
MA#AGED BY

3 4456 0420368 0

ORNUM-12934

EDONIO: Extended Distributed
Object Network I/O Library

E. F. D’Azevedo
C. H. Romine

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-840 1. FTS 626-840 1.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

Computer

EDONIO: EXTENDED DISTRIBUTED OBJECT NETWORK I/O

I
I LIBRARY

ORNL/TM- 12934

Science and Mathematics Division

~ E.F. D'Azevedo

I C.H. Romine

Mathematical Sciences Section
bak Ridge National Laboratory 1 P.O. Box 2008, Bldg. 6012

i Oak Ridge, T N 37831-6367

pa te Published: March 1995

Research suppa ted by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, U.S. Depart- , ment of Energy'

I Prepared by the
oak Ridge National Laboratory oak Ridge, Tennessee 37831

managed by

for the
U S . DEPARTMENT OF ENERGY

under kontract No. DE-AC05-840R21400

Mar 1: in Marietta Energy Systems, Inc.

Contents

1 Introduction ' . . 1
2 Extended Distributed 06ject Network 1/0 Library 1
3 User Interface . 3
4 Implementation Details . 18
5 Experimental Results . 21
6 Summary . 22
7 Obtaining the Software ! 24
8 Appendixi . 25
9 References . 32

~

.

EDONIO: EXTENDED DISTRIBUTED OBJECT NETWORK 1 / 0

LIBRARY

E.F. D’Azevedo

C.H. Rornine
,

I

I Abstract
I

This report describes lEDONIO (Extended Distributed Object Network I/O), an

enhanced version of D O H I D (Distributed Object Network 1/0 Library) optimized

for the Intel Paragon Systems using the new MASYNC access mode. D O N I 0 provided

fast file 1 / 0 capabilities in the Intel iPSC/SSO and Paragon distributed memory

parallel environments by’ caching a copy of the entire file in memory distributed

across all processors. E D d N I O is more memory efficient by caching only a subset of

the disk file at a time. D O h I was restricted by the high memory requirements and

use of 32-bit integer indexing to handle files no larger than 2Gigabytes. EDONIO

overcomes this barrier by using the extended integer library routines provided by

Intel’s IX operating systeL.

I

For certain applicatio;ns, E D O N I O may show a ten-fold improvement in perfor-

mance over the native t i X 1 / 0 routines.

- v -

1. Introduction

Multi-megabyte disk input/output operations are commonly a major bottleneck in largc

application codes on distributed-memory parallel supercomputers. Our first attempt

to remove this bottleneck produced DONIO [2], a library of routines to provide fast

parallel file 1/0 capabilities’ on Intel iPSC/SSO and Intel Paragon supercomputers.

DONIO caches the entire disk file across the aggregate memory of the multiprocessor

in shared memory emulated~ by DOLIB (Distributed Object Library). This approach

imposed a high memory ovkrhead, and the use of 32-bit integer indexing restricted

access to files of at most 2Gigabytes. The new EDONIO library reduces memory overhead

and provides fast 1/0 on files of arbitrary size. EDONIO is implemented independently

of the Distributed Object Lidrary DOLIB [l] but uses similar IPX remote procedure calls

to implement a large disk cache in the aggregate memory of the multiprocessor.

I

In contrast to DONI0 where the entire file is cache in memory and actual disk 1/0

was done only in three roudines (do-open, d o f l u s h and do-close), EDONIO caches

only a portion of the disk file. At runtime, as the limited disk cache is filled, data

are immediately written back to the disk in contiguous large blocks of optimal size

(default is 64Kbytes to match the RAID striping parameter) for high 1/0 throughput.

Similarly, data not found in the disk cache is dynamically read in large blocks.

I

The amount of memory dedicated to EDONIO is controlled by the user. A larger disk

cache usually results in better performance; especially if sufficient memory i s available

to cache the entire file into aemory. In this case EDONIO reverts back to the behavior

of DONIO.

2. Extended Distributed Object Network 1 /0 Library
I

EDONIO, like DONIO, is designed to speed up the 1/0 for distributed-memory parallel

applications where all processors open a common multi-megabyte shared file for simul-

taneous access. To access a shared file, each processor positions its own private copy

of the file pointer with 1sedkO’s to specific places in the file and then performs in-

put/output operations. (Simultaneous output to overlapping regions in a shared file is

nondeterministic; therefore, be assume that output operations do not overlap among

processors). Such file accesh patterns are common in finite element codes that are

- 2 -

based on subdomain decomposition. For example, the data for material properties

or boundary conditions are commonly stored in shared files. This arrangement pro-

vides flexibility in solving the same problem with varying numbers or configurations of

processors without rearranging the data files.

A disadvantage of large shared files is that the overhead induced by many processors

attempting to access the disk file concurrently can be quite large. Machines like the

Intel iPSC/860 and Paragon attempt to support simultaneous access through a special

file system (CFS for the iPSC/860, PFS for the Paragon). Even with this support, the

cost for concurrent access to the same file can significantly degrade the performance of

a para,Uel program. It is common for file 1/0 to be one of the most costly operations

in a parallel application. On the Intel Paragon machines, the default M-UNIX mode

corresponds to standard UNIX file sharing semantics that enforce atomic updates by

serializing all requests. The new MASYNC file 1/0 mode allows multiple simultaneous

read/write requests with no restrictions and dramatically reduces the cost of 1/0 oper-

ations over the previous M-UNIX mode. EDONIO is designed to fully exploit the parallel

MASYNC I/O mode by allowing all processors to perform non-overlapping 1/0 requests.

Moreover, EDONIO uses the aggregate memory of the multiprocessor to implement a

very large high-speed disk cache.

EDONIO is compatible with DONI0 and offers a UNIX-like interface consisting of the

‘C’ callable primitives do-open0 , d o r e a d 0 , do-write(), d o l s e e k o , d o l s i z e o ?

d o f l u s h 0 and do-close(), which are similar to the open(), c r e a d o , c w r i t e 0 ,

l s e e k o , l s i z e 0 , f l u s h 0 and c l o s e 0 routines provided by the Intel NX operating

system. A Fortran callable interface, (e.g., DOREADO for d o r e a d o) , is also provided.

Section 3 describes the use of these EDONIO primitives in more detail. Changing the

names of the 1/0 subroutines called in an application program from the NX version

to the EDONIO version (leaving the parameters untouched) and then linking in the

EDONIO library is generally all that is required to use the package. A n inyortant note:

EDONIO operates only on UNIX binary files, which may be incompatible with Fortran

unformatted fixed-size record files.

Many large-scale applications involving the simulation of time-evolving events are

designed to output a “snapshot” or “checkpoint” of the current state of the simulation

at regular intervals. A lengthy simulation may output tens (or even hundreds) of

- 3 -

Gigabytes of data for later a h alysis. The original DONI0 was incapable of handling files

larger than 2Gigabytes. ED0 li IO overcomes this restriction, thereby providing rapid 1/0

capabilities on files of practically unlimited size (up to 1GTerabytes).

3. User Interface

The following pages provide'details on the syntax and behavior of each of the EDONIO

primitives. These pages can E he considered the manual for EDONIO.

- 4 -

do-check ()

do-check0 checks the message queues for EDONIO or IPX requests from other

processors, servicing any that are found.

Synopsis

int docheck()

subroutine docheck()

D is c ussio n

do-check0 checks the calling processor)s message queues for IPX requests from

other processors. If none are found, do-check(1 returns immediately. Any queued

requests are serviced before do-check () terminates. do-check (1 is provided to

allow the user to avoid deadlock or slow servicing (starvation) of I/O requests if

a non-interrupt (polling) version of IPX is used. All EDONIO calls automatically

perform a do-check0 operation. However, do-check0 should be called period-

ically by processors that are not involved in file 1/0 operations for long periods

of time.

do-close 0 closes the

shared resources. do-c

saved to disk. In C,

implicit global synchro

Synopsis

i n t do-close(i n t f

subroutine doclosel

in teger f d

Input parameters

f d - f d i s thefile

Discussion

do-close 0 deallocatf

data associated with t

do-close 0 first calls

before resources are dc

file is read-only, no dis

Important note: Undik

formed when the progr

for a given file, any ch

will be lost upon prog

do-close0 call. An ii

- 5 -

do-c lose()

[e associated with the file descriptor ant. deallocates global

m e 0 must be calked to ensure that all buffered writes are

) -c lose0 returns 0 on success and -1 on failure. An

kation is performed.

escriptor obtained from do-openo.

the global shared resources used for caching the file

3 file descriptor fd. For write-only and read-write files,

> f l u s h 0 to write out any cached data to the disk file

located. (If none of the cached pages are dirty, or if the

1/0 is performed).

!he UNIX routines, no implicit d o x l o s e () calls are per-

n terminates. Hence, if the user fads to call do-close0

ages made to cached blocks that have not yet been flushed

m termination! All processors must participate in the

>licit global synchronization is performed.

- 6 -

do-csize()

do-csize() sets the sizes of the EDONIO read-only data cache and disk cache. An

implicit global synchronization is perfoymed.

Synopsis

i n t do-csize(i n t d a t a s i z e , i n t d i s k s i z e)

subroutine docsize(da tas ize , disksize

in teger da tas ize , disksize

Input parameters

d a t a s i z e - d a t a s i z e is the maximum amount of memory in KBytes

to be allocated to the read-only data cache. A value of 0 is

valid, and can be used to disable the read-only cache if no

user files are opened with permission flag ORDONLY,

disk-size is the maximum amount of memory in KBytes

to be allocated to the disk cache. A value of 0 results in an

error.

d i s k s i z e -

Discussion

do-csizeo determines the maximum memory usage allowed by EDONIO’s read-

only data cache and disk cache. Actual allocation of memory for the caches is

done only as needed. Tip: The user might call v m . s t a t i s t i c s 0 at runtime or

use vms ta t on the service nodes to determine the a.mount of free memory (or free

pages) available. To avoid excessive paging, parameters for do-csize ()should not

exceed the amount of free memory.

All processors must participate in the do-csize () . An implicit global synchro-

nization is performed.

d o f l u s h 0 forces ED(

with the specified file

blocks are guaranteed t

-1 on failure. An impl

Synopsis

int d o f l u s h (int f

subroutine doflush(

integer f d

Input parameters

f d - f d i s the file

Discussion

d o f l u s h 0 forces an

specified file to disk. 1

last call to d o f l u s h (

to support checkpointj

written to the cached

largest byte addressed

However, unwritten by

d o f l u s h 0 may also

causes EDONIO to flus1

Better I/O performanc

with d o f l u s h 0 .

All processors must pi

chronization is perforn

- 7 -

do-f lush0

iIO to write any “dirty” or “modified” blocks associated

o the disk. After d o f l u s h () , the disk file and cached

be consistent. In C , d o 4 l u s h O returns 0 on success and

:it global synchronization is performed.

1

f d 1

iescriptor obtained from doeopen(1.

nmediate write of any dirty blocks corresponding to the

no changes have been made to the cached file since the

, no disk 1/0 will take place. d o f l u s h 0 is provided

g, since in the event of a machine malfunction, all data

le will be lost. EDONIO automatically keeps track of the

Iith d o x r i t e 0 , so the disk file will have the correct size.

es (%‘.e., gaps) in the file will contain garbage.

ihance performance of write operations. If a cache miss

a dirty cache block, only that block is written to disk.

3 may be obtained by writing many blocks concurrently

ticipate in the d o f l u s h 0 call. An implicit global syn-

:d.

8 -

do-lsize(), do-esize()

d o l s i z e (1 estimates the size of the write-only or read-write output file associated

with file descriptor f d. In C, d o l s i z e (1 returns nbytes on success. An implicit

global synchronization is performed.

Synopsis

i n t d o l s i z e (i n t f d , i n t nbytes)

esize-t do-esize(i n t f d , esize-t nbytes)

subroutine dols ize(f d , nbytes)

in teger f d , nbytes

subroutine doesize(f d , lnbytes)

in teger f d , lnbytes(2)

Input parameters

f d - f d is the file descriptor obtained from do-openo.

nbytes - nbytes is the estimated file size in bytes.

Discuss ion

d o l l s i z e 0 tries to increase 1/0 throughput by attempting to preallocate the

requested disk blocks before starting write operations. Unlike DONI0 it is no

longer mandatory to call d o l s i z e 0 . Overestimation of the file size may cause

overallocation and suboptimal performance, but the actual file generated on disk

will be of correct (minimal) size. Calling d o l s i z e () for files opened for read-only

access results in an error.

All processors must participate in the d o l s i z e 0 . An implicit global synchro-

nization is performed.

d o l s eek (1 (do-es ee

with the file descripto

Synopsis

#include cunis td . h

#include <nx.h>

i n t d o l s e e k (i n t :

esize-t do-eseek(i

include 'fnx.h'

in teger funct ion d

in t ege r f d , o f f s e t

subroutine doeseek

in t ege r f d , whence

in t ege r l o f f s e t (2)

Input parameters

fd - f d is t l

o f f s e t - o f f s e t

extendt

files, tl

integer

FORTRA

whence - whence

one of :

- Y -

)-lseek() do-eseek()

11) sets the (local) seek pointer of the open jile associated

and returns the new seek position.

, i n t o f f s e t , i n t whence)

t f d , es ize- t o f f s e t , i n t whence)

.seek(f d , o f f s e t , whence)

whence

f d , Loffset , whence, lpos)

lpos(2)

file descriptor obtained from do-open().

3 the offset in bytes. Note that EDONIO supports

files larger than 2Gigabytes. For these extended

offset and returned value must be an extended

asize-t) in C, or an integer array of length 2 in

etermines the computation with offset. whence is

EKSET=O, SEEK_CUR=l or SEEK_END=2.

- 10 -

Discuss ion

d o l s e e k o (do-eseek0) sets the seek pointer associated with the open file spec-

ified by the descriptor f d according to the value supplied for whence. whence

must be one of SEEKSET=O, SEEK_CUR=l, SEEK_END=2 defined in <unis td .h> (see

lseek(2)).

If whence is SEEKSET, the seek pointer is set to o f f s e t bytes. If whence is

SEEK-CUR, the seek pointer is set to its current location plus o f f s e t . If whence is

SEEKIND, the seek pointer is set to the size of the file plus off s e t . IMPORTANT

NOTE: Calling d o l s e e k () using whence=SEEKIND is guaranteed correct only in

two cases: the file must have been opened with O R D U N L Y , or a call to d o f l u s h 0

must immediately precede the d o l s e e k o call. The reason is that the current file

size has no meaning until all buffered writes have been flushed.

dolseek(f d , 0 , SEEKIND) (after d o f l u s h () , as described above) returns the

size (in bytes) of the opened file associated with fd .

d o n i o (1 initiulizes t f ;

(any files with do-oper

Synopsis

i n t d o n i o (i n t my:

subroutine donio(1

i n t ege r myid, npro

Input parameters

myid - myidis t

nproc - nproc is

Discussion

All nodes must call do.

sets up internal data st

is required before any

in an error.

- 11 -

d o n i o (>

EDOMIO system. d o n i 0 0 must be culledprior to opening

1. In C, d o a i o 0 returns 0 on success, -1 on failure.

, i n t nproc)

. id , nproc 1

? id number of the calling processor.

le total number of processors executing.

i o 0 toinitialize the EDONIO network 1/0 library. d o x i o o

tctures and initializes the IPX subsystem. Calling d o n i o o

ther calls to EDONIO routines. Failure to do so will result

- 12 -

do-openo

do-openo returns a non-negative descriptor on success. On failure, it returns

-1. A n i m p k i t global synchronization is performed.

Synopsis

#include <sys / f cn t l . h>

i n t domopen(char *path, i n t f l a g s , i n t mode >
include 'fnx.h'

i n t ege r function doopen(path, f l a g s , mode >
character*(*> path

in teger f l a g s , mode

Input parameters

path - path is a null-terminated string that co

of the file.

f l a g s - f l a g s contains the access flags.

bins the path ame

mode - mode is the file permission (see chmod(2)) used in creating

the outpiit file. mode is ignored if the file already exists.

Discussion

The routine emulates the UNIX open (see open(2) in the UNIX manual), which

opens the named file specified by path for read-only, write-only or read-write

access, as specified by the f l a g s argument, and returns a descriptor for that file.

For write-only or read-write access, if the file does not exist, it is created with

permission mode mode (see chmod(2)). Note that do-open0 differs from UNIX

open if the write-only file already exists. In that case, the file is first truncated

(see truncate(2)) to an empty file and then rewritten.

All processors must participate in the do-openO call. An implicit global syn-

chronization is performed.

A Fortran example of the use of do-openO is given below:

c ---
c ---
c ---
c ---

c ---
c ---
c ---
c ---

c ---
c ---
c ---

mode is s e t

f u l l read-wi

mode = 8*8*E

UNIX f l a g s

0-RDONLY = C

r f l a g s = 0

wflags = 1

rwflags = 2

be sure pat1

pa th = ' /pfs

c ---
c --- open t h e f i l

c ---

- 13 -

to o c t a l 666,

i t e permission on f i l e

+ 8*6 + 6

0-WRDNLY = 1, 0-RDWR = 2

is n u l l terminated

/ i n f i l e ' // char(0)

3 f o r read-write access

f d = doopen(pa th , rwflags, mode

- 14 -

do -pr e 1 o ad ()

do-preload0 fills any empty slots in the cache with blocks from the disk file,

starting with the first block referenced by the mini,mum value of all the local seek

pointers.

A n implicit global synchronization is performed.

Synopsis

void do-preload(i n t f d)

subroutine dopreload(f d

in t ege r f d

Input parameters

f d - f d is the EDONIO file descriptor for the file opened with

do-open (1.

Discussion

do-preload0 fills any empty slots in the disk cache with data from the disk.

Reloading the cache is desirable when file access patterns may cause disk 1/0 to

be inefficient. For example, if a number of processors attempt to read common

data from the same processor, then there may be significant idle time while

they all wait for the data to be brought in from disk. Preloading the cache

ensures that the initial disk 1/0 is fully parallel and subsequent read accesses can

proceed at full speed from the disk cache. Preloading starts from the point of the

minimum seek location among all processors. The user can perform a d o l s e e k 0

(do-eseek()) immediately prior to the do-preload0 call to ensure that the data

in the cache are relevant to subsequent operations. By default, preloading starts

from the beginning of file.

Note that preloading will not displace data already in the disk cache. In partic-

ular, if the cache is already full, then do-preload0 has no effect. However, the

user can force the creation of empty slots either by calling do-csize0 to increase

the memory allocated for the cache, or alternatively, the user can force a partial

~

- 15 -

purge of the cache by~using two consecutive do-csize0 calls to contract and

then reset the disk cac P e size.

All processors must pkrticipate in the do-preload0 call. An implicit global

synchronization is performed.

- 16 -

do -read ()

d o r e a d o performs a read operation into the specified bufler. In C , d o r e a d o

returns the number of bytes read.

Synopsis

i n t d o r e a d (i n t f d , void *buf, i n t nbytes)

subroutine doread(f d , buf, nbytes)

in teger f d , buf(*), nbytes

Input parameters

f d - f d is the file descriptor obtained from do-openo.

buf - buf is the buffer.

nbytes --. nbytes is the number of bytes to be read.

Description

d o r e a d () attempts to read nbytes bytes of data from the file referenced by the

descriptor f d into the buffer buf (see read(2)).

The calling process waits (blocks) until the request is completed. Important:

Note that reading past the end of file causes an error instead of partially filling

the buffer. Calling d o r e a d o to read from a write-only file causes an error. The

seek pointer is updated to point to the next byte in the file.

Note that the execution times for the d o r e a d o may vary substantially, depend-

ing on the access pattern and effectiveness of the disk cache.

- 1 7 -

do-wri+e()

d o s r i t e o performs a write operation from the specified bufler. In C , d o s r i t e 0

returns the number of b ytes written.

Synopsis l
i n t do-write(i n t f d , void *buf, i n t nbytes)

subroutine dowritec~ f d , buf nbytes

in t ege r f d , buf (*) ,~ nbytes

Input parameters I
f d - f d is the file descriptor obtained from do-openo.

buf

nbytes - nbytes i s the number of bytes to be written.

- buf is t i e buffer.

Description I

do-write() attempts to write nbytes bytes of data to the file referenced by the

descriptor f d from the~buffer buf (see write(2)).

The calling process waits (blocks) until the request is completed. Using do-wri te0

to write to a read-only file causes an error. The seek pointer is updated to point

to the next byte in the file.

Note that the execution times for d o s r i t e 0 may vary significantly, depending

on the access pattern ahd effectiveness of the disk cache.

I

- 18 -

4. Implementatioii Details

EDONIO provides a large high-speed disk cache in the aggregate memory of the Intel

multiprocessor. The most important difference between EDONIO and DONIO i s that

the entire disk file is no longer kept in memory as in DONIO. Instead, EDONIO acts

more as a true disk cache, reading and writing blocks of the file as nceded. Hence

EDONIO no longer requires the user to call d o l s i z e o before do-write(). d o l s i z e 0

(do-esize()) is now merely a hint to the operating system concerning the eventual

file size. EDONIO automatically keeps track of the highest address actually used. If the

user overestimates the file size in d o l s i z e o (do-esizeo), then the correct (exact)

size file will still be written to disk.

The conceptual view of a disk file in EDONIO is a sequence of blocks, each containing

a fixed number (default 8 pages) of fixed size (default 8KBytes) pages.’ Responsibility

for actual disk 1/0 on the blocks is assigned to the processors in a wrap-mapped fashion.

Thus, in an N-processor configuration, processor p is responsible for satisfying any 1/0

requests involving blocks p , p + N, p + 2 N , . . . etc.

EDONIO supplies two separate caches: the disk cache and the read-only data cache.

A processor’s disk cache contains blocks of the disk file that have been most recently

accessed. Note that blocks are only cached in the disk cache by the processor responsible

for the given block, thus eliminating concerns for cache coherency. EDONIO also provides

a read-only data cache for read-only files to reduce message traffic on repeated re-reads

of the same data. Read-only files cannot be updated and is completely free from cache-

coherency restrictions, therefore, the read-only data cache may hold any data that has

been accessed, regardless of assignment (though the actual disk read is still performed

by the assigned processor).

EDONIO uses the least recently used (LRU) strategy for cache management. That

is, if the cache is full when a cache miss occurs, the least recently accessed block in the

disk cache is deleted to make room for the incoming cache block. For the read-only

data cache, merely freeing the memory is sufficient. However, for the disk cache, the

chosen block is first checked to see if it is “dirty” (i.e., has been altered). If so, it

is written out to disk before it is deleted from the cache. This differs markedly from

’The xps35 Intel Paragon uses hardware pagesize of bKbytes, and RAID disk stripe size is configured
t o be 64Kbytes.

- 19 -

DONIO, where the cache was I et large enough to contain the entire file, thus eliminating

the need for disk I/O until the file was closed.

In EDONIO, all processors'must participate concurrently in do-open0 , d o l s i z e o

(do-esizeo) , d o f l u s h 0 2nd do-close0. The processors are synchronized when

opening a shared file with do-open0 so that EDONIO can set up common data struc-

tures. They are synchronized in d o f l u s h 0 and in do-close() to ensure that there

are no outstanding read or write requests.

EDONIO must deviate frolh the UNIX file system with respect to file permissions.

The UNIX file systems allow a user to open an existing file with flag 0-WRONLY (assiiming

the file mode allows write access) in a directory in which the user does not have read

access. EDONIO cannot allon! this, since it is impossible for EDONIO to act as a disk

cache on a file without read 'permission. For simplicity, we assume that the user has

read permission on any files that will be accessed with d o a p e n o . Moreover, although

EDONIO supports a write-only file mode (as a safety check to prevent read operations

on the file), the uctuul file pdrmissions must allow both reading and writing.

I

I

The original DONIO did not support an APPEND mode for file I/O. Instead, the user

was advised to open separate'files for each logically separate set of data, largely because

of the inherent limitation on file size in DONIO. With EDONIO, the UNIX OAPPEND is

still not directly supported b?t file size is no longer a concern, as we now fully support

files of practically unlimited 'size (up to 16Terabytes). The user can append to a file

by first seeking to end of file (see description on d o l s e e k O a n d d o 4 l u s h O) before

writing. I I

With EDONIO, the execution times for d o r e a d 0 and d o s r i t e o may vary signif-

icantly depending on the ratlo of cache hits/misses. The user can reduce these times

in several ways. The size of the cache can be increased (see do -cs i ze0) to improve

the probability of cache hits, or preloading of the cache (see do-preloado) can also

~

improve I/o performance. '

I

I

Consider the sequence of events initiated by a d o r e a d o request. First, the disk

blocks involved are identified. If the disk block is assigned to the same calling processor,

the local disk cache is searchkd. A cache miss causes EDONLO to load these blocks into

the local disk cache, displacipg other blocks if necessary. For any blocks assigned to

- 20 -

other processors, the IPX2 system [3] is used to request the data from the processors that

“own” those blocks. The read request is satisfied after the remote data are received. If

the file was opened as a read-only file, the incoming data are also placed in the local

read-only cache, to reduce message passing traffic should the same data be referenced

in snbsequent read operations. Note the read-only data cache holds only remote (non-

local) data.

A do-write0 operation is similar. Again, the disk blocks to be written are iden-

tified. Blocks assigned to the same processor are loaded into the cache if they are not

already there. EDONIO uses the IPX ‘ ‘on’ ’ routine (a type of “remote procedure call”)

to cause other processors to update blocks assigned to them. On the iPSC/860, IPX uses

the NX hrecv0 interrupt mechanism to preempt a processor to service IPX requests.

However, on the Intel Paragon, hrecvo is not a true interrupt handler but spawns a

separate thread that executes concurrently with the main computation. The extensive

use of masktrap0 for exclusive access to critical sections incurs a very high overhead

on the Paragon. We have chosen to use a more efficient non-interrupt (polling) version

of IPX for use on the Paragon. Because IPX requests are serviced only when the mes-

sage queue is polled, and processors must supply data or update blocks at the request

of other processors, the user must be careful to prevent deadlock or starvation. EDONIO

provides the do-check() routine to examine the message queue for IPX requests. For

example, code that uses a subset of the processors to handle all the disk 1/0 will fail

unless the remaining processors periodically call do-check(), since IPX requests to

these processors will not be serviced. See the manual page for do-checkO for further

discussion.

We have included a subprogram for preloading the disk-cache to enhance perfor-

mance of the disk I/O. Preloading of the disk-cache is particularly desirable immediately

after opening an existing file, where disk 1/0 during preloading proceeds in parallel.

Preloading is not guaranteed to improve 1/0 performance since it depends on the ac-

cess pattern and size of disk cache. See the manual page for do-preload0 for further

details.

IPX is available by anonymous FTP from msg . das . bnl .gov under the directory /pub/ipx.

- 21 -

5 . Experimental Resulds

In this section we present a' rough comparison of disk performance by EDONIO versus

native NX routines. The Fortran source code is included in the Appendix. The code

is a contrived example that hmulates the disk 1/0 common in finite element codes by

performing multiple direct access lseek 0 's, c reado ' s and c u r i t e (1 's. This example

generates the element-to-vertex list for a three dimensional ne% x ney x nez grid.

The elements are assumed to be ordered with z-index varying fastest, then z then y.

Elements along the vertical' direction are grouped in buffer mibuf before writing to

obtain better disk performadce. Note that the element-to-vertex list file is independent

of the number of processors. The same file is later read again.

Since operating system patches and compiler upgrades are regularly applied to the

512-processor xps35 Intel Paragon system at the Oak Ridge National Laboratory, and

EDONIO is currently undergding performance tuning, the performance numbers listed

should be taken only as app!roximate and reflect only the current state of affairs (Feb

1995, OS version R1.2.5). Moreover, background disk activity by other concurrently

running applications may also affect the timings. Three problems were used for testing:

a small 100 x 100 x 100 (1,000,000 elements) problem, a medium 200 x 200 x 200

(8,000,000 elements), and a large 300 x 300 x 300 (27,000,000 elements) problem.

Table 5.1 show the effect of varying the amount of memory allocated to the disk

cache in EDONIO on 22 nodei on a 200 x 200 x 200 grid (file size is 256 x lo6 bytes).

We see from Table 5.1 that optimal performance is obtained when the aggregate disk

cache can hold the entire file. Table 5.2 shows preloading the disk cache can reduce

1/0 time in read for 16 nodes on 121 x 121 x 91 grid (file size is 42,634,592 bytes).

Runtimes are obtained from d c l o c k o .

Tables 5.3-5.5 list the runtimes (in seconds) for the three problems. All runs have

cache and with cache preloading. Note that with the default 4096Kbytes allocated for

the disk cache, 8, 62 and 206 processors axe needed to hold the small, medium and

large problems (respectively) in memory. The label wopen (wclose) denotes the time

to read-only access. Note that read and mite times in EDONIO decrease with the

addition of more processors. 'As more processors are used, fewer messages per processor

I

I

I

I

,

EDONIO configured to use 5 I 2Kbytes for read-only data cache, 4096Kbytes for disk

for opening (closing) a file t or write-only access; similarly, ropen and r c l o s e apply

- 22 -

wopen write

With preload 2.2 3.1
N o preload 1.2 3.1

N X 1.4 38.5

Table 5.1: Effect on disk cache size on EDONIO, all times in seconds.

wclose ropen preload read rclose

2.4 1.3 1.3 4.7 0.2
1.8 0.8 0.0 25.3 0.2
0.2 0.7 0.0 25.4 0.2

Cache (KBytes)

1024
2048
4096
8192

12288

17.3

wclose 11 ropen I preload I read I rclose

3.2 2.2
6.2
6.6 2.2

Table 5.2: Effect of do-preloadoon EDONIO, all times in seconds.

are generated. Moreover, more total aggregate memory (4Mbytes per processor) is

available for the disk cache. wclose and preload involve physical disk activity to

write out or read in data into the aggregate disk cache; hence as the disk cache size

increases with more processors, more data are transfered and more time for disk 1/0

may be required.

We see that with a large enough disk cache, EDONIO may offer nearly a ten-fold

improvement over native N X routines. However, if the disk cache is too small to be

effective, performance of EDONIO may be similar to native NX. EDONIO fully exploits the

new MASYNC mode in achieving over 20Megabytes per second overall disk throughput

to the /pf s. By cornpaxison, DONI0 with the default M-UNIX mode obtained only about

5Megabytes per second disk throughput.

6. Summary

We have described EDONIO, a fast file 1/0 emulation library for the Intel iPSC and

Paragon distributed memory multiprocessors. EDONIO provides an easy to use interface,

and with minimal change to the source of an iPSC/S60 or Paragon parallel program

may improve file 1/0 by a ten-fold speedup. Similar to the shared-memory library

DOLIB, EDONIO uses the IPX message system to provide a very large high-speed disk

- 23 -

write

293.7)

(84.2)

(26.8)

187.8)

(50.5)

(20.5)
(22.6)

Table 5.3: Runtimes (in secc
size is 32 x lo6 bytes.

wclose ropen preload

0.7 (0.1) 0.7 (0.4) 2.5

0.7 (0.1) 0.6 (0.6) 2.8

1.1 (0.2) 1.0 (0.7). 1.8

0.6 (0.1) 0.6 (0.5) 2.8

1.2 (0.1) 0.7 (0.6) 1.9

1.8 (0.4) 1.3 (1.4) 1.0
2.4 (0.7) 2.5 (3.0) 0.9

processor

1
2
4
8

16
32
64

20.9
13.
6.
3.
2.
1. -

wopen

1.9 (1.0) 29.1
1.5 (1.0)

1.4 (0.9)
1.2 (1.5)
2.0 (1.6)
3.1 (2.8)

2.0 (0.9)

Table 5.4: Runtimes (in secc
size is 256 x lo6 bytes.

vrite wclose ropen preload

L1.2) l.g(O.2) 1.4(0.8) 2.2
22.4) 3.2(0.4) 1.5(1.3) 3.6
18.6) 7.6(0.7) 2.5(2.1) 7.9
39.2) 10.7(1.5) 4.3(3.7) 7.7

read rclose

84.5(89.5) O.S(O.2)
30.1(49.3) 0.4(0.4)

7.2(48.0) 0.8(0.7)
4.0(47.5) 1.6(1.4)

Table 5.5: Runtimes (in secc
size is 864 x lo6 bytes.

processor wopen

ds) of EDONIO (NX) routines on 100 x 100 x 100 grid, file

processor wopen

read

vrite

$2.0)
18.1)
$0.3)

44.9 (213.7)
39.5 (83.8)
22.6 (48.9)
8.2 (34.2)
4.3 (17.0)
2.3 (10.0)
1.3 (9.5)

wclose ropen preload read rclose

5.2(0.4) 2.6(2.3) 3.4 119.5(111.4) 0.4(0.3)
7.3(0.7) 2.8(2.2) 6.5 56.7(108.8) OB(O.7)

23.1(1.5) 4.6(4.8) 15.8 21.4(105.2) 1.5(1,5)

0.1 (0.1)
0.1 (0.1)
0.1 (0.1)
0.2 (0.1)
0.3 (0.2)
0.4 (0.4)

ds) of EDONIO (NX) routines on 200 x 200 x 200 grid, file

ds) of EDONIO (NX) routines on 300 x 300 x 300 grid, file

- 24 -

cache in the aggregate memory of the multiprocessor. Disk 1/0 operations are in large

blocks to fully exploit the new M-ASYNC 1/0 mode. E D O N I O is more memory efficient

than DONI0 and can access files of practically unlimited size.

7. Obtaining the Software

To obtain the source code for E D O N I O the reader should send email to the authors:

e6dQornl.gov or rominechQornl.gov.

Acknowledgments

The authors would like to express appreciation to Bob Marr, Ron Peierls and Joe

Pasciak for the IPX package, which simplified the development of EDONIO. We also thank

Tom Dunigan, John Drake, David Walker and Pat Worley for suggesting improvements

both to E D O N I O and to this report.

8. Appendix

In this appendix, we list the

EDONIO and NX disk operatio

by a flag at compile time.

program example
C---

C--- a simple example t
C---

include 'fnx.h'
#if def USE-IX

c--- note: fd is defined a

integer fd
parameter (f d=16)

C---

C---

#define #-MODE M-ASYMC

#define IOIBIT(myid,nproc)
#define LSEEK lseek
#define ROPEl (f d , filename
#define WOPEIY(fd, filename
#define LSIZE(fd, newsize)
#define CREAD(fd, ibuffer,
#define CWRITE(fd, ibuffer
#define CCLOSE(fd1 close(

#define GSYNCO call gsync

#else

integer rflags,wfl
parameter(rflags=C
integer doopen, do
external doopen, d
external doc1ose.d

C---

c--- note: fd is declw

integer Ed
c---

- 25 -

utran source code used in comparing the performance of

. Note that either EDONIO or NX routines can be selected

illustrate the use of DONI0

a constant unit number

call gopen(fd,filename,M-MODE)
call gopen(fd,filename,M-MODE)
ierr = lsize(fd, newsize, SIZE-SET)
)ytes) call cread(fd,ibuffer,nbytes)
nbytes) call cwrite(fd, ibuffer, nbytes)

1)

; 5 , mode
rf lags= (512+1) ,mode=(8*8*6+8*6+6))
!ad, dowrite, dolseek
'ead, dowrite, dolseek
.size

1 as a variable

#define IOINIT(myid,nproc)' call donio(myid,nproc)
#define LSEEK dolseek ~

#define ROPEl(f d, filename) fd = doopen(filename, rf lags ,mode)

- 26 -

#define WOPEN(fd, filename) fd = doopen(filename, wflags,mode)
#define LSIZE(fd, newsize) call dolsize(fd, newsize)
#define CREAD(fd, ibuffer,nbytes) ierr = doread(fd, ibuffer, nbytes
#define CWRITE(fd, ibuffer, nbytes) ierr =
#define CCLOSE(fd) call doclose(fd)

dowrite(fd, ibuffer, nbytes)

#define G S Y N C () call dogsync0
#endif

integer indev,outdev,sizeint,nvertex,maxnez
parameter(indev=5,outdev=6,sizeint=4,nvertex=8,maxne~=lO24)

integer data-size,disk-size
integer ipreload

double precision tstart,tend
character*8O filename
integer i, ix,iy,iz, nnx,nny
integer jx, jy, jz
integer mbuf(nvertex,maxnez)
integer mbuf2(nvertex,maxnez)
integer nbytes, myid,nproc,
real*8 totalbytes
integer mi,miold,ierr,offset,
logical ismine

C---

nnz, nex,ney,nez

host

iwork

c--- 8 vertices of an hexahedralbrick element
C---

integer dx(nvertex) , dy (nvert ex) ,dz(nvertex)
data dx /O,I,l,O, O,I,l,O/
data dy /O,O,l,l, O,O,l,l/
data dz /O,O,O,O, I,l,l,l/

integer ijk2mi,iJk2ni
ijk2mi(ixyiy,iz,nex,ney,nez) = iz+(ix-l)*nez+(iy-l)*nez*nex
ijk2ni(ix,iyYiz,nnx,nny,nnz) = izt(ix-l)*nnz+(iy-l)*nnz*nnx

C---

c--- code begins
C---

myid = mynode0
nproc = numnodeso

#if RX 1 1 I860

#endif
call openO(nproc, myid, ihost

I O I N I T (myid, nproc)

- 27 -

nex = 0
ney = 0
nez = 0

data-size = 0
disk-size = 0

ipreload = 0

if (myid .eq. 0) dhen
write(outdev,*) ~ 'enter nex,ney,nez '
read(indev,*) ndx,ney ,nez
write(outdev,*) ~)nproc, nex,ney,nez), nproc,nex,ney,nez

write(outdev,*) 'enter data-size, disk-size (in Kbytes)'
read(indev,*) d a ta-size,disk-size

*) ~ 'data-size ,disk-size ,data-size ,disk,size write (outdev

write (outdev
read(indev,*
write(outdev

endif

*) i'enter use of preload '

*) 'ipreload ',ipreload
ipreload

call gisum(data-&e, I, iwork
call gisum(disk-$he, 1, iwork)

call docsize(data-size, disk-size)

call gisum(ipreload, I, iwork)

call gisum(nex, I, :work)
call gisumbey I, {work)
call gisum(nez,i,iwork)

nnx = nex + I
nny = ney + 1
nnz = nez + I

totalbytes = dblednex*ney*nez)*dble(nvertex*sizeint)

GSYNCO
tstart = dclocko

#if def USE-RX
#if RX I I I860

filename = '/cf s/nxex. bin'

- 28 -

#else

#endif
filename = ’/pf s/nxex. bin’

#else /* USE-NX */

C--- IMPORTANT NOTE: string MUST be null terminated

#if RX 1 1 I860

#else

#endif

C---

C---

filename = ’/cfs/ex.binJ // char(0)

filename = ’/pfs/ex.bin’ // char(0)

#endif /* USE-NX */
WOPEN(fd, filename)

GSYNC ()
tend = dclock()
if (myid .eq. 0) then

write(outdev,+) ’ open takes ’, tend-tstart,’ sec’
write(outdev,*) ’ total file size is ’,

& int (totalbytes/1024.0/1024.0), ’ Hegbytes ’
endif

C

nbytes = nvertex*sizeint
GSYNC ()
tstart = dclocko

miold = -1
do iy=l ,ney
do ix=l .nex

ismine = (mod(ix+(iy-l)*nex, nproc) .eq. myid)

if (ismine) then
do iz=l,nez
do i=l,nvertex
jx = ix+dx(i)
jy = iy+dy(i)
jz = iz+dz(i)
mbuf(i,iz)=ijk2ni(Jx,Jy,jz,nnx,nny,nnz)
enddo

enddo

mi = ijk2mi(ix,iy,l, nex,ney,nez)
if (miold.eq.-I) then

offset = (mi-l)*nvertex*sizeint
ierr = LSEEK(fd, offset, SEEK-SET)

else
offset =
ierr = LSI

endif
miold = mi
nbytes = nez*j
CWRITE(fd, ml
endif

enddo
enddo

G S Y I C ()
tend = dclocko
if (myid .eq. 0) i

writ e (outdev ,:
endif

GSYNC ()
tstart = dclocko
CCLOSE(id)
GSY%C()
tend = dclock()
if (myid .eq. 0) 1

write(outdev,>
endif

- 29 -

ni-miold)*nvertex*sizeint - nbytes
M(fd, offset, SEEK-CUR)

vert ex*s izeint
lf(l,l), nbytes

zen
) ’ write takes ’, tend - tstart,’ sec’

ten
) ’ close f o r write takes ’,tend-tstart,’ sec’

c ---
c --- read the element liaF back
c ---

GSYNC ()
tstart = dclock()
ROPEN(fd, filename)
GSYIJC()
tend = dclocko I
if (myid .eq. 0) then

endif

I

write(outdev,*)’ open for read takes ’, tend-tstart,’ sec’
I

if (ipreload. ne. 0) then

tstart = dclsc I ()
G S Y B C O

c a l l dopreload(fd)
GSYHC () I

tend = dclock(j
if (myid e eq. 0) ’ then
endif

write(outdh,*) ’preload takes ,tend-tstart, ’ sec’
endif I

- 30 -

nbytes = nvertex*sizeint
GSYNC ()
tstart = dclocko

miold = -1
do iy=l,ney
do ix=l,nex

ismine = (mod(ix+(iy-l)*nex, nproc) .eq. myid)

if (ismine) then
do iz=l,nez
do i=l,nvertex
jx = ix+dx(i)
jy = iy+dy(i)
jz = iztdz(i)
mbuf2(i,iz)=iJk2ni(Jx,Jy,jz,nnx,nny,nnz)
enddo

enddo
endif

if (ismine) then
mi = ijk2mi(ix,iy, I, nex,ney,nez)
if (miold.eq.-I) then

offset = (mi-i)*nvertex*sizeint
ierr = LSEEK(fd, offset, SEEK-SET)

offset = (mi-miold)*nvertex*sizeint - nbytes
ierr = LSEEK(fd, offset, SEEK-CUR)

else

endif
miold = mi
nbytes = nez*nvertex*sizeint
CREAD(fd, mbuf(l,l), nbytes

endif

c ---
c --- double check results
c ---

if (ismine) then
do iz=l,nez
do i=l,nvertex
if (mbuf2(i,iz).ne.mbuf(i,iz)) then

arite(*,9900) i,iz,mbuf2(i,iz),mbuf(i,iz)
format (’ i , iz ,mbuf 2(i , iz) ,mbuf (i , iz) ,4(lx , i7)) 9900

stop I * * ERROR ** ’
endif

enddo
enddo

endif

I

- 31 -

enddo
enddo

GSYNC ()
tend = dclock() ’
if (myid .eq. 0) than

,

urite(outdev,*
endif

GSYBCO
tstart = dclocko
CCLOSE(fd)
GSWC ()
tend = dclock()
if (myid .eq. 0) t

urite(outdev,*
endif

stop
end

1 ’ a l l reads take ’,tend-tstart,’ sec’

ten
1 ’ close for read takes ’, tend-tstart,’ sec’

- 32 -

9. References

[l] E. F. D’AZEVEDO A N D C. H. ROMINE, DOLIB: Distributed Object Library, Tech.

Report ORNL/TM-12744, Oak Ridge National Laboratory, 1994.

PI - , DONIO: Distributed Object Network I /O Library, Tech. Report ORNL/TM-

12743, Oak Ridge National Laboratory, 1994.

[3] B. MARR, R. PEIERLS, A N D J. PASCIAK, IPX - Preemptive remote procedure exe-

cution for concurrent applications, Tech. Report, Brookhaven National Laboratory,

1994.

- 33 -

ORNL/TM-12934

I ~ T E R N A L DISTRIEUTION

1. B. R. Appleton
2. B. A. Carreras

3-7. E. F. D’Rzevedo
8. T. S. Darland
9. J . J . Dongarra

10. 3. B. Drake
11. T . H. Dunigan
12. W. R. Emanuel
13. G. A. Geist
14. K. L. Kliewer

15-19. M. R. Leuze
20. E. G. Ng
21. C. E. Oliver
22. B. W. Peyton

23-27. S. A. Raby

28. B. A. Riley
29-33. C. H. Romine

34. W. A. Shelton
35-39. R. F. Sincovec

40. G. M. Stocks
41. M. R. Strayer
42. D. W. Walker
43. P. H. Worley
44. T. Zacharia
45. Central Research Library
46. ORNL Patent Office
47. K-25 Applied Technology Li-

48. Y-12 Technical Library
49. Laboratory Records - RC

50-51. Laboratory Records Dept.

brary

EXTERNAL DISTRIEUTION
I

52. Loyce M. Adams, Applied Mathematics, FS-20, University of Washington, Seattle,
WA 98195

53. Christopher R. Anderson, Department of Mathematics, University of California,
Los Angeles, CA 90024

54. Todd Arbogast, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 77251

55. Donald M. Austin, 6196 EECS Building, University of Minnesota, 200 Union
Street, S.E., Minneapolis, MN 55455

56. Robert G. Babb, Oregon Graduate Center, CSE Department, 19600 N.W. Walker
Road, Beaverton, OR 97006

57. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center,
Moffet Field, CA 94035

58. Jesse L. Barlow, Department of Computer Science and Engineering, 220 Pond
Laboratory, The Pennsylvania State University, University Park, PA 16802-6106

59, Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

60. Adam Beguelin, Carnegie Mellon University, School of Computer Science, 5000
Forbes Avenue, Pittsburgh, PA 15213-3890

61. Robert E. Benner~, Parallel Processing Division 1413, Sandia National Laborato-
ries, P. 0. Box 5800, Albuquerque, NM 87185

I

I

I

I

- 34

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Marsha J . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

Philippe Berger, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Carnichel-
F, 31071 Toulouse Cedex, France

Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

John H. Bolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street Cambridge,
MA 02138

James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P. 0. Box 3000, Boulder, CO 80307

Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House,
University of Tennessee, Knoxville, T N 37996

Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,
NC 27709

Siddhartha Chatterjee, Dept. of Computer Science, CB 3175, Sitterson Hall, The
University of North Carolina, Chapel Hill, NC 27599-3175

Melvyn Cirnent, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

Alva Couch, Department of Computer Science, ‘Tufts University, Medford, MA
02155

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

Tom Crockett, ICASE, Mail Stop 132C, NASA Langley Research Center, Bamp-
ton, VA 23665-5225

Jane K. Cullum, IBM T . J . Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 10598

George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 South Wright Street, Urbana, 11, 61801-2932

Helen Davis, Computer Science Department, Stanford University, Stanford, CA
94305

Michel Dayde, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Camichel-
F, 31071 Toulouse Cedex, France

- 35 - I

83. Craig Douglas, IdM T. J. Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 1059 -0218

OQX, England 1
I

85. Victor Eijkhout, University of Tennessee, 107 Ayres Hall, Department of Com-
puter Science, Knyxville, T N 37996- 1301

86. Stanley Eisenstat, Department of Computer Science, Yale University, E'. 0. Box
2158 Yale Station, New Haven, C T 06520

87. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

88. Richard E. Ewin$, Director, Institute for Scientific Computations, Texas A&M
University, College Station, TX 77843-3404

89. Edward Felten, Department of Computer Science, University of Washington, Seat-
tle, WA 98195

90. Charles Fineman, Ames Research Center, Mail Stop 269/3, Moffet Field, CA
94035

91. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont, CA
91711

92. Jon Flower, Parasoft Corporation, 2500 E. Foothill Boulevard, Suite 205, Pasadena,
CA 91107

84. Iain S. Duff, Atlas t Centre, Rutherford Appleton Laboratory, Chilton, Oxon OX11

I

,

I
93. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY

132444100 I ,
94. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Avenue N, Suite 500, Seattle,

WA 98119

95. Joan M. Francioni, Computer Science Department, University of Southwestern
Louisiana, Lafayette, LA 70504

96. Paul 0. Frederickson, ACL, MS B287, Los Alamos National Laboratory, Los
Alamos, NM 87545

97. Offir Frieder, George Mason University, Science and Technology Building, Com-
puter Science Department, 4400 University Drive, Fairfax, Va 22030-4444

98. Robert E. Funderlk, Department of Computer Science, North Carolina State Uni-

I

versity, Raleigh, NC 27650

99. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47401 1

100. C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540 I

10 1. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8 I

102. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

- 36 -

103. James Glimm, SUNY-Stony Brook, Department of Applied Mathematics and
Statistics, Stony Brook, NY 11794

104. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

105. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

106. William D. Gropp, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

107. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, N J 07974

108. Sanjay Gupta, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665-5225

109. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, IA 50011-3020

110. Christian IIalloy, Assistant Director of JICS, 104 South College, Joint Institute
for Computational Science, University of Tennessee, Knoxville, T N 37996-1301

111. Sven J. Hammarling, The Numerical Algorithms Group, Ltd., Wilkinson House,
Jordan Hill Road, Oxford OX2 8DR, United Kingdom

112. Robert M. IIaralick, Department of Electrical Engineering, Director, Intelligent
Systems Lab, University of Washington, 402 Electrical Engineering Building, FT-
10, Seattle, WA 98195

113. Ann H. Hayes, Computing and Communications Division, Los Alamos National
Laboratory, Los Alamos, NM 87545

114. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, 11,
61801-2300

115. Gerald W. Iledstrom, L-71, Lawrence Livermore National Laboratory, P. 0. Box
808, Livermore, CA 94550

116. Don E. Heller, Ames Laboratory, 327 Wilhelm, Ames, IA 50011

117. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

118. N. J . Higham, Department of Mathematics, University of Manchester, Gtr Manch-
ester, M13 9PL, England

119. Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U S . Department of Energy, Washington, DC
20585

120. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

121. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical Sciences,
Office of Energy Research, Department of Energy, Washington, DC 20585

122. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P. 0. Box 808, Livermore, CA 94550

123. Jenq-Neng Hwang, Department of Electrical Engineering, FT-10, University of
Washington, Seattle, WA 98195

i - 37 -
~

124. Ilse Ipsen, DepartLent of Computer Science, Yale University, P. 0. Box 2158 Yale
Station, New Haven, CT 06520

125. Leah €1. Jamieson, School of Electrical Engineering, Purdue University, West
Lafayette, I N 47907

126. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sci-

I

ences, Office of Energy Research, U S . Department of Energy, Washington, DC
20585 I

I

127. Lennart Johnsson,' Thinking Machines Corporation, 245 First Street, Cambridge,

128. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

129. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden ~

130. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Building,
Cornell University, Ithaca, NY 14853-3901

13 1. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

132. Alan H. Karp, HP Labs 3U-7, Hewlett-Packard Company, 1501 Page Mill Road,
Palo Alto, CA 94304

133. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

134. Robert J . Kee, Applied Mathematics Division 8245, Sandia National Laboratories,

135. Kenneth Kennedy,' Department of Computer Science, Rice University, P.O. Box 1892,

MA 02142-1214
I

Livermore, CA 94551-0969

Houston, TX 77001

136. Tom Kitchens, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

~

137. Clyde P. Kruskal, Department of Computer Science, University of Maryland, Col-
lege Park, MD 20742

138. Edward Kushner, Intel Corporation, 15201 NW Greenbrier Parkway, Beaverton,
OR 97006

139, Michael Langston, Department of Computer Science, University of Tennessee,
Knoxville, TN 37996-1301

140. Richard Lau, Office of Naval Research, Code l l l M A 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

141. Robert L. Launer, Army Research Office, P. 0. Box 12211, Research Triangle
Park, NC 27709 ~

142. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

143. Robert Leland, Sahdia National Laboratories, 1424, P. 0. Box 5800, Albuquerque,
NM 87185-5800 i

,
~

- 38 -

144.

145.

146.

147.

148.

149.

150.

151.

152.

Randall J . LeVeque, Applied Mathematics, FS-20, University of Washington, Seat-
tle, WA 98195

John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle,

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, England

Brent Lindyuist, SUNY-Stony Brook, Department of Applied Mathematics and
Statistics, Stony Brook, NY 11794

Rik Littlefield, Pacific Northwest Laboratory, MS K1-87, P.O.Box 999, Richland,
WA 99352

Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
Downsview, Ontario, Canada M3.J 1P3

Franklin Luk, Department of Computer Science, Amos Eaton Building - No. 131
Rensselaer Polytechnic Institute Troy, NY 12180-3590

Ewing Lusk, Mathematics and Computer Science Division, Argonne Nat,ional Lab-
oratory, 9700 South Cass Avenue, MCS 221 Argonne, IL 60439-4844

Allen D. Malony, Department of Computer and Information Science, University
of Oregon, Eugene, OR 97403

WA 98124-0346

153. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Denver, CO 80202

154. Anita Mayo, IRM T. J . Watson Research Center, P. 0. Box 218, Yorktown Heights,
NY 10598

155. Oliver McBryan, University of Colorado at Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

156. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

157. Piyush Mehrotra, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665

158. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Boulevard, Pasadena, CA 91125

159. Cleve B. Moler, Mathworks, 325 Linfield Place, Menlo Park, CA 94025

160. Jorge J . More, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

161. William A. Mulder, Koninklijke Shell Exploratie en Produktie T,aboratorium,
Postbus 60, 2280 AB Rijswijk, The Netherlands

162. David Nelson, Director, Office of Scientific Computing, ER-7, Applied Mathemat-
ical Sciences, Office of Energy Research, US. Department of Energy, Washington,
DC 20585

163. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station
R , Nashville, T N 37235

I - 39 -

164. Dianne P. O'Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

165. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

166. James M. Ortega, Department of Computer Science, Thornton Hall, University of
Virginia, Charlotbesville, VA 22901

167. Steve Otto, Oregon Graduate Institute, Department of Computer Science and
Engineering, 19600 NW von Neumann Drive, Beaverton, OR 97006-1999

168. Cherri Pancake, department of Computer Science, Oregon State University, Cor-
vallis, OR 97331-3202

169. Joseph E. Pasciad, Applied Mathematics, Brookhaven National Laboratory, Up-
ton, NY 11973 ,

170. Merrell Patrick, dational Science Foundation, 1800 G Street N.W., Washington,
DC 20550

171. David Payne, Intel Corporation, Supercomputer Systems Division, 15201 NW
Greenbrier Parkway, Beaverton, OR 97006

172. Ronald F. Peierls: DAS - Bldg. 490-D, P.O. Box 5000, Brookhaven National
Laboratory, Upton, NY 11973

173. Linda R. Petzold, Computer Science Department, University of Minnesota, 200
Union Street, S.E., Room 4-192, Minneapolis, MN 55455

174. Dan Pierce, Boeidg Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA

175. Paul Pierce, Intel Corporation, Supercomputer Systems Division, 15201 NW Green-
brier Parkway, Beaverton, OR 97006

176. Robert J . Plemmdns, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

177. James C. T . Pool,' Deputy Director, Caltech Concurrent Supercomputing Facility,
California Institute of Technology, MS 158-79, Pasadena, CA 91125

178. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville,
T N 37996-1300 ~

179. David A. Poplawski, Department of Computer Science, Michigan Technological
University, Houghton, MI 49931

180. Roldan Pozo, Unibersity of Tennessee, 107 Ayres Hall, Department of Computer
Science, Knoxville, T N 37996-1301

181. Padma Raghavan, University of Illinois, NCSA, 4151 Beckman Institute, 405
North Matthews Avenue, Urbana, IL 61801

182. Daniel A. Reed, c omputer Science Department, University of Illinois, Urbana, IL
61801

183. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

I
184. John R. Rice, Computer Science Department, Purdue University, West Lafayette,

IN 47907 I

~

~

98124-0346

~

- 40 -

185. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National
Laboratory, Livermore, CA 94550

186. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

187. Ahmed H. Sameh, Department of Computer Science, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455

188. Joel Saltz, Computer Science Department, A.V. Williams Building, University of
Maryland, College Park, MD 20742

189. Jorge Sanz, IBM Almaden Research Center, Departmerit K53/802, 650 Harry
Road, San Jose, CA 95120

190. Robert B. Schnabel, Department of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-
0430

191. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

192. Martin H. Schultz, Department of Computer Science, Yale University, P. 0. Box
2158 Yale Station, New Haven, CT 06520

193. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

191. The Secretary, Department of Computer Science and Statistics, The University of
Rhode Island, Kingston, RI 02881

195. Charles L. Seitz, Department of Computer Science, California Institute of Tech-
nology, Pasadena, CA 91125

196. Margaret L. Simmons, Computing and Communications Division, Los Alamos
National Laboratory, Los Alamos, NM 87545

197. Horst D. Simon, NASA Aines Research Center, Mail Stop T045-1, Moffett Field,
CA 94035

198. William C. Skamarocli, 3973 Escuela Court, Boulder, CO 80301

199. Tony Skjellum, Dept of Computer Science, Mississippi State University, 1'0 Drawer
CS, Mississippi State, MS 39762-5623

200. Burton Smith, Tera Computer Company, 400 North 31th Street, Suite 300, Seattle,
WA 98103

201. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. 0.
Box 218, Yorktown Heights, NY 10598

202. Larry Snyder, Department of Computer Science and Engineering, FR-35, Univer-
sity of Washington, Seattle, WA 98195

203. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0.
Box 1892, Houston, TX 77251

204. Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60139

205. G . W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

- 41 -
~

206. Paul N. Swaratradber, National Center for Atmospheric Research, P. 0 . Box 3000,

207. Julie Swisshelm, Sandia National Laboratories, 1421, Parallel Computational Sci-

Boulder, CO 80307

ences Department, Albuquerque, New Mexico 87185-5800

203. Wei Pai Tang, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canhda N21 3G1

209. Bernard Tourancl!eau, LIP ENS-Lyon 69364, Lyon cedex 07, France

210. Joseph F. Traub,' Department of Computer Science, Columbia University, New

211. Lloyd N. Trefethek, Department of Computer Science, Cornell University, Ithaca,

212. Robert van de Geiyn, University of Texas, Department of Computer Sciences , TAI
2.124, Austin, TX 78712

213. Charles Van Load, Department of Computer Science, Cornell University, Ithaca,
NY 14853

214. Udaya B. Vemulapati, Department of Computer Science, University of Central
Florida, Orlando, FL 32816-0362

215. Robert G . Voigt, National Science Foundation, Room 417, 1800 G Street N.W.,

216. Bi R. Vona, Center for Numerical Analysis, RLM 13.150, University of Texas at

217. Henk A. van der 'Vorst, Professor Dept. of Mathematics, Universiteit Utrecht,

I

York, NY 10027 ~

NY 14853 '
I

Washington, DC 20550

Austin, Austin, TX 78712

P.O. Box 80010, 3508 TA, Utrecht, THE NETHERLANDS

Tennessee, Knoxville, T N 37996-1301
218. Michael D. Vose, 1 07 Ayres Hall, Department of Computer Science, University of

219. Phuong Vu, Cray hesearch, Inc., 19607 Franz Road, Houston, TX 77084

220. A. J . Wathen, School of Mathematics, University Walk, Bristol BSB lTW, Eng-

221. Robert P. Weaver' 1555 Rockmont Circle, Boulder, CO 80303

222. Mary F. Wheeler, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, T X 77251

223. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

224. John Zahorjan, Department of Computer Science and Engineering, Sieg Hall, FR-
35, University of Washington, Seattle, WA 98195

225. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N

I
land

1
I

I

37831-8600

226-227. Office of Scientific ,& Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

