

!
I
j
1
I
i . . , . , - ..-.*

0 RNL /TM- 12507

yI, 5 Engineering Physics and Mathematics Division

Mathematical Sciences Section

PARALLEL ALGORITHMS FOR T H E SPECTRAL T R A N S F O R M METHOD

Ian T. Foster
Patrick H. Worley

Argonne National Laboratory
Mathematics and Computer Science Division
Argonne, IL 60439-4801

t Oak Ridge National Laboratory
Mathematical Sciences Section
P. 0. Box 2008
Oak Ridge, T N 37831-6367

Date Published: April 1994

Research was supported by the Atmospheric and Climate Research
Division and by the Applied Mathematical Sciences Research Pro-
gram, both of the Office of Energy Research, U.S. Department of
Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
man aged by

Martin Marietta Energy Systems, Inc.
for the

IJ.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 0384534 7

Contents

1 Introduction .
2 The Shallow Water Equations .
3 The Spectral Transform Method .
4 Parallel Algorithms and Architectures .

4.1 Parallel Algorithm Example .
4.2 Computation/Communication Overlap .
4.3 Network Bandwidth Limitations .

5 Parallel Fourier Transform Algorithms .
5.1 Distributed FFT .
5.2 Transpose FFT .
Parallel Legendre Transform Algorithms .
6.1 Distributed LT .
6.2 Transpose LT .

7 Qualitative Analysis .

7.2 Parallel LT Algorithm Comparisons .
7.3 Parallel Spectral Transform Algorithm Comparisons
7.4 Summary .

8 Empirical Studies .
8.1 PSTSWM: A Testbed Code .
8.2 Target Computers .
8.3 Methodology .
8.4 Results: Algorithm Selection .
8.5 Results: Algorithm Comparisons .
8.6 Discussion .

9 Caveats and Generalizations .
10 Conclusions .
11 References .

6

7.1 Parallel FFT Algorithm Comparisons

1
2
4
7
8
8
8
9

10
12
13
14
17
20
20
20
21
22
22
23
23
24
2.5
25
31
31
33
34

... . 111 .

PARALLEL ALGORITHMS FOR THE SPECTRAL TRANSFORM METHOD

Ian T. Foster

Pa t r ick €1. Worley

Abstract

T h e spectral transform method is a standard numerical technique for solving partial

differential equations on a sphere and is widely used in atmospheric circulation modeIs.

Recent research has identified several promising algorithms for implementing this method

on massively parallel computers; however, no detailed comparison of the different algo-

rithms has previously been attempted. In this paper, we describe these different parallel

algorithms and report on computational experiments tha t we have conducted to evaluate

their efficiency on parallel computers. The experiments used a testbed code tha t solves

the nonlinear shallow water equations on a sphere; considerable care was taken to ensure

tha t the experiments provide a fair comparison of the different algorithms and that the

results are relevant to global models. We focus on hypercube- and mesh-connected multi-

computers with cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon,

and the nCUBE/2, but also indicate how the results extend to other parallel computer

architectures. T h e results of this study are relevant not only t o the spectral transform

method but also to multidimensional FFTs and other parallel transforms.

- v -

1. Introduction

The spectral transform method is widely used for fluid dynamics problems in spherical geometry,

in such areas 8s climate modeling, weather modeling, astrophysics, and reactor design. In this
paper, we examine the problem of implementing the spectral transform method on massively

parallel computers. Such computers comprise 102-104 processors, each with local memory

and able to access other processors’ memory via an interconnection network. When designing

algorithms for these computers, important considerations include minimizing nonlocal memory

accesses, organizing interprocessor communication to make efficient use of the network, masking

communication latency, and minimizing load imbalances.

The spectra1 transform method as used in climate models comprises a Fourier transform phase,

in which fast Fourier transforms (FFTs) are applied to each latitude of a latitude/longitude

grid, and a Legendre transform phase, in which Gaussian quadrature is used to approximate

the Legendre transform (LT) applied to each longitude (now wavenumber) of the same grid [4].
Efficient parallel FFT and LT algorithms have been the topic of intensive research (e.g., see [lo,

25,28,29]). The spectral transform is nevertheless deserving of special study, first because the

matrices involved are typically much smaller than usual for Fourier and Legendre transforms

(e.g., 64-1024 in each dimension, rather than tens of thousands), second because the two phases
interact in interesting ways on certain architectures, and third because the importance of the

spectral transform makes even small performance improvements valuable.

Parallel spectral transform algorithms have been investigated previously by several researchers.

We and colleagues at Argonne and Oak Ridge national laboratories have developed a parallel

transform approach based on parallel FFT and quadrature algorithms [14,32,35]; this work has

been incorporated in a parallel implementation [7,8] of the National Center for Atmospheric Re-
search (NCAR)’s Community Climate Model (CCM2) [19]. Other researchers have examined a

transpose approach, in which communication requirements are encapsulated in a matrix trans-

pose operation. This approach is used, for example, in the European Center for Medium-Range

Weather Forecasts spectral weather model [6] and in Loft and Sato’s data parallel implementa-

tion of CCM2 [23]. It has also been explored by Kauranne and Barros [22], Pelz and Stern [2G],

and Gartel, Joppich, and Schiiller [l’i].

In addition to the transform and transpose approaches, a variety of hybrid algorithms are

possible that combine aspects of both. A comprehensive comparison of these algorithms has

not previously been attempted. (Both [15] and [22] provide a qualitative analysis of sonw

algorithms, but not detailed quantitative results or performance models.) Hence, it is difficult to

evaluate the performance tradeoffs that arise when choosing a parallel algorithm for a particular

application.

In this paper, we describe analytic and empirical studies that we have conducted to determine

1. whether there is a best algorithm (on a given platform, for a given problem size, etc.);

2. the sensitivity of the choice of optimal algorithm to problem size, number of processors,

and platform specifics; and

- 2 -

3. the benefits of optimizing for a given platform or problem size.

In the analytic studies, we develop models that characterize the performance of the various

spectral transform algorithms by relating communication requirements and load imbalances to

problem size, processor count, and other parameters.

The empirical studies atilize a parallel shallow water equation solver designed specifically for

these experiments [36]. Considerable care has been taken to ensure that experilnents are as fair

as possible, that is, that one algorithm is not unduly favored through choice of data structures,

greater optimization, etc. In addition, the code structure mimics that of general circulation

models, maximizing the applicability of results to these models.

The contributions of this paper are as follows. First, the analytic models provide a qualitative

characterization of the performance of numerous parallel algorithms for the spectral transform,

including both parallel algorithms developed previously and new algorithms developed in the

course of this work. Second, the empirical results provide a detailed understanding of the

performance characteristics of these algorithms on the target platforms. Third, we identify

robust algorithm combinations for various problem size and machine characteristic regimes.

The rest of this paper is as follows. Sections 2, 3, and 4 provide background information on

the shallow water equations solved by our testbed code, the spectral transform method, and

parallel computation. Sections 5 and 6 describe the parallel algorithms that we examine in the

Fourier and Legendre phases of the transform. In $7, we use these models to make qualitative

comparisons between the algorithms and to identify performance tradeoffs on different parallel

computer architectures. Section 8 describes empirical studies conducted on a range of scalable

parallel computers, and relates the results to algorithm and machine characteristics. Section 9
describes issues not addressed in this study, and directions for future work. Section 10 presents
our conclusions.

2. The Shallow Water Equations

The nonlinear shallow water equations on a rotating sphere constitute a two-dimensional

atmospheric-like fluid prediction model that exhibits many of the features of more complete

models [34]. These equations are frequently used to investigate and compare numerical meth-

ods because they present many of the difficulties found in simulating the horizontal dynamics

in three-dimensional global atmospheric models [5].

The algorithms used to solve the shallow water equations via the spectral transform method are

similar to those employed in the NCAR Community Climate Model to handle the horizontal

dynamics component of the primitive equations [19]. Hence, a model that solves the shallow

water equations on multiple (independent) levels during each timestep of the simulation pro-

vides a framework in which the performance of CCM2’s horizontal dynamics can be studied in

isolation from the other aspects of the full model. While this framework is not a completely

reliable predictor of the performance of the parallel algorithms in the full model, it allows us

to determine accurately the relative merits of the different parallel approaches.

For completeness, we now describe the shallow water equations in the form that we solve using
the spectral transform method. The shallow water equations on a sphere consist of equations for

the conservation of momentum and the conservation of mass. Let i , j, and k denote unit vectors

in spherical geometry, V denote the horizontal velocity, V = iu+jv, @ denote the geopotential,

and f denote the Coriolis term. Then the horizontal momentum and mass continuity equations
can be written as [33]

= - f k x V - V @
DV
Dt
Da) - = - @ V . V , Ln

-

where the substantial derivative is given by

D a
-() f -&() + v - V () nt

The spectral transform method does not solve these equations directly; rather, it uses a

streamfunction-vorticity formulation in order to work with scalar fields. Define the vorticity 7

and the horizontal divergence 6 by

To avoid the singularity in velocity a t the poles, let B represent latitude, and also redefine the

horizontal velocity components as

(U , V) = V c o s B

Then, after some manipulation, the equations can be written in the form

Here a is the radius of the sphere; the independent variables X and p denote longitude and

sin 0, respectively; and @ is now a perturbation from a constant average geopotential 4.
Finally, U and V can be represented in terms of q and S through two auxiliary equations

- 4 -

expressed in terms of a scalar streamfunction II, and a velocity potential x:

where

In the spectral transform method, we solve Equations (3)-(5) for q , 6, and a, and use Equations

(6)--(9) to calculate U and V .

3. The Spectral Transform Method

In the spectral transform method, fields are transformed at each timestep between the physical

domain, where the physical forces are calculated, and the spectral domain, where the horizontal

terms of the differential equation are evaluated. In the three-dimensional atmospheric models
that we wish to emulate, all coupling between vertical levels is also calculated in the physical

domain.

The spectral representation of a field variable E on a given vertical layer above the surface

of a sphere is defined by a truncated expansion in terms of the spherical harmonic functions

{ P? (p)eim } :
hf N(m)

€(X,P> = E , " ~ , m (f 4 e i r n A ,
m = - M n= I I m

where

Here i = a, p = sin8, 8 is latitude, X is longitude, m is the wavenumber or Fourier mode,

and P,"(p) is the associated Legendre function. The spherical harmonic functions are the

eigensolutions of the Laplacian operator in spherical coordinates and constitute a complete and

orthogonal expansion basis for square integrable functions on the sphere. Additional properties

of these functions can be found in [24].

In the truncated expansion, M is the highest Fourier mode and N (m) is the highest degree of the

associated Legendre function in the north-south representation. Since the physical quantities

- 5 -

are real, <Grn is the complex conjugate of E,". This fact is used to reduce both computational

complexity and storage requirements by calculating only spectral coefficients for nonnegative
modes.

In each vertical layer of the physical domain, fields are approximated on an I x J longitude-

latitude grid, where the I longitude grid lines are evenly spaced and the J latitude grid lines
are placed at the Gaussian quadrature points {pi} in [-1, 11. Transforming from physical

coordinates to spectral coordinates involves first performing a Fourier transform for each line

of constant latitude, generating the values {trn(p,)} on an M x J wavenumber-latitude grid

that we will refer to as the Fourier grid. This is followed by integration over latitude for each

line of constant wavenumber, approximated using J-point Gaussian quadrature, to obtain the

spectral coefficients,
J - 1

tr = crn(pj> p Z (p j) wJ
j = O

Here wj is the Gaussian quadrature weight corresponding to the Gaussian latitude p j . The

point values are recovered from the spectral coefficients by computing

for each m, followed by inverse Fourier transforms to calculate < (A , p) . When the spectral

transform method is applied in a three-dimensional atmospheric model, the principal data

structures are as shown in Fig. 1. P denotes the physical grid, F the Fourier grid, and S the

spectral grid.

In the shallow water equation code [20], each timestep begins by calculating the nonlinear terms

U q , Vq, UO, I/@, and @+(U2+V2)/(2(1-p2)) on the physical grid. Next, the nonlinear terms

and the state variables q, 6, and are Fourier transformed. The forward Legendre transfornis

of these fields are then combined with the calculation of the tendencies used in advancing q ,
5 , and in time (essentially evaluati- 2 the right-hand sides of Equations (3)-(5)) and the

first step of the time update. This approach decreases the cost, when compared to calculating

transforms individually and then calculating the tendencies, and generates spectral coefficients

for only three fields instead of eight. Next, the time updates of 7, 5, and on the spectral

grid are completed. Finally, the inverse Legendre transforms of q, 6, and @ are combined with

the calculation of the fields U and V (solving Equations (6)-(9)), followed by inverse Fourier

transforms of these five fields.

Without significant loss of generality, we assume a triangular spectral truncation in this paper:

N (m) = M and the (m, n) indices of the spectral coefficients for a single vertical layer form a

triangular grid. For a triangular truncation, exact, unaliased transforms of quadratic terms are

obtained if I 2 3M + 1 and if I = 2J [33]. In this work we also use a fast Fourier transform

(FFT) algorithm that requires I to be a power of two. As is commonly done, for a given M we
choose I t o be the minimum power of two satisfying I 2 3M + 1, and set J = 1 / 2 . With these

assumptions, the value of M can be used to characterize the horizontal resolution of the grids,

- 6 -

m

Z

c;To FFT zFo f+ LT .I“’; --m -
_------

h m
Figure 1: Principal Data Structures in Spectral Dansform

and the term “TM” is used to denote a particular discretization. For example, for T85 we have

M = 85, I = 256, and J = 128, and the number of spectral coefficients (N,,,,) calculated per
field for a single vertical layer is

M M
1

Nspec = 1 = ,(M + 1)(M+2) = 3741.

The number of vertical levels is determined primarily by the physical processes that are being

modeled and is chosen independent of M in current meteorological models. The term “‘IMLK”
will be used to denote a model with a TM horizontal grid resolution and I< vertical levels.

In subsequent discussion, we denote the index set of the physical grid by a triple (I , J , K) ,
with Z corresponding to longitude, J to latitude, and K to the vertical. We denote the index
set of the Fourier grid by the triple (M , J , K), with M corresponding to wavenumbers. We

denote the index set of the spectral grid by the triple (M , N , K), with N corresponding to

polynomial degree. (Note that in a triangular truncation, the index set N is dependent on the

wavenumber.) We assume that computation is performed on a two-dimensional logical grid of

P = Px x 4. processors. We denote an individual processor by an index pair (2, y).

Different phases of a parallel spectral transform algorithm may employ different decompositions

of the computational grids onto the processor grid. We describe these by a triple, for example,

of the form (Z , , J b , K C) , where a , b , and c are X , meaning that indices in the subscripted

dimension are partitioned over processors in the X plane of the processor grid; Y , meaning

that indices are partitioned over processors in the Y plane; or null, meaning that indices are

not partitioned. Analogous notations are used to represent the decompositions of the Fourier

and spectral grids. Our decompositions never decompose over more than two dimensions. We

assume that the physical space grid is always decomposed as (Zx, J y , K) and that the physical

domains of all fields are decomposed (and mapped to processors) in the same way, so that

computations in vertical columns can proceed without communication. (These computations

are not considered here but are an important and complex part of a climate model that are

difficult to parallelize eficiently.) Unless otherwise noted, we also assume that all fields use the
same Fourier and spectral domain decompositions.

- 7 -

4. Parallel Algorithms and Architectures

Scalable parallel computers generally comprise a number of independent computers and an

interconnection network. Each computer has its own processor and memory, can execute a

sequential program, and can send and receive messages to and from other computers. In the

absence of concurrent computation and communication, the run time for a parallel program on

such a system can'be characterized on a per-processor basis as

where TcO,, is the time spent (actively) communicating or waiting for messages to arrive and

Tcomp is the time spent computing (i.e., not communicating).

In all of the algorithms described in this paper, each send request is closely preceded or followed

by a receive request for a message of approximately the same size. In current multiprocessors,

the cost of such a send/receive pair can often be modeled with reasonable accuracy as

where t , is the time to initiate the communication requests, N is t.he size of the messages

in words, and t, is the time to transfer a single word of data into the network and transfer

another word out of the network. By choosing t , and t , to reflect intrinsic system perfotmaucr

characteristics and defining Tcomm to be the sum of the cost of these send/receive pairs, (10)

becomes a lower bound on the execution time of the form

Costs omitted in this lower bound-for example, idle time waiting for messages to arrive or

buffer copying associated with message passing-are generally proportional to the nurnher

of messages or to the message lengths in each of our algorithmic phases: physical domain

computations, FFT, LT, and spectral domain computations. (This is due to the nature of our

algorithms and does not hold in general.) Hence, by fitting (12) for a given phase to empirical

data, system- and algorithm-dependent values for t , and t, can often be derived for which (12)
is valid for a large range of problem sizes and numbers of processors.

Whether as a lower bound or as an empirically-fitted performance model, (12) is often sufficient

t o make accurate qualitative comparisons between parallel algorithms, and will be used in

the algorithm analysis to follow. There are also two generalizations of this model that are

important for some of the multiprocessor platforms included in this study, incorporating the

impact of computalion/comnaunicateo7a overlap and network bandwrdth lzrnitataons, respectively.

In the following, we use an example to illustrate the simple model; we then introduce the

generalizations.

- 8 -

4.1. Parallel Algorithm Example

We use the fast Fourier transform (FFT) to illustrate the use of (12). The Fourier transform.

y = {yk}l of a sequence of D values x = {zj} is given by

j=O

where s = &f. The FFT exploits symmetry to perform this computation in log, D steps, each

involving O (D) operations. Assume that x is partitioned over Q processors by blocks, and let

D = 2d and Q = 24 for some integer d and q , d 2 q. The first d - q stages of the FFT can then
proceed without communication, while each of the last q stages involves a pairwise exchange

of 2d--q data or intermediate results with another processor [16,18,25,28,29]. Each processor

engages in log,Q communication operations, each involving the transfer of D/Q data, and

The parallel and sequential algorithms perform exactly the same computation. As this compu-

tation is partitioned evenly among the Q processors, our performance model predicts that the
time taken by the parallel code is

where Tseq is the time taken by the sequential code on a single processor.

4.2. Corn put at ion / Communicat ion 0 verlap

Some computers allow the effective cost of interprocessor communication to be reduced by

overlapping computation with some of the operations performed to send or receive a message

or with the time spent waiting for a message to arrive. A simple lower bound on the execution

time when exploiting overlap is

hence, overlap at most halves the nonoverlap performance and does not change asymptotic

behavior. We do not model explicitly the effect of overlap, but note when it can be used to

reduce communication cost.

4.3. Network Bandwidth Limitations

Equation (12) assumes that the cost of sending a message is independent of the number of

processors that are communicating at the same time. However, some interconnection net-

- 9 -

work/algorithm combinations may result in multiple processors attempting to send messages

over the same wire simultaneously. The impact of this behavior on performance can often be

modeled with reasonable accuracy by assuming that the processors share available bandwidth,

that is, by scaling the data volume term of our communication cost model by S , the number

of processors sending concurrently:

The value S depends on properties of both the parallel algorithm and the underlying commu-

nication network. For example, the FFT described above can be organized to execute without

competition for bandwidth on a hypercube [21]. In contrast, on a 1-D mesh of Q proces-

sors, each processor generates messages that must traverse 1, 2, ..., 29- ' hops distant in the

q steps of the algorithm [14,18]. The total number of hops traversed by these messages is

QClZ,'2' - = &(& - 1). This represents the number of wires to which a processor requires
exclusive access during the FFT. Because a 1-D bidirectional mesh provides only 2(& - 1)
wires, the algorithm cannot possibly proceed in less than Q/2 steps, rather than log, Q steps

as supposed previously. Hence, the following model is a lower bound on communication costs:

5 . Parallel Fourier Transform Algorithms

We now present the parallel spectral transform algorithms that we evaluate in this paper. By

assumption, the physical and spectral domains for each field (7, 5 , 0 , U , and V) are decomposed

and mapped onto processors in the same fashion. Thus, the calculation of the nonlinear terms

and the completion of the time update of 9, 6, and ip can proceed independently on each

processor, and the computations will be load balanced if the decompositions are equipartitions

of the index sets. These calculations have O (N) complexity, compared with O (N log, N) for
the Fourier transform and 0(iV2) for the Legendre transform. Since any load imbalances will

also reflect load imbalances in the Fourier or Legendre transforms, the effect of load imbalances

on performance can be compared qualitatively by considering the transforms only. Hence, we

discuss only parallel Fourier and Legendre transform algorithms.

For each algorithm that we consider, we develop performance models based on (12). We also
consider the impact of bandwidth limitations in mesh architectures. On a hypercube we assume

that the two-dimensional logecal processor mesh of size Px x Py = 29 x 2' = 2 P is mapped into

a hypercube of dimension p in such a way that each processor row and column is mapped to

a subcube of dimension q and P, respectively [21]. Hence, performance analysis reduces to the

problem of determining the cost of an FFT or LT in a hypercube. On a 2-D mesh computer,

we assume that the PX x pU logical processor mesh is mapped to an equivalent physical mesh.

Thus, each FFT and LT algorithm executes in a 1-D processor array. Although this means

that at most one half of the available w i r a are used in each communication phase, experiments

- 1 0 -

suggest that this mapping is close to optimal when PX zz &. Increasing the connectivity

for one phase (e.g., FFT) of the spectral transform in order to improve performance generally

decreases the performance of the other phase (e.g., LT) to a degree that offsets the earlier gain.

Moreover, as will be shown later, PX x 4. is generally optimal, so this assumption will not

unduly affect the qualitative analysis.

We first consider parallel algorithms for the first phase of the spectral transform, iri which real

FFTs are performed on each row of the physical grid. The test case used in these experiments
involves one forward FFT for each of 8 fields, J latitudes, and K vertical levels, and one inverse

FFT for each of 5 fields, J latitudes, and I(levels, per timestep. As I = 2 5 , we must perform

1 3 J K FFTs per timestep, each on a vector of length 25. As noted in $ 3 , we assume that the

physical grid is initially decomposed as (ZX , J y , K). We also assume that the Z index set is

partitioned over the PX row processors in PX equal-sized blocks and that PY divides J evenly.
We will relax the latter assumption when considering load imbalances.

An unordered real FFT is used in all experiments. This is cheaper than an ordered FFT,

especially for the parallel FFT of $4 , which would require additional communication to effect

the ordering. It also provides some load balancing during the LT phase, as will be described in

§6.

5.1. Distributed FFT

Our first FFT algorithm assumes (Zx, J Y , K) and (M x , J y , I () decompositions of the physical

and Fourier grids, respectively. Hence, both its input and output are decomposed across PA-

processors, and we can use the algorithm presented in $4. There is no load imbalance if &
divides J evenly, there is no redundant work, and communication cost is given by (13).

Each row of PX processors is responsible for transforming I / & of the physical grid, that

is, computing 8 K J / & forward FFTs and 5 K J / P y inverse FFTs. The forward and inverse

FFTs arc each computed as a block, so the number of messages is that required for two single

transforms. As each FFT is applied to a vector of length I , the two block FFTs transform

8 K I J / & = 1 6 K J 2 / P y and 5 K I J / & = l 0 K J 2 / f i data per processor row, respectively.

Substituting the data volume values for D and PX for Q and using P = PxPy , we obtain from

(1 3) the communication cost expression in Table 1.

Computation/Communication Overlap. To exploit overlap, the single-block FFT can

be divided into two, allowing one block’s communication to be overlapped with the other’s com-

putation [32] . Only the first swap involving the first block is not overlapped with computation.

This process requires twice as many messages, as indicated in Table 1 , but has been shown to

be cost effective on some multiprocessors.

Bandwidth Limitations. Both the one- and two-block algorithms can be mapped to a

hypercube without competition for bandwidth [16]. As noted in $4.3, they will suffer from

- 11 -

Algorithm

Distributed

O(Q) transpose

@(log Q) transpose

Table 1 : Communication Characteristics of Parallel FFT Algorithms

Revised Data Volume

J 2 K
13- PX

P
13 J2K -- 3 p (Px-tl)

13 J21C
2 P PA- --

Algorithm

Distributed

Overlapped Distributed

8(&) transpose

@(log Q) transpose

Messages

2 log, Px

4 log, Px

2 (P x - 1)

2 log2 Px

Data Volume

J 2 K

J 2 K

J ~ K pX - 1

P px

J 2 K
13- log, PX

P

26- log, PX
P

26- log, PX
P

26--

Table 2 : F F T Performance Models Specialized for I-D Mesh (where they differ)

bandwidth limitations on a 1-D mesh. Applying (1 6) to the shallow water code, we obtain the

expression in Table 2.

Algorithm Limitations. The basic operation in the standard power-of-two FFT is a “but-
terfly” transform involving two complex values. This corresponds to four real values in the

real FFT, and a t least four longitudes must be assigned to each processor to avoid redundant

computation. Thus, if I = 2 d , we are restricted to Px 5 2 d - 2 . The distributed F F T algorithm

used in this study also requires that PX be a power of two.

Load Balance. As will be discussed in $6 , the choice of Legendre algorithm determines

whether the 3 index set is partitioned over the & column processors in Py or 2 P y equal-sized

blocks. Two blocks are assigned per processor column in the latter case. If PY does not divide
J (or J / 2) evenly, load is somewhat unbalanced, with the processor row with maximum load

computing 1 3 K [J / P y] (or 2 6 K [J / (2 &) 1) FFTs. This imbalance increases both data volume
and computation cost proportionally. See Table 5.

- 1 2 -

5.2. Transpose FFT

An alternative algorithm reorganizes the physical grid from (Ix, J Y , K) to (2 , J Y , K,) prior to

the forward FFT so that each latitude row is stored within a single processor [1,3,6,23,26]. This

eliminates the need for communication during the FFT, but requires communication within the

transpose used for the reorganization. After the transform, the Fourier grid is decomposed as

(MI Jy , Kx). -The inverse FFT-proceeds similarly, requiring a transpose after the transform
to reorganize from (1, Jy , Kx) to (ZX, Jy , K).

The transpose requires that each processor exchange information with the other Px processors

in the same row of the processor grid. The two primary implementation approaches require

@(I+) and @(log P x) communication steps, respectively.

O(Q) Transpose. The first algorithm proceeds in Q - 1 steps on Q processors: at each step,

each processor sends l / Q of its data to another processor [12,21,28]. Communication cost is as

follows.

Zmem transpose = (Q - 1) 1 , -t - t w (17) ($ 1
Substituting appropriate values for D and Q and counting both the forward and inverse FFTs,

we obtain the expression in Table 1.

Note that for this algorithm to be efficient, and for (17) to hold, some care must be taken

with the order of the data communication. For example, significant contention can result if all

processors send to processor i in the ith step. The schedules used in our experiments send at

most one message to each processor during a given step.

@(log Q) Transpose. The transpose can be performed in (log, Q) communication steps at

the cost of increased communication volume [13,27]. We first partition processors into two sets.

Each processor sends to the corresponding processor in the other set a single message containing

all the data that it possesses that is destined for processors in the other set. This partitioning

and communication process is repeated logQ times until each set contains a single processor.

Each message has size D / (2 Q) , so the total communication volume is (log, Q)/2 times greater
than in the O (P) algorithm, and communication costs are

When applied to the FFTs in the shallow water code, communication costs are as in Table 1.

Computation/Communication Overlap. Overlap can be introduced in the transpose

algorithms by breaking up a one-block transform comprised of F vectors into B blocks of size

F I R . After the first block is completely transposed, the transpose of a block can (potentially)
be overlapped with the transform of the block preceding it.

- 13 -

This algorithm has not proven to be efficient in practice. Large B minimizes F I B , the size of

the block whose transpose is not overlapped, but the number of messages grows by a factor of R.
and not all message startup costs can be overlapped. Also, the transform must be divided into

the same number of stages as the transpose algorithm to allow for interleaving. This restriction

may diminish the computational rate.

Bandwidth Limitations. Neither transpose algorithm suffers from significant bandwidth
limitations on hypercubes [12,16,21], but both do so on mesh architectures. In the O(Q)

transpose, a total of (Q3 - Q) / 3 hops are traversed on 2(Q - 1) wires, requiring that the data

volume be scaled by Q(Q + 1)/6 instead of Q - 1. The scaling factor for the @(log Q) transpose

is the same as that used for the distributed FFT. See Table 2.

Algorithm Limitations. Both transpose algorithms decompose the vertical diinension and

thus require that PX 5 K if whole processor rows are not to be idle during the FFT. As I<

can be significantly smaller than I , this restriction is limiting for the transpose algorithnis.

One approach to mitigating this F'roblem is to decompose also over the field "dimension" (8
for the forward FFT and 5 for the inverse) [22]. Many of these fields must be reunited for

the LT phase, however, resulting in other performance problems. This generalization and the

associated problems are discussed in $9. The O(1ogQ) transpose algorithm requires that PX
be a power of two.

Load Balance. If f i does not divide J or J / 2 evenly, load is unbalanced as in the distributed

FFT algorithm. There is also load imbalance if PX does not divide I< evenly; some processor

columns must compute FFTs for as many as /'l</Px] vertical levels. See Table 5. An analogous

load imbalance does not occur in the distributed FFT because I and PX are both required to

be powers of two.

6. Parallel Legendre Transform Algorithms

We next consider parallel algorithms for the second phase of the spectral transform, in which

Legendre transforms (LT) are performed on each column of the Fourier grid. We define a

single forward transform to be the calculation of the set of spectral coefficients (E," In =
Iml, . . . , N(m)) for a given wavenumber rn and field variable E , and an inverse transform to be

the calculation of the set of Fourier coefficients { [" (p j j) 11 5 j 5 J } for a given wavenuriiber

m and field variable E . Thus the number of spectral coefficients output (input) for each field in

the forward (inverse) transform is a function of the wavenumber and of the spectral truncation

used. Since we assume a triangular truncation, M - rn spectral coefficients are generated for

wavenumber rn.

At each timestep, the shallow water code performs one forward LT for each of three fields, M

wavenumbers, and K vertical levels, and one inverse LT for each of five fields, M wavenumbers,

- 14 -

and Ii' vertical levels. Eight fields of Fourier coefficients are used to produce the three fields of

spectral coefficients, and these three spectral fields are used to produce the five fields of Fourier

coefficients. As we assume that, J x (3M + 1)/2 and I = 2J, the total number of spectral
coefficients produced/consumed in these transforms is 3Ns,,,K = (3/2)(M + 1)(M + 2) K x

(2/9)(J + 1)(2J + 5)K .

We describe four Legendre transform algorithms. The first two use distributed vector s u m

algorithms to complete the LT, while the third and fourth use the transpose algorithms of the

preceding section. Each algorithm can be used with any FFT algorithm, but load balance

may vary. To simplify the exposition, we assume initially assume that the distribution of

spectral coefficients between the different processor columns is uniform, that is, approximately

(2/9)(J + 1)(25 + 5) K / P x spectral coefficients per processor column.

6.1. Distributed LT

The first two LT algorithms assume either (M x , J'Y, K) / (M x , NY, K) decompositions of Fourier

and spectral space, respectively, or (M , Jy , K , y) / (M , N y , K x) decompositions. The simple

forward LT is computed as

J-1 Py-1 P y - 1

C m (p j) p r (p j) w j E C TF(Y) . (19)
y=n (jgw) Y=o

CT = C € 7 n (p j) P , " (p j) w j =
j = O

Each partial sum r (y) can be evaluated within a processor (z,y) without interprocessor

communication. The final calculation of the spectral coefficient E," requires the summation

of P y partial sums distributed over Py processors. A "column-wise" distributed vector sum

algorithm can be used to perform this summation in a block fashion for all spectral coefficients,

fields, and vertical levels associated with a given processor column. The same approach can

also be used with the more complicated transforms producing from multiple fields of Fourier

coefficients.

The simple inverse LT is computed as

n=lm]

Each processor can calculate its associated Fourier grid values independently if the (distributed)

vector of spectral coefficients {e:} is first replicated on all processors in the given processor

column. This requires a broadcast operation prior to the inverse LT. The same approach also

works when more than one field of spectral coefficients is needed to evaluate the Fourier grid
values.

For ease of coding and interprocessor communication efficiency, we have found it useful to com-

bine the distributed vector sum and broadcast in a single operation. Thus, at the end of the

forward LT, all processors in a given column have the same spectral coefficients, and the de-

composition of the spectral grid is (M x , N, n), a one-dimensional rather than two-dimensional

- 15 -

Table 3: Communication Characteristics of Parallel LT Algorithms

Algorithm

Ring sum

Butterfly sum

8(Q) transpose

@(log Q) transpose

Data Volume

8 (J + 1)(2J + 5)K
(PY - 1)

(PY - 1)

-
9 P

8 (J + 1) (2 J + 5) K
9 P
-

52 (J + 1)JA' Py - 1

3 P 4.
26 (J + 1) J K
3

-

p 1% PY -

decomposition. A disadvantage of this approach is that a small amount of computation that

modifies the spectral coefficients between the forward and inverse LTs must be performed re-

dundantly on the replicated coefficients. But the complexity of this computation is of a lower

order and has a smaller constant than that involved in the LT operations. In our experiments,

the savings due to improved communication efficiency easily outweigh the cost of the redundant

computation. The redundant computation is ignored in subsequent analysis.

Ring Sum. We now describe the first of two LT algorithms based on this structure (dis-

tributed vector sum and broadcast). These algorithms differ only in the mechanisms used to

sum the vectors of partial sums T," and to replicate the results. In the ring sum algorithm,

data flows around a logical ring of processors. A summation involving Q processors proceeds

in Q - 1 steps, with each processor receiving D / Q data from its left neighbor and sending D / Q
data to its right neighbor at each step. Upon completion, the vector of D spectral coefficients

is evenly distributed over the Q processors. This process is reversed (without the summations)

to broadcast the result. Communication costs are

In the shallow water code, Q = P y and D M (4/9)(J + 1)(2J + 5)Ii/Px (because Ihe spectral

coefficients are complex (two-word) values), giving the expression in Table 3.

Butterfly Sum. The butterfly sum algorithm is a hybrid of two algorithms [3l]. For long

vectors, we use a recursive halving algorithm [16] that utilizes a butterfly communication pattern

like the distributed FFT. Each processor communicates (and sums) 0 / 2 data in the first stage,

half as much (0 / 4) in the second, and so on, so that each processor communicates a total
of D(Q - 1)/Q data in (log,&) steps. The global sum is then complete, and the vector of

D spectral coefficients is evenly distributed over the Q processors. This process is reversed

(without the summations) to broadcast the result. Total communication cost is a follows:

- 16 -

Algorithm

Butterfly sum

S (Q) transpose

0(log Q) transpose

Table 4: LT Performance Models Specialized for 2-D Mesh (where they differ)

Revised Data Volume

Py log2 4 7

- 4 (J + 1)(2J + 5)K
9 P

26 (J + 1) J K
9 P (Ft + 1)

PY

-

13 (J + 1)JK
3 P
-

When the vector becomes small, the hybrid algorithm switches to an exchange algorithm in
which each processor communicates all the remaining data at each subsequent step. This elim-

inates some of the broadcast communication. The vector length at which the hybrid algorithm

switches is a machine-dependent constant, and the communication cost of the butterfly sum is

well characterized by (21). This approximation is used for the expression in Table 3.

Computation/Communication Overlap. The computation of the local sums { T," (y)}

can be interleaved with stages of the distributed vector sum algorithms. Similarly, the broad-

cast can be delayed until the computation of the inverse LT, and the stages of the broadcast

interleaved with computation. This eliminates the redundant computation on the spectral grid,

because the broadcast is delayed, and does not change the number of messages or data volume.

When the interleaving is organized so that the communication of one stage of the algorithm is

overlapped with the computation of the next stage, the ring sum is able to perform 0(J4/Py)
computation while communicating 0 (P y J 3) data [35]. This overlapping can be highly effective

for small Py and/or large J , decreasing the cost of communication significantly.

Overlap is less effective for the butterfly sum. Interleaving only applies to the recursive halving

phase of the algorithm, and the communication of a vector of length D/2' is overlapped with

the computation of local sums for a vector of length D/2'+', i.e., half the size, rather than the

same size as in the ring sum. Due to time constraints, we have evaluated the overlap technique

only in the ring sum algorithm.

Bandwidth Limitations. A ring can be embedded in a hypercube or bidirectional mesh,

and ring sum does not suffer from bandwidth limitations on either interconnection topology.

The exchange and recursive halving components of the butterfly sum algorithm have the same

communication structure as the FFT and, thus, suffer from bandwidth limitations on a mesh.

- 1 7 -

But the recursive halving component suffers less than the distributed FFT. In the first step,

D / 2 data are exchanged with nearest neighbors without competition. In the second step, D/4
data are exchanged with processors 2 hops distant and 2 processors compete for each wire. In

the fourth step, 4 processors must send D/8 data over the same wire, and so on, with the result

that data volume must be scaled by (1/2) logz &. As before, we use the value for the recursive
halving algorithm in qualitative comparisons, giving the expression in Table 4.

Algorithm Limitations. In order to exploit symmetry (Le., to avoid computing spectral

coefficients for negative wavenumbers), corresponding latitudes from the northern and southern

hemispheres are paired. Hence, the 3 index set is partitioned over the P y column processors
into 2Py equal-sized blocks, and two blocks are assigned to each processor column. Thus,

Py 5 3 / 2 if whole processor rows are not to be idle during the LT. Similarly, Px 5 M + 1 x
(2/3)(5 + l), if whole processor columns are not to be idle.

Load Balance. Load imbalance arises if Py does not divide 3/2 evenly, with the processor

row with the maximum load computing 2 c [J / (2 P y) l flops per spectral coefficient instead of

c (J / P y) , for some constant c. The communication volume does not change because spectral

coefficients are being communicated, not Fourier coefficients.

The performance of the distributed LT algorithms is also affected by the FFT algorithm used.

As the Fourier transform is unordered, the distributed FFT algorithm assigns blocks of per-

muted Fourier coefficients to the PX processor columns. This assignment approximately bal-

ances the assignment of “short” Legendre transforms (large wavenumbers) and “long” Legendre

transforms (small wavenumbers) [32], but the load balance is not perfect and some processor

columns have more work than others. A simple (0ver)estimate of the maximum number of

spectral coefficients assigned to a processor column is

and 3(M -+ l)K for Px 2 M-j- 1, in contrast to (2/9)(J + l)(2J + 5) K / P x for a load balanced

assignment. If a transpose F F T is used, then the wavenumber dimension is not partitioned.

The maximum number of spectral coefficients assigned to a processor column is (3 / 2) (A 4 +
1)(M + 2) / ‘K /Px l , and there is load imbalance if PX does not divide K evenly.

Load imbalance in the assignment of spectral coefficients affects both the cotnmunication and

computation costs, scaling both proportionately, as indicated in Tables 5 and 6.

6.2. Transpose LT

The transpose algorithms of $5.2 can also be used to reorganize the Fourier grid so that the LT
can proceed without further communication. If the FFTs are computed using a distributed algo-
rithm, then the forward LT requires that the Fourier grid first be reorganized from (M x I &, I<)

to (M x , J, K y) . The transform then produces a (M x , N , Ky) decomposition of the spectral

- 1 8 -

Table 5: Relative Increase in Computation and Communication Costs in Fourier 'Transforms
As a Result of Load Imbalances

Dist. FFT/Dist. LT

Dist. FFT/Trans. LT

grid. For the inverse LT, no further reorganization is needed, but the Fourier grid must be

returned to the original (M x , &, K) decomposition before the inverse FFT algorithm can

begin. If the FFTs are computed using a transpose algorithm, then the Fourier grid must be

reorganized from (M , & , K x) to (M Y , 3, Kx) before the forward LT, and from (M Y , 3, K , Y)
to (MI J y , K x) after the inverse LT.

In both cases, the reorganizations require PX independent transposes, each involving Py proces-

sors. Note that these transpositions involve the truncated Fourier grid rather than the spectral

coefficients: that is, (M + 1) x 5 x K complex values. Hence, assuming perfect load balance,

D = 16(M + l) J K / P x for the transpose preceding the forward LT and D = 10(M + l) J K / P x

for the transposition following the inverse LT. Adapting (17) and (18) to this situation and

using 25 3 M + 1, we obtain the expressions in Table 3 for LT-related communication costs

when using transpose algorithms.

The transpose LT algorithms, like the transpose FFT algorithms, become less efficient when

modified to overlap computation with communication. Bandwidth limitations on a mesh affect

the transpose LT algorithms in the same ways as the transpose FFT algorithms, as indicated

in Table 4.

Algorithm Limitations. The distributed FFT/transpose LT algorithm decomposes the

vertical dimension before computing the LT and, hence, requires Py 5 I(to avoid idle processor

rows. For processor columns not to be idle requires Px 5 M + 1 x (2 / 3) (5 + 1).

Conversely, the transpose FFT/transpose LT algorithm decomposes the wavenumber dimension

before computing the LT and requires Py 5 M + 1 to avoid idle processor rows. For processor
columns not to be idle requires PX 5 K .

- 19 -

Algorithm

Table 6: Relative Increase in Computation and Communication Costs in Legendre Transforms
As a Result of Load Imbalances (worst-case approximations)

Computation Cost

rJ/(2pY)l rj</px1
J / (2 f i) I-(/&

Trans. FFT/Dist. LT

Dist. FFT/Trans. LT:

rIc/f i1 6Px
~ I _ _

K / P y 2 J + 5
Px 1 $(J + 1)

Trans. FFT/Trans. LT:

Data Volume

(l + g $) 2

Load Balance. Load imbalances occur in the distributed FFT/transpose LT algorithm if
P y does not divide K evenly, and in the transpose FFT/transpose LT if Px does not divide Is’
evenly.

The distributed FFT/transpose LT is also subject to load imbalance as a result of the distribu-
tion of spectral coefficients generated by the distributed FFT, as described for the distributed

FFT/distributed LT algorithm. Because the transpose FFT/transpose LT algorithm also par-

titions the wavenumber dimension, it also suffers from load imbalance. Since all equipartitions

incur the same communication costs in the transpose algorithms, we minimize load imbalance

by using the partitioning strategy described by Barros and Kauranne [3]. This pairs “short”

transforms with “long” transforms in the assignment, and there is no load imbalance when Py
divides (M + 1)/2 evenly. Let

M f l M + l
cy=-- -

2- L 2PY i *

With the Barros-Kauranne strategy, the maximum number of spectral coefficients for a given
vertical level assigned to a processor column is

- ‘ M +
+ 2 , +- GPycu(1- C Y) - CY for Py 5 (M + 1)

2 PY

- 20 -

and 3 (M + 1) for f i 2 M + 1. Load imbalances in the assignment of spectral coefficients affect

both the communication and computation costs, scaling both proportionately. See Tables 5
and 6.

7. Qualitative Analysis

The three FFT algorithms described in 55 perform exactly the same computations. The four LT
algorithms described in $6 perform essentially the same computations, modulo different partial

orders and some redundant computations on the spectral grid. The FFT and LT algorithms are

distinguished primarily by their coinmunication performance and their load balance. In this

section, we use the communication cost and load balance models (Tables 1-6) to make simple

qualitative comparisons.

7.1. Parallel FFT Algorithm Comparisons

Data Transfer Costs. @ (Q) transpose communicates the least data: @ (J 2 1 < / P) per pro-

cessor versus @((log, P x) J * K / P) for @(log&) transpose and distributed FFT. Hence, O(Q)
transpose should perform better on large problems, particularly if data transfer costs (t w) are

high relative to message startup costs (t S) .

Message Startup Costs. Distributed FFT and @(log Q) transpose send fewer messages

than O(Q) transpose: @(log&) rather than O(Q) . Hence, they should perform better when

message startup costs are large relative to data transfer costs, and on problems that are small

relative to the number of processors: that is, when J 2 K / P is small.

Computation /Cornmimicat ion Overlap. Distributed FFT communicates the rnos t data

but is the most efficient at overlapping communication with computation and, hence, should

perform better on compnt.ers that support computation/cornmunication overlap.

Bandwidth Limitations. Distributed FFT and @(log Q) transpose suffer less than O(Q)
transpose from bandwidth limitations on mesh networks; when these are taken into account,

their effective data volumes differ only by constant factors from that of the O(Q) transpose.

7.2. Parallel LT Algorithm Comparisons

Data Transfer Costs.
per processor versus @((log, Py)J21i’ /P) for @(log&) transpose and O (P y J 2 K / P) for ring and

butterfly sum. Hence, @(Q) transpose should perform better on large problems, particularly if

data transfer costs are high relative to message startup costs.

For large P y , O(Q) transpose communicates the least data: O(J21</P)

- 21 -

On smaller numbers of processors, the coefficient as well as the complexity of the data transfer

term needs to be considered. As the O(Q) transpose operates on the truncated Fourier grid,

each processor communicates at least (52/3)J21<(Py - l) / (P &) words. The summation algo-

rithms operate on the spectral coefficients. Thus, ring and butterfly sum need move only about

(16/9)(J2K)(q/ - 1)/P words, and, for PY < 10, these algorithms communicate less data than
the transpose.

Message Startup Costs. As butterfly sum and Q(1ogQ) transpose send the fewest messages

(2log2& versus 2Py for the others), they should be superior on machines where message

startup costs are large and on problems that are small relative to the number of processors.

Again, the data volume term for O(1ogQ) transpose is asymptotically smaller than for the

butterfly sum, but is larger for PY < 24.

Computation/Communication Overlap and Bandwidth Limitations. Ring sum can

overlap computation and communication when Py is small or J is large. It does not suffer

from bandwidth limitations on mesh computers and has the smallest data volume on mesh

computers.

7.3. Parallel Spectral Transform Algorithm Comparisons

A parallel spectral transform algorithm must specify not only a parallel FFT and LT algorithm

but also a processor grid aspect ratio (Px and P y) for a given number of processors. Px and

Py are the processors used in the FFT and LT, respectively.

Aspect Ratio. Algorithmic comparisons are complicated by the fact that different com-

binations of FFT and LT algorithms perform best with different aspect ratios. For example,

consider the algorithm combination O(Q) transpose FFT and Q(Q) transpose LT. Here, a

square grid is most efficient, as comparable amounts of data are moved in each phase in the

same way, and overlap is not exploited, so the difference in computational cost between the

two phases is not an issue. In contrast, for distributed FFT/ring sum LT it is most efficient to

(a) apply all processors to the LT for small P ; (b) use remaining processors for the FFT until

communication costs in each phase are comparable; and (c) use an aspect ratio that favors the

FFT increasingly for large P. The reason is that for small P the ring sum moves less data than

does the distributed FFT and permits more computation/communication overlap. For large Y,
the ring sum sends more messages and more data, and the amount of computation available

to overlap communication is small. This analysis changes on meshes, where the ring sum is

favored if message startups do not dominate communication cost.

These considerations suggest that it is not sufficient to perform separate studies of FFT and LT
algorithms, with the goal of selecting an optimal FFT and an optimal LT algorithm for inclusion
in a parallel spectral transform. Instead, we must consider all possible pairs of algorithms at
all possible aspect ratios.

- 22 -

Load Balance. Load balance issues arise when evaluating different FFT/T,T algorithm com-

binations. Load balance is sensitive to problem size and number of processors, so general co111-

parisons are difficult to make. While load balance problems can often be avoided by intelligent

choices of the number of processors and aspect ratio of the logical grid, these choices implicitly

represent algorithm limitations for the given algorithm combination.

There are two situations in which load imbalance is difficult t o avoid:

1. The number of vertical levels is relatively small in climate models. Hence, transpose

algorithms tend to need to apply relatively more processors in the other dimensions

to avoid idle processors. For example, a transpose FFT implies a need for more UI’

processors. Because communication costs increase with P , LT performance will be worse
than if an equal number of processors were applied to both FFT and LT.

2. The partitioning of the spectral coefficients usually introduces some load imbalance. The

distributed FFT suffers the most from this phenomenon, but transpose FFT/transpose

LT is subject to it also.

The effects of load imbalances are summarized in Tables 5 and 6; from these expressions, we see

that transpose FFT/distributed LT i s slightly less sensitive to load imbalance problems than

other algorithms.

7.4. Summary

The qualitative comparisons suggest that no single algorithm is likely to be optimal in all

situations. The choice of algorithm depends on a variety of factors such as problem size, type

of network, number of processors, and communication parameters.

8. Empirical Studies

As indicated in preceding sections, the analytic models introduced in Tables 1-4 can provide
insights into performance issues. The models can also be used to evaluate scalability and to

make rough performance estimates [14,15,22]. For definitive algorithm comparisons, however,
empirical studies are required to calibrate and validate the models. We expect constant factors

to matter for a large range of multiprocessor sizes, and the relative efficiency of the imple-

mentations of the different algorithms can also play a crucial role. For example, the @(log Q)
transpose requires more dat.a copying than the other algorithms, increasing its “effective” 1,”
value,

In this section we describe our experimental vehicle, methodology, and results. We demonstrate

that the best algorithms do vary with architecture, number of processors, and problem size.

We compare the optimal algorithms with a robust and asymptotically optimal algorithm, to

indicate the importance of optimizing on the different platforms. We also use the results of

- 23 -

the algorithmic comparison to identify the performance-critical aspects of each platform and

to make simple scaling predictions.

8.1. PSTSWM: A Testbed Code

To permit a fair comparison of the suitability of the various algorithms for atrnosplieric models,

we have incorporated the algorithms in a single testbed code called PSTSWM (for parallel

spectral transform shallow water model).

PSTSWM is a message-passing parallel implementation of the sequential Fortran code STSWM
2.0 [ZO]. STSWM uses the spectral transform method to solve the nonlinear shallow water

equations on a rotating sphere; its data structures and implementation are based directly on
equivalent structures and algorithms in CCMZ.

PSTSWM differs from STSWM in one major respect: vertical levels have been added to permit

a fair evaluation of the transpose algorithms. This is necessary because in a one-layer model,

a transpose algorithm reduces to a onedimensional decomposition of each grid and hence can

utilize only a small number of processors. The addition of vertical levels also has the advantage

of modeling more accurately the granularity of the dynamics computation in atmospheric model.

In all other respects we have changed the algorithmic aspects of STSWM as little as possible.

In particular, we did not change loop and array index ordering. Although such changes would

probably improve performance of some algorithms, our goal was to have a code as sirnilar to a

real atmospheric model as possible.

PSTSWM is structured so that a variety of different algorithms can be selected by runtime

parameters. The FFT can be calculated using the distributed, O(Q) transpose, or @(log&)

transpose algorithms. The LT can be calculated using either the ring sum, butterfly s u m ,

O(Q) transpose, or @(log&) transpose algorithms. In addition, the distributed FFT can use

either the tw*block algorithm that permits computation/communication overlap or the one-

block algorithm, and the ring sum LT can use either the overlap or nonoverlap algorithms.

Additional parameters select a range of variants of each of these major algorithms [36]. Note

that all parallel algorithms were carefully implemented, eliminating unnecessary buffer copying

and exploiting our knowledge of the context in which they are called. At the present time,

this allows us to achieve better performance than can be achieved by calling available vendor-

supplied routines. Hence, it provides a fairer test of the parallel algorithms.

8.2. Target Computers

We performed experiments on the five parallel computer systems listed in Table 7. These

systems have similar architectures and programming models, but vary considerably in their

communication and computational capabilities. Our values for t , and t , differ from those

reported by most researchers [10,11] because we measure the time required to swap floating-

point values between two processors rather than the time to send bytes from a source to a

destination. Also, the computational rate is measured by running PSTSWM on a single node

- 24 -

Name os Processor
nCUBE/2 VERTEX R3.2 nCUBE 2
iPSC/860 NX 3.3.2 i860
DELTA KX/M R1.5 i860
Paragon O S F / l R1.1.2 i86OSP
Paragon SUNMOS i86OSP

Table 7: Parallel Computers Used in Empirical Studies

Network P
hypercube 1024
hypercube 128

I6 x 32 mesh 512
16 x 32-mesh 512
16 x 32 mesh 512

Name t , (psec) t , (psec)

iPSC/860 200 1.4
DELTA 240 0.84
Paragon (OW) 350 0.18
Paragon (SUNMOS) 230 0.04

nCUBE/2 240 2.3
Single-processor MFlops/sec

1.2
9.8
9.8
11.6
11.6

and so is an achieved rather than a peak rate.

The Paragon experiments used the OSF-based R1.1.2 operating system and the low-overhead

SUNMOS operating system from Sandia National Laboratories and the University of New

Mexico. As both systems are still evolving, any conclusions as to their performance will be short-

lived. They are interesting for this study, however, because they have significantly different

performance characteristics.

8.3. Methodology

PSTSWM incorporates too many algorithmic variants to permit a comprehensive study of all

possible combinations of parameters, problem size, computer, and processor count. Hence, we

proceeded in two stages: algorithm selection arid algorithm comparison.

Algorithm Selection. We first performed a series of tuning experiments to identify “op-

timal” communication parameters for each FFT and LT algorithm variant on each computer.

For example, these parameters specify whether to use blocking or nonblocking sends and re-

ceives, or what schedule to use when the order of communication requests is not fixed by the

algorithm. These experiments were performed using one-dimensional decompositions (Px = 1

or fi = l) , allowing FFT and LT algorithms to be studied in isolation. Problem dimensions

were reduced to provide the correct computation and communication granularities. For exam-
ple, when evaluating the ring sum algorithm for a 16 x 8 processor grid at T85L32 resolution,

a 1 x 8 processor grid was used with the number of vertical levels reduced by a factor of 16

(from 32 to 2).

We initially evaluated communication parameters only on “largest” and “mid-sized” computer

configurations: for example, P = 512 and P = 128 on the Paragon. If one set of communication

- 25 -

parameters proved consistently superior, no further experiments were performed. We expected

the performance impact of communication parameters to be insensitive to problem granularity

and number of processors, and we found this to be true in most cases When a difference

was significant, we selected the parameters that worked best for the larger configurations.

In all cases, subsequent experiments for a given platform and algorithm used a fixed set of

communication parameters. These experiments were also used to eliminate noncompetitive

FFT and LT algorithmic &ants.

Algorithm Comparisons. A second set of experiments compared all possible combinations

of the remaining FFT and LT algorithms on all possible aspect ratios for each power of two

number of processors supported by each computer. For example, on the Intel DELTA and

Paragon, we used 1 , 2 , 4 , 8, 16,32, 64, 128,256, and 512 processors; for 32 processors, we tried

the aspect ratios 1 x 32, 2 x 16, 4 x 8, 8 x 4, 16 x 2, and 32 x 1.

To measure the importance of the algorithm tuning and comparison, we repeated these exper-

iments using a reference algorithm comprising the O(Q) transpose FFT and LT algorithnis.
The reference algorithm uses a particularly simple and portable communication protocol and is

asymptotically optimal in the sense that it has the smallest data volume (tu,) ; as the problem

size grows, this term comes to dominate communication costs in all of the parallel algorithms.

All experiments used the performance benchmark described in [34]: global steady state non-

linear zonal geostrophic flow. Experiments were performed for problem sizes T21L8, T42L16,
and T85L32.

8.4. Results: Algorithm Selection

In presenting the results of the algorithm selection experiments, we do not discuss the co~ii-

munication parameters studied (see [36] for details) but focus on the algorithms. Table 8

summarizes both the algorithms considered and those selected for further consideration on dif-

ferent machines. For the most part, the table is self-explanatory. We always selected at least

one distributed algorithm and one transpose algorithm for both the LT and FFT. In some cases,

two distributed or transpose algorithms were selected, indicating that both were competitive

for at least some of the problem sizes and processor counts being investigated. The number

of distinct parallel spectral transform algorithms selected for each platform is also indicated

in Table 8. For example, on the iPSC/860, seven algorithms were selected: 2 parallel FFT
algorithms x 3 parallel LT algorithms plus the reference algorithm.

8.5. Results: Algorithm Comparisons

Tables 9 and 10 list the best algorithm for each computer, problem size, and procmsor count.

Table 9 lists the best “FFT algorithm/LT algorithm” pair, where the FFT and LT algorithms

are denoted by the keys listed in the first column of Table 8. If the best algorithm uses a one-

dimensional decomposition (i.e., either the FFT or the LT is not parallelized), then no algorithm

- 26 -

Type
nCUBE/2
nCUBE/2
nCURE/2
iPSC/860
iPSC/860
iPSC/SSO
DELTA
DELTA
DELTA
PG-OSF
PG-OSF

Table 8: Parallel Algorithms Considered in Algorithm Selection Studies, and Algorithms
Selected for Algorithm Comparison Studies on nCUBE/2 (N), iPSC/860 (I), DELTA (D),
Paragon-OSF (P), and Paragon-SUNMOS (S). A dash indicates a noncompetitive algorithm
that was not considered for further study. The reference algorithm is included in the nuinber
of algorithm comb in at ions.

T L 2

21 8 -/R
42 16 -

85 32 ----
21 8 -/R
42 16 -
85 32 -

21 8 -/B
42 16 -/R
85 32 -

21 8 -/B
42 16 -

Key I Phase 1 Algorithm 1 Variant

no overlap
overlap

@(Q) transpose
@(log Q) transpose

no overlap
overlap

Butterfly sum
O(Q) transpose
@(log&) Transpose

Number of algorithm combinations

SUNMOS
SUNMOS

I (D I P 1 S

Y Y Y Y

7] 7] 1 3 1 1 3

42 16 -/B
85 32 -

Table 9: Best Parallel Algorithms as a Function of Machine/OS, Problem Size, and Processors

I Machine I Problem 1

PG-OSF I 8 5 I 32 I -
SUNMOS I 2 1 I 8 I -/B

Process
8 1 16 I 32

- 27 -

Problem

T I L

Table 10: Best Logical Aspect Ratios as a Function of Machine/OS, Problem Size, and Proces-
sors

Processors
2 1 4 1 8 1 16 1 32 I 64 I 128 I 256 I 512

7

21
42
85
iPSC/860

8 1 x 2 1 x 4 1 x 8 1 x 1 6 8 x 4 8 x 8 8 x 1 6 1 6 x 1 6 -

16 - - 1 x 8 1 x 1 6 8 x 4 8 x 8 1 6 x 8 1 6 x 1 6 1 6 x 3 2
32 - - I - - 4 x 1 6 1 6 x 8 3 2 x 8 3 2 x 1 6

21
42
85

8 1 x 2 1 x 4 1 x 8 4 x 4 8 x 4 8 x 8 8 x 1 6 - -
16 - 1 x 4 1 x 8 1 x 1 6 8 x 4 1 6 x 4 1 6 x 8 - -
32 - - - I 4 x 8 1 6 x 4 1 6 x 8 - -

21
42
85

8 1 x 2 1 x 4 1 x 8 8 x 2 8 x 4 4 x 1 6 8 x 1 6 1 6 x 1 6 -

16 1 x 2 1 x 4 1 x 8 1 x 1 6 8 x 4 1 6 x 4 1 6 x 8 1 6 x 1 6 1 6 x 3 2
32 - - - 1 x 1 6 1 x 3 2 3 2 x 2 3 2 x 4 3 2 x 8 8 x 6 4

Paragon-OSF
21 8
42 16
85 32

1 x 2 1 x 4 1 x 8 8 x 2 8 x 4 8 x 8 8 x 1 6 8 x 3 2 -
- 1 x 4 1 x 8 1 x 1 6 1 6 x 2 1 6 x 4 8 x 1 6 1 6 x 1 6 1 6 x 3 2
- I - - 4 x 8 1 6 x 4 1 6 x 8 1 6 x 1 6 3 2 x 1 6

Paragon-SUNMOS
21 8 1 x 2 1 x 4 1 x 8 2 x 8 4 x 8 8 x 8
42 16 1 x 2 1 x 4 1 x 8 1 x 1 6 8 x 4 1 6 x 4
85 32 - - - - 1 x 3 2 2 x 3 2

8 x 1 6 8 x 3 2 -
1 6 x 8 1 6 x 1 6 1 6 x 3 2
1 6 x 8 3 2 x 8 1 6 x 3 2

- 28 -

is listed for the unparallelized transform. Table 10 lists the aspect ratio associated with the best

algorithm (i.e., the number of processors allocated to the FFT and LT, respectively). We see

considerable variety, with 12 of the 30 algorithm combinations being optimal in some situations,

as well as a variety of different aspect ratios. The variation in the aspect ratios stems both

from the use of different algorithms in different situations and from limitations on transpose

algorithms because of the number of vertical levels.

The tables do not indicate how much difference there is between different algorithms. Figures 2

and 3 provide some of this information. They shows on each machine at T42 and T85 resolution

the performance of the reference algorithm and three other “interesting” algorithms: normally

those algorithms that proved to be optimal for some processor count on that machine and

problem size. (In a few cases, an algorithm that is optimal for just one processor count is
omitted, if another algorithm has similar performance.) Performance is given relative to the

performance of the best algorithm at each processor count.

Specific comments on the empirical results follow:

1. The reference algorithm is never optimal, and in some cases is ninety per cent worse than

the best algorithm.

2. Some form of transpose forms part of the optimal algorithm combination in almost all

cases on 16 or more processors. On maximal processor configurations, the algorithm T/T
(O(Q) transpose for both FFT and L?’) is either optimal or nearly optimal in almost all

cases. Notice that this algorithm is identical with the reference algorithm except that its

communication parameters have been tuned for the particular machine.

3. The algorithm combination that is optimal in the largest number of configurations is

T/R: O(Q) transpose FFT and (overlapped) ring summation LT. This seems a good

candidate for a standard algorithm, although its performance degrades for large P , par-

ticularly on the Paragon. This situation may change when the message coprocessor on

the Paragon is enabled, decreasing message startup costs and better supporting compu-

tation/communication overlap.

4. Because the FFT involves more data than the LT, optimal algorithms on small numbers

of processors (16 or less) mostly decompose data structures in a single dimension so as
to avoid communication in the FFT, and use either the ring summation or butterfly

summation algorithm for the LT. When the FFT is parallelized, transpose algorithms are

almost always superior to distributed FFTs. Algorithm combinations such as O/R and

D/T are optimal in a few configurations, but are not consistent in their performance.

Finally, Fig. 4 give the execution time for the best algorithm on each computer as a function

of P , for problem sizes T42 and T85. We see considerable variation in execution times, with

the nCUBE slower than the other machines by an order of magnitude, and the Paragon un-

der SUNMOS fastest in almost all situations. The 512-processor SUNMOS time for T85L32

represents a computational rate of 4.3 GFlops/second.

- 29 -

2

1.8

1.6

1.4

T42/L16 on nCUBEn
2 1 I I I I I , I I I I

I , , , , ,

on -
T/R -+---

Ref -Y--

- T/S -+;)... -

-

-

1.8 -

1.6 -

1.4 -

1.2 -

2 4 8 16 32 64 128 256 5121024

2 4 8 16 32 64 128

2 4 8 16 32 64 128 256 512

T85/L32 on nCUREn

1.6

1.4

1.2

1

2

1.8

1.6

1.4

1.2

1

2

1.8

1.6

1.4

1.2

1

16 32 64 128 256 512 1024

T85L32 on iPSC/860

16 32 64 128

16 32 64 128 256 512

Figure 2: Performance of various parallel algorithms on nCUBE/2, iPSC/SSO, and Intel Delta,
relative to the best algorithm at that processor count.

- 30 -

1.4

1.2

1

2 4 8 16 32 64 128 256 512

T4uL16 on Paraeon/SUNMOS

1.8

1.6

1.4

1.2

1

T/B -+-

T/R -+-- .-...
Ref -I+--

/

....

0

2 4 8 16 32 64 128 256 512

2

1.8

1.6

1.4

1.2

1

1.8

1.6

1.4

......
+ 0

I L I

16 32 64 128 256 512

TS51L32 on ParanodSUNMOS

DIT
T/R
UT
Ref

16 32 64 128 256 512

Figure 3: Performance of various parallel algorithms on Intel Paragon, relative to the best
algorithm at that processor count.

100

1 ° ~ 1

0.1
1 2 4 8 16 32 64 128 256 5121024

RoceSsorS

loo0

100

10 I
1 1 1 I I

I I

8 16 32 64 128 256 512 1024
PIOCeSSOrS

Figure 4: Execution time for 12 time steps of best algorithms for different P , at T42 and T85
resolutions.

- 31 -

8.6. Discussion

These results demonstrate the limitations of asymptotic analysis: the asymptotically optimal

transpose algorithms are not the most efficient in many situations, particularly for snlitller

P . The results also demonstrate the importance of tuning algorithms to the communication

characteristics of a particular machine. In some cases, tuning makes a greater difference than

the choice of algorithm.

A parallel spectral transform code designed for portability should probably incorporate several

parallel algorithms. The testbed code PSTSWM indicates that this is feasible. The most useful

algorithms seem to be the two transpose algorithms for both F F T and LT, and the overlapped

ring sum LT algorithm. A distributed FFT algorithm would also be needed if the number of

vertical levels is small. A program designed to execute on a small number of processors (1 B

or less) can decompose data structures in one dimension only, and use butterfly summation or

overlapped ring sum LT algorithms.

9. Caveats and Generalizations

We have attempted to make our empirical studies relevant and comprehensive. But the gen-

erality of the study required some simplifying assumptions, and certain algorithms were not

examined. In this section, we briefly discuss some of these issues. Algorithm comparisons may

need to be repeated if problems of interest differ drastically from our simplifying assumptions.

Benchmark codes like PSTSWM make this feasible.

Problem size. For these experiments, problems sizes and processor counts were all powers

of two. All of the algorithms work best in under these conditions. Some, like the O(1ogQ)
transpose and distributed FFT algorithms, do not work at all on a nonpower-of-two nurtiber

of processors. Other algorithms suffer performance degradation. Nonpower-of-two problem

dimensions also cause load imbalances, and the amount of performance degradation is strongly
algorithm dependent.

Real weather and climate models often use a number of vertical levels significantly smaller

than the other dimensions of the problem. For example, T213L31 i s used in some operational

weather-forecast models [22]), corresponding to a 640 x 320 x 31 physical grid. The transpose

FFT algorithms suffer because they must use a larger number of processors for the LT than an

algorithm that uses a distributed FFT.

Decomposing “field” dimension. As mentioned in 55.2, one technique for applying the

transpose algorithms when there are few vertical levels is to partition the state variables among

the processors also. (This issue did not arise in our experiments, because our example problems
had sufficient vertical levels relative to other problem dimensions.) This technique can be used

in two ways in a transpose FFT/distributed LT algorithm:

- 32 -

la. Starting with the usual (Zx, J y , K) distribution of the physical grid, we transpose within

processor rows over both I< levels and 8 fields. We compute the FFTs, then transpose

back (again within rows) to a (Mx, J y , K) decomposition of the Fourier grid. We then

proceed with the LT. A similar approach is used for the inverse transform, although only

5 rather than 8 fields are available. This approach performs twice as many transposes

as the transpose FFT/distributed LT algorithm, but can use 5 times more processors

without load imbalance. It has been used successfully in the message-passing version of

CCM2 [7].

lb . We can avoid the double transpose at the cost of redundant work and some other addi-

tional communication by duplicating one field and decomposing over Ii levels and 3 sets

of 3 fields. After the FFT, we then have separate distributed LT calculations for 6 , 4,
and C for the forward transform. For the inverse transform, we have 5 1 - LT calculations

to distribute over (fields 6, 4, <, U , V) , and the U and V calculations require the updated

6 and 4 fields. The simplest approach, assigning U and V to the 6 and 4 “columns,”

requires duplication of 6 and 4 between processor columns and significant load imbalance

and redundant work. A better load-balancing strategy would require something equiva-
lent to an additional transpose and would still not eliminate all redundant work. Note

that load imbalance in the inverse LT due to assignment of fields also implies load im-

balaiice in the inverse FFT. We gain (at best) the ability to use 3 times more processors
with this approach.

There is a single approach to distributing fields during the transpose FFT in a transpose

FFT/transpose LT algorithm:

2. Again duplicate one field and decompose over 3Ii‘ sets of fields, transposing across pro-

cessor rows. After the FFT, transpose within processor columns, with each processor

column computing forward LTs for either 6, 4, or <. For the inverse transform, we again

need to assign the U and V calculations, duplicating the updated 6 and 4 fields. Similar

communication and computation costs arise.

The double transpose FFT cannot be applied here because the transpose LT requires that the

field and vertical dimensions remain decomposed if all processors are to be utilized.

We feel that the most promising of these approaches is (la) . It is simple, is relatively in-
dependent of problem size and number of processors, and incurs no additional computation

cost.

Serial FFT algorithm. FFT routines that can handle vector lengths with factors of 2, 3,
4, and 5 allow a larger set of problem sizes to be treated. In addition, exploiting a factor of

4 is approximately 30 per cent faster than two factors of 2. These routines can be exploited

directly in transpose FFTs. The distributed FFT can also be generalized, but some efficiency

is lost.

- 33 -

Generalized B(log &) algorithms. A range of hybrid algorithms combining aspects of the

O(1ogQ) and 0(Q) transpose algorithms can be defined that trade off message counts and

communication volume in different ways. For example, the Q(log Q) algorithm can be niodifkd

to use log,& stages by communicating with 3 other processors at each stage, assuming that

the problem size and number of processors support this. Another approach is to use a switch,

taking a few steps of the O(1ogQ) algorithm, then switching to the O(Q) algorithm, analogously

to the butterfly sum algorithm.

The distributed F F T can also be modified to use log, Q stages and can then exploit factors of

4 to reduce computation costs. And it is possible to apply a transpose-like algorithm within

the FFT itself 191.

These hybrid algorithms can improve performance somewhat in regimes where message startup

costs and data volume costs are comparable. However, they place additional requirements on

problem size and processor counts.

Mesh-based algorithms. We have restricted ourselves to algorithms designed for one-

dimensional processor meshes. In cases where nonsquare logical meshes were mapped to ap-

proximately square physical grids, it would be possible in principle to utilize specialized algo-

rithms that exploit the extra connectivity [2,30]. Because our experiments show that “optimal”

processor grids are mostly close to square, we believe that these algorithms would not change

our results. This issue will be addressed in further research.

Future work. In order to perform empirical investigation of some of the issues discussed in

this section, we plan to incorporate into PSTSWM both distributed and transpose versions of

the 2-3-4-5 parallel FFT, the double transpose FFT, and the hybrid e(&)-@(log Q)) transpose

algorithms. These add additional capabilites for problem and machines sizes that we have not

yet examined, but should not change our preliminary conclusions. Given the success of the

overlap ring sum algorithm, we will also implement the overlap butterfly sum algorithm. This

may increase the range of optimality of the transpose FFT/distributed LT algorithms on some

machines.

10. Conclusions

We have conducted a detailed analysis and empirical investigation of parallel algorithms for the

spectral transform method. This study lias allowed us to identify optimal algorithms for various

problem size and machine parameter regimes. This information should be directly useful to

developers of parallel spectral-transform-based climate and weather models.

Most of the observed performance trends can be explained using our analytic performance mod-

els; this gives us confidence both that these models are correct and that the parallel algorithm

implementations incorporated in our testbed code are efficient. I t also provides a basis for

- 31 -

extrapolating the results obtained here to other regimes. However, the modpls as described

here are not sufficiently detailed to provide detailed performance predictions. In future work,

we will investigate to what extent the empirical studies can be used to generate performance

models that can be used for prediction.

This exhaustive study of alternative algorithms, communication techniques, and aspect ra-

tios suggests some conclusions regarding parallel libraries. It is common practice in parallel

computing to select parallel algorithms on the basis of asymptotic analysis, and then to incor-

porate these algorithms in portable libraries that are used unchanged on different computers.

The results of this study emphasize three limitations of this approach. First, asymptotically
suboptimal algorithms may be superior in many interesting regimes. Second, reference irriple

mentations of parallel algorithms designed for portability can be considerably less efficient than

implementations tuned for a particular machine. Third, interactions between algorithms can
impact performance; hence, for peak performance it can be important to optimize algorithm

combinations rather than individual algorithms.

Our work suggests three techniques that can be used to overcome these limitations. First, de-

tailed analytic models that take into account constant factors and issues such as load imbalance

can be used to develop improved understandings of algorithmic tradeoffs. Second, libraries can

be defined to incorporate multiple algorithmic options selectable at runtime. This allows codes

to be tuned for different problem or machine characteristics, either by the programmer or au-

tomatically on the basis of runtime performance data. Third, testbed codes such as YSTSU'M
can be used to explore algorithmic alternatives,

Acknowledgments

We are grateful t o members of the CEIAMMP Interagency Organization for Numerical Simu-

lation, a collaboration involving Argonne National Laboratory, the National Center for Atmo-

spheric Research, and Oak Ridge National Laboratory, for sharing codes and results; to Brian

Toonen for his tremendous help with the computational experiments; and to the SUNMOS
development team for help in getting PSTSWM running under SUNMOS on the Intel Paragon.

This research was performed using Intel iPSC/SSO and Paragon multiprocessor systems at

Oak Ridge National Laboratory, the nCUBE/2 and Intel Paragon systems at Sandia National

Laboratories, the nCUBE/2 system at Ames National Laboratory, and the Intel Touchstone

DELTA System operated by Caltech on behalf of the Concurrent Supercomputing Consortium.

11. References

[l] D. H. BAILEY, FFTs in external or hierurchical memory, J . Supercomputing, 4 (1990),
pp. 23-45.

- 35 -

[2] M. BARNETT, R. VAN DE GEIJN, s. GUPTA, D. G. PAYNE, L. SHULER, A N D J . m’ATTS,

Interprocessor collectrve communication library (Intercom), in Proc. Scalable High Per-
formance Computing Conf., IEEE Computer Society Press, Los Alamitos, CA. 1904, (in

press).

[3] s. BARROS AND K. T, On the parallelatation of global spectral Euleraan shallour-water

models, in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth
ECMWF Workshop on Use of Parallel Processors in Meteorology, G.-R Hoffman and

T. Kauranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 36-43.

[4] W . BOURKE, A n eficient, one-level, primotzve-equation spectral mode!, Mon. Wea. Rev.,

102 (1972), pp. 687-701.

[5] G. L. BROWNING, J . J. HACK, AND P. N. SWARZTRAUBER, A comparison of three

numerical methods for solvrng differential equations on the sphere, Mon. Wea. Rev., 117

(1989), pp. 1058-1075.

[6] D . DENT, The ECMWF model on the Gray Y-MPB, in The Dawn of Massively Parallel

Processing in Meteorology, G.-R. Hoffman and D. K . Maretis, eds., Springer-Verlag, Berlin,

1990.

[7] J . B. DRAKE, R. E. FLANERY, I . T. FOSTER, J . J . HACK, J . G . MICHALAKES, R. I,.
STEVENS, D. W. WALKER, D . L . WILLIAMSON, AND P. H . WORLEY, The message-

passing version of the parallel community climate model, in Parallel Supercomputing in

Atmospheric Science: Proceedings of the Fifth ECMWF Workshop on Use of Parallel Pro-
cessors in Meteorology, G.-R. Hoffman and T. Kauranne, eds., World Scientific Publishing

Co. Pte. Ltd., Singapore, 1993, pp. 500-513.

[SI J . B. DRAKE, I . T. FOSTER, J . J . HACK, J. G. MICHALAKES, B. D. SEMERARO,
3. TOONEN, D. L. WILLIAMSON, AND P. W. WORLEY, PCCM2: A GCM adapted j o r

scalable parallel computer, in Fifth Symposium on Global Change Studies, American Rile-

teorological Society, Boston, 1994, pp. 91-98.

[9] A. DUBEY, M. ZUBAIR, AND c. E . GROSCH, A general purpose subroutine fo. fast Fourier

transform on a distributed memory parallel machrne, Parallel Computing, (to appear).

[lo] -, Performance o f i h e Intel iPSC/SSO and the Ncvbe 6400 hypercubes, Parallel Corn-
puting, 17 (1991), pp. 1285-1302.

[ll] T. I I . DUNIGAN, Communication performance o f the Intel Touchstone DELTA Mesh, Tech.

Report ORNL/TM-11983, Oak Ridge National Laboratory, Oak Ridge, T N , December

1991.

[la] A. EDELMAN, Opiimal matrix transposition and bit reversal on hypercubes: all-to-all per-

sonalized communication, J . Par. Dist. Comp., 11 (1991), pp. 328-331.

1131 J . 0. EKLUNDH, A fast computer method f o r matrix transposing, IEEE Trans. Comput.,

C-21 (1972), pp. 801-803.

- 36 -

[14] I. FOSTER, W. GROPP, AND R. STEVENS, The parallel scalability of the spectral transform

method, Mon. Wea. Rev., 120 (1992), pp. 835-850.

[15] I . T. FOSTER AND P . H . WORLEY, Parallehing the spectral transform method: ;4 C O i J J -

parison of alternative parallel algorithms, in Parallel Processing for Scientific Computing.

R. F. Sincovec, D. E. Keyes, h l . It. Leuze, L. R. Petzold, and D. A. Reed, eds., Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1993, pp. 100-107.

[16] G. C . Fox, M. A. JOHNSON, G. A. LYZENGA, S. W. OTTO, J . I<. SALMON, AXD D. W'.
WALKER, Solving Problems on Concurrent Processors, vol. 1, Prentice-Hall, Englewood

Cliffs, NJ, 1988.

[17] U. CARTEL, W. JOPPICH, AND A . SCHULLER, Parallelizing the ECMWF's weather fore-

cast program: The 2D case, Parallel Computing, 19 (1993), pp. 1413-1426.

[lS] A. GUPTA AND V . KUMAR, The scalability of F F T on parallel computers, IEEE Trans.

Par. Dist. Sys., 4 (1993), pp. 922-932,

[19] J . J . HACK, B. A. BOVILLE, B. P. BRIECLEB, J . T. KIEHL, P. J . RASCII, AND D. L.
WILLIAMSON, Description of the NCAR Community Climate Model (CCMZ), NCAR Tech.

Note NCAR/TN-382+STR, National Center for Atmospheric Research, Boulder, Colo.,
1992.

[20] J . J . HACK A N D R. JAKOB, Description of a global shallow water model based on the

spectral transform method, NCAR 'Tech Note NCAR/TN-343+STR, National Center for

Atmospheric Research, Boulder, CO, February 1992,

[21] S. L. JOHNSON AND C.-T. Ho, Algorithms for matrix transposition on Boolean A'-cube

configured ensemble architectures, SIAM J . Matrix Anal. Appl., 9 (1988), pp. 419-454.

[22] T. KAURANNE AND S . BARROS, Scalability estimates of parallel spectral atmospheric mod-

els, in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth ECMWF
Workshop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and T. Kauranne,

eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 312-328.

[23] R. D. LOFT AND R. I<. SATO, Implementation of the N C A R CCM2 on the Connectaon

Machine, in Parallel Supercomputing in Atmospheric Science: Proceedings of the Fifth

ECMWF Workshop on Use of Parallel Processors in Meteorology, G.-R. Hoffman and

T. Kauranne, eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 1993, pp. 371-
393.

[24] B. MACHENIIAUER, The spectral method, in Numerical Methods Used in Atmospheric
Models, vol. I1 of GARP Pub. Ser. No. 17. JOC, World Meteorological Organization,

Geneva, Switzerland, 1979, ch. 3, pp. 121-275.

[25] M. PEASE, An adaptation of the fast Fourier transform for parallel processing, J . Assoc.

Comput. Mach., 15 (1968), pp. 252-264.

- 37 -

I261 R. R . PELZ AND W. F. STERN, A balanced parallel algorithm for spectral global cbmate

models, in Parallel Processing for Scientific Computing, R. F. Sincovec, D. E. Keyes, RI. R.
Leuze, L. R. Petzold, and D. A. Reed, eds., Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1993, pp. 126--128.

[27] €1. S. STONE, Parallel processing with the perfect shuf le , IEEE Trans. Comput., C-21

(1971), pp. 153-161.

[28] P. N. SWARZTRAUBER, Multiprocessor FFTs, Parallel Computing, 5 (1Y87), pp. 197-210.

[29] P. N . SWARZTRAUBER, W . I,. BKIGGS, R. A. SWEET, V . E. HENSON, AND J . OTro,
Bluestein’s F F T for urbitrary n on the hypercube, Parallel Computing, 17 (1991), pp. 607-

618.

[30] S. S. TAKKELLA AND S. R. SEIDEL, Complete exchange and broadcast algorithms for

meshes, in Proc. Scalable High Performance Computing Conf., IEEE Computer Society

Press, Los Alamitos, CA, 1994, (in press).

[31] R. A. VAN DE GEIJN, Eficzent global combine operations, in The Sixth Distributed Mei-ti-

ory Computing Conference Proceedings, Q. F. Stout and M. Wolfe, eds., IEEE Computer

Society Press, Los Alamitos, CA, 1991, pp. 291-294.

[32] D. W. WALKER, P. €1. WORLEY, AND J . B. DRAKE, Parallelizing the spectral transform
method. Part 11, Concurrency: Practice and Experience, 4 (1992), pp. 509-531.

[33] W. WASHINGTON AND C . PARKINSON, A n Introduction to Three-Dzmensional Climate

Modeling, University Science Books, Mill Valley, CA, 1986.

[34] D. L. WILLIAMSON, J . B. DRAKE, J . J . HACK, R. JAKOB, A N D P . N . SWACZTRAUBER,
A standard test sei for numertcal approximations t o the shallow water equutaons on the

sphere, J . Computational Physics, 102 (1992), pp. 211-224.

[35] P. H . WORLEY AND J. B. DRAKE, Parallelizing the spectral transform method, Concur-

rency: Practice and Experience, 4 (1992), pp. 269-291.

E361 P. H. WORLEY AND 1. T. FOSTER, Para/lel Spectral Transform Shallow Water Model: A
runtime-tunable parallel benchmark code, in Proc. Scalable High Performance Computing

Conf., IEEE Computer Society Press, Los Alamitos, CA, 1994, (in press).

- 39 -

0 RNL/ TM- 1250 7

INTERNAL DISTRIBUTION

1. B. R. Appleton 23. K. A. Remington
2. E. F. D’Azevedo 24. C. H. Romine
3. B. A. Cameras 25. T. J . Sheehan
4. T. S. Darland 26. W . A. Shelton
5. J. M. Donato 27. 3. D. Semeraro
6. J . J . Dongarra 28-32. R. F. Sincovec
7. J . 3. Drake 33. G. M. Stocks
8. T. H. Dunigan 34. M. R. Strayer
9. W. R. Emanuel 35. D. W. Waiker

10. G. A. Geist 36-40. R. C. Ward
11. K. L. Kliewer 41-45. P. H. Worley
12. M. R. Leuze 46. Central Research Library
13. R. C. Mann 47. ORNL Patent Office
14. D. R. Mackay 48. K-25 Applied Technology Li-
15. C. E. Oliver brary
16. P. M. Papadopoulos 49. Y-12 Technical Library
17. W. M. Post 50. Laboratory Records - RC

18-22. S. A. Raby 51-52. Laboratory Records Department

53.

54.

55.

56,

57.

58.

59.

60.

EXTERNAL DISTRIBUTION

David C. Bader, Atmospheric and Climate Research Division, Office of Health and
Environmental Research, Office of Energy Research, ER-76, U.S. Department of
Energy, Washington, DC 20585

Robert G. Babb, Oregon Graduate Center, CSE Department, 19600 N.W. Walker
Road, Beaverton, OR 97006

David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center,
Moffet Field, CA 94035

Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

Robert E. Benner, Sandia National Laboratories, MS 1109, Parallel Computing
Science Dept. 1424, P. 0. Box 5800, Albuquerque, NM 87185

Colin Bennett, Department of Mathematics, University of South Carolina, Columbia,
SC 29208

Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse
Cedex, FRANCE

- 40 -

61. Marsha J . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

62. Michael Berry, Department of Computer Science, University of Tennessee, 107
Ayres Hall, Knoxville, T N 37996-1301

63. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

64. John H . Bolstad, Lawrence Livermore National Laboratory, L-16, P. 0. BOX 808,
Livermore, CA 94550

65. Joe Brandenburg, Intel Scientific Computers, 15201 N .W. Greenbrier Parkway,
Beaverton, OR 97006

66. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
Harvard University, Cambridge, MA 02138

67. Edward Brocklehurst, DITC, Bldg. 93, National Physical Laboratory, Teddington,
Middlesex T W l l OLW, UNITED KINGDOM

68. James C. Browne, Department of Computer Sciences, University of Texas, Austin,
T X 78712

69. George Bourianoff, Superconducting Super Collider Laboratory, 2550 Beckleymeade
Avenue, Suite 260, Dallas, TX 75237-3946

70. R. Butel, Laboratoire de MktCorologie Dynamique du CNRS, Ecole Normale Su-
perieure, 24 rue Lhormond, 75231, Paris Cedex 05, FRANCE

71. William L. Buzbee, Scientific Computing Division, National Center for Atmo-
spheric Research, P.O. Box 3000, Boulder, CO 80307

72. Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House,
University of Tennessee, Knoxville, T N 37996

73. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U S . Department of Energy, Washington, DC
20585

74. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,
NC 27709

75. Siddhartha Chatterjee, RIACS, Mail Stop T045-1, NASA Ames Research Center,
Moffett Field, CA 94035-1000

76. Doreen Y . Cheng, Principal Engineer, Computer Science Corporation, NASA
Ames Research Center, MS 258-6, Moffett Field, CA 94035

77. I-Liang Chern, Department of Mathematics, National Taiwan University, Taipei,
Taiwan, R.O.C.

78. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berkc-
ley, CA 94720

79. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

- 41 -

80. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

81. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

82. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011

83. Jean Cotd, RPN, 2121 Transcanada Highway, Suite 508, Dorval, Quebec II9P 1J3,
CANADA

84. William Dannevik, Lawrence Livermore National Laboratory, P. 0. Box 808, L-lF,
Livermore, CA 94550

85. James W. Demmel, Computer Science Division, 513 Evans Hall. University of
California, Berkeley, CA 94720

86. D. W. Dent, ECMWF - Shinfield Park, Reading RG2 9AX, ENGLAND

87. Craig Douglas, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 10598-0218

88. Kelvin K. Droegemaier, Center for Analysis and Prediction of Storms, University
of Oklahoma, Norman, OK 73019

89. Donald J . Dudziak, Department of Xuclear Engineering, 1103 Burlington Engi-
neering Labs, North Carolina State University, Raleigh, NC 27695-7909

90. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11
OQX, ENGLAND

91. John Dukowicz, Los Alanios National Laboratory, Group T-3, Los Alamos, NM
87545

92. Peter G. Eltgroth, L-298, Lawrence Livermore National Laboratory, P. 0. Box 808,
Livermore, CA 94550

93. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

94. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University. Syracuse, NY
13244-4 100

95. Rhys Francis, Div. of Information Technology, CSIRO, 723 Swanston Street,
Carlton, Vic. 3053, AUSTRALIA

96. Paul 0. Frederickson, RIACS, MS 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

97. Robert van de Geijn, University of Texas, Department of Coniputer Sciences , TAI
2.124, Austin, T X 78712

98. J . Alan George, Vice President, Academic and Provost, Needles Hall, TJniversity
of Waterloo, Waterloo, Ontario N2L 3G1, CANADA

99. Myron Ginsberg, EDS Advanced Computing Center, 30500 Mound Road, Rldg.
1-6, Warren, MI 48090-9055

100. James Glimm, Department of Mathematics, State University of New York, Stony
Brook, NY 11794

- 42 -

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. BOX 808,
Livermore, CA 94550

Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

John Gustafson, 236 Wilhelm, Ames Laboratory, h w a State University, Ames, IA
5001 1

James J. Hack, National Center for Atmospheric Research, P. 0. Box 3000, Boul-
der, CO 80307

Steven Hammond, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

Robert M. Haralick, Department of Electrical Engineering, Director, Intelligent
Systems Lab, University of Washington, 402 Electrical Engineering Building, FT-
10, Seattle, WA 98195

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, IL
6 180 1-2300

Michael Henderson, Los Alamos National Laboratory, Group T-3, Los Alamos,
NM 87545

John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, 1J.S. Department of Energy, Washington, DC
20585

Roger Hockney, Dept. of Electronics and Computer Science, University of Southamp-
ton, Highfield, Southampton SO9 5 N H , UNITED KINGDOM

Geerd-R. Hoffmann ECMWF - Shinfield Park, Reading RG2 9AX, ENGLAND

Charles J . Holland, Air Force Ofice of Scientific Research, Building 410, Uolling
Air Force Base, Washington, DC 20332

Terry Huntsberger, University of South Carolina, Department of Computer Sci-
ence, Columbia, SC 29208

Rudiger Jakob, Deutsches Klimarechenzentrum GmbH, Bundesstr. 55, 2000 Ham-
burg 13, GERMA-NY

Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

Wolfgang Joppich, German National Research Center for Computer Science (GMD),
SchloBBirlinghoven, Postfach 1316, I)-5205 Sankt Augustin, GERMANY

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

120. J . R. Jump, ECE Dept., Rice University, P.O. Box 1892, Houston, TX 77251

- 43 -

121. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg. I
Cornell University, Ithaca, NY 14853-3901

122. Alan H. Karp, HP Labs 3U-7, Hewlett-Packard Company, 1501 Page Mill Road,
Palo Alto, CA 94304

123. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0 Box:
1892, Houston, Texas 77001

124. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff,
Office of Energy Research, Office G-437 Germantown, Washington, DC 20585

125. Michael Langston, Department of Computer Science, University of Tennessee,
Knoxville, T N 37996-1301

126. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

127. James E. Leks, Rt. 2, Box 1432, Broadway, VA 22815

128. Robert Leland, Sandia National Laboratories, 1424, P. 0. Box 5800, Albuquerque,
NM 87185-5800

129. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, ENGLAND

130. Rik J . Littlefield, Pacific Northwest Laboratory, M.S. K1-87, P.O. Box 999, Ricli-
land, WA 99352

131. Rich Loft, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,
CO 80307

132. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0.
Box 808, Livermore, CA 94550

133. Norman D. Malmuth, Science Center, Rockwell International Corporation, 1049
Camino Dos Rios, P.O. Box 1085, Thousand Oaks, CA 91358

134. Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop B2Ci5, Los
Alamos, NM 87545

135. Len Margolin, Los Alamos National Laboratory, Los Alarnos, NM 87545

136. Hal Marshall Laboratory for Scientific Computation, Rm. 271 Cooley Rldg., Uni-
versity of Michigan, Ann Arbor, MI 48109-2104

137. Oliver A. McBryan, University of Colorado at Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

138. Frank McCabe, Department of Computing, Imperial College of Science and Tech-
nology, 180 Queens Gate, London SW7 2BZ, ENGLAND

139. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

140. L. David Meeker, Mathematics Department, University of New Hampshire, Kings-
bury Hall, Durham, NII 03824

- 44 -

141. Alessandro P. Merlo, Dipartimento di Informatica e Sistemistica, University of
Pavia, Via Abbiategrasso, 209, 1-27100 Pavia, ITALY

142. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd. Pasadena, CA 91125

143. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

144. David Nelson, Director, Office of Scientific Computing, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

145. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station
B, Nashville, T N 37235

146. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

147. Robert O'Malley, Department of Mathematical Sciences, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590

148. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

149. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

150. David Payne, Intel Corporation, Supercomputer Systems Division, 15201 NW
Greenbrier Parkway, Beaverton, OR 97006

151. Ron Peierls, Applied Mathematical Department, Brookhaven National Labora-
tory, Upton, NY 11973

152. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08855-0909

153. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

154. Robert J . Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

155. James C. T . Pool, Deputy Director, Caltech Concurrent Supercomputing Facility,
California Institute of Technology, MS 158-79, Payadena, CA 91125

156. Jesse Poore, Coniputer Science Department, University of Tennessee, Knoxville,
T N 37996-1300

157. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading Univer-
sity, Reading RG6 2AX, ENGLAND

158. Lee Riedinger, Director, The Science Alliance Program, University of Tennessee,
Knoxville, T N 37996

159. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National
Laboratory, Livermore, CA 94550

- 45 -

160. Bruce B. Ross, GFDLINOAA, P.O. Box 308, Princeton University, Princeton, N J
0 8542-0 308

161. Ahmed Sameh, Department of Computer Science, 200 Union Street, S.E., Univer-
sity of Minnesota, Minneapolis, MN 55455

162. Richard K. Sato, National Center €or Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

163. David Schneider, University of Illinois at Urbana-Champaign, Center for Super-
computing Research and Development, 319E Talbot - 104 S. Wright Street, Ur-
bana, IL 61801

164. Anton Schiiller, German National Research Center for Computer Science (GMD),
SchloBBirlinghoven, Postfach 1316, D-5205 Sankt Augustin, GERMANY

165. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

166. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

167. Jeffrey S. Scroggs, Department of Mathematics, North Carolina State University,
Box 8205, Raleigh, NC 27695

168. Joseph Sela, NMC, Development Division, 5200 Auth Road, Camp Springs, MD
20746

169. Margaret L. Simmons, Computing and Communications Division, Los Alamos
National Laboratory, Los Alamos, NM 87545

170. Horst D. Simon, NASA Ames Research Center, Mail Stop T045-1, Moffett Field,
CA 94035

171. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

172. Anthony Skjellum, Dept of Computer Science, Mississippi State liniversity, PO
Drawer CS, Mississippi State, MS 39762-5623

173. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

174. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop 132316,
Los Alamos, NM 87545

175. Peter Smolarkiewicz, National Center for Atmospheric Research, MMM Group,
P. 0. Box 3000, Boulder, CO 80307

176. Lawrence Snyder, Department of Computer Science and Engineering, FR-35, Uni-
versity of Washington, Seattle, WA 98195

177. Danny C . Sorensen, Department of Mathematical Sciences, Rice University, P. 8.
Box 1892, Houston, T X 77251

178. Jurgen Steppeler, DWD, Frankfurterstr 135,6050 Offenbach, WEST GERMANY

179. William Stern, NOAA/Geophysical Fluid Dynamics Laboratory, P.O. Box 308,
Princeton University, Princeton, NJ 08542-0308

- 46 -

180. Julie M. Swisshelm, Sandia National Laboratories, M.S. 1111, P.O. Box 5800.
Albuquerque, NM 87185-1 11 1

181. Wei Pai Tang, Department of Computer Science, University of Waterloo, Water-
loo, Ontario N2L 3G1, CANADA

182. Clive Temperton, ECMWF - Shinfield Park, Reading RG2 9AX, ENGLAND

183. S. Tett, Meteorological Office, H210, Handley Center, London Road, Bracknell
RG12 2SZ, UNITED KINGDOM

184. Bernard Toiirancheau, LIP ENS-Lyon 69364, Lyon cedex 07, FRANCE

185. David Turner, Iowa State University, A524 Physics, Ames, IA 50011

186. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos,
NM 87545

187. Courtenay T. Vaughan, Sandia National Laboratories, Parallel Computing Science
Division, 1424, P. 0. Box 5800, Albuquerque, NM 87185-5800

188. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Bampton,
VA 23665

189. Phuong Vu, Cray Research, Inc., 19607 Franz Road, Houston, TX 77084

190. Stephen R. Wheat, Sandia National Laboratories, MS 1109, Parallel Computing
Science Department, 1424, P. 0. Box 5800, Albuquerque, NM 87185

191. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box
1892, Houston, TX 77251

192. Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, TAos
Alarnos, NM 87545

193. David L. Williamson, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

194. David E. Womble, Sandia National Laboratory, Division 1422, P.0. Box 5800,
Albuquerque, NM 87185-5800

195. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford,
MA 01731

196. Office of Assistant Manager for Energy Research and Development, US. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N
37831-8600

197-198. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

