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Abstract

In Part 2 of this report [6], it was argued that a single secondary perfor-
mance criteria defined as the square of the Euclidean norm of the error between
the vector of joint velocities ¢ and a vector of "corrective” joint velocities §*
can be minimized using input relegation control to yield a solution for § that
satisfies the end effector trajectory tracking requirement for an N joint, serial
link redundant manipulator. The solution is an explicit function of ¢*. In
Part 3 of this report, a new approach for joint limit avoidance during motion
of the manipulator is presented which requires defining ranges of motion in
close proximity to the upper and lower physical hardware limits of each joint
by specifying upper and lower tolerances, respectively. When a joint lies in
either of these ranges, it is regarded that a shutdown or damage to the manip-
ulator are imminent due to the joint reaching a limit. Therefore when one or
more joints lie within their respective prohibitive outer ranges, two methods for
calculating the corrective joint velocities §§ corresponding to those joints are
proposed. In both methods a corrective velocity is calculated as a scaled func-
tion of the maximum allowable velocity for the joint whose magnitude is based
on how close the joint is to its limit. On the other hand, when a joint does not
lie in either prohibitive outer range, the corrective velocity corresponding to
that joint is set to zero. The effectiveness of the proposed joint limit avoidance
scheme is demonstrated by simulation studies. The approach is compared to
how others have solved the joint limit avoidance problem using the gradient
projection scheme [3, 4, 5].






1 Introduction

When an open chain, serial link kinematically redundant manipulator performs on-
line end-effector trajectory tracking, the joint space trajectories cannot be predicted
in advance [1]. Indeed, the inverse kinematics problem for such a manipulator is
underspecified, and there exists infinitely many joint configurations for a given end-
effector configuration [2]. Thus, unless a joint limit avoidance criteria is incorporated
into the inverse kinematics, there exists a possibility that one or more joints may
reach their physical hardware limits.

The primary approach to avoiding joint limits has been accomplished using the
gradient projection technique. It was originally proposed in [3] and thoroughly in-
vestigated in [4, 5]. In these works a scalar function g{(q) representing a secondary
performance criteria to be optimized was introduced:

g = (g-09)" (¢ - ¥ (1)

where ¢? is an (N x 1) vector of desired joint positions, e.g., ¢% might be selected
as the midpoint of the entire range of motion for joint ¢ f5]:

q}na:r: + qzm'n
N i o @)

where ¢™** and ¢™™" denote the absolute, physical maximum and minimum hardware

limits in the range of joint i ( = 1, 2, ..., N), respectively.
The proposed solution for the joint velocities obtained by [3, 4, 5] is given in eq.

(l)i1 where the gradient of g is defined by:

(89) =26~ Q

It is highly improbable that the manipulator joint configuration ¢ = ¢% will ever
be achieved while satisfying the end effector trajectory tracking requirement. Thus

the second term to the right of eq. (1)1 will always have to be computed using
the joint limit avoidance scheme suggested in [3, 4, 5]. But there exists a multitude
of manipulator configurations where all joint angles are sufficiently away from the
physical hardware limits. In these cases why should one continue to optimize the

joint limit criteria so as to induce each joint to move to a single point q,'f‘ ? in its range?
This is very unclear and constitutes a waste of computational effort.

In this report, a contrary view is taken; namely, that a joint limit avoidance scheme
should be activated only when it is detected, by sensing, that one or more joints of the
manipulator are in close proximity of their upper or lower physical hardware limits.
In our approach, ranges of motion in close proximity to the upper and lower physical
hardware limits of each joint are defined by specifying upper and lower tolerances,
respectively. When one or more joints lie within these prohibitive ranges of motion,

two methods for calculating the corrective velocity vector ¢* introduced in eq. (3)1
are presented which tend to move these joints out of the prohibitive ranges by self
motion of the manipulator when used in conjunction with the performance criteria
and optimization procedure discussed in Part 2.

1Superscript § denotes that the referenced equation is in Part 2 of this report [6]
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2 Problem Statement

This report proposes a scheme for incorporating a joint limit avoidance capability
during motion of a kinematically redundant manipulator. Introduce the positive,

constant angles tol* and toll° to define the ranges (q,’-’"" - tol?‘) < ¢ < ¢ and
" < g < (q{""" + tolﬁ"), i =1,2,..., N. When ¢ lies within either of these

ranges, it is regarded that a shutdown and damage to the manipulator are imminent
due to the joint reaching a limit. Accordingly, a corrective action is desired to drive

joint 1 back into the range (q}"‘“ + tolf") < g < (q}"“ - tolf‘i). Such corrective
action is to be accomplished by inducing a self motion in the manipulator joints,

which does not affect end-effector trajectory tracking.
The problem is to calculate a ”corrective” velocity for joint ¢ signified by ¢’ which

tends to drive the joint back towards the range (q}“"" + tolf-°) < ¢ < (q{"W - tolf“')
whenever it lies in either of the aforementioned prohibitive ranges. ¢} is the ith
component of the "corrective” velocity vector ¢* introduced in eq. (3)1






3 Calculation of Corrective Action

The specific corrective action proposed is to calculate a joint velocity ¢* whose
method of computation i1s dependent on which range joint ¢ is lying in. ¢ isa function
of the state of the redundant system, which is known through feedback of the joint
variables. Two methods for its calculation are suggested.

3.1 Linear Function Method

gt is calculated for each and every joint ¢ (= 1,2, ..., N) based on the following
conditional algorithm:

" < g < (q{"‘" +tol£“) :

~Tar

g = %?r (g + tolle — ¢;) (4)
(q{"‘" + tol,’-") < g < (q}"” - tolf“) :
¢ =0 (8)
(gres — tol¥) < g < go=:
§f = %";f (gres — tol¥ — ¢) (6)

where ¢™** (> 0) denotes the peak or maximum time rate of change of joint ¢ and
where it is implicitly assumed that tol’ > 0 and tol® > 0. The quantities ¢***
and ¢™" are defined in conjunction with eq. (2). Please note that the values of the
constant quantities {¢g*%, ¢™", ¢™**} are obtained based on the physical limitations
of a particular manipulator as noted in its design specifications. In egs. (4) and (6),
z; i8 a constant scaling factor whose value is restricted to the range:

0< 2z <1. (7)
2; is introduced to enable the designer to specify a scaled peak joint velocity (2; ¢"**)
for joint : in the limit avoidance scheme.

Eq. (6) is the equation of a straight line connecting the points (q; = ¢ — tolM,
g; = 0) and (¢; = ¢, §§ = —2,¢™*). Likewise, eq. (4) is the equation of a
straight line connecting the points (q,f"‘" + toll°, 0) and (g™, z; ¢"%). It is easy
to see that ¢! is negative when calculated by eq. (6). This is logical since it is desired
to move joint ¢ away from the upper hardware limit. By the same reasoning 4} is
positive when evaluated using eq. (4).

Ezample 1. The range of motion for joint no. 1 of the CESARm research manip-
ulator [7, 8, 9] is —135° < ¢ < 44°. Its maximum rated velocity is ¢1*** = 57.296
(deg/sec). Suppose we select z; = 1.0 and tol? = toll = 15°. The trajectory of ¢
versus g, is shown in Figure 1, where eqgs. (4) - (6) have been applied.
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The term in eq. (1()):t that is explicit in ¢* vanishes whenever all of the joints lie
within their respective center (innermost) ranges. For example, in a software program
controlling a redundant manipulator using the joint limit avoidance algorithm, a flag
would be set only when at least one of the components of ¢* is non-zero. Only when

that flag is set would the second term to the right of eq. ( 10)1t be calculated. This
idea could be extended to compute only those columns of the coefficient matrix of

¢" in eq. (1())I which correspond to those components ¢ which are nonzero. This
approach reduces the computational burden and in the case where §* = Onx;, yields a
minimum Euclidean norm solution for the joint velocities. It supports our contention
that the redundant DOF and the Cartesian DOF should not be treated with equal

priorities.

The function ¢ as defined by egs. (4) - (6) is both sectionally smooth and uni-
formly continuous. However, the derivative of g} with respect to ¢; as defined by:

g < g < (g +toll?) :
mar

dg; - 5%
dg; tolﬁ"

(8)

(qz" n tolf“) < ¢ < (q?"“ - tolf‘i) :

dg =0 (9)
(gres — tol}) < @ < gre=:
dg; zi "
[} S ] i 10
dg; tol (10)

reveals that function ¢ is not pointwise differentiable at ¢; = g™ + tol nor ¢; =
qreT — toll.

Ezampie 2. Using the specifications for ¢, in Example 1, the trajectoryof d¢} /d ¢
versus ¢; obtained by applying egs. (8) - (10) is shown in Figure 2. The discontinu-
ities are obvious. To alleviate this deficiency, a second algorithm for calculating the
corrective action is discussed next.

3.2 Cycloidal Function Method

A second method is presented for calculating function ¢! such that it is section-
ally smooth, uniformly continuous, and pointwise differentiable { with respect to ¢;}
throughout the entire range of joint i. Suppose ¢! is calculated for each and every
joint : (= 1,2, ..., N) based on the following conditional algorithm:

¢ < g < (g +toll) :

- _ % q':mu: 27 min lo . : 27 min lo
i = S (i e = a) — (G (4 v - a)
(11)

7



(g +toll?) < g < (g™ — tol}) : Calculate 7 by eq. (5)
(q{"“’ - tol"-‘i) < ¢ < g

. Zi d{"“ 27T maz hs . : 2x maz hi R
4G = Tox {tolf“ (‘1; — tol* — Qz) ~— 8in (H‘; (‘1.' ~ tol* — 11-))}
(12)

where, here again, it is assumed that tol* > 0 and tol!® > 0. In egs. (11) and (12), ¢}
has been defined by cycloidal functions (10 . Their use here is motivated in part by the
fact the cycloidal functions are differentiable on all points and uniformly continuous,
and the functions obtained by successively differentiating a cycloidal function are also
differentiable on all points and uniformly continuous. Cycloidal functions have been
applied to overcome the infinite jerk problem in the design and motion of cams [10].
They have also been previously used in a robotics context in [11] to generate reference
trajectories for the joints of a manipulator.

To gain further insight into the benefits of defining ¢ by a cycloidal function, the
first and second derivatives of egs. (11) and (12) with respect to ¢; are obtained:

g < ¢ < (qf’“" +tol,’-°) .

dq’ z; g7 2% .
i __Odi _ min I{o — .
dg; tol® {1 s (tolﬁ" (q, + 2ok q,)) } ’ (13)

& {§} 2wzt (27:' . . )
LI S ' sin = (g + tol? — g (14)
d{g:}’ (t015°)2 tol, ( )

(q{""‘ + tolf") < g < (q}"“ - tol,'-“) : Calculate d ¢} / d ¢; using eq. (9)

d {q*
i) _ (15)
(qres —tol¥) < @ < g
dqg; zigre* 2T ( mar hi
14 = tol:“' {1 - CO8 (m (q,- - tOl'- - ql))} y (16)

& {q} 27xzg¢rT ( 2x hi )
= ~— sin g™ — toli' — ¢ 17
d{a} (o)’ tol} ( ) (an

Evaluating each of eqs. (13) and (14) at angles ¢; = ¢™" and ¢; = ¢™" + tol,
respectively, gives results equal to zero. Evaluating each of eqs. (16) and (17) at
angles ¢; = ¢ and ¢ = ¢M** — tol, respectively, also gives results equal to

zero. It is immediately evident that the functions ¢ and dgqf /dg; are pointwise

8



differentiable throughout the range of motion of joint ¢. It is helpful to illustrate the
cycloidal function method via an example.

Ezample 3. Here we repeat Examples 1 and 2 but employ the cycloidal function
method for determining the corrective action ¢; and its derivative d ¢} /d ¢, as func-
tions of g;. The trajectories of ¢; versus ¢, and dg} /d ¢, versus ¢; when ¢; lies in
the lower prohibitive subrange shown in Figures 3 and 4 are obtained by applying
egs. (11) and (13), respectively. Likewise, the trajectories of §; versus q; and d ¢} /d ¢
versus ¢; when ¢; lies in the upper prohibitive subrange shown in Figures 5 a.ntl 6 are
obtained by applying eqgs. (12) and (16), respectively.
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4 Numerical Simulation Studies

The results of simulating the motion of a planar manipulator with four revolute
joints using the two aforementioned joint limit avoidance EJ LA) schemes are presented
in this section. Only the translational motion of the tip of the manipulator is specified
by the designer, so the system has two redundant degrees of freedom {M = 2, N =
4}. The hink lengths I; specified in meters are provided in Table 1:

[LINK LENGTHS |
: 7

0.6096

0.6096

0.3048

0.3048

| Table 1 ]

Wl GO BN =i

The tip of the manipulator is commanded to move from point A to point B along
a straight line, where the coordinates of the points are with respect to the base
coordinate frame of the manipulator and are expressed in meters. The commanded
trajectory has zero velocity and zero acceleration at the starting and ending points.

For each case study presented below, the joint trajectories resulting from simulat-

ing eq. (10)1 with ¢f calculated three different ways are plotted on one set of axes:
(a) ¢¢ = O for all values of ¢; (i = 1,2,3,4), which yields a minimum Euclidean
norm solution for the joint velocities with no JLA; (b) ¢} is evaluated using egs. (4)
- (6) (linear function JLA method) ; and &:: g! is evaluated using egs. (5),(11?, and
(12) (cycloidal function JLA method). The "fan” plots showing the manipulator’s
configuration during its motion when ¢! is calculated by each of the three ways are
also presented.

Case 1. Choose {z4,y4} = {1.219,0.6096} and {zp,ys} = {0.6096,0.6096}.
The total time to move from A to B is six seconds. The values specified for the
quantities {g*,tol™ g™ toll°, /%, 2;,q:(A)} are shown in Table 2, where ¢;(A)
signifies the values of joint : at point A and where all angular quantities are expressed
in degrees or degrees per second:

] CASE 1 PARAMETERS ]
o™ Tl [ ™ Tl | ¢ | & [a(A)

1

145.0 | 10.0 | -145.0 { 10.0 | 57.296 | 1.0 | 90.0
145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 1.0 | -90.0
145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 1.0 0.0

145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 1.0 | 0.0
1 ~ Table2 ]

The manipulator “fan” plots when ¢* is calculated by each of the three afore-
mentioned ways are shown in Figures 1.F1-1.F3, respectively. The trajectories of
the joints are shown in Figures 1.J1A-B through 1.J4A-B, where the plot notation
gi(no_jla) denotes the trajectory of ¢; when there is no JLA algorithm active at any-
time, and where ¢;(jla) and g¢;(jla_cyc) signify the trajectory of g; when ¢ is calculated
by the linear and cycloidal function JLA methods, respectively. The” b figures high-
light the portions of the "A” figures where the JLA algorithms become active.

&WMH@.!
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Keeping in mind that a simulated manipulator is a fictitious entity, plots of the
joint trajectories when no joint limit avoidance was active were made. Then, to
test the effectiveness of the JLA algorithms in an extreme case, joint limit ¢*°*
was deliberately chosen such that ¢;(no_jla) exceeded it over the range of motion
of joint one. Of course, ¢; cannot exceed ¢*** in a physical robot. Figures 1.J1A
and 1.J1B reveal that the application of either JLA algorithm results in ¢, no longer
exceeding ¢*** and furthermore each method successfully moves joint one away from
its upper limit. The trajectories of joints 2-4, which do not move into their respective
prohibitive outer ranges, are shown in Figures 1.J2A-B through 1.J4A-B.

Case 2. The identical Cartesian trajectory is used, but now tol** and tol® are
one-half of their values used in Case 1 (see Table 3):

[ CASE 2 PARAMETERS |
(i ] g [t | g [t | ¢ | z | :(4) |
13 145.0 50]-145.01 50157296 11.0] 90.0
2 ) 145.0 501-145.01 5.0 157.296 | 1.0 -90.0
3 || 145.0 5.01]-145.01 5.0| 57.296 | 1.0 0.0
4 1l 145.0 5.0 -145.0] 5.0157.296 1 1.0 0.0
[ Table 3 I

The fan plots when ¢} is calculated by each of the three aforementioned ways
are shown in Figures 2.F1-2.F3, respectively. Observing Figures 2.J1A and 2.J1B
reveal that both JLA algorithms again succeed in preventing ¢; from exceeding its
upper range limit and move it away from the limit. None of the other joints move
within their prohibitive regions, and their trajectories are plotted in Figures 2.J2A-B
through 2.J4A-B.

Case 3. The identical Cartesian trajectory specified in Case 1 is used, but the
scaled peak velocity (z; ™**),i = 1, 2, 3, 4 is reduced to one-half of its peak value
used in Case 1 (see Table 4):

[ CASE 3 PARAMETERS ]
i | gree | tol* | g™ ltol® ] ¢ | z | gi(A)
1| 145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 0.5 | 90.0
2 | 145.0 [ 10.0 | -145.0 | 10.0 | 57.296 | 0.5 | -90.0
3 | 145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 05| 0.0
4| 145.0 | 10.0 | -145.0 | 10.0 | 57.296 | 05| 0.0

{ Table 4 |

The fan plots when ¢! is calculated by each of the three aforementioned ways
are shown in Figures 3.F1-3.F3, respectively. Observing Figures 3.J1A and 3.J1B
reveal that both JLA algorithms again succeed in preventing ¢; from exceeding its
upper range limit and move it away from the limit. None of the other joints move
within their prohibitive regions, and their trajectories are plotted in Figures 3.J2A-B
through 3.J4A-B.

Case 4. In each of the previous cases, only joint one moved into a prohibitive
outer range. Again using the identical end effector trajectory given in Case 1, we select
values for the joint range limits and tolerances such that multiple joints move into their
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respective prohibitive ranges simultaneously so as to check the effectiveness of the JLA
algorithms . Specifically, we select values for the quantities {¢]**%, tolli, g™ tollf}
such that joints one and three pass into their upper and lower prohibitive ranges of
motion simultaneously. The decision to choose joint three is motivated by the fact
that when only joint one moved into its upper prohibitive range lgi.e., as in Case 1),
¢gs(jla) and ga(jla_cyc) decreased more rapidly than g3(no_jla) (see Figure 1.J3B). Here
g3(jla) and g¢3(jla_cyc) are expected to increase in value when joint three moves into
its lower prohibitive region. The values of the parameters used in Case 4 are provided
in Table 5:

i CASE 4 PARAMETERS l
i [ g Jtol* | gmn | tol? | 7 | 2 | ¢i(A)
1 150.0 { 10.0 | -150.0 | 10.0 | 57.296 | 1.0} 90.0
21 150.0 | 10.0 | -150.0 | 10.0 | 57.296 | 1.0 | -90.0
31 150.0 10.0 | -30.0{10.0]57.296 | 1.0 0.0
4 |1 150.0 | 10.0 { -150.0 i0.0 57.206 1 1.0 0.0

{ Table 5 ]

The fan plots are shown in Figures 4.F1-4.F3. The joint trajectories are plotted in
Figures 4.J1A-B through 4.J4A-B. At ¢t = 4.088 seconds joint three falls into its lower
prohibitive range and the JLA algorithms are activated. Then at ¢ = 4.256 seconds
joint one moves into its upper prohibitive range. Figures 4.J1A-B and 4.J3A-B reveal
that both JLA algorithms successfully move joints one and three back towards their
respective centermost ranges.

Case 5. To further observe the behavior of the manipulator when multiple joints
move within their prohibitive outer ranges, we repeat Case 4, but increase the lower
range limit for joint three from —30° (the value used in Case 4) to —26°. Now

g3(no.jla) is in very close proximity to its lower limit ¢*" (see Figure 5.J3B). The
parameter settings are provided in Table 6:

( CASE 5 PARAMETERS |
g™ [ tol® | g™ [tol? | g™ | 2 | ¢(A)
150.0 | 10.0 | -150.0 { 10.0 | 57.296 { 1.0 | 90.0
150.0 | 10.0 | -150.0 § 10.0 | 57.296 { 1.0 | -90.0
150.0 { 10.0 | -26.0 | 10.0 | 57.296 { 1.0 0.0
150.0 | 10.0 | -150.0 | 10.0 | 57.296 | 1.0 0.0

] Table 6 |

Wl QO DNOf bt | we,

The fan plots are given in Figures 5.F1-5.F3 and the the joint trajectories are plot-
ted in Figures 5.J1A-B through 5.J4A-B. At ¢ = 3.528 seconds joint three moves into
its lower prohibitive range and the JLA algorithms are activated. Then at ¢t = 4.256
seconds joint one moves into its upper prohibitive range. The moment when both
joints are in their prohibitive ranges simultaneously appears to be noticeable in Fig-
ure 5.J3B where ¢3(jla) and gs(jla_cyc) first incrementally decrease then begin increas-
ing as anticipated. The time interval where g3(jla) and gs(jla_cyc) decrease is viewed
as a transient period. Figure 5.J1B shows that both JLA algorithms successfully
move joint one away from its upper limit.

The results of the numerical experiments do not indicate a significant difference in
the performances of the linear and cycloidal function joint limit avoidance algorithms.
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Figure 1.F2 Fan Plot Using Linear JLA Method

Figure 1.F3 Fan Plot Using Cycloidal JLA Method
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Figure 2.F1 Fan Plot With No JLA (Case 2)

Figure 2.F2 Fan Plot Using Linear JLA Method

Figure 2.F3 Fan Plot Using Cycloidal JLA Method
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Figure 3.F2 Fan Plot Using Linear JLA Method

Figure 3.F3 Fan Plot Using Cycloidél JLA Method
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Figure 4.F3 Fan Plot Using Cycloidal JLA Method
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Figure 5.F2 Fan Plot Using Linear JLA Method

Figure 5.F3 Fan Plot Using Cycloidal JLA Method
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5 Conclusion

A new approach has been suggested for the avoidance of joint limits during mo-
tion of a redundant manipulator. The entire range of motion for each joint has been
divided into three subranges. When a joint lies in either outer subrange, it is con-
sidered to be in close proximity to a hardware limit and it is desired to move the
joint back into the inner (center) region via self motion of all joints. This can be
accomplished through an application of the general secondary performance criteria
and inverse kinematics procedure described in Part 2 of this report [6]. The problem
studied in Part 3 has been how to calculate the corrective joint velocity vector ¢* that
is an explicit variable in the symbolic solution for the joint velocities so as to accom-
plish the joint limit avoidance. Two methods have been suggested for calculating ¢*.
In both methods, the components of ¢* corresponding to those joints lying in their
outer regions are calculated such that their magnitudes are a function of how close
they are to their limits and their signs are selected so as to move the joints away from
the respective limits. The components of §* corresponding to the joints lying in their
center ranges are set to zero.

The ith component of ¢* is defined as a linear function of ¢; in the upper and lower
prohibitive subranges of motion using the first method. However, it was found that
g is not pointwise differentiable at the transition points between the three subranges
of motion. To overcome this deficiency, it was proposed to define ¢ by cycloidal func-
tions when ¢; lies in either outer range. The resulting function is sectionally smooth,
uniformly continuous, and pointwise differentiable throughout the entire range of
motion of joint 2.

Both algorithms were devised such that if none of the joints lie in their outer
regions, no corrective action is taken. In this case the term explicit in ¢* in the
symbolic solution for the joint velocities derived in Part 2 vanishes which reduces the
computations and yields a minimum norm solution for the joint velocities.

The algorithms were tested through simulating a planar manipulator with four
revolute joints with two degrees of redundancy. The performance of the algorithms
was tested in the cases where only one or multiple joints simultaneously moved in
their respective prohibitive ranges of motion.
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