

- 

- 

5 1 1 3  9 
6 2 14 10 
7 3 1 5 1 1  
8 4 0 1 2  
9 5 1 1 3 1 0  

10 6 2 14 
11 7 3 1 5  

6 2 1 4 1 0  
7 3 15 11 
4 0 1 2  8 
9 5 1 1 3  

6 2 1 4  
11 7 3 15 
8 4 0 1 2  

9 9 9 9 
10 10 10 10 
11 11 11 11 

0 1 2 3 4 5 6 7  
0 0 0 0 1 1 1 1  
1 1 1 1 2 2 2 2  
2 2 2 2 3 3 3 3  
3 3 3 3 0 0 0 0  
4 4 4 4 5 5 5 5  
5 5 5 5 8 8 6 6  
6 6 6 6 7 7 7 7  
7 7 7 7 4 4 4 4  
8 8 8 8 9 9 9 9  

10 10 10 10 
11 11 11 11 
8 8 8 8 

7 3 15 11 
4 0 1 2  8 
5 1 1 3  9 

10 6 2 14 
11 7 3 15 
8 4 0 1 2  
9 5 1 1 3  

10 10 10 10 
11 11 11 11 

9 9 9 9 

12 13 14 15 
3 15 11 7 
0 1 2  8 4 
1 1 3  9 5 
2 14 10 6 
7 3 15 11 
4 0 1 2  8 
5 1 1 3  9 
6 2 14 10 

11 7 3 15 
8 4 0 1 2  
9 5 1 1 3  

10 6 2 14 

7 7 7 7 4 4 4 4  
4 4 4 4 5 5 5 5  
5 5 5 5 6 6 6 6  

11 11 11 11 
8 8 8 8 

8 8 8 8 9 9 9 9  
10 10 10 10 

1 1  1 1 1 2  2 2 2 
6 6 6 6 1 7  7 7 7 

Figure 11: (a) The optimal receive process schedule for P = 16 processes and an expansion 
factor of K = 12. In the receive process schedule (a) entry (k, q )  in the table gives the process 
p from which process q receives data in step k. In the receive block schedule (b) entry (k, q )  
in the table gives the local block index a t  which the data received by process q in step k are 
stored. 



- 14 - 

create general datatype, newtype 1 
nsuperblks = m/(p*k*r) 
do istep=O,k-1 

determine process and block schedules, 
source, dest, sendoff set, recvoff set 

call mpi-sendrecv (abendoffset), nsuperblks, newtype, 
dest, tag, b(recvoffset), nsuperblks, newtype, source, 
tag, corn, status, ierr) 

end do 

Figure 12: Outline of code for increasing the block size of a block-cyclic distribution by a factor 
k using send and receive schedules and the routine MPI-SENDRECV. 

3. Performance Results 

This section presents results for runs on the IBM SP-1 and the Intel Paragon for the redistri- 

bution algorithms described in Section 2. 

3.1. Results on the IBM SP-1 

We ran experiments on the IUM SP system located at  Argonne National Laboratory. This 

machine has 128 Power-1 nodes each with 128 Mbytes of memory connected by both an SP-2 

switch and by ethernet. The machine is officially regarded as an SP-2, although it has only 

Power-1 nodes. However, the implementation of MPI used in our work communicates over 

the ethernet and not over the fast switch. Thus, our results are more representative of an 

IBM SP-1 system, and we shall henceforth refer to the machine as such. Version 1.0.7 of the 

MPICH portable MPI library developed at Argonne National Laboratory and Mississippi State 

University was used. 

The timing results for the IBM SP-1 are shown in Fig. 13 as a function of the expansion 

factor, I ( ,  for 3, 10, 16, 32, and 64 processors. Figure (a) shows results for the synchronized 

and iionsynchronized nonblocking receive version of the redistribution routine. As may be seen 

from this figure, the unsynchronized version of the routine is up to a factor of three times faster 

than the synchronized version. IIowever, the main drawback of the unsynchronized algorithm 

is its need for as much buffering as data being redistributed. 

The reason for the poorer performance of the synchronized algorithm is that some processes 

have to wait for others before they can receive any data. For example, in the P = 4, K = 3 

case process 3 does not receive its data until the other processes have received all their data. A 
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Figure 13: Performance of redistribution 
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related effect is that there are hot spots in the communication. The timings for the synchronized 

algorithm vary dramatically as Ii is changed. We interpret this as variance in processor waiting 

and communication hot-spotting as IC is changed. 

Results using a random block send schedule for the synchronized version of the redistribution 

routine are shown in Fig. 13(b). These results show that even though there is some additional 

overhead in generating the random sequence, there is a substantial performance improvement 

compared with results for the simple send block schedule, although the performance is still 

not quite as good as for the unsynchronized algorithm. The behavior as a function of Ii is 

also much smoother, pointing to less processor waiting and hot-spotting due to  the randomized 

schedule. 

Another clear effect is the mild rise in redistribution time as K increases. This is simply 

due to the number of communication phases increasing linearly with Ii. This means that the 

number of message startups is rising linearly with Ii, even though the total amount of data 

sent is independent of K. 

Using an optimal schedule we get the performance results shown in Fig. 13(c). The optimal 

schedule reduces the timings so they are comparable with the unsynchronized case. This is 

to  be expected since the optimal schedule avoids the synchronization and communication hot 

spots that  degrade the performance for other schedules. 

The performance for the version of the redistribution algorithm using the MPISENDRECV 

routine is shown in Fig. 13(d). Comparison with Fig. 13(a) shows that the version using 

MPI-SENDRECV is comparable in performance with the unsynchronized version using nonblock- 

ing receives. 

3.2. Results on the Intel Paragon 

The Intel Paragon used is located at Oak Ridge National Laboratory. It has 66 nodes, each 

with 32 Mbytes of memory, connected in a two-dimensional mesh. As in the runs on the IBM 

SP-1, version 1.0.7 of the MPICIS portable MPI library was used. Timing results are shown in 

Fig. 14. 
We give an interpretation similar to  that for the IBM SP-1. The simple, synchronized 

algorithm is slow and exhibits fluctuating timings due to  processor waiting and communication 

hot-spotting. Randomizing the send schedule smooths and improves the results, as shown in 

Pig. 14(b). Using the optimal send schedule (but still within the non-blocking receive algorithm) 

gives the good results shown in Fig. 14(c). Finally, using MPISENDRECV in place of separated 

sends and receives, with the optimal send and receive schedules, leads to  the best performance 

results shown in Fig. 14(d). 
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L 
redist (2) L redist (20) 

1 Paragon 1 bcast 1 1.2 1 5":; 1 3.2 1 4.3 1 1.1 1 
alltoall 2.9 7.9 12.2 22.9 
redist (2) 14.0 14.6 14.9 15.3 15.7 
redist (20) 20.9 21.8 22.5 23.4 24.3 

alltoall 2.4 4.4 5.0 8.1 15.2 
IRM SP-1 bcast 1.8 3.6 4.6 5.4 

7.1 7.6 8.0 8.5 9.0 
10.8 12.1 12.3 15.0 15.8 

Table 2: Timings in milliseconds for broadcast and all-to-all operations on the Intel Paragon 
and IUM SP-1 using the MPI-BCAST arid MPI-ALLTOALL routines, respectively. Also shown are 
the timings for the senclrecv version of the redistribution algorithm for the cases I( = 2 and 
K = 20. In the broadcast case one process broadcasts 3200 integers to  all processes. In the all- 
to-all case each process broadcasts L3200/NpJ integers to each process, where Np is the number 
of processes. For the redistributions each process contains 800 blocks of block size T = 4. 

3.3. Comparison with other Collective Communication Operations 

In this section, we compare the performance of the redistribution routines with that of MPI 

collective communication routines. We wish to  know how redistribution times compare to 

other bulk data movement operations. In one case, a single process broadcasts data to all other 

processes by calling the routine MPIBCAST. In the second case each process broadcasts data 

to all other processes by calling the routine MPI-ALLTOALL. The all-to-all operation is similar 

to  the communication perfornied in the redistribution operation. Timing results for the Intel 

Paragon and IBM SP-1 are presented in Table 2. For the broadcast case the number of elements 

broadcast by the root equals the number sent by each process in the redistributions shown in 

Figs. 13 and 14, i.e., 3200 integers. For the all-to-all case the amount of data communicated 

between each pair of processes is the same as in the redistributions. 

As might be expected, broadcast is faster than the all-teal1 and redistribution operations. 

This is because the broadcast sends fewer messages so the likelihood of network congestion 

is less, and communication latency is reduced. Comparing the redistribution and all-to-all 

operations, we find that for a small number of processors (3 and lo) ,  redistribution is at least 

three times slower. For more processors, the difference becomes smaller, and redistribution 

becomes faster than the all-to-all case for I( = 2 on 64 processors. This is due to the fact that 

not every possible pair of processors communicates in the redistribution algorithm (as long as 

I( < P ) ,  while they do in all-to-all. That is, all-to-all has more messages for P large. 

4. A More General Redistribution Algorithm 

In general, a block-cyclic data redistribution n a y  involve 
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1.  varying the block size; 

2. changing the topology of the process group from one Cartesian topology to another. For 

example, from a 4 x 3 process layout to a 2 x 6 process layout; 

3. redistributing from one process group to another, where the number of processes in the 

groups may differ. 

In this paper we have restricted our attention to the case in which the block size is increased 

by a factor of I< from r to K r ,  and the processes involved remain fixed in number and identity. 

The algorithms presented in Section 2 may be readily modified to handle the case in which the 

block size decreases by a factor of K from K r  to r .  To do this we just run the redistribution 

algorithm “in reverse.” That is, in each of the I< communication phases we swap the source 

and destination processes, and the block ofEsets fromlinto which the blocks are sentlreceived. 

The general case of transforming from block size r l  to r2 may then be handled in two phases. 

Denoting the least common multiple of r1 and r2 by t = K l r l  = K 2 r 2 ,  then the block size is 

first expanded by the factor Ii‘l and then shrunk by the factor Ii‘z (or vice versa). 

Changing the topology of the process group, or redistributing to another process group, 

leads to another class of algorithms not considered in this paper. 

Our redistribution algorithms can be extended to handle multi-dimensional arrays dis- 

tributed across processes arranged with a virtual topology with the same number of dimensions 

and the same number of processors in each dimension. To do this we simply apply the one- 

dimensional algorithm to each direction in turn. Here we can take advantage of MPI’s ability 

to  create and manipulate subgroups of processes since it will be necessary to form communi- 

cators whose associated groups are the rows and columns of the virtual topology. It is these 

communicators that are used in the one-dimensional redistributions. In the multi-dimensional 

case the blocks communicated will also be multi-dimensional. The datatype for the blocks can 

be created in a straightforward way using MPI’s datatype constructor routines. As an example, 

consider the case of a two-dimensiona1 array distributed over a mesh of P x Q processes. S u p  

pose we want to  change the block size from PI x c1 to r2 x c2. We first apply a one-dimensional 

redistribution along the rows of the virtual topology which changes the block size to r1 x c2. 

Then we apply a second one-dimensional redistribution along the columns of the topology which 

changes the block size to r2 x c2. 

5 .  Summary 

We have shown how communication schedules can be constructed that permit the efficient 

redistribution of block-cyclic data distributuions. These schedules can be used to  implement 

a version of the redistribution algorithm using the MPI routine MPISENDRECV that  requires 
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no extra buffering and so is more economical in its use of memory than the unsynchronized 

version using nonblocking receives. It is also comparable in performance. The MPI specification 

document an3 additional information about MPI may be obtained from the MPI Resource 

Center a t  Oak Ridge National Laboratory (h t tp  : / / w w  . epm. orn l .  gov/’ aalker/rnpi/). The 

source code for the algorithms described in this paper are available from the same location. 
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