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I 

I Abstract 
I 

This report describes lEDONIO (Extended Distributed Object Network I/O), an 

enhanced version of D O H I D  (Distributed Object Network 1/0 Library) optimized 

for the Intel Paragon Systems using the new MASYNC access mode. D O N I 0  provided 

fast file 1 / 0  capabilities in the Intel iPSC/SSO and Paragon distributed memory 

parallel environments by’ caching a copy of the entire file in memory distributed 

across all processors. E D d N I O  is more memory efficient by caching only a subset of 

the disk file at a time. D O h I  was restricted by the high memory requirements and 

use of 32-bit integer indexing to handle files no larger than 2Gigabytes. EDONIO 

overcomes this barrier by using the extended integer library routines provided by 

Intel’s IX operating systeL. 

I 

For certain applicatio;ns, E D O N I O  may show a ten-fold improvement in perfor- 

mance over the native t i X  1 / 0  routines. 

- v -  





1. Introduction 

Multi-megabyte disk input/output operations are commonly a major bottleneck in largc 

application codes on distributed-memory parallel supercomputers. Our first attempt 

to  remove this bottleneck produced DONIO [2], a library of routines to provide fast 

parallel file 1/0 capabilities’ on Intel iPSC/SSO and Intel Paragon supercomputers. 

DONIO caches the entire disk file across the aggregate memory of the multiprocessor 

in shared memory emulated~ by DOLIB (Distributed Object Library). This approach 

imposed a high memory ovkrhead, and the use of 32-bit integer indexing restricted 

access to files of at  most 2Gigabytes. The new EDONIO library reduces memory overhead 

and provides fast 1/0 on files of arbitrary size. EDONIO is implemented independently 

of the Distributed Object Lidrary DOLIB [l] but uses similar IPX remote procedure calls 

to implement a large disk cache in the aggregate memory of the multiprocessor. 

I 

In contrast to  DONI0 where the entire file is cache in memory and actual disk 1/0 

was done only in three roudines (do-open, d o f l u s h  and do-close), EDONIO caches 

only a portion of the disk file. At runtime, as the limited disk cache is filled, data 

are immediately written back to the disk in contiguous large blocks of optimal size 

(default is 64Kbytes to match the RAID striping parameter) for high 1/0 throughput. 

Similarly, data not found in the disk cache is dynamically read in large blocks. 

I 

The amount of memory dedicated to EDONIO is controlled by the user. A larger disk 

cache usually results in better performance; especially if sufficient memory i s  available 

to cache the entire file into aemory. In this case EDONIO reverts back to the behavior 

of DONIO. 

2. Extended Distributed Object Network 1 /0  Library 
I 

EDONIO, like DONIO, is designed to speed up the 1/0 for distributed-memory parallel 

applications where all processors open a common multi-megabyte shared file for simul- 

taneous access. To access a shared file, each processor positions its own private copy 

of the file pointer with 1sedkO’s to specific places in the file and then performs in- 

put/output operations. (Simultaneous output to overlapping regions in a shared file is 

nondeterministic; therefore, be assume that output operations do not overlap among 

processors). Such file accesh patterns are common in finite element codes that are 



- 2 -  

based on subdomain decomposition. For example, the data for material properties 

or boundary conditions are commonly stored in shared files. This arrangement pro- 

vides flexibility in solving the same problem with varying numbers or configurations of 

processors without rearranging the data files. 

A disadvantage of large shared files is that the overhead induced by many processors 

attempting to  access the disk file concurrently can be quite large. Machines like the 

Intel iPSC/860 and Paragon attempt to support simultaneous access through a special 

file system (CFS for the iPSC/860, PFS for the Paragon). Even with this support, the 

cost for concurrent access to the same file can significantly degrade the performance of 

a para,Uel program. It is common for file 1/0 to be one of the most costly operations 

in a parallel application. On the Intel Paragon machines, the default M-UNIX mode 

corresponds to  standard UNIX file sharing semantics that enforce atomic updates by 

serializing all requests. The new MASYNC file 1/0 mode allows multiple simultaneous 

read/write requests with no restrictions and dramatically reduces the cost of 1/0 oper- 

ations over the previous M-UNIX mode. EDONIO is designed to fully exploit the parallel 

MASYNC I/O mode by allowing all processors to  perform non-overlapping 1/0 requests. 

Moreover, EDONIO uses the aggregate memory of the multiprocessor to  implement a 

very large high-speed disk cache. 

EDONIO is compatible with DONI0 and offers a UNIX-like interface consisting of the 

‘C’ callable primitives do-open0 , d o r e a d 0 ,  do-write(), d o l s e e k o  , d o l s i z e o ?  

d o f l u s h 0  and do-close(), which are similar to the open(), c r e a d o ,  c w r i t e 0 ,  

l s e e k o ,  l s i z e 0 ,  f l u s h 0  and c l o s e 0  routines provided by the Intel NX operating 

system. A Fortran callable interface, (e.g., DOREADO for d o r e a d o ) ,  is also provided. 

Section 3 describes the use of these EDONIO primitives in more detail. Changing the 

names of the 1/0 subroutines called in an application program from the NX version 

to  the EDONIO version (leaving the parameters untouched) and then linking in the 

EDONIO library is generally all that is required to  use the package. A n  inyortant note: 

EDONIO operates only on UNIX binary files, which may be incompatible with Fortran 

unformatted fixed-size record files. 

Many large-scale applications involving the simulation of time-evolving events are 

designed to  output a “snapshot” or “checkpoint” of the current state of the simulation 

at regular intervals. A lengthy simulation may output tens (or even hundreds) of 
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Gigabytes of data for later a h alysis. The original DONI0 was incapable of handling files 

larger than 2Gigabytes. ED0 li IO overcomes this restriction, thereby providing rapid 1/0 

capabilities on files of practically unlimited size (up to 1GTerabytes). 

3. User Interface 

The following pages provide'details on the syntax and behavior of each of the EDONIO 

primitives. These pages can E he considered the manual for EDONIO. 
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do-check ( ) 

do-check0 checks the message queues for EDONIO or IPX requests from other 

processors, servicing any that are found. 

Synopsis 

int docheck( ) 

subroutine docheck( ) 

D is c ussio n 

do-check0 checks the calling processor)s message queues for IPX requests from 

other processors. If none are found, do-check( 1 returns immediately. Any queued 

requests are serviced before do-check () terminates. do-check (1 is provided to  

allow the user to avoid deadlock or slow servicing (starvation) of I/O requests if 

a non-interrupt (polling) version of IPX is used. All EDONIO calls automatically 

perform a do-check0 operation. However, do-check0 should be called period- 

ically by processors that are not involved in file 1/0 operations for long periods 

of time. 



do-close 0 closes the 

shared resources. do-c 

saved to disk. In C, 

implicit global synchro 

Synopsis 

i n t  do-close( i n t  f 

subroutine doclosel 

in teger  f d  

Input parameters 

f d  - f d i s  thefile 

Discussion 

do-close 0 deallocatf 

data associated with t 

do-close 0 first calls 

before resources are dc 

file is read-only, no dis 

Important note: Undik 

formed when the progr 

for a given file, any ch 

will be lost upon prog 

do-close0 call. An ii 
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do-c lose( )  

[e associated with the file descriptor ant. deallocates global 

m e 0  must be calked to ensure that all buffered writes are 

) -c lose0  returns 0 on success and -1 on failure. An 

kation is performed. 

escriptor obtained from do-openo. 

the global shared resources used for caching the file 

3 file descriptor fd. For write-only and read-write files, 

> f l u s h 0  to write out any cached data to the disk file 

located. (If none of the cached pages are dirty, or if the 

1/0 is performed). 

!he UNIX routines, no implicit d o x l o s e ( )  calls are per- 

n terminates. Hence, if the user fads to call do-close0 

ages made to cached blocks that have not yet been flushed 

m termination! All processors must participate in the 

>licit global synchronization is performed. 
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do-csize() 

do-csize() sets the sizes of the EDONIO read-only data cache and disk cache. An 

implicit global synchronization is perfoymed. 

Synopsis 

i n t  do-csize( i n t  d a t a s i z e ,  i n t  d i s k s i z e  ) 

subroutine docsize( da tas ize ,  disksize 

in teger  da tas ize ,  disksize 

Input parameters 

d a t a s i z e  - d a t a s i z e  is the maximum amount of memory in KBytes 

to be allocated to the read-only data cache. A value of 0 is 

valid, and can be used to  disable the read-only cache if no 

user files are opened with permission flag ORDONLY,  

disk-size is the maximum amount of memory in KBytes 

to  be allocated to the disk cache. A value of 0 results in an 

error. 

d i s k s i z e  - 

Discussion 

do-csizeo determines the maximum memory usage allowed by EDONIO’s read- 

only data cache and disk cache. Actual allocation of memory for the caches is 

done only as needed. Tip: The user might call v m . s t a t i s t i c s 0  at  runtime or 

use vms ta t  on the service nodes to  determine the a.mount of free memory (or free 

pages) available. To avoid excessive paging, parameters for do-csize ()should not 

exceed the amount of free memory. 

All processors must participate in the do-csize () . An implicit global synchro- 

nization is performed. 



d o f l u s h 0  forces ED( 

with the specified file 

blocks are guaranteed t 

-1  on failure. An impl 

Synopsis 

int d o f l u s h (  int f 

subroutine doflush( 

integer f d  

Input parameters 

f d  - f d i s  the file 

Discussion 

d o f l u s h 0  forces an 

specified file to disk. 1 

last call to  d o f l u s h (  

to support checkpointj 

written to the cached 

largest byte addressed 

However, unwritten by 

d o f l u s h 0  may also 

causes EDONIO to flus1 

Better I/O performanc 

with d o f l u s h 0 .  

All processors must pi 

chronization is perforn 
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do-f lush0 

iIO to write any “dirty” or “modified” blocks associated 

o the disk. After d o f l u s h ( ) ,  the disk file and cached 

be consistent. In C ,  d o 4 l u s h O  returns 0 on success and 

:it global synchronization is performed. 

1 

f d  1 

iescriptor obtained from doeopen( 1. 

nmediate write of any dirty blocks corresponding to the 

no changes have been made to the cached file since the 

, no disk 1/0 will take place. d o f l u s h 0  is provided 

g, since in the event of a machine malfunction, all data 

le will be lost. EDONIO automatically keeps track of the 

Iith d o x r i t e 0 ,  so the disk file will have the correct size. 

es (%‘.e., gaps) in the file will contain garbage. 

ihance performance of write operations. If a cache miss 

a dirty cache block, only that block is written to disk. 

3 may be obtained by writing many blocks concurrently 

ticipate in the d o f l u s h 0  call. An implicit global syn- 

:d. 
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do-lsize(),  do-esize() 

d o l s i z e  (1 estimates the size of the write-only or read-write output file associated 

with file descriptor f d. In C, d o l s i z e  (1 returns nbytes on success. An implicit 

global synchronization is performed. 

Synopsis 

i n t  d o l s i z e (  i n t  f d ,  i n t  nbytes ) 

esize-t  do-esize( i n t  f d ,  esize-t  nbytes ) 

subroutine dols ize(  f d ,  nbytes ) 

in teger  f d ,  nbytes 

subroutine doesize( f d ,  lnbytes  ) 

in teger  f d ,  lnbytes(2)  

Input parameters 

f d  - f d  is the file descriptor obtained from do-openo. 

nbytes - nbytes is the estimated file size in bytes. 

Discuss ion 

d o l l s i z e 0  tries to increase 1/0 throughput by attempting to  preallocate the 

requested disk blocks before starting write operations. Unlike DONI0 it is no 

longer mandatory to call d o l s i z e 0 .  Overestimation of the file size may cause 

overallocation and suboptimal performance, but the actual file generated on disk 

will be of correct (minimal) size. Calling d o l s i z e  () for files opened for read-only 

access results in an error. 

All processors must participate in the d o l s i z e 0 .  An implicit global synchro- 

nization is performed. 



d o l s  eek ( 1 (do-es ee 

with the file descripto 

Synopsis 

#include cunis td .  h 

#include <nx.h> 

i n t  d o l s e e k (  i n t  : 

esize-t  do-eseek( i 

include 'fnx.h' 

in teger  funct ion d 

in t ege r  f d ,  o f f s e t  

subroutine doeseek 

in t ege r  f d ,  whence 

in t ege r  l o f f s e t ( 2 )  

Input parameters 

fd - f d  is t l  

o f f s e t  - o f f s e t  

extendt 

files, tl 

integer 

FORTRA 

whence - whence 

one of : 

- Y -  

)-lseek() do-eseek() 

11) sets the (local) seek pointer of the open jile associated 

and returns the new seek position. 

, i n t  o f f s e t ,  i n t  whence ) 

t f d ,  es ize- t  o f f s e t ,  i n t  whence ) 

.seek( f d ,  o f f s e t ,  whence ) 

whence 

f d ,  Loffset ,  whence, lpos  ) 

lpos(2)  

file descriptor obtained from do-open(). 

3 the offset in bytes. Note that EDONIO supports 

files larger than 2Gigabytes. For these extended 

offset and returned value must be an extended 

asize-t) in C, or an integer array of length 2 in 

etermines the computation with offset. whence is 

EKSET=O, SEEK_CUR=l or SEEK_END=2. 
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Discuss ion 

d o l s e e k o  (do-eseek0) sets the seek pointer associated with the open file spec- 

ified by the descriptor f d  according to the value supplied for whence. whence 

must be one of SEEKSET=O, SEEK_CUR=l, SEEK_END=2 defined in <unis td .h> (see 

lseek(2)). 

If whence is SEEKSET, the seek pointer is set to o f f s e t  bytes. If whence is 

SEEK-CUR, the seek pointer is set to  its current location plus o f f s e t .  If whence is 

SEEKIND, the seek pointer is set to the size of the file plus off s e t .  IMPORTANT 

NOTE: Calling d o l s e e k ( )  using whence=SEEKIND is guaranteed correct only in 

two cases: the file must have been opened with O R D U N L Y ,  or a call to d o f l u s h 0  

must immediately precede the d o l s e e k o  call. The reason is that the current file 

size has no meaning until all buffered writes have been flushed. 

dolseek( f d ,  0 ,  SEEKIND) (after d o f l u s h ( ) ,  as described above) returns the 

size (in bytes) of the opened file associated with fd .  



d o n i o  (1 initiulizes t f ;  

(any files with do-oper 

Synopsis 

i n t  d o n i o (  i n t  my: 

subroutine donio( 1 

i n t ege r  myid, npro 

Input parameters 

myid - myidis t 

nproc - nproc is 

Discussion 

All nodes must call do. 

sets up internal data st 

is required before any 

in an error. 
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d o n i o  (> 

EDOMIO system. d o n i 0 0  must be culledprior to opening 

1. In C, d o a i o 0  returns 0 on success, -1 on failure. 

, i n t  nproc ) 

. id ,  nproc 1 

? id number of the calling processor. 

le total number of processors executing. 

i o 0  toinitialize the EDONIO network 1/0 library. d o x i o o  

tctures and initializes the IPX subsystem. Calling d o n i o o  

ther calls to EDONIO routines. Failure to do so will result 
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do-openo 

do-openo returns a non-negative descriptor on success. On failure, it returns 

-1. A n  i m p k i t  global synchronization is performed. 

Synopsis 

#include <sys / f cn t l . h>  

i n t  domopen( char *path, i n t  f l a g s ,  i n t  mode > 
include 'fnx.h' 

i n t ege r  function doopen( path,  f l a g s ,  mode > 
character*( *> path 

in teger  f l a g s ,  mode 

Input parameters 

path - path is a null-terminated string that co 

of the file. 

f l a g s  - f l a g s  contains the access flags. 

bins the path ame 

mode - mode is the file permission (see chmod(2)) used in creating 

the outpiit file. mode is ignored if the file already exists. 

Discussion 

The routine emulates the UNIX open (see open(2) in the UNIX manual), which 

opens the named file specified by path for read-only, write-only or read-write 

access, as specified by the f l a g s  argument, and returns a descriptor for that file. 

For write-only or read-write access, if the file does not exist, it is created with 

permission mode mode (see chmod(2)). Note that do-open0 differs from UNIX 

open if the write-only file already exists. In that case, the file is first truncated 

(see truncate(2)) to an empty file and then rewritten. 

All processors must participate in the do-openO call. An implicit global syn- 

chronization is performed. 

A Fortran example of the use of do-openO is given below: 



c --- 
c --- 
c --- 
c --- 

c --- 
c --- 
c --- 
c --- 

c --- 
c --- 
c --- 

mode is  s e t  

f u l l  read-wi 

mode = 8*8*E 

UNIX f l a g s  

0-RDONLY = C 

r f l a g s  = 0 

wflags = 1 

rwflags = 2 

be sure pat1 

pa th  = ' /pfs  

c --- 
c --- open t h e  f i l  

c --- 
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to  o c t a l  666, 

i t e  permission on f i l e  

+ 8*6 + 6 

0-WRDNLY = 1, 0-RDWR = 2 

is n u l l  terminated 

/ i n f i l e '  // char(0) 

3 f o r  read-write access 

f d  = doopen( pa th ,  rwflags,  mode 
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do -pr e 1 o ad ( ) 

do-preload0 fills any empty slots in the cache with blocks from the disk file, 

starting with the first block referenced by the mini,mum value of all the local seek 

pointers. 

A n  implicit global synchronization is performed. 

Synopsis 

void do-preload( i n t  f d  ) 

subroutine dopreload( f d  

in t ege r  f d  

Input parameters 

f d  - f d  is the EDONIO file descriptor for the file opened with 

do-open ( 1. 

Discussion 

do-preload0 fills any empty slots in the disk cache with data from the disk. 

Reloading the cache is desirable when file access patterns may cause disk 1/0 to 

be inefficient. For example, if a number of processors attempt to  read common 

data from the same processor, then there may be significant idle time while 

they all wait for the data to be brought in from disk. Preloading the cache 

ensures that the initial disk 1/0 is fully parallel and subsequent read accesses can 

proceed at full speed from the disk cache. Preloading starts from the point of the 

minimum seek location among all processors. The user can perform a d o l s e e k 0  

(do-eseek()) immediately prior to the do-preload0 call to  ensure that the data 

in the cache are relevant to subsequent operations. By default, preloading starts 

from the beginning of file. 

Note that preloading will not displace data already in the disk cache. In partic- 

ular, if the cache is already full, then do-preload0 has no effect. However, the 

user can force the creation of empty slots either by calling do-csize0 to  increase 

the memory allocated for the cache, or alternatively, the user can force a partial 



~ 
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purge of the cache by~using two consecutive do-csize0 calls to  contract and 

then reset the disk cac P e size. 

All processors must pkrticipate in the do-preload0 call. An implicit global 

synchronization is performed. 
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do -read ( ) 

d o r e a d o  performs a read operation into the specified bufler. In  C ,  d o r e a d o  

returns the number of bytes read. 

Synopsis 

i n t  d o r e a d (  i n t  f d ,  void *buf, i n t  nbytes ) 

subroutine doread( f d ,  buf,  nbytes ) 

in teger  f d ,  buf(*), nbytes 

Input parameters 

f d  - f d  is the file descriptor obtained from do-openo. 

buf - buf is the buffer. 

nbytes --. nbytes is the number of bytes to  be read. 

Description 

d o r e a d ( )  attempts to  read nbytes bytes of data from the file referenced by the 

descriptor f d  into the buffer buf (see read(2)). 

The calling process waits (blocks) until the request is completed. Important: 

Note that reading past the end of file causes an error instead of partially filling 

the buffer. Calling d o r e a d o  to read from a write-only file causes an error. The 

seek pointer is updated to point to  the next byte in the file. 

Note that the execution times for the d o r e a d o  may vary substantially, depend- 

ing on the access pattern and effectiveness of the disk cache. 
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do-wri+e() 

d o s r i t e o  performs a write operation from the specified bufler. In  C ,  d o s r i t e 0  

returns the number of b ytes written. 

Synopsis l 
i n t  do-write( i n t  f d ,  void *buf, i n t  nbytes ) 

subroutine dowritec~ f d ,  buf nbytes 

in t ege r  f d ,  buf (*) ,~ nbytes 

Input parameters I 
f d  - f d  is the file descriptor obtained from do-openo. 

buf 

nbytes - nbytes i s the number of bytes to be written. 

- buf is t i e  buffer. 

Description I 

do-write() attempts to write nbytes bytes of data to the file referenced by the 

descriptor f d  from the~buffer buf (see write(2)). 

The calling process waits (blocks) until the request is completed. Using do-wri te0 

to write to a read-only file causes an error. The seek pointer is updated to point 

to the next byte in the file. 

Note that the execution times for d o s r i t e  0 may vary significantly, depending 

on the access pattern ahd effectiveness of the disk cache. 

I 
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4. Implementatioii Details 

EDONIO provides a large high-speed disk cache in the aggregate memory of the Intel 

multiprocessor. The most important difference between EDONIO and DONIO i s  that 

the entire disk file is no longer kept in memory as in DONIO. Instead, EDONIO acts 

more as a true disk cache, reading and writing blocks of the file as nceded. Hence 

EDONIO no longer requires the user to call d o l s i z e o  before do-write(). d o l s i z e 0  

(do-esize()) is now merely a hint to the operating system concerning the eventual 

file size. EDONIO automatically keeps track of the highest address actually used. If the 

user overestimates the file size in d o l s i z e o  (do-esizeo),  then the correct (exact) 

size file will still be written to disk. 

The conceptual view of a disk file in EDONIO is a sequence of blocks, each containing 

a fixed number (default 8 pages) of fixed size (default 8KBytes) pages.’ Responsibility 

for actual disk 1/0 on the blocks is assigned to  the processors in a wrap-mapped fashion. 

Thus, in an N-processor configuration, processor p is responsible for satisfying any 1/0 

requests involving blocks p ,  p + N, p + 2 N ,  . . . etc. 

EDONIO supplies two separate caches: the disk cache and the read-only data cache. 

A processor’s disk cache contains blocks of the disk file that have been most recently 

accessed. Note that blocks are only cached in the disk cache by the processor responsible 

for the given block, thus eliminating concerns for cache coherency. EDONIO also provides 

a read-only data cache for read-only files to reduce message traffic on repeated re-reads 

of the same data. Read-only files cannot be updated and is completely free from cache- 

coherency restrictions, therefore, the read-only data cache may hold any data that has 

been accessed, regardless of assignment (though the actual disk read is still performed 

by the assigned processor). 

EDONIO uses the least recently used (LRU) strategy for cache management. That 

is, if the cache is full when a cache miss occurs, the least recently accessed block in the 

disk cache is deleted to make room for the incoming cache block. For the read-only 

data cache, merely freeing the memory is sufficient. However, for the disk cache, the 

chosen block is first checked to see if it is “dirty” (i.e., has been altered). If so, it 

is written out to  disk before it is deleted from the cache. This differs markedly from 

’The xps35 Intel Paragon uses hardware pagesize of bKbytes, and RAID disk stripe size is configured 
t o  be 64Kbytes. 
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DONIO, where the cache was I et large enough to contain the entire file, thus eliminating 

the need for disk I/O until the file was closed. 

In EDONIO, all processors'must participate concurrently in do-open0 , d o l s i z e o  

(do-esizeo) ,  d o f l u s h 0  2nd do-close0.  The processors are synchronized when 

opening a shared file with do-open0 so that EDONIO can set up common data struc- 

tures. They are synchronized in d o f l u s h 0  and in do-close() to ensure that there 

are no outstanding read or write requests. 

EDONIO must deviate frolh the UNIX file system with respect to file permissions. 

The UNIX file systems allow a user to open an existing file with flag 0-WRONLY (assiiming 

the file mode allows write access) in a directory in which the user does not have read 

access. EDONIO cannot allon! this, since it is impossible for EDONIO to act as a disk 

cache on a file without read 'permission. For simplicity, we assume that the user has 

read permission on any files that will be accessed with d o a p e n o .  Moreover, although 

EDONIO supports a write-only file mode (as a safety check to prevent read operations 

on the file), the uctuul file pdrmissions must allow both reading and writing. 

I 

I 

The original DONIO did not support an APPEND mode for file I/O. Instead, the user 

was advised to open separate'files for each logically separate set of data, largely because 

of the inherent limitation on file size in DONIO. With EDONIO, the UNIX OAPPEND is 

still not directly supported b?t file size is no longer a concern, as we now fully support 

files of practically unlimited 'size (up to 16Terabytes). The user can append to  a file 

by first seeking to end of file (see description on d o l s e e k O a n d  d o 4 l u s h O )  before 

writing. I I 

With EDONIO, the execution times for d o r e a d 0  and d o s r i t e o  may vary signif- 

icantly depending on the ratlo of cache hits/misses. The user can reduce these times 

in several ways. The size of the cache can be increased (see do -cs i ze0 )  to improve 

the probability of cache hits, or preloading of the cache (see do-preloado)  can also 

~ 

improve I/o performance. ' 

I 

I 

Consider the sequence of events initiated by a d o r e a d o  request. First, the disk 

blocks involved are identified. If the disk block is assigned to the same calling processor, 

the local disk cache is searchkd. A cache miss causes EDONLO to load these blocks into 

the local disk cache, displacipg other blocks if necessary. For any blocks assigned to 
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other processors, the IPX2 system [3] is used to  request the data from the processors that 

“own” those blocks. The read request is satisfied after the remote data are received. If 

the file was opened as a read-only file, the incoming data are also placed in the local 

read-only cache, to reduce message passing traffic should the same data be referenced 

in snbsequent read operations. Note the read-only data cache holds only remote (non- 

local) data. 

A do-write0 operation is similar. Again, the disk blocks to be written are iden- 

tified. Blocks assigned to  the same processor are loaded into the cache if they are not 

already there. EDONIO uses the IPX ‘ ‘on’ ’ routine (a type of “remote procedure call”) 

to  cause other processors to  update blocks assigned to  them. On the iPSC/860, IPX uses 

the NX hrecv0 interrupt mechanism to preempt a processor to  service IPX requests. 

However, on the Intel Paragon, hrecvo is not a true interrupt handler but spawns a 

separate thread that executes concurrently with the main computation. The extensive 

use of masktrap0 for exclusive access to  critical sections incurs a very high overhead 

on the Paragon. We have chosen to use a more efficient non-interrupt (polling) version 

of IPX for use on the Paragon. Because IPX requests are serviced only when the mes- 

sage queue is polled, and processors must supply data or update blocks at the request 

of other processors, the user must be careful to prevent deadlock or starvation. EDONIO 

provides the do-check() routine to examine the message queue for IPX requests. For 

example, code that uses a subset of the processors to handle all the disk 1/0 will fail 

unless the remaining processors periodically call do-check(), since IPX requests to  

these processors will not be serviced. See the manual page for do-checkO for further 

discussion. 

We have included a subprogram for preloading the disk-cache to  enhance perfor- 

mance of the disk I/O. Preloading of the disk-cache is particularly desirable immediately 

after opening an existing file, where disk 1/0 during preloading proceeds in parallel. 

Preloading is not guaranteed to improve 1/0 performance since it depends on the ac- 

cess pattern and size of disk cache. See the manual page for do-preload0 for further 

details. 

IPX is available by anonymous FTP from msg . das . bnl .gov under the directory /pub/ipx. 



- 21 - 

5 .  Experimental Resulds 

In this section we present a'  rough comparison of disk performance by EDONIO versus 

native NX routines. The Fortran source code is included in the Appendix. The code 

is a contrived example that hmulates the disk 1/0 common in finite element codes by 

performing multiple direct access lseek 0 's, c reado ' s  and c u r i t e  (1 's. This example 

generates the element-to-vertex list for a three dimensional ne% x ney x nez grid. 

The elements are assumed to be ordered with z-index varying fastest, then z then y. 

Elements along the vertical' direction are grouped in buffer mibuf before writing to 

obtain better disk performadce. Note that the element-to-vertex list file is independent 

of the number of processors. The same file is later read again. 

Since operating system patches and compiler upgrades are regularly applied to the 

512-processor xps35 Intel Paragon system at the Oak Ridge National Laboratory, and 

EDONIO is currently undergding performance tuning, the performance numbers listed 

should be taken only as app!roximate and reflect only the current state of affairs (Feb 

1995, OS version R1.2.5). Moreover, background disk activity by other concurrently 

running applications may also affect the timings. Three problems were used for testing: 

a small 100 x 100 x 100 (1,000,000 elements) problem, a medium 200 x 200 x 200 

(8,000,000 elements), and a large 300 x 300 x 300 (27,000,000 elements) problem. 

Table 5.1 show the effect of varying the amount of memory allocated to the disk 

cache in EDONIO on 22 nodei on a 200 x 200 x 200 grid (file size is 256 x lo6 bytes). 

We see from Table 5.1 that optimal performance is obtained when the aggregate disk 

cache can hold the entire file. Table 5.2 shows preloading the disk cache can reduce 

1/0 time in read for 16 nodes on 121 x 121 x 91 grid (file size is 42,634,592 bytes). 

Runtimes are obtained from d c l o c k o .  

Tables 5.3-5.5 list the runtimes (in seconds) for the three problems. All runs have 

cache and with cache preloading. Note that with the default 4096Kbytes allocated for 

the disk cache, 8, 62 and 206 processors axe needed to hold the small, medium and 

large problems (respectively) in memory. The label wopen (wclose) denotes the time 

to read-only access. Note that read and mite times in EDONIO decrease with the 

addition of more processors. 'As more processors are used, fewer messages per processor 

I 

I 

I 

I 

, 

EDONIO configured to  use 5 I 2Kbytes for read-only data cache, 4096Kbytes for disk 

for opening (closing) a file t or write-only access; similarly, ropen and r c l o s e  apply 
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wopen write 

With preload 2.2 3.1 
N o  preload 1.2 3.1 

N X  1.4 38.5 

Table 5.1: Effect on disk cache size on EDONIO, all times in seconds. 

wclose ropen preload read rclose 

2.4 1.3 1.3 4.7 0.2 
1.8 0.8 0.0 25.3 0.2 
0.2 0.7 0.0 25.4 0.2 

Cache (KBytes) 

1024 
2048 
4096 
8192 

12288 

17.3 

wclose 11 ropen I preload I read I rclose 

3.2 2.2 
6.2 
6.6 2.2 

Table 5.2: Effect of do-preloadoon EDONIO, all times in seconds. 

are generated. Moreover, more total aggregate memory (4Mbytes per processor) is 

available for the disk cache. wclose and preload involve physical disk activity to 

write out or read in data into the aggregate disk cache; hence as the disk cache size 

increases with more processors, more data are transfered and more time for disk 1/0 

may be required. 

We see that with a large enough disk cache, EDONIO may offer nearly a ten-fold 

improvement over native N X  routines. However, if the disk cache is too small to be 

effective, performance of EDONIO may be similar to native NX. EDONIO fully exploits the 

new MASYNC mode in achieving over 20Megabytes per second overall disk throughput 

to  the /pf s. By cornpaxison, DONI0 with the default M-UNIX mode obtained only about 

5Megabytes per second disk throughput. 

6. Summary 

We have described EDONIO, a fast file 1/0 emulation library for the Intel iPSC and 

Paragon distributed memory multiprocessors. EDONIO provides an easy to  use interface, 

and with minimal change to the source of an iPSC/S60 or Paragon parallel program 

may improve file 1/0 by a ten-fold speedup. Similar to  the shared-memory library 

DOLIB, EDONIO uses the IPX message system to provide a very large high-speed disk 
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write 

293.7) 

(84.2) 

(26.8) 

187.8) 

(50.5) 

(20.5) 
(22.6) 

Table 5.3: Runtimes (in secc 
size is 32 x lo6 bytes. 

wclose ropen preload 

0.7 (0.1) 0.7 (0.4) 2.5 

0.7 (0.1) 0.6 (0.6) 2.8 

1.1 (0.2) 1.0 (0.7). 1.8 

0.6 (0.1) 0.6 (0.5) 2.8 

1.2 (0.1) 0.7 (0.6) 1.9 

1.8 (0.4) 1.3 (1.4) 1.0 
2.4 (0.7) 2.5 (3.0) 0.9 

processor 

1 
2 
4 
8 

16 
32 
64 

20.9 
13. 
6. 
3. 
2. 
1. - 

wopen 

1.9 (1.0) 29.1 
1.5 (1.0) 

1.4 (0.9) 
1.2 (1.5) 
2.0 (1.6) 
3.1 (2.8) 

2.0 (0.9) 

Table 5.4: Runtimes (in secc 
size is 256 x lo6 bytes. 

vrite wclose ropen preload 

L1.2) l.g(O.2) 1.4(0.8) 2.2 
22.4) 3.2(0.4) 1.5(1.3) 3.6 
18.6) 7.6(0.7) 2.5(2.1) 7.9 
39.2) 10.7(1.5) 4.3(3.7) 7.7 

read rclose 

84.5(89.5) O.S(O.2) 
30.1(49.3) 0.4(0.4) 

7.2(48.0) 0.8(0.7) 
4.0(47.5) 1.6(1.4) 

Table 5.5: Runtimes (in secc 
size is 864 x lo6 bytes. 

processor wopen 

ds) of EDONIO (NX) routines on 100 x 100 x 100 grid, file 

processor wopen 

read 

vrite 

$2.0) 
18.1) 
$0.3) 

44.9 (213.7) 
39.5 (83.8) 
22.6 (48.9) 
8.2 (34.2) 
4.3 (17.0) 
2.3 (10.0) 
1.3 (9.5) 

wclose ropen preload read rclose 

5.2(0.4) 2.6(2.3) 3.4 119.5(111.4) 0.4(0.3) 
7.3(0.7) 2.8(2.2) 6.5 56.7(108.8) OB(O.7) 

23.1(1.5) 4.6(4.8) 15.8 21.4(105.2) 1.5(1,5) 

0.1 (0.1) 
0.1 (0.1) 
0.1 (0.1) 
0.2 (0.1) 
0.3 (0.2) 
0.4 (0.4) 

ds) of EDONIO (NX) routines on 200 x 200 x 200 grid, file 

ds) of EDONIO (NX) routines on 300 x 300 x 300 grid, file 
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cache in the aggregate memory of the multiprocessor. Disk 1/0 operations are in large 

blocks to  fully exploit the new M-ASYNC 1/0 mode. E D O N I O  is more memory efficient 

than DONI0 and can access files of practically unlimited size. 

7. Obtaining the Software 

To obtain the source code for E D O N I O  the reader should send email to the authors: 

e6dQornl.gov or rominechQornl.gov. 
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8. Appendix 

In this appendix, we list the 

EDONIO and NX disk operatio 

by a flag at compile time. 

program example 
C--- 

C--- a simple example t 
C--- 

include 'fnx.h' 
#if def USE-IX 

c--- note: fd is defined a 

integer fd 
parameter (f d=16) 

C--- 

C--- 

#define #-MODE M-ASYMC 

#define IOIBIT(myid,nproc) 
#define LSEEK lseek 
#define ROPEl (f d , filename 
#define WOPEIY(fd, filename 
#define LSIZE(fd, newsize) 
#define CREAD(fd, ibuffer, 
#define CWRITE(fd, ibuffer 
#define CCLOSE(fd1 close( 

#define GSYNCO call gsync 

#else 

integer rflags,wfl 
parameter(rflags=C 
integer doopen, do 
external doopen, d 
external doc1ose.d 

C--- 

c--- note: fd is declw 

integer Ed 
c--- 
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utran source code used in comparing the performance of 

. Note that either EDONIO or NX routines can be selected 

illustrate the use of DONI0 

a constant unit number 

call gopen(fd,filename,M-MODE) 
call gopen(fd,filename,M-MODE) 
ierr = lsize( fd, newsize, SIZE-SET ) 
)ytes) call cread(fd,ibuffer,nbytes) 
nbytes) call cwrite(fd, ibuffer, nbytes ) 

1 )  

; 5 ,  mode 
rf lags= (512+1) ,mode=(8*8*6+8*6+6) ) 
!ad, dowrite, dolseek 
'ead, dowrite, dolseek 
.size 

1 as a variable 

#define IOINIT(myid,nproc)' call donio(myid,nproc) 
#define LSEEK dolseek ~ 

#define ROPEl( f d, filename) fd = doopen( filename, rf lags ,mode) 
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#define WOPEN( fd, filename) fd = doopen( filename, wflags,mode) 
#define LSIZE( fd, newsize ) call dolsize( fd, newsize ) 
#define CREAD(fd, ibuffer,nbytes) ierr = doread(fd, ibuffer, nbytes 
#define CWRITE(fd, ibuffer, nbytes) ierr = 
#define CCLOSE( fd ) call doclose(fd) 

dowrite( fd, ibuffer, nbytes ) 

#define G S Y N C ( )  call dogsync0 
#endif 

integer indev,outdev,sizeint,nvertex,maxnez 
parameter(indev=5,outdev=6,sizeint=4,nvertex=8,maxne~=lO24) 

integer data-size,disk-size 
integer ipreload 

double precision tstart,tend 
character*8O filename 
integer i, ix,iy,iz, nnx,nny 
integer jx, jy, jz 
integer mbuf(nvertex,maxnez) 
integer mbuf2(nvertex,maxnez) 
integer nbytes, myid,nproc, 
real*8 totalbytes 
integer mi,miold,ierr,offset, 
logical ismine 

C--- 

nnz, nex,ney,nez 

host 

iwork 

c--- 8 vertices of an hexahedralbrick element 
C--- 

integer dx(nvertex) , dy (nvert ex) ,dz(nvertex) 
data dx /O,I,l,O, O,I,l,O/ 
data dy /O,O,l,l, O,O,l,l/ 
data dz /O,O,O,O, I,l,l,l/ 

integer ijk2mi,iJk2ni 
ijk2mi(ixyiy,iz,nex,ney,nez) = iz+(ix-l)*nez+(iy-l)*nez*nex 
ijk2ni(ix,iyYiz,nnx,nny,nnz) = izt(ix-l)*nnz+(iy-l)*nnz*nnx 

C--- 

c--- code begins 
C--- 

myid = mynode0 
nproc = numnodeso 

#if RX 1 1  I860 

#endif 
call openO(nproc, myid, ihost 

I O I N I T (  myid, nproc ) 
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nex = 0 
ney = 0 
nez = 0 

data-size = 0 
disk-size = 0 

ipreload = 0 

if (myid .eq. 0) dhen 
write(outdev,*) ~ 'enter nex,ney,nez ' 
read(indev,*) ndx,ney ,nez 
write(outdev,*) ~ )nproc, nex,ney,nez ), nproc,nex,ney,nez 

write(outdev,*) 'enter data-size, disk-size (in Kbytes)' 
read(indev,*) d a ta-size,disk-size 

*) ~ 'data-size ,disk-size ,data-size ,disk,size write (outdev 

write (outdev 
read(indev,* 
write(outdev 

endif 

*) i'enter use of preload ' 

*) 'ipreload ',ipreload 
ipreload 

call gisum( data-&e, I, iwork 
call gisum( disk-$he, 1, iwork) 

call docsize( data-size, disk-size ) 

call gisum( ipreload, I, iwork ) 

call gisum(nex, I, :work) 
call gisumbey I, {work) 
call gisum(nez,i,iwork) 

nnx = nex + I 
nny = ney + 1 
nnz = nez + I 

totalbytes = dblednex*ney*nez)*dble(nvertex*sizeint ) 

GSYNCO 
tstart = dclocko 

#if def USE-RX 
#if RX I I I860 

filename = '/cf s/nxex. bin' 
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#else 

#endif 
filename = ’/pf s/nxex. bin’ 

#else /* USE-NX */ 

C---  IMPORTANT NOTE: string MUST be null terminated 

#if RX 1 1  I860 

#else 

#endif 

C--- 

C--- 

filename = ’/cfs/ex.binJ // char(0) 

filename = ’/pfs/ex.bin’ // char(0) 

#endif /* USE-NX */ 
WOPEN( fd, filename ) 

GSYNC ( ) 
tend = dclock() 
if (myid .eq. 0) then 

write(outdev,+) ’ open takes ’, tend-tstart,’ sec’ 
write(outdev,*) ’ total file size is ’, 

& int (totalbytes/1024.0/1024.0), ’ Hegbytes ’ 
endif 

C 

nbytes = nvertex*sizeint 
GSYNC ( ) 
tstart = dclocko 

miold = -1 
do iy=l ,ney 
do ix=l .nex 

ismine = (mod( ix+(iy-l)*nex, nproc) .eq. myid ) 

if (ismine) then 
do iz=l,nez 
do i=l,nvertex 
jx = ix+dx(i) 
jy = iy+dy(i) 
jz = iz+dz(i) 
mbuf(i,iz)=ijk2ni(Jx,Jy,jz,nnx,nny,nnz) 
enddo 

enddo 

mi = ijk2mi( ix,iy,l, nex,ney,nez) 
if (miold.eq.-I) then 

offset = (mi-l)*nvertex*sizeint 
ierr = LSEEK( fd, offset, SEEK-SET ) 



else 
offset = 
ierr = LSI 

endif 
miold = mi 
nbytes = nez*j 
CWRITE( fd, ml 
endif 

enddo 
enddo 

G S Y I C  ( ) 
tend = dclocko 
if (myid .eq. 0 )  i 

writ e (outdev ,: 
endif 

GSYNC ( ) 
tstart = dclocko 
CCLOSE( id ) 
GSY%C() 
tend = dclock() 
if (myid .eq. 0) 1 

write(outdev,> 
endif 
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ni-miold)*nvertex*sizeint - nbytes 
M( fd, offset, SEEK-CUR ) 

vert ex*s izeint 
lf(l,l), nbytes 

zen 
) ’ write takes ’, tend - tstart,’ sec’ 

ten 
) ’  close f o r  write takes ’,tend-tstart,’ sec’ 

c --- 
c --- read the element liaF back 
c --- 

GSYNC ( ) 
tstart = dclock() 
ROPEN( fd, filename ) 
GSYIJC() 
tend = dclocko I 
if (myid .eq. 0) then 

endif 

I 

write(outdev,*)’ open for read takes ’, tend-tstart,’ sec’ 
I 

if (ipreload. ne. 0 )  then 

tstart = dclsc I () 
G S Y B C O  

c a l l  dopreload( fd ) 
GSYHC ( ) I 

tend = dclock(j 
if (myid e eq. 0) ’ then 
endif 

write(outdh,*) ’preload takes ,tend-tstart, ’ sec’ 
endif I 
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nbytes = nvertex*sizeint 
GSYNC ( ) 
tstart = dclocko 

miold = -1 
do iy=l,ney 
do ix=l,nex 

ismine = (mod( ix+(iy-l)*nex, nproc) .eq. myid ) 

if (ismine) then 
do iz=l,nez 
do i=l,nvertex 
jx = ix+dx(i) 
jy = iy+dy(i) 
jz = iztdz(i) 
mbuf2(i,iz)=iJk2ni(Jx,Jy,jz,nnx,nny,nnz) 
enddo 

enddo 
endif 

if (ismine) then 
mi = ijk2mi( ix,iy, I, nex,ney,nez) 
if (miold.eq.-I) then 

offset = (mi-i)*nvertex*sizeint 
ierr = LSEEK( fd, offset, SEEK-SET ) 

offset = (mi-miold)*nvertex*sizeint - nbytes 
ierr = LSEEK( fd, offset, SEEK-CUR ) 

else 

endif 
miold = mi 
nbytes = nez*nvertex*sizeint 
CREAD( fd, mbuf(l,l), nbytes 

endif 

c --- 
c --- double check results 
c --- 

if (ismine) then 
do iz=l,nez 
do i=l,nvertex 
if (mbuf2(i,iz).ne.mbuf(i,iz)) then 

arite(*,9900) i,iz,mbuf2(i,iz),mbuf(i,iz) 
format ( ’ i , iz ,mbuf 2( i , iz) ,mbuf (i , iz) ,4( lx , i7) ) 9900 

stop I * *  ERROR ** ’ 
endif 

enddo 
enddo 

endif 
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enddo 
enddo 

GSYNC () 
tend = dclock() ’ 
if (myid .eq. 0) than 

, 

urite(outdev,* 
endif 

GSYBCO 
tstart = dclocko 
CCLOSE( fd ) 
GSWC ( ) 
tend = dclock() 
if (myid .eq. 0) t 

urite(outdev,* 
endif 

stop 
end 

1 ’ a l l  reads take ’,tend-tstart,’ sec’ 

ten 
1 ’ close for read takes ’, tend-tstart,’ sec’  
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