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Abstract 

In Part 2 of this report [6], it was argued that a single secondary perfor- 
mance criteria defined as the square of the Euclidean norm of the error between 
the vector of joint velocities 4 and a vector of "corrective" joint velocities 
can be minimized using input relegation control to yield a solution for that 
satisfies the end effector trajectory tracking requirement for an N joint, serial 
link redundant manipulator. The solution is an explicit function of $. In 
Part 3 of this report, a new approach for joint limit avoidance during motion 
of the manipulator is presented which requires defining ranges of motion in 
close proximity to the upper and lower physical hardware limits of each joint 
by specifying upper and lower tolerances, respectively. When a joint lies in 
either of these ranges, it is regarded that a shutdown or damage to the manip- 
ulator are imminent due to the joint reaching a limit. Therefore when one or 
more joints lie within their respective prohibitive outer ranges, two methods for 
calculating the corrective joint velocities q T  corresponding to those joints are 
proposed. In both methods a corrective velocity is calculated as a scded func- 
tion of the maximum dowable velocity for the joint whose magnitude is based 
on how close the joint is to its limit. On the other hand, when a joint does not 
lie in either prohibitive outer range, the corrective velocity corresponding to 
that joint is set to zero. The effectiveness of the proposed joint limit avoidance 
scheme is demonstrated by simulation studies. The approach is compared to 
how others have solved the joint limit avoidance problem using the gradient 
projection scheme [3, 4, 51. 
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1 Introduction 
When an open chain, serial link kinematically redundant manipulator performs on- 

line end-effector trajectory tracking, the joint space trajectories cannot be predicted 
in advance [l]. Indeed, the inverse kinematics problem for such a manipulator is 
underspecified, and there exists infinitely many joint configurations for a given end- 
effector configuration [2]. Thus, unless a joint limit avoidance criteria is incorporated 
into the inverse kinematics, there exists a possibility that one or more joints may 
reach their physical hardware limits. 

The primary approach to avoiding joint limits has been accomplished using the 
gradient projection technique. It was originally proposed in [3] and thoroughly in- 
vestigated in [4, 51. In these works a scalar function g(q) representing a secondary 
performance criteria to be optimized was introduced: 

9 = (4 - q d p ) =  (Q - Q d P )  

where q d P  is an (N x 1) vector of desired joint positions e.g., qy might be selected 
as the midpoint of the entire range of motion for joint i 151: 

where q y z  and qTin denote the absolute, physical maximum and minimum hardware 
limits in the range of joint i (i = 1, 2, . . . , N), respectively. 

The proposed solution for the joint velocities obtained by 13, 4, 51 is given in eq. 
(1)t' where the gradient of g is defined by: 

It is highly improbable that the manipulator joint configuration q = q d p  will ever 
be achieved while satisfying the end effector trajectory tracking requirement. Thus 
the second term to the right of eq. (1)$ will always have to be computed using 
the joint limit avoidance scheme suggested in [3, 4, 51. But there exists a multitude 
of manipulator configurations where all joint angles are sufficiently away from the 
physical hardware limits. In these cases why should one continue to optimize the 
joint limit criteria so as to induce each joint to move to a single point qy in its range? 
This is very unclear and constitutes a waste of computational effort. 

In this report, a contrary view is taken; namely, that a joint limit avoidance scheme 
should be activated only when it is detected, by sensing, that one or more joints of the 
manipulator are in close proximity of their upper or lower physical hardware limits. 
In our approach, ranges of motion in close proximity to the upper and lower physical 
hardware limits of each joint are defined by specifying upper and lower tolerances, 
respectively. When one or more joints lie within these prohibitive ranges of motion, 

are presented which tend to move these joints out of the prohibitive ranges by self 
motion of the manipulator when used in conjunction with the performance criteria 
and optimization procedure discussed in Part 2. 

two methods for calculating the corrective velocity vector $ introduced in eq. (3) $ 

'Superscript # denotes that the referenced equation is in Part 2 of this report [SI 
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2 Problem Statement 

This report proposes a scheme for incorporating a joint limit avoidance capability 
during motion of a kinematically redundant manipulator. Introduce the positive, 
constant angles tolv and tolp to define the ranges (9," - tolf') 5 q; ,< qy" and 

qyin 5 q; 5 (p;"i" + tolp), i = 1, 2, . . . , N. When q; lies within either of these 
ranges, it is regarded that a shutdown and damage to the manipulator are imminent 
due to the joint reaching a limit. Accordingly, a corrective action is desired to drive 
joint i back into the range ( q p  + td?) < qi < (qyz - tol;h'). Such corrective 
action is to be accomplished by inducing a self motion in the manipulator joints, 
which does not affect end-effector trajectory tracking. 

The problem is to calculate a "corrective" velocity for joint i signified by qf which 
tends to drive the joint back towards the range (@" + tol?) < q; < ( q y  - td?) 
whenever it lies in either of the aforementioned prohibitive ranges. q: is the ith 
component of the "corrective" velocity vector 4' introduced in eq. (3) $ . 
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3 Calculation of Corrective Action 
The specific corrective action proposed is to calculate a joint velocity Q* whose 

method of computation is dependent on which range joint i is lying in. 4: is a function 
of the state of the redundant system, which is known through feedback of the joint 
variables. Two methods for its calculation are suggested. 

3.1 Linear Function Method 
tj: is calculated for each and every joint i (= 1, 2, . . . , N) based on the following 
conditional algorithm: 

where 4r (> 0) denotes the peak or maximum time rate of change of joint i and 
where it is implicitly assumed that toly > 0 and toZ2 > 0. The quantities q y  
and q p  are defined in conjunction with eq. (2). Please note that the values of the 
constant quantities {qyQG, q y ,  iy"} are obtained based on the physical limitations 
of a particular manipulator as noted in its design specifications. In eqs. (4) and (6) ,  
z; is a constant scaling factor whose value is restricted to the range: 

0 < z; L 1. 
zj is introduced to enable the designer to specify a scaled peak joint velocity (z; dyr) 
for joint i in the limit avoidance scheme. 

En. (6)  is the equation of a straight line connecting the points (qj = q y  - toly ,  
4; = 0) and (4; = q?", t$ = -z;qF"). Likewise, eq. (4) is the equation of a 
straight line connecting the points ( q p  + tolp, 0) and (qFin,zi dyz), It is easy 
to see that 8 is negative when calculated by eq. 6). This is logical since it is desired 

positive when evaluated using eq. (4). 
Example 1. The range of motion for joint no. 1 of the CESARm research manip- 

ulator [7, 8, 91 is -135" 5 q1 5 44". Its maximum rated velocity is q;"" = 57.296 
(deg/sec). Suppose we select z1 = 1.0 and tol:' = tal? = 15". The trajectory of 4; 
versus q1 is shown in Figure 1, where eqs. (4) - (6) have been applied. 

(7) 

to move joint i away from the upper hardware Ii mit. By the same reasoning q; is 
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The term in eq. (lo)$ that is explicit in $ vanishes whenever all of the joints lie 
within their respective center {innermost) ranges. For example, in a software program 
controlling a redundant manipulator using the joint limit avoidance algorithm, a flag 
would be set only when at least one of the components of Q* is non-zero. Only when 
that flag is set would the second term to the right of eq. (lo)$ be calculated. This 
idea could be extended to compute only those columns of the coefficient matrix of 
$ in eq. (lo)$ which correspond to those components q: which are nonzero. This 
approach reduces the computational burden and in the case where Q* =  ON^^, yields a 
minimum Euclidean norm solution for the joint velocities. It supports our contention 
that the redundant DOF and the Cartesian DOF should not be treated with equal 
priorities. 

The function q;' as defined by eqs. (4) - ( 6 )  is both sectionally smooth and uni- 
formly continuous. However, the derivative of q; with respect to g; as defined by: 

reveals that function cj: is not pointwise differentiable at qi = q? + tolfo nor q; = 

Ezampk 2. Using the specifications for ~1 in Example 1, the trajectory of dq; / dql 
versus q1 obtained by applying eqs. (8) - (10) is shown in Figure 2. The discontinu- 
ities are obvious. To alleviate this deficiency, a second algorithm for calculating the 
corrective action is discussed next. 

qy= - tal?'. 

3.2 Cycloidal Function Method 
A second method is presented for calculating function 47 such that it is section- 
ally smooth, uniformly continuous, and pointwise differentiable { with respect to q;} 
throughout the entire range of joint i. Suppose qr is calculated for each and every 
joint i (= 1, 2, , . . , N) based on the following conditional algorithm: 

q p  5 q; 5 ( q p  + t o p )  : 



+ toly) < q; < (qyax - to(';) : Calculate q: by eq. ( 5 )  

( q y  - t o p )  5 q; _< q y  : 

where, here again, it is assumed that tal" > 0 and tolfo > 0. In eqs. (11) and (E!), 4: 
has been defined by cycloidal functions 10 . Their use here is motivated in part by the 

and the functions obtained by successively differentiating a cycloidal function are also 
differentiable on all points and uniformly continuous. Cycloidal functions have been 
applied to overcome the infinite jerk problem in the design and motion of cams [lo]. 
They have also been previously used in a robotics context in Ill] to generate reference 
trajectories for the joints of a manipulator. 

To gain further insight into the benefits of defining 4: by a cycloidal function, the 
first and second derivatives of eqs. (11) and (12) with respect to q; are obtained: 

fact the cycloidal functions are differentia ' b  le on all points and uniformly continuous, 

d2 {qf} 2 7F 2; q y  27F 

d{qi12  
(tol?) sin (- t 01; (qyin + tol,!a - q j ) )  (14) - - 

(q? + tolio) < qi < (qyrre - tolf;) : Calculate dq; / d qi using eq. (9) 

Evaluating each of eqs. (13) and (14) at angles q; = qrin and qi = qyin + toly", 
respectively, gives results equal to zero. Evaluating each of eqs. (16) and (17) at 
angles qi = qy" and qi = qy" - tol?, respectively, also gives results equal to 
zero. It is immediately evident that the functions 4f and d $ / dq;  are pointwise 
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differentiable throughout the range of motion of joint i. It is helpful to illustrate the 
cycloidal function method via an example. 

Ezample 3. Here we repeat Examples 1 and 2 but employ the cycloidal function 
method for determining the corrective action 4; and its derivative d 4; / d q1 as func- 
tions of ql.  The trajectories of q," versus q1 and dtj; / dql versus q1 when q1 lies in 
the lower prohibitive subrange shown in Figures 3 and 4 are obtained by applying 
eqs. (11) and (13), respectively. Likewise, the trajectories of 4; versus q1 and d Q' / d q1 

versus q1 when q1 lies in the upper prohibitive eubrange shown in Figures 5 an d 6 are 
obtained by applying eqs. (12) and (16), respectively. 

9 



60 

40 

20 

0 
-135 -1 30 -125 -120 

Figure 3. Trajectory of 4; (Cycloidal Method)'." 

0 

-2 

-4 

-6 

"8 

5 c 
a b 

a b 

b b 

b b 

b b 

b b 

b b 

- 1  35 ,130 -125 -128 

* Figure 4. Trajectory of d 4; / d &  (Cycloidal Method) 

10 



0 

-20 

4 0  

-60.. 

- 
- - a  

a 
A 

a 

a 

a 

a 

A 

a 

a 

A 

a 

a 

a 
a 

a 
a 

I 1 

39 44 29 3 4  

Figure 5. Trajectory of 4; (Cycloidal Method) 
. -  

a 

-2 

4 

-6 

5 
a 1 

a 

a a 

a 

a 

a 

a 

A a 

A 

a a 

m a  

A 

A 

A 

m 

a 

I I 

34  30 4 29 

Figure 6. Trajectory of d q; / d q1 (Cycloidal Method) 

11 





4 Numerical Simulation Studies 
The results of simulating the motion of a planar manipulator with four revolute 

joints using the two aforementioned joint limit avoidance JLA) schemes are presented 
in this section. Only the translational motion of the tip o ! the manipulator is specified 
b the desi ner, so the system has two redundant degrees of freedom ( M  = 2, N = 
4f. The lin lengths Z, specified in meters are provided in Table 1: 

[LINK LENGTHS I 
a 

Table 1 

The tip of the manipulator is commanded to move from point A to point B along 
a straight line, where the coordinates of the points are with respect to the base 
coordinate frame of the manipulator and are expressed in meters. The commanded 
trajectory has zero velocity and zero acceleration at the starting and ending points. 

For each case study presented below, the joint trajectories resulting from simulat- 
in eq. (lo)$ with q; calculated three different ways are plotted on one set of axes: 
(a7 4; = 0 for all values of (i = 1,2,3,4), which yields a minimum Euclidean 

- (6) (linear function 3LA method) ; and c) 4' is ev uated using eqs. (5),(11 , and 
(12) (cycloidal function JLA method). T b e "hd' plots showing the manipuator's 
configuration during its motion when $ is calculated by each of the three ways are 
also presented. 

Case 1. Choose {XA , y ~ )  = {1.219,0.6096) and (ZB , y ~ }  = {0.6096,0.6096). 
The total time to move from A to B is six seconds. The values specified for the 
quatities ( q F Z ,  tal!'' , p;"" , tal?, qy" , zi , qi(A)) are shown in Table 2, where q;(A) 
signifies the values of joint i at point A and where all angular quantities are expressed 
in degrees or degrees per second: 

r' a norm solution for the joint veocities 'fi with no JLA; (b 4; is evaluated using eqs. (4) 

I CASE 1 PARAMETERS I 

I Table 2 I 
The manipulator "fan" plots when g' is calculated by each of the three afore- 

mentioned ways are shown in Figures l .Fl-l .F3, respectively. The trajectories of 
the joints are shown in Figures 1.JlA-B through 1.J4A-B, where the plot notation 
q;(no-jla) denotes the trajectory of qi when there is no JLA algorithm active at any- 
time, and where q;(jla) and qi(jla,cyc) signify the trajectory of qi when q* is calculated 
by the linear and cycloidal function JLA methods, respectively. The "B' figures high- 
light the portions of the "A" figures where the JLA algorithms become active. 
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Keeping in mind that a simulated manipulator is a fictitious entity, plots of the 
joint trajectories when no joint limit avoidance was active were made. Then, to 
test the effectiveness of the JLA algorithms in an extreme case, joint limit q;""" 
was deliberately chosen sucb that ql(no-jla) exceeded it over the range of motion 
of joint one. Of course, q1 cannot exceed q y  in a physical robot. Figures 1.JlA 
and 1.JlB reveal that the application of either JLA algorithm results in q1 no longer 
exceeding q;""" and furthermore each met hod successfully moves joint one away from 
its upper limit. The trajectories of joints 2-4, which do not move into their respective 
prohibitive outer ranges, are shown in Figures 1.J2A-B through 1.J4A-B. 

Case 2. The identical Cartesian trajectory is used, but now to('' and to/,!" are 
one-half of their values used in Case 1 (see Table 3): 

The fan plots when 4; is calculated by each of the three aforementioned ways 
axe shown in Figures 2.F1-2.F3, respectively. Observing Figures 2.JlA and 2.JlB 
reveal that both JLA algorithms again succeed in preventing q1 from exceeding its 
upper range limit and move it away from the limit. None of the other joints move 
within their prohibitive regions, and their trajectories are plotted in Figures 2.J2A-B - 
through 2.J4A-B. 

Case 3. The identical Cartesian trajectory specified in Case 1 is used, but the 
scaled peak velocity ( q q T a z ) , i  = 1, 2, 3, 4 is reduced to one-half of its peak value 
used in Case 1 (see Table 4): 

I CASE 3 PARAMETERS I 

I Table 4 I 
The fan plots when q; is calculated by each of the three aforementioned ways 

are shown in Figures 3.F1-3.F3, respectively. Observing Figures 3.JlA and 3.JlB 
reveal that both JLA algorithms again succeed in preventing q1 from exceeding its 
upper range limit and move it away from the limit. None of the other joints move 
within their prohibitive regions, and their trajectories are plotted in Figures 3.J2A-B 

Case 4- In each of the previous cases, only joint one moved into a prohibitive 
outer range. Again using the identical end effector trajectory given in Case 1, we select 
values for the joint range limits and tolerances such that multiple joints move into their 

though 3.J4A-B. 
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respective prohibitive ranges simultaneously so as to check the effectiveness of the JLA 
algorithms . Specifically, we select values for the quantities {Q"", toZ,h', qyin, toZg) 
such that joints one and three pass into their upper and lower prohibitive ranges of 
motion simultaneously. The decision to choose joint three is motivated by the fact 
that when only joint one moved into its upper prohibitive range i.e., as in Case l), 

its lower prohibitive region. The values of the parameters used in Case 4 are provided 
in Table 5: 

and g3(jla,cyc) decreased more rapidly than q3(nojla) (see 6 igure 1.J3B). Here 
and g3(jlacyc) are expected to increase in value when joint three moves into 

I CASE 4 PARAMETERS I 
I I 

I I J 

I Table 5 1 

The fan plots are shown in Figures 4.F1-4.F3. The joint trajectories are plotted in 
Figures 4.JlA-B through 4.J4A-B. At t = 4.088 seconds joint three falls into its lower 
prohibitive range and the JLA a1 orithms are activated. Then at t = 4.256 seconds 
joint one moves into its upper pro %I 'bitive range. Figures 4.JlA-B and 4.J3A-B reveal 
that both JLA algorithms successfully move joints one and three back towards their 
respective centermost ranges. 

Case 5. To further observe the behavior of the manipulator when multiple joints 
move within their prohibitive outer ranges, we repeat Case 4, but increase the lower 
range limit for joint three from -30" (the value used in Case 4) to -26'. Now 
qa(noj1a) is in very close proximity to its lower limit q?'" (see Figure 5.J3B). The 
parameter settings are provided in Table 6: 

CASE 5 PARAMETERS 1 

I Table 6 1 
The fan plots are given in Figures 5.F1-5.F3 and the the joint trajectories are plot- 

ted in Figures 5.JlA-B through 5.J4A-B. At t = 3.528 seconds joint three moves into 
its lower prohibitive range and the JLA algorithms are activated. Then at t = 4.256 
seconds joint one moves into its upper prohibitive range. The moment when both 
joints are in their prohibitive ranges simultaneously appears to be noticeable in Fig- 
ure 5.J3B where q3(jla) and q3(jla_cyc) first incrementally decrease then begin increas- 
ing as anticipated. The time interval where g3(jla) and q3(jla_cyc) decrease is viewed 
as a transient period. Figure 5.JlB shows that both JLA algorithms successfully 
move joint one away from its upper limit. 

The results of the numerical experiments do not indicate a significant difference in 
the performances of the linear and cycloidal function joint limit avoidance algorithms. 
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Figure 1.F1 Fan Plot With No JLA (Case 1) 

Figure 1.F2 Fan Plot Using Linear JLA Method 

Figure 1.F3 Fan Plot Using Cycloidal JLA Method 

17 



CASE 1 

15C 

140 

130 

120 

110 

i 

I 
I 

I' 

0 1 2 3 4 5 6 

t l  m e(sec)  

Figure 1.JlA Trajectories for Joint One (Entire Range of Motion) 

18 



CASE 1 

150 

140 

130 

120 

+ + +  + +  + +  + + +  + +  

* ++ + +  

= qlmax 

ql(jla) 

ql(noj1a) 

q 1 max-to1 1 hi 

ql(jla-cYc) 

I 4.0 4.5 5.0 5.5 6.0 

t i  m e( se  c)  

Figure 1.JlB Trajectories for Joint One (Range Where JLA is Active) 

19 



CASE 1 

+ 
X 

0 

t ime(sec) 

Figure 1.J2A Trajectories for Joint T w o  (Entire Range of Motion) 



-1 10 

-1 12 

-1 14 

-1 16 

-1 18 

CASE 1 

m 
rn 

m 
I 

I + + + 
X 

3.5 4.0 

t i  me( sec) 

4.5 

Figure 1.J2B Trajectories for Joint Two (Range Where JLA is Active) 

21 



CASE 1 

0 1 2 3 4 5 6 

t i  me(sec) 

Figure 1.J3A Trajectories for Joint Three (Entire Range of Motion) 

22 



CASE 1 

3.5 4.0 

tlme(sec) 

4.5 

- 

Figure 1.J3B Trajectories for Joint Three (Range Where JLA is Active) 

23 



0 1 2 3 4 5 6 

t i  me(oec) 

Figure 1.J4A Trajectories for Joint Four (Entire Range of Motion) 

24 



CASE 1 

-121 

i 
8 c 

+ x  I 

.- 1 

3.5 4.0 4.5 

t i  me(rec)  

Figure 1.J4B Trajectories for Joint Four (Range Where JLA is Active) 



FIGURES 

FOR 

CASE TWO 

26 



Figure 2.F1 Fan Plot With No JLA (Case 2) 

Figure 2.F2 Fan Plot Using Linear JLA Method 

Figure 2.F3 Fan Plot Using Cycloidal JLA Method 
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Figure 3,Fl Fan Plot With No JLA (Case 3) 
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. Figure 4.F1 Fan Plot With No JLA (Case 4) 

Figure 4.F2 Fan Plot Using Linear JLA Method 

Figure 4.F3 Fan Plot Using Cycloidal JLA Method 
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Figure 5.F1 Fan Plot With No JLA (Case 5 )  

Figure 5.F2 Fan Plot Using Linear JLA Method 

Figure 5.F3 Fan Plot Using Cycloidal JLA Method 
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5 Conclusion 
A new approach bas been suggested for the avoidance of joint limits during mo- 

tion of a redundant manipulator. The entire range of motion for each joint has been 
divided into three subranges. When a joint lies in either outer subrange, it is con- 
sidered to be in close proximity to a hardware limit and it is desired to move the 
joint back into the inner (center) region via self motion of all joints. This can be 
accomplished through an application of the general secondary performance criteria 
and inverse kinematics procedure described in Part 2 of this report [6]. The problem 
studied in Part 3 has been how to calculate the corrective joint velocity vector $ that 
is an explicit variable in the symbolic solution for the joint velocities so as to accom- 
plish the joint limit avoidance. Two methods have been suggested for calculating 4'. 
In both methods, the components of q' corresponding to those joints lying in their 
outer regions are calculated such that their magnitudes axe a function of how close 
they are to their limits and their signs are selected so as to move the joints away from 
the respective limits. The components of q* corresponding to the joints lying in their 
center ranges are set to zero. 

The ith component of $ is defined as a linear function of q; in the upper and lower 
prohibitive subranges of motion using the first method. However, it was found that 
qf is not pointwise differentiable at the transition points between the three subranges 
of motion. To overcome this deficiency, it was proposed to define $ by cycloidal func- 
tions when q; lies in either outer range. The resulting function is sectionally smooth, 
uniformly continuous, and pointwise differentiable throughout the entire range of 
motion of joint i. 

Both algorithms were devised such that if none of the joints lie in their outer 
regions, no corrective action is taken. In this case the term explicit in 4' in the 
symbolic solution for the joint velocities derived in Part 2 vanishes which reduces the 
computations and yields a minimum norm solution for the joint velocities. 

The algorithms were tested through simulating a planar manipulator with four 
revolute joints with two degrees of redundancy. The performance of the algorithms 
was tested in the cases where only one or multiple joints simultaneously moved in 
their respective prohibitive ranges of motion. 
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