


1. ~~ ~ ..........l_.l.....--l .............. ~ ..'. ~...~. -- -- . . . .. . . _ -  

~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



ORNL/TM-12764 

Engineering Physics and Mat hematics Division 

A MULTIPLE DIVIDE-AND-CONQUER (MDC) 
ALGORITHM FOR OPTIMAL ALIGNMENTS 

IN LINEAR SPACE 

X. Guan and E. C. Uberbacher 

DATE PUBLISHED - June 1994 

Research supported by the Office of Health and Environmental Research, 
U.S. Department of Energy, and the 

Laboratory Directed Research and Development Programs 

Prepared by the 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 37831 
Managed by 

MARTIN MARIETTA ENERGY SYSTEMS, INC. 
for the 

U.S. DEPARTMENT OF ENERGY 
under Contract No. DE-AC05-840R21400 

3 4 4 5 6  0384543 B 





CONTENTS 

Pace No. 

ABSTRACT 

1. Introduction 

2. Dynamic Programming Algorithms 

3. A New Linear Space Alignment Algorithm 

4. Analysis and Results 

5. Conclusions 

Acknowledgments 

References 

V 

1 

1 

3 

4 

6 

7 

8 

... 
111 





ABSTRACT 

This paper describes an algorithm for optimal sequence alignments in linear space. A new 
multiple divide-and-conquer technique is presented that leads to a linear space alignment 
algorithm which improves upon an existing algorithm by Myers and MiKler. 
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1 Introduction 

Dynamic programming algorithms are often used to find the similarities of sequences as well 
as to deliver the actual alignment of two sequences. Two kinds of alignments are used to 
compare sequences: local alignments and global alignments. The local alignments attempt 
to  locate conserved regions, while the global alignments identify overall relationship between 
two sequences. 

While dynamic programming algorithms are relatively time consuming, the space required 
is often the limiting factor when aligning long sequences. A linear space algorithm for 
computing maximal common subsequences, proposed by Hirschberg [ 11, was applied by Myers 
and Miller [23 to deliver optimal alignments in linear space. We have improved the Myers 
and Miller algorithm by introducing a multiple divide and conquer technique that reduces 
the algorithm's running time while maintaining its linear space property. 

In the following sections, we use brackets [J to represent a matrix and parentheses () to 
represent a single entry in the matrix: D[m,  n] represents a matrix D, while D(i ,  j )  represents 
a single entry in the matrix D at the ith row and the j t h  column. 

2 Dynamic Programming Algorithms 

We first give a dynamic programming algorithm for global sequence alignments. Given two 
sequences A = ala2 ... a, and B = blb 2...b,, a cost, w, for k insertions or deletions is defined 
as w(k) = (u * IC + o), where u 2 0 and o 2 0. The minimum cost of aligning the two 
sequences is given in [3]: 

D(i  - 1,j - 1) + c@;, Uj), 

D(i ,  j )  = min 
0 < i 5 m,O < j 5 n 

where 

P ( 0 , k )  = Q ( k , O )  = D(k,O) = D ( 0 , k )  = w(k),VJk > 0 

and 
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2 0 if b; # aj  
6: 0 if b; = aj 

c(b; ,aj)  = 

The value D(rn,n) represents the minimum cost of aligning the two sequences. 
To deliver the optimal alignment (that corresponds to the minimal cost), a traceback 

procedure is performed to find the actual alignment. A straightforward implementation 
of the traceback procedure requires O(nrn) space, thus limiting it to only short sequence 
alignments. 

If only the minimum cost is needed and not the alignment, linear space is enough to do the 
calculation. As the value in position ( i , j )  depends o~ily on values in three other positions, 
i.e., ( i , j  - l), (i - 1, j  - 1) and (i - l ,j),  one can do the calculation in a row by row fashion 
using only linear space (see [2] for details on the linear space cost only algorithm). This 
algorithm will be referred to later as the linear-space-cost-only algorithm. 

The Hirschberg algorithm, applied by Myers and Miller to  sequence alignments (21, is a 
divide-and-conquer algorithm designed to compute the alignment using linear space, The 
idea is to divide the first sequence into two halves AIAz and then to locate the optimal point 
in the second sequence (which divides the second sequence into two parts BIBZ) such that 
the optimal alignment is the concatenation of the optimal alignment of A1 and B1 and the 
optimal alignment of A3 and B2 (see Figure 1). 

B1 B2 

A1 

A2 

Figure 1. Divide and conquer. 
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The optimal alignment of two sequences can be thought of as a path in the cost matrix 
that starts at D(0,O) and ends at D ( m ,  n). This path must cross the middle row (midrow) 
i' - - f4 2 '  The problem is to find the point (midpoint) where the optimal path crosses the 
midrow. 

First it calculates 
Myers and Miller's algorithm uses the linear-space-cost-only algorithm to find the midpoint. 

0 D F ( j )  = the minimum cost of aligning ala 2...a;t and blb2 ... bj 

D R ( j )  = the minimum cost of aligning a~~+l...a,-la, and bj+lbj+2...b, 

where 0 2 j 5 n. Then it calculates 

( i * , j * )  is the optimal midpoint (for a proof see [l]). 
The optimal alignment is obtained by recursively finding the optimal alignment of the 

two subsequences before the midpoint and the optimal alignment of the two subsequences 
after the midpoint. 

The actual algorithm is a bit more involved as it considers the types of the operations 
(replacement, delete, etc.) before and after the midpoint on the optimal path, and divides 
the problem accordingly. 

3 A New Linear Space Alignment Algorithm 

We first introduce a new technique to find the midpoint. We define a matrix CROSS[m, n]: 
CROSS(i,j), when i 2 y7  contains the column of the cost matrix where the optimal path 
that starts at D(0,O) and ends at D ( i , j )  crosses the midrow. CROSS(i,j) is undefined for 
i < f. When both D[m,  n] and CROSflrn, n] have been calculated, D ( m ,  j )  contains the 
minimum cost of aligning A = ala 2...am and B = bib, ... bj ,  0 5 j 5 n, and CRUSS(m,j) 
contains the column where the optimal path that starts at (0,O) and ends at ( m , j )  crosses 
the midrow. In particular, CROSS(m, n )  contains the midpoint. 

The calculation of CROSflm, n] is straightforward. Suppose we are calculating D ( i , j ) .  
The last operation in Figure 2 refers to the operation (Le., a replacement, a deletion, or a 
insertion) that leads to D(i , j ) .  The path in Figure 2 refers to the optimal path that starts 
at D(0,O) and ends at D(i , j ) .  
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e If ( i  = i* + 1) then 

- CROSS(z,j) = j if the last operation is a deletion, 

- CROSS(i,j) = j - 1 if the last operation is a replacement, 

- CROSS(i,j) = CROSS(i,j - 1) if the last operation is an insertion. 

0 else pass on the crossing-point information 

- CROSS(i,j) = CROSS(i - 1,j) if the last operation is a deletion, 

- CROSS(i,j) = CROSS(i - 1,j - 1) if the last operation is a replacement, 

- CROSS(i,j) = CROSS(i,j - 1) if the last operation is an insertion. 

Figure 2. Calculation of CROSS(z,j) at D ( i , j ) .  

Like D[i ,  j ] ,  CROSqrn, n] can be calculated easily in linear space. All we need is the value 
CROSS(m,n). The cost is the added operation and the extra n space. We call the linear 
space cost only alignment algorithm with the added matrix CROSqrn, n] the modified-linear- 
space-cost -only alignment algorithm. 

A natural extension of the above divide-and-conquer technique is to use more than one 
dividing row. The calculations of where the optimal path crosses the dividing rows are 
similar to that for midrow. Extra kn space i s  need to store the crossing information for k 
dividing rows . 

The main MDC algorithm is outlined as follows: given two sequences, 

e apply the modified-linear-space-cost-only alignment algorithm to find and save the cross- 
ing information at these k dividing rows, 

0 recursively divide each sequence into k subsequences according to the crossing informa- 
tion at these k dividing rovs until the alignment is trivial to do, 

0 the optimal alignment is the concatenation of the optimal alignments of these IC pairs 
of subsequences. 

4 Analysis and Results 

Let TI be the time of linear-space-cost-only algorithm. The total area of the calculation 
of the linear-space-cost-only algorithm is the cost matrix D. Using the Myers and Miller 
algorithm, after one recursion, the problem is divided into two subproblems whose total area 
is half of the cost matrix. In turn these two subproblems are divided into four subproblems 
whose total area is one fourth of the cost matrix, and so on (see Figure 3(a)). 
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(a) The Myers and Miller algorithm. (b) The MDC algorithm. 

Figure 3. Divide and conquer. 

So the approximate time Tz for the Myers and Miller algorithm is 

1 1  
2 4  

Tz = TI * (1 i- - + - + .-) rx 257 

If four dividing rows are used in the MDC algorithm, each recursion divides a problem (or 
a subproblem) into four subproblems (see Figure 3(b)). 

So the time of our algorithm T3 is approximately 

1 1  4 
4 4 2  3 

T3 = TI * (1 + - + - + -.) M -TI 

In general, let d be the number of dividing rows. A problem is recursively divided into 
s = d + 1 subproblems, so T3 is 

This is only an estimate since the cost of the added operation is not taken into account. 
But as demonstrated below, the gain as a result of the introduction of the multiple divide- 
and-conquer technique is much more than the cost, resulting in substantial saving in the 
execution time. 
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To test the method, we used a simplified version, where w ( k )  = u*k. In the following table, 
MDC4, MDC8, and MDC16 refer to the MDC algorithm when s = 4, 8, or 16 respectively, 
and seqlen is the length of each of the two sequences. The algorithms were tested on a SUN 
SPARC 10 Workstation. We used a straightforward implementation of the algorithm. A 
refined version that reduces the cost of the newly introduced operation in the linear-space- 
cost-only algorithm will lead to a faster algorithm. 

Table 2. Times (in minutes:seconds) of the linear space alignment algorithms 

5 Conclusions 

Sequence alignments using dynamic programming algorithms are demanding in both time 
and space, so efficient sequence alignment algorithms have been an active topic in compu- 
tational biology. Here we have presented a multiple divide-and-conquer technique which 
improves the linear space alignment algorithm proposed by Myers and Miller. Still, aligning 
long sequences takes considerable time, so approximate algorithms which use prescreening 
methods such as dot matrix and I;-tuple look tables, may be used together with this optimal 
dynamic programming algorithm to produce even more efficient systems. 
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