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PARALLEL ALGORITHMS FOR THE SPECTRAL TRANSFORM METHOD 

Ian T. Foster 

Pa t r ick  €1. Worley 

Abstract 

T h e  spectral transform method is a standard numerical technique for solving partial 

differential equations on a sphere and is widely used in atmospheric circulation modeIs. 

Recent research has identified several promising algorithms for implementing this method 

on massively parallel computers; however, no detailed comparison of the different algo- 

rithms has previously been attempted. In this paper, we describe these different parallel 

algorithms and report on computational experiments tha t  we have conducted to evaluate 

their efficiency on parallel computers. The  experiments used a testbed code tha t  solves 

the  nonlinear shallow water equations on a sphere; considerable care was taken to ensure 

tha t  the  experiments provide a fair comparison of the different algorithms and that  the  

results are relevant to global models. We focus on hypercube- and mesh-connected multi- 

computers with cut-through routing, such as the Intel iPSC/860, DELTA, and Paragon, 

and the  nCUBE/2, but also indicate how the  results extend to other parallel computer 

architectures. T h e  results of this study are relevant not only t o  the  spectral transform 

method but  also to multidimensional FFTs and other parallel transforms. 
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1. Introduction 

The spectral transform method is widely used for fluid dynamics problems in spherical geometry, 

in such areas 8s climate modeling, weather modeling, astrophysics, and reactor design. In this 
paper, we examine the problem of implementing the spectral transform method on massively 

parallel computers. Such computers comprise 102-104 processors, each with local memory 

and able to access other processors’ memory via an interconnection network. When designing 

algorithms for these computers, important considerations include minimizing nonlocal memory 

accesses, organizing interprocessor communication to make efficient use of the network, masking 

communication latency, and minimizing load imbalances. 

The spectra1 transform method as used in climate models comprises a Fourier transform phase, 

in which fast Fourier transforms (FFTs) are applied to each latitude of a latitude/longitude 

grid, and a Legendre transform phase, in which Gaussian quadrature is used to approximate 

the Legendre transform (LT) applied to  each longitude (now wavenumber) of the same grid [4]. 
Efficient parallel FFT and LT algorithms have been the topic of intensive research (e.g., see [lo,  

25,28,29]). The spectral transform is nevertheless deserving of special study, first because the 

matrices involved are typically much smaller than usual for Fourier and Legendre transforms 

(e.g., 64-1024 in each dimension, rather than tens of thousands), second because the two phases 
interact in interesting ways on certain architectures, and third because the importance of the 

spectral transform makes even small performance improvements valuable. 

Parallel spectral transform algorithms have been investigated previously by several researchers. 

We and colleagues at Argonne and Oak Ridge national laboratories have developed a parallel 

transform approach based on parallel FFT and quadrature algorithms [14,32,35]; this work has 

been incorporated in a parallel implementation [7,8] of the National Center for Atmospheric Re- 
search (NCAR)’s Community Climate Model (CCM2) [19]. Other researchers have examined a 

transpose approach, in which communication requirements are encapsulated in a matrix trans- 

pose operation. This approach is used, for example, in the European Center for Medium-Range 

Weather Forecasts spectral weather model [6] and in Loft and Sato’s data  parallel implementa- 

tion of CCM2 [23]. It has also been explored by Kauranne and Barros [22], Pelz and Stern [2G], 

and Gartel, Joppich, and Schiiller [l’i]. 

In addition to the transform and transpose approaches, a variety of hybrid algorithms are 

possible that combine aspects of both. A comprehensive comparison of these algorithms has 

not previously been attempted. (Both [15] and [22] provide a qualitative analysis of sonw 

algorithms, but not detailed quantitative results or performance models.) Hence, it is difficult to 

evaluate the performance tradeoffs that arise when choosing a parallel algorithm for a particular 

application. 

In this paper, we describe analytic and empirical studies that we have conducted to  determine 

1. whether there is a best algorithm (on a given platform, for a given problem size, etc.); 

2. the sensitivity of the choice of optimal algorithm to problem size, number of processors, 

and platform specifics; and 
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3. the benefits of optimizing for a given platform or problem size. 

In the analytic studies, we develop models that characterize the performance of the various 

spectral transform algorithms by relating communication requirements and load imbalances to 

problem size, processor count, and other parameters. 

The empirical studies atilize a parallel shallow water equation solver designed specifically for 

these experiments [36]. Considerable care has been taken to  ensure that experilnents are as fair 

as possible, that is, that one algorithm is not unduly favored through choice of data structures, 

greater optimization, etc. In addition, the code structure mimics that of general circulation 

models, maximizing the applicability of results to these models. 

The contributions of this paper are as follows. First, the analytic models provide a qualitative 

characterization of the performance of numerous parallel algorithms for the spectral transform, 

including both parallel algorithms developed previously and new algorithms developed in the 

course of this work. Second, the empirical results provide a detailed understanding of the 

performance characteristics of these algorithms on the target platforms. Third, we identify 

robust algorithm combinations for various problem size and machine characteristic regimes. 

The rest of this paper is as follows. Sections 2, 3, and 4 provide background information on 

the shallow water equations solved by our testbed code, the spectral transform method, and 

parallel computation. Sections 5 and 6 describe the parallel algorithms that we examine in the 

Fourier and Legendre phases of the transform. In $7, we use these models to  make qualitative 

comparisons between the algorithms and to identify performance tradeoffs on different parallel 

computer architectures. Section 8 describes empirical studies conducted on a range of scalable 

parallel computers, and relates the results to algorithm and machine characteristics. Section 9 
describes issues not addressed in this study, and directions for future work. Section 10 presents 
our conclusions. 

2. The Shallow Water Equations 

The nonlinear shallow water equations on a rotating sphere constitute a two-dimensional 

atmospheric-like fluid prediction model that exhibits many of the features of more complete 

models [34]. These equations are frequently used to investigate and compare numerical meth- 

ods because they present many of the difficulties found in simulating the horizontal dynamics 

in three-dimensional global atmospheric models [5]. 

The algorithms used to solve the shallow water equations via the spectral transform method are 

similar to those employed in the NCAR Community Climate Model to  handle the horizontal 

dynamics component of the primitive equations [19]. Hence, a model that solves the shallow 

water equations on multiple (independent) levels during each timestep of the simulation pro- 

vides a framework in which the performance of CCM2’s horizontal dynamics can be studied in 

isolation from the other aspects of the full model. While this framework is not a completely 

reliable predictor of the performance of the parallel algorithms in the full model, it allows us 



to  determine accurately the relative merits of the different parallel approaches. 

For completeness, we now describe the shallow water equations in the form that we solve using 
the spectral transform method. The shallow water equations on a sphere consist of equations for 

the conservation of momentum and the conservation of mass. Let i ,  j, and k denote unit vectors 

in spherical geometry, V denote the horizontal velocity, V = iu+jv, @ denote the geopotential, 

and f denote the Coriolis term. Then the horizontal momentum and mass continuity equations 
can be written as [33] 

= - f k x V - V @  
DV 
Dt 
Da) - = - @ V . V ,  Ln 

- 

where the substantial derivative is given by 

D a 
-( ) f -&( ) + v - V (  ) nt 

The spectral transform method does not solve these equations directly; rather, it uses a 

streamfunction-vorticity formulation in order to work with scalar fields. Define the vorticity 7 

and the horizontal divergence 6 by 

To avoid the singularity in velocity a t  the poles, let B represent latitude, and also redefine the 

horizontal velocity components as 

( U , V ) = V c o s B  

Then, after some manipulation, the equations can be written in the form 

Here a is the radius of the sphere; the independent variables X and p denote longitude and 

sin 0, respectively; and @ is now a perturbation from a constant average geopotential 4. 
Finally, U and V can be represented in terms of q and S through two auxiliary equations 
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expressed in terms of a scalar streamfunction II, and a velocity potential x: 

where 

In the spectral transform method, we solve Equations (3)-(5) for q ,  6, and a, and use Equations 

(6)--(9) to  calculate U and V .  

3. The Spectral Transform Method 

In the spectral transform method, fields are transformed at  each timestep between the physical 

domain, where the physical forces are calculated, and the spectral domain, where the horizontal 

terms of the differential equation are evaluated. In the three-dimensional atmospheric models 
that we wish to  emulate, all coupling between vertical levels is also calculated in the physical 

domain. 

The spectral representation of a field variable E on a given vertical layer above the surface 

of a sphere is defined by a truncated expansion in terms of the spherical harmonic functions 

{ P? ( p)eim } : 
hf N(m) 

€(X,P> = E , " ~ , m ( f 4 e i r n A ,  
m = - M  n= I I  m 

where 

Here i = a, p = sin8, 8 is latitude, X is longitude, m is the wavenumber or Fourier mode, 

and P,"(p) is the associated Legendre function. The spherical harmonic functions are the 

eigensolutions of the Laplacian operator in spherical coordinates and constitute a complete and 

orthogonal expansion basis for square integrable functions on the sphere. Additional properties 

of these functions can be found in [24]. 

In the truncated expansion, M is the highest Fourier mode and N ( m )  is the highest degree of the 

associated Legendre function in the north-south representation. Since the physical quantities 
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are real, <Grn is the complex conjugate of E,". This fact is used to  reduce both computational 

complexity and storage requirements by calculating only spectral coefficients for nonnegative 
modes. 

In each vertical layer of the physical domain, fields are approximated on an I x J longitude- 

latitude grid, where the I longitude grid lines are evenly spaced and the J latitude grid lines 
are placed at the Gaussian quadrature points {pi} in [-1, 11. Transforming from physical 

coordinates to  spectral coordinates involves first performing a Fourier transform for each line 

of constant latitude, generating the values {trn(p,)} on an M x J wavenumber-latitude grid 

that we will refer to  as the Fourier grid.  This is followed by integration over latitude for each 

line of constant wavenumber, approximated using J-point Gaussian quadrature, to  obtain the 

spectral coefficients, 
J -  1 

tr = crn(pj> p Z ( p j )  wJ 
j = O  

Here wj is the Gaussian quadrature weight corresponding to  the Gaussian latitude p j .  The 

point values are recovered from the spectral coefficients by computing 

for each m, followed by inverse Fourier transforms to  calculate < ( A , p ) .  When the spectral 

transform method is applied in a three-dimensional atmospheric model, the principal data 

structures are as shown in Fig. 1. P denotes the physical grid, F the Fourier grid, and S the 

spectral grid. 

In the shallow water equation code [20], each timestep begins by calculating the nonlinear terms 

U q ,  Vq, UO, I/@, and @+(U2+V2)/(2(1-p2)) on the physical grid. Next, the nonlinear terms 

and the state variables q,  6, and are Fourier transformed. The forward Legendre transfornis 

of these fields are then combined with the calculation of the tendencies used in advancing q ,  
5 ,  and in time (essentially evaluati- 2 the right-hand sides of Equations (3)-(5)) and the 

first step of the time update. This approach decreases the cost, when compared to  calculating 

transforms individually and then calculating the tendencies, and generates spectral coefficients 

for only three fields instead of eight. Next, the time updates of 7, 5, and on the spectral 

grid are completed. Finally, the inverse Legendre transforms of q,  6, and @ are combined with 

the calculation of the fields U and V (solving Equations (6)-(9)), followed by inverse Fourier 

transforms of these five fields. 

Without significant loss of generality, we assume a triangular spectral truncation in this paper: 

N ( m )  = M and the (m, n)  indices of the spectral coefficients for a single vertical layer form a 

triangular grid. For a triangular truncation, exact, unaliased transforms of quadratic terms are 

obtained if I 2 3M + 1 and if I = 2J [33]. In this work we also use a fast Fourier transform 

(FFT) algorithm that requires I to be a power of two. As is commonly done, for a given M we 
choose I t o  be the minimum power of two satisfying I 2 3M + 1,  and set J = 1 / 2 .  With these 

assumptions, the value of M can be used to  characterize the horizontal resolution of the grids, 
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Z 

c;To FFT zFo f+ LT .I“’; --m - 
_------ 

h m 
Figure 1: Principal Data Structures in Spectral Dansform 

and the term “TM” is used to  denote a particular discretization. For example, for T85 we have 

M = 85, I = 256, and J = 128, and the number of spectral coefficients (N,,,,) calculated per 
field for a single vertical layer is 

M M  
1 

Nspec = 1 = ,(M + 1)(M+2) = 3741. 

The number of vertical levels is determined primarily by the physical processes that are being 

modeled and is chosen independent of M in current meteorological models. The term “‘IMLK” 
will be used to  denote a model with a TM horizontal grid resolution and I< vertical levels. 

In subsequent discussion, we denote the index set of the physical grid by a triple ( I , J , K ) ,  
with Z corresponding to longitude, J to latitude, and K to the vertical. We denote the index 
set of the Fourier grid by the triple ( M ,  J ,  K), with M corresponding to wavenumbers. We 

denote the index set of the spectral grid by the triple ( M , N ,  K), with N corresponding to 

polynomial degree. (Note that in a triangular truncation, the index set N is dependent on the 

wavenumber.) We assume that computation is performed on a two-dimensional logical grid of 

P = Px x 4. processors. We denote an individual processor by an index pair (2, y). 

Different phases of a parallel spectral transform algorithm may employ different decompositions 

of the computational grids onto the processor grid. We describe these by a triple, for example, 

of the form ( Z , , J b , K C ) ,  where a ,  b ,  and c are X ,  meaning that indices in the subscripted 

dimension are partitioned over processors in the X plane of the processor grid; Y ,  meaning 

that indices are partitioned over processors in the Y plane; or null, meaning that indices are 

not partitioned. Analogous notations are used to  represent the decompositions of the Fourier 

and spectral grids. Our decompositions never decompose over more than two dimensions. We 

assume that the physical space grid is always decomposed as (Zx, J y  , K) and that the physical 

domains of all fields are decomposed (and mapped to  processors) in the same way, so that 

computations in vertical columns can proceed without communication. (These computations 

are not considered here but are an important and complex part of a climate model that are 

difficult to  parallelize eficiently.) Unless otherwise noted, we also assume that all fields use the 
same Fourier and spectral domain decompositions. 
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4. Parallel Algorithms and Architectures 

Scalable parallel computers generally comprise a number of independent computers and an 

interconnection network. Each computer has its own processor and memory, can execute a 

sequential program, and can send and receive messages to  and from other computers. In the 

absence of concurrent computation and communication, the run time for a parallel program on 

such a system can'be characterized on a per-processor basis as 

where TcO,, is the time spent (actively) communicating or waiting for messages to arrive and 

Tcomp is the time spent computing (i.e., not communicating). 

In all of the algorithms described in this paper, each send request is closely preceded or followed 

by a receive request for a message of approximately the same size. In current multiprocessors, 

the cost of such a send/receive pair can often be modeled with reasonable accuracy as 

where t ,  is the time to initiate the communication requests, N is t.he size of the messages 

in words, and t, is the time to  transfer a single word of data  into the network and transfer 

another word out of the network. By choosing t ,  and t ,  to reflect intrinsic system perfotmaucr 

characteristics and defining Tcomm to be the sum of the cost of these send/receive pairs, (10) 

becomes a lower bound on the execution time of the form 

Costs omitted in this lower bound-for example, idle time waiting for messages to arrive or 

buffer copying associated with message passing-are generally proportional to the nurnher 

of messages or to the message lengths in each of our algorithmic phases: physical domain 

computations, FFT, LT, and spectral domain computations. (This is due to the nature of our 

algorithms and does not hold in general.) Hence, by fitting (12) for a given phase to  empirical 

data,  system- and algorithm-dependent values for t ,  and t, can often be derived for which (12) 
is valid for a large range of problem sizes and numbers of processors. 

Whether as a lower bound or as an empirically-fitted performance model, (12) is often sufficient 

t o  make accurate qualitative comparisons between parallel algorithms, and will be used in 

the algorithm analysis to  follow. There are also two generalizations of this model that  are 

important for some of the multiprocessor platforms included in this study, incorporating the 

impact of computalion/comnaunicateo7a overlap and network bandwrdth lzrnitataons, respectively. 

In the following, we use an example to  illustrate the simple model; we then introduce the 

generalizations. 
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4.1. Parallel Algorithm Example 

We use the fast Fourier transform (FFT) to illustrate the use of (12). The Fourier transform. 

y = {yk}l of a sequence of D values x = {zj} is given by 

j=O 

where s = &f. The FFT exploits symmetry to perform this computation in log, D steps, each 

involving O ( D )  operations. Assume that x is partitioned over Q processors by blocks, and let 

D = 2d and Q = 24 for some integer d and q ,  d 2 q. The first d -  q stages of the FFT can then 
proceed without communication, while each of the last q stages involves a pairwise exchange 

of 2d--q data or intermediate results with another processor [16,18,25,28,29]. Each processor 

engages in log,Q communication operations, each involving the transfer of D/Q data, and 

The parallel and sequential algorithms perform exactly the same computation. As this compu- 

tation is partitioned evenly among the Q processors, our performance model predicts that the 
time taken by the parallel code is 

where Tseq is the time taken by the sequential code on a single processor. 

4.2. Corn put at ion / Communicat ion 0 verlap 

Some computers allow the effective cost of interprocessor communication to be reduced by 

overlapping computation with some of the operations performed to send or receive a message 

or with the time spent waiting for a message to arrive. A simple lower bound on the execution 

time when exploiting overlap is 

hence, overlap at  most halves the nonoverlap performance and does not change asymptotic 

behavior. We do not model explicitly the effect of overlap, but note when it can be used to 

reduce communication cost. 

4.3. Network Bandwidth Limitations 

Equation (12) assumes that the cost of sending a message is independent of the number of 

processors that are communicating at  the same time. However, some interconnection net- 
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work/algorithm combinations may result in multiple processors attempting to  send messages 

over the same wire simultaneously. The impact of this behavior on performance can often be 

modeled with reasonable accuracy by assuming that the processors share available bandwidth, 

that  is, by scaling the data volume term of our communication cost model by S ,  the number 

of processors sending concurrently: 

The value S depends on properties of both the parallel algorithm and the underlying commu- 

nication network. For example, the FFT described above can be organized to  execute without 

competition for bandwidth on a hypercube [21]. In contrast, on a 1-D mesh of Q proces- 

sors, each processor generates messages that must traverse 1, 2, ..., 29- '  hops distant in the 

q steps of the algorithm [14,18]. The total number of hops traversed by these messages is 

QClZ,'2' - = &(& - 1). This represents the number of wires to which a processor requires 
exclusive access during the FFT. Because a 1-D bidirectional mesh provides only 2(& - 1) 
wires, the algorithm cannot possibly proceed in less than Q/2 steps, rather than log, Q steps 

as supposed previously. Hence, the following model is a lower bound on communication costs: 

5 .  Parallel Fourier Transform Algorithms 

We now present the parallel spectral transform algorithms that we evaluate in this paper. By 

assumption, the physical and spectral domains for each field (7, 5 , 0 ,  U ,  and V )  are decomposed 

and mapped onto processors in the same fashion. Thus, the calculation of the nonlinear terms 

and the completion of the time update of 9, 6,  and ip can proceed independently on each 

processor, and the computations will be load balanced if the decompositions are equipartitions 

of the index sets. These calculations have O ( N )  complexity, compared with O ( N  log, N )  for 
the Fourier transform and 0(iV2) for the Legendre transform. Since any load imbalances will 

also reflect load imbalances in the Fourier or Legendre transforms, the effect of load imbalances 

on performance can be compared qualitatively by considering the transforms only. Hence, we 

discuss only parallel Fourier and Legendre transform algorithms. 

For each algorithm that we consider, we develop performance models based on (12). We also 
consider the impact of bandwidth limitations in mesh architectures. On a hypercube we assume 

that the two-dimensional logecal processor mesh of size Px x Py = 29 x 2' = 2 P  is mapped into 

a hypercube of dimension p in such a way that each processor row and column is mapped to  

a subcube of dimension q and P, respectively [21]. Hence, performance analysis reduces to the 

problem of determining the cost of an FFT or LT in a hypercube. On a 2-D mesh computer, 

we assume that the PX x pU logical processor mesh is mapped to an equivalent physical mesh. 

Thus, each FFT and LT algorithm executes in a 1-D processor array. Although this means 

that at most one half of the available w i r a  are used in each communication phase, experiments 
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suggest that this mapping is close to  optimal when PX zz &. Increasing the connectivity 

for one phase (e.g., FFT) of the spectral transform in order to improve performance generally 

decreases the performance of the other phase (e.g., LT) to a degree that offsets the earlier gain. 

Moreover, as will be shown later, PX x 4. is generally optimal, so this assumption will not 

unduly affect the qualitative analysis. 

We first consider parallel algorithms for the first phase of the spectral transform, iri which real 

FFTs are performed on each row of the physical grid. The test case used in these experiments 
involves one forward FFT for each of 8 fields, J latitudes, and K vertical levels, and one inverse 

FFT for each of 5 fields, J latitudes, and I( levels, per timestep. As I = 2 5 ,  we must perform 

1 3 J K  FFTs per timestep, each on a vector of length 25. As noted in $ 3 ,  we assume that the 

physical grid is initially decomposed as (ZX , J y  , K). We also assume that the Z index set is 

partitioned over the PX row processors in PX equal-sized blocks and that PY divides J evenly. 
We will relax the latter assumption when considering load imbalances. 

An unordered real FFT is used in all experiments. This is cheaper than an ordered FFT,  

especially for the parallel FFT of $4 ,  which would require additional communication to effect 

the ordering. It also provides some load balancing during the LT phase, as will be described in 

§6. 

5.1. Distributed FFT 

Our first FFT  algorithm assumes (Zx, J Y ,  K )  and ( M x ,  J y  , I ( )  decompositions of the physical 

and Fourier grids, respectively. Hence, both its input and output are decomposed across PA- 

processors, and we can use the algorithm presented in $4. There is no load imbalance if & 
divides J evenly, there is no redundant work, and communication cost is given by (13). 

Each row of PX processors is responsible for transforming I / &  of the physical grid, that 

is, computing 8 K J / &  forward FFTs and 5 K J / P y  inverse FFTs. The forward and inverse 

FFTs arc each computed as a block, so the number of messages is that required for two single 

transforms. As each FFT is applied to a vector of length I ,  the two block FFTs transform 

8 K I J / &  = 1 6 K J 2 / P y  and 5 K I J / &  = l 0 K J 2 / f i  data per processor row, respectively. 

Substituting the data volume values for D and PX for Q and using P = PxPy ,  we obtain from 

( 1 3 )  the communication cost expression in Table 1. 

Computation/Communication Overlap. To exploit overlap, the single-block FFT can 

be divided into two, allowing one block’s communication to  be overlapped with the other’s com- 

putation [32] .  Only the first swap involving the first block is not overlapped with computation. 

This process requires twice as many messages, as indicated in Table 1 ,  but has been shown to 

be cost effective on some multiprocessors. 

Bandwidth Limitations. Both the one- and two-block algorithms can be mapped to a 

hypercube without competition for bandwidth [16]. As noted in $4.3,  they will suffer from 
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Algorithm 

Distributed 

O(Q)  transpose 

@(log Q) transpose 

Table 1 :  Communication Characteristics of Parallel FFT Algorithms 

Revised Data Volume 

J 2 K  
13- PX 

P 
13 J2K -- 3 p (Px-tl) 

13 J21C 
2 P  PA- -- 

Algorithm 

Distributed 

Overlapped Distributed 

8( &) transpose 

@(log Q) transpose 

Messages 

2 log, Px 

4 log, Px 

2 ( P x  - 1) 

2 log2 Px 

Data Volume 

J 2 K  

J 2  K 

J ~ K  pX - 1 

P px 

J 2 K  
13- log, PX 

P 

26- log, PX 
P 

26-  log, PX 
P 

26--  

Table 2 :  F F T  Performance Models Specialized for I-D Mesh (where they differ) 

bandwidth limitations on a 1-D mesh. Applying ( 1 6 )  to the shallow water code, we obtain the 

expression in Table 2. 

Algorithm Limitations. The basic operation in the standard power-of-two FFT is a “but- 
terfly” transform involving two complex values. This corresponds to four real values in the 

real FFT, and a t  least four longitudes must be assigned to each processor to avoid redundant 

computation. Thus, if I = 2 d ,  we are restricted to Px 5 2 d - 2 .  The distributed F F T  algorithm 

used in this study also requires that PX be a power of two. 

Load Balance. As will be discussed in $6 ,  the choice of Legendre algorithm determines 

whether the 3 index set is partitioned over the & column processors in Py or 2 P y  equal-sized 

blocks. Two blocks are assigned per processor column in the latter case. If PY does not divide 
J (or J / 2 )  evenly, load is somewhat unbalanced, with the processor row with maximum load 

computing 1 3 K [ J / P y ]  (or 2 6 K  [ J / ( 2 & ) 1 )  FFTs. This imbalance increases both data volume 
and computation cost proportionally. See Table 5. 
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5.2. Transpose FFT 

An alternative algorithm reorganizes the physical grid from (Ix, J Y ,  K) to (2 ,  J Y ,  K,) prior to 

the forward FFT so that each latitude row is stored within a single processor [1,3,6,23,26]. This 

eliminates the need for communication during the FFT,  but requires communication within the 

transpose used for the reorganization. After the transform, the Fourier grid is decomposed as 

(MI Jy , Kx). -The  inverse FFT-proceeds similarly, requiring a transpose after the transform 
to reorganize from (1, Jy , Kx) to (ZX, Jy , K). 

The transpose requires that each processor exchange information with the other Px processors 

in the same row of the processor grid. The two primary implementation approaches require 

@(I+) and @(log P x )  communication steps, respectively. 

O(Q) Transpose. The first algorithm proceeds in Q - 1 steps on Q processors: at  each step, 

each processor sends l / Q  of its data to another processor [12,21,28]. Communication cost is as 

follows. 

Zmem transpose = (Q - 1) 1 ,  -t - t w  (17)  ( $ 1  
Substituting appropriate values for D and Q and counting both the forward and inverse FFTs, 

we obtain the expression in Table 1. 

Note that for this algorithm to be efficient, and for (17) to hold, some care must be taken 

with the order of the data communication. For example, significant contention can result if all 

processors send to  processor i in the ith step. The schedules used in our experiments send at 

most one message to  each processor during a given step. 

@(log Q) Transpose. The transpose can be performed in (log, Q) communication steps at 

the cost of increased communication volume [13,27]. We first partition processors into two sets. 

Each processor sends to the corresponding processor in the other set a single message containing 

all the data that it possesses that is destined for processors in the other set. This partitioning 

and communication process is repeated logQ times until each set contains a single processor. 

Each message has size D / ( 2 Q ) ,  so the total communication volume is (log, Q)/2 times greater 
than in the O ( P )  algorithm, and communication costs are 

When applied to the FFTs in the shallow water code, communication costs are as in Table 1. 

Computation/Communication Overlap. Overlap can be introduced in the transpose 

algorithms by breaking up a one-block transform comprised of F vectors into B blocks of size 

F I R .  After the first block is completely transposed, the transpose of a block can (potentially) 
be overlapped with the transform of the block preceding it. 
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This algorithm has not proven to be efficient in practice. Large B minimizes F I B ,  the size of 

the block whose transpose is not overlapped, but the number of messages grows by a factor of R. 
and not all message startup costs can be overlapped. Also, the transform must be divided into 

the same number of stages as the transpose algorithm to allow for interleaving. This restriction 

may diminish the computational rate. 

Bandwidth Limitations. Neither transpose algorithm suffers from significant bandwidth 
limitations on hypercubes [12,16,21], but both do so on mesh architectures. In the O(Q) 

transpose, a total of (Q3 - Q ) / 3  hops are traversed on 2(Q - 1) wires, requiring that the data 

volume be scaled by Q(Q + 1)/6 instead of Q - 1. The scaling factor for the @(log Q )  transpose 

is the same as that used for the distributed FFT. See Table 2. 

Algorithm Limitations. Both transpose algorithms decompose the vertical diinension and 

thus require that  PX 5 K if whole processor rows are not to  be idle during the FFT. As I< 

can be significantly smaller than I ,  this restriction is limiting for the transpose algorithnis. 

One approach to mitigating this F'roblem is to decompose also over the field "dimension" (8 
for the forward FFT and 5 for the inverse) [22]. Many of these fields must be reunited for 

the LT phase, however, resulting in other performance problems. This generalization and the 

associated problems are discussed in $9. The O(1ogQ) transpose algorithm requires that PX 
be a power of two. 

Load Balance. If f i  does not divide J or J / 2  evenly, load is unbalanced as in the distributed 

FFT algorithm. There is also load imbalance if PX does not divide I< evenly; some processor 

columns must compute FFTs for as many as /'l</Px] vertical levels. See Table 5. An analogous 

load imbalance does not occur in the distributed FFT because I and PX are both required to 

be powers of two. 

6. Parallel Legendre Transform Algorithms 

We next consider parallel algorithms for the second phase of the spectral transform, in which 

Legendre transforms (LT) are performed on each column of the Fourier grid. We define a 

single forward transform to be the calculation of the set of spectral coefficients (E," In = 
Iml, . . . , N(m)) for a given wavenumber rn and field variable E ,  and an inverse transform to be 

the calculation of the set of Fourier coefficients { [" (p j j )  11 5 j 5 J }  for a given wavenuriiber 

m and field variable E .  Thus the number of spectral coefficients output (input) for each field in 

the forward (inverse) transform is a function of the wavenumber and of the spectral truncation 

used. Since we assume a triangular truncation, M - rn spectral coefficients are generated for 

wavenumber rn. 

At each timestep, the shallow water code performs one forward LT for each of three fields, M 

wavenumbers, and K vertical levels, and one inverse LT for each of five fields, M wavenumbers, 
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and Ii' vertical levels. Eight fields of Fourier coefficients are used to produce the three fields of 

spectral coefficients, and these three spectral fields are used to produce the five fields of Fourier 

coefficients. As we assume that, J x (3M + 1)/2 and I = 2J, the total number of spectral 
coefficients produced/consumed in these transforms is 3Ns,,,K = (3/2)(M + 1)(M + 2 ) K  x 

(2/9)(J + 1)(2J + 5)K .  

We describe four Legendre transform algorithms. The first two use distributed vector s u m  

algorithms to  complete the LT, while the third and fourth use the transpose algorithms of the 

preceding section. Each algorithm can be used with any FFT algorithm, but load balance 

may vary. To simplify the exposition, we assume initially assume that the distribution of 

spectral coefficients between the different processor columns is uniform, that is, approximately 

(2/9)(J + 1)(25 + 5 ) K / P x  spectral coefficients per processor column. 

6.1. Distributed LT 

The first two LT algorithms assume either ( M x ,  J'Y, K ) / ( M x ,  NY, K) decompositions of Fourier 

and spectral space, respectively, or ( M ,  Jy , K , y ) / ( M ,  N y ,  K x )  decompositions. The simple 

forward LT is computed as 

J-1 Py-1 P y - 1  

C m ( p j ) p r ( p j ) w j  E C TF(Y) . (19) 
y=n (jgw ) Y=o 

CT = C € 7 n ( p j ) P , " ( p j ) w j  = 
j = O  

Each partial sum r ( y )  can be evaluated within a processor (z,y) without interprocessor 

communication. The final calculation of the spectral coefficient E," requires the summation 

of P y  partial sums distributed over Py processors. A "column-wise" distributed vector sum 

algorithm can be used to  perform this summation in a block fashion for all spectral coefficients, 

fields, and vertical levels associated with a given processor column. The same approach can 

also be used with the more complicated transforms producing from multiple fields of Fourier 

coefficients. 

The simple inverse LT is computed as 

n=lm] 

Each processor can calculate its associated Fourier grid values independently if the (distributed) 

vector of spectral coefficients {e:} is first replicated on all processors in the given processor 

column. This requires a broadcast operation prior to the inverse LT. The same approach also 

works when more than one field of spectral coefficients is needed to  evaluate the Fourier grid 
values. 

For ease of coding and interprocessor communication efficiency, we have found it useful to  com- 

bine the distributed vector sum and broadcast in a single operation. Thus, at  the end of the 

forward LT, all processors in a given column have the same spectral coefficients, and the de- 

composition of the spectral grid is ( M x  , N, n), a one-dimensional rather than two-dimensional 
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Table 3: Communication Characteristics of Parallel LT Algorithms 

Algorithm 

Ring sum 

Butterfly sum 

8( Q) transpose 

@(log Q) transpose 

Data Volume 

8 ( J  + 1)(2J + 5)K 
(PY - 1) 

(PY - 1) 

- 
9 P 

8 ( J  + 1 ) ( 2 J  + 5 ) K  
9 P 
- 

52 ( J +  1)JA' Py - 1 

3 P 4. 
26 ( J  + 1 ) J K  
3 

- 

p 1% PY - 

decomposition. A disadvantage of this approach is that a small amount of computation that 

modifies the spectral coefficients between the forward and inverse LTs must be performed re- 

dundantly on the replicated coefficients. But the complexity of this computation is of a lower 

order and has a smaller constant than that involved in the LT operations. In our experiments, 

the savings due to  improved communication efficiency easily outweigh the cost of the redundant 

computation. The redundant computation is ignored in subsequent analysis. 

Ring Sum. We now describe the first of two LT algorithms based on this structure (dis- 

tributed vector sum and broadcast). These algorithms differ only in the mechanisms used to 

sum the vectors of partial sums T," and to  replicate the results. In the ring sum algorithm, 

data  flows around a logical ring of processors. A summation involving Q processors proceeds 

in Q - 1 steps, with each processor receiving D / Q  data from its left neighbor and sending D / Q  
data  to  its right neighbor at  each step. Upon completion, the vector of D spectral coefficients 

is evenly distributed over the Q processors. This process is reversed (without the summations) 

to broadcast the result. Communication costs are 

In the shallow water code, Q = P y  and D M (4/9)(J + 1)(2J + 5)Ii/Px (because Ihe spectral 

coefficients are complex (two-word) values), giving the expression in Table 3. 

Butterfly Sum. The butterfly sum algorithm is a hybrid of two algorithms [3l]. For long 

vectors, we use a recursive halving algorithm [16] that utilizes a butterfly communication pattern 

like the distributed FFT. Each processor communicates (and sums) 0 / 2  data in the first stage, 

half as much ( 0 / 4 )  in the second, and so on, so that each processor communicates a total 
of D(Q - 1)/Q data  in (log,&) steps. The global sum is then complete, and the vector of 

D spectral coefficients is evenly distributed over the Q processors. This process is reversed 

(without the summations) to  broadcast the result. Total communication cost is a follows: 
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Algorithm 

Butterfly sum 

S ( Q )  transpose 

0(log Q) transpose 

Table 4: LT Performance Models Specialized for 2-D Mesh (where they differ) 

Revised Data Volume 

Py log2 4 7  

- 4 (J + 1)(2J + 5)K 
9 P 

26 ( J  + 1 ) J K  
9 P (Ft + 1) 

PY 

- 

13 (J + 1)JK  
3 P 
- 

When the vector becomes small, the hybrid algorithm switches to an exchange algorithm in 
which each processor communicates all the remaining data at each subsequent step. This elim- 

inates some of the broadcast communication. The vector length at which the hybrid algorithm 

switches is a machine-dependent constant, and the communication cost of the butterfly sum is 

well characterized by (21). This approximation is used for the expression in Table 3. 

Computation/Communication Overlap. The computation of the local sums { T," ( y)} 

can be interleaved with stages of the distributed vector sum algorithms. Similarly, the broad- 

cast can be delayed until the computation of the inverse LT, and the stages of the broadcast 

interleaved with computation. This eliminates the redundant computation on the spectral grid, 

because the broadcast is delayed, and does not change the number of messages or data volume. 

When the interleaving is organized so that the communication of one stage of the algorithm is 

overlapped with the computation of the next stage, the ring sum is able to perform 0(J4/Py) 
computation while communicating 0 ( P y J 3 )  data [35]. This overlapping can be highly effective 

for small Py and/or large J ,  decreasing the cost of communication significantly. 

Overlap is less effective for the butterfly sum. Interleaving only applies to the recursive halving 

phase of the algorithm, and the communication of a vector of length D/2' is overlapped with 

the computation of local sums for a vector of length D/2'+', i.e., half the size, rather than the 

same size as in the ring sum. Due to  time constraints, we have evaluated the overlap technique 

only in the ring sum algorithm. 

Bandwidth Limitations. A ring can be embedded in a hypercube or bidirectional mesh, 

and ring sum does not suffer from bandwidth limitations on either interconnection topology. 

The exchange and recursive halving components of the butterfly sum algorithm have the same 

communication structure as the FFT and, thus, suffer from bandwidth limitations on a mesh. 
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But the recursive halving component suffers less than the distributed FFT. In the first step, 

D / 2  data are exchanged with nearest neighbors without competition. In the second step, D/4 
data are exchanged with processors 2 hops distant and 2 processors compete for each wire. In 

the fourth step, 4 processors must send D/8 data over the same wire, and so on, with the result 

that data volume must be scaled by (1/2) logz &. As before, we use the value for the recursive 
halving algorithm in qualitative comparisons, giving the expression in Table 4. 

Algorithm Limitations. In order to exploit symmetry (Le., to avoid computing spectral 

coefficients for negative wavenumbers), corresponding latitudes from the northern and southern 

hemispheres are paired. Hence, the 3 index set is partitioned over the P y  column processors 
into 2Py equal-sized blocks, and two blocks are assigned to each processor column. Thus, 

Py 5 3 / 2  if whole processor rows are not to be idle during the LT. Similarly, Px  5 M + 1 x 
(2/3)(5 + l), if whole processor columns are not to be idle. 

Load Balance. Load imbalance arises if Py does not divide 3/2 evenly, with the processor 

row with the maximum load computing 2 c [ J / ( 2 P y ) l  flops per spectral coefficient instead of 

c ( J / P y ) ,  for some constant c. The communication volume does not change because spectral 

coefficients are being communicated, not Fourier coefficients. 

The performance of the distributed LT algorithms is also affected by the FFT algorithm used. 

As the Fourier transform is unordered, the distributed FFT algorithm assigns blocks of per- 

muted Fourier coefficients to the PX processor columns. This assignment approximately bal- 

ances the assignment of “short” Legendre transforms (large wavenumbers) and “long” Legendre 

transforms (small wavenumbers) [32], but the load balance is not perfect and some processor 

columns have more work than others. A simple (0ver)estimate of the maximum number of 

spectral coefficients assigned to  a processor column is 

and 3(M -+ l )K  for Px 2 M-j- 1, in contrast to (2/9)(J + l)(2J + 5 ) K / P x  for a load balanced 

assignment. If a transpose F F T  is used, then the wavenumber dimension is not partitioned. 

The maximum number of spectral coefficients assigned to a processor column is ( 3 / 2 ) ( A 4  + 
1)(M + 2) / ‘K /Px l ,  and there is load imbalance if PX does not divide K evenly. 

Load imbalance in the assignment of spectral coefficients affects both the cotnmunication and 

computation costs, scaling both proportionately, as indicated in Tables 5 and 6. 

6.2. Transpose LT 

The transpose algorithms of $5.2 can also be used to  reorganize the Fourier grid so that the LT 
can proceed without further communication. If the FFTs are computed using a distributed algo- 
rithm, then the forward LT requires that the Fourier grid first be reorganized from ( M x  I &, I<) 

to ( M x ,  J, K y ) .  The transform then produces a ( M x ,  N ,  Ky) decomposition of the spectral 
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Table 5: Relative Increase in Computation and Communication Costs in  Fourier 'Transforms 
As a Result of Load Imbalances 

Dist. FFT/Dist. LT 

Dist. FFT/Trans. LT 

grid. For the inverse LT, no further reorganization is needed, but the Fourier grid must be 

returned to the original ( M x ,  &, K) decomposition before the inverse FFT algorithm can 

begin. If the FFTs are computed using a transpose algorithm, then the Fourier grid must be 

reorganized from ( M ,  & ,  K x )  to ( M Y ,  3, Kx) before the forward LT, and from ( M Y ,  3, K , Y )  
to  (MI J y ,  K x )  after the inverse LT. 

In both cases, the reorganizations require PX independent transposes, each involving Py proces- 

sors. Note that these transpositions involve the truncated Fourier grid rather than the spectral 

coefficients: that is, ( M  + 1) x 5 x K complex values. Hence, assuming perfect load balance, 

D = 16(M + l ) J K / P x  for the transpose preceding the forward LT and D = 10(M + l ) J K / P x  

for the transposition following the inverse LT. Adapting (17) and (18) to  this situation and 

using 25 3 M  + 1, we obtain the expressions in Table 3 for LT-related communication costs 

when using transpose algorithms. 

The transpose LT algorithms, like the transpose FFT algorithms, become less efficient when 

modified to overlap computation with communication. Bandwidth limitations on a mesh affect 

the transpose LT algorithms in the same ways as the transpose FFT algorithms, as indicated 

in Table 4. 

Algorithm Limitations. The distributed FFT/transpose LT algorithm decomposes the 

vertical dimension before computing the LT and, hence, requires Py 5 I( to  avoid idle processor 

rows. For processor columns not to  be idle requires Px 5 M + 1 x ( 2 / 3 ) ( 5  + 1). 

Conversely, the transpose FFT/transpose LT algorithm decomposes the wavenumber dimension 

before computing the LT and requires Py 5 M + 1 to avoid idle processor rows. For processor 
columns not to be idle requires PX 5 K .  
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Algorithm 

Table 6: Relative Increase in Computation and Communication Costs in Legendre Transforms 
As a Result of Load Imbalances (worst-case approximations) 

Computation Cost 

rJ/(2pY)l rj</px1 
J / ( 2 f i )  I-(/& 

Trans. FFT/Dist. LT 

Dist. FFT/Trans. LT: 

rIc/f i1 6Px 
~ I _ _  

K / P y  2 J + 5  
Px 1 $(J + 1) 

Trans. FFT/Trans. LT: 

Data Volume 

( l + g $ )  2 

Load Balance. Load imbalances occur in the distributed FFT/transpose LT algorithm if 
P y  does not divide K evenly, and in the transpose FFT/transpose LT if Px does not divide Is’ 
evenly. 

The distributed FFT/transpose LT is also subject to  load imbalance as a result of the distribu- 
tion of spectral coefficients generated by the distributed FFT, as described for the distributed 

FFT/distributed LT algorithm. Because the transpose FFT/transpose LT algorithm also par- 

titions the wavenumber dimension, it also suffers from load imbalance. Since all equipartitions 

incur the same communication costs in the transpose algorithms, we minimize load imbalance 

by using the partitioning strategy described by Barros and Kauranne [3]. This pairs “short” 

transforms with “long” transforms in the assignment, and there is no load imbalance when Py 
divides ( M  + 1)/2 evenly. Let 

M f l  M + l  
cy=-- - 

2- L 2PY i * 

With the Barros-Kauranne strategy, the maximum number of spectral coefficients for a given 
vertical level assigned to a processor column is 

- ‘ M  + 
+ 2 ,  +- GPycu(1- C Y )  -  CY for Py 5 (M + 1) 

2 PY 
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and 3 ( M +  1) for f i  2 M + 1. Load imbalances in the assignment of spectral coefficients affect 

both the communication and computation costs, scaling both proportionately. See Tables 5 
and 6. 

7. Qualitative Analysis 

The three FFT algorithms described in 55 perform exactly the same computations. The four LT 
algorithms described in $6 perform essentially the same computations, modulo different partial 

orders and some redundant computations on the spectral grid. The FFT and LT algorithms are 

distinguished primarily by their coinmunication performance and their load balance. In this 

section, we use the communication cost and load balance models (Tables 1-6) to make simple 

qualitative comparisons. 

7.1. Parallel FFT Algorithm Comparisons 

Data Transfer Costs. @ ( Q )  transpose communicates the least data: @ ( J 2 1 < / P )  per pro- 

cessor versus @((log, P x ) J * K / P )  for @(log&) transpose and distributed FFT. Hence, O(Q)  
transpose should perform better on large problems, particularly if data transfer costs ( t w )  are 

high relative to  message startup costs ( t S ) .  

Message Startup Costs. Distributed FFT and @(log Q) transpose send fewer messages 

than O(Q)  transpose: @(log&) rather than O(Q) .  Hence, they should perform better when 

message startup costs are large relative to data transfer costs, and on problems that are small 

relative to  the number of processors: that is, when J 2 K / P  is small. 

Computation /Cornmimicat ion Overlap. Distributed FFT communicates the rnos t data 

but is the most efficient at  overlapping communication with computation and, hence, should 

perform better on compnt.ers that support computation/cornmunication overlap. 

Bandwidth Limitations. Distributed FFT and @(log Q) transpose suffer less than O(Q)  
transpose from bandwidth limitations on mesh networks; when these are taken into account, 

their effective data volumes differ only by constant factors from that of the O(Q)  transpose. 

7.2. Parallel LT Algorithm Comparisons 

Data Transfer Costs. 
per processor versus @((log, Py)J21i’ /P)  for @(log&) transpose and O ( P y J 2 K / P )  for ring and 

butterfly sum. Hence, @(Q) transpose should perform better on large problems, particularly if 

data transfer costs are high relative to message startup costs. 

For large P y ,  O(Q)  transpose communicates the least data: O(J21</P) 
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On smaller numbers of processors, the coefficient as well as the complexity of the data transfer 

term needs to  be considered. As the O(Q) transpose operates on the truncated Fourier grid, 

each processor communicates at  least (52/3)J21<(Py - l ) / ( P & )  words. The summation algo- 

rithms operate on the spectral coefficients. Thus, ring and butterfly sum need move only about 

(16/9)(J2K)(q/ - 1)/P words, and, for PY < 10, these algorithms communicate less data than 
the transpose. 

Message Startup Costs. As butterfly sum and Q(1ogQ) transpose send the fewest messages 

(2log2& versus 2Py for the others), they should be superior on machines where message 

startup costs are large and on problems that are small relative to  the number of processors. 

Again, the data  volume term for O(1ogQ) transpose is asymptotically smaller than for the 

butterfly sum, but is larger for PY < 24. 

Computation/Communication Overlap and Bandwidth Limitations. Ring sum can 

overlap computation and communication when Py is small or J is large. It does not suffer 

from bandwidth limitations on mesh computers and has the smallest data volume on mesh 

computers. 

7.3. Parallel Spectral Transform Algorithm Comparisons 

A parallel spectral transform algorithm must specify not only a parallel FFT and LT algorithm 

but also a processor grid aspect ratio (Px and P y )  for a given number of processors. Px and 

Py are the processors used in the FFT and LT, respectively. 

Aspect Ratio. Algorithmic comparisons are complicated by the fact that different com- 

binations of FFT and LT algorithms perform best with different aspect ratios. For example, 

consider the algorithm combination O(Q)  transpose FFT and Q(Q)  transpose LT. Here, a 

square grid is most efficient, as comparable amounts of data are moved in each phase in the 

same way, and overlap is not exploited, so the difference in computational cost between the 

two phases is not an issue. In contrast, for distributed FFT/ring sum LT it is most efficient to 

(a) apply all processors to  the LT for small P ;  (b) use remaining processors for the FFT until 

communication costs in each phase are comparable; and (c) use an aspect ratio that favors the 

FFT increasingly for large P. The reason is that for small P the ring sum moves less data than 

does the distributed FFT and permits more computation/communication overlap. For large Y, 
the ring sum sends more messages and more data, and the amount of computation available 

to  overlap communication is small. This analysis changes on meshes, where the ring sum is 

favored if message startups do not dominate communication cost. 

These considerations suggest that  it is not sufficient to perform separate studies of FFT and LT 
algorithms, with the goal of selecting an optimal FFT and an optimal LT algorithm for inclusion 
in a parallel spectral transform. Instead, we must consider all possible pairs of algorithms at 
all possible aspect ratios. 
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Load Balance. Load balance issues arise when evaluating different FFT/T,T algorithm com- 

binations. Load balance is sensitive to problem size and number of processors, so general co111- 

parisons are difficult to make. While load balance problems can often be avoided by intelligent 

choices of the number of processors and aspect ratio of the logical grid, these choices implicitly 

represent algorithm limitations for the given algorithm combination. 

There are two situations in which load imbalance is difficult t o  avoid: 

1. The number of vertical levels is relatively small in climate models. Hence, transpose 

algorithms tend to  need to  apply relatively more processors in the other dimensions 

to avoid idle processors. For example, a transpose FFT implies a need for more UI’ 

processors. Because communication costs increase with P ,  LT performance will be worse 
than if an equal number of processors were applied to  both FFT and LT. 

2. The partitioning of the spectral coefficients usually introduces some load imbalance. The 

distributed FFT suffers the most from this phenomenon, but transpose FFT/transpose 

LT is subject to  it also. 

The effects of load imbalances are summarized in Tables 5 and 6; from these expressions, we see 

that transpose FFT/distributed LT i s  slightly less sensitive to  load imbalance problems than 

other algorithms. 

7.4. Summary 

The qualitative comparisons suggest that no single algorithm is likely to  be optimal in all 

situations. The choice of algorithm depends on a variety of factors such as problem size, type 

of network, number of processors, and communication parameters. 

8. Empirical Studies 

As indicated in preceding sections, the analytic models introduced in Tables 1-4 can provide 
insights into performance issues. The models can also be used to evaluate scalability and to 

make rough performance estimates [14,15,22]. For definitive algorithm comparisons, however, 
empirical studies are required to  calibrate and validate the models. We expect constant factors 

to  matter for a large range of multiprocessor sizes, and the relative efficiency of the imple- 

mentations of the different algorithms can also play a crucial role. For example, the @(log Q )  
transpose requires more dat.a copying than the other algorithms, increasing its “effective” 1,” 
value, 

In this section we describe our experimental vehicle, methodology, and results. We demonstrate 

that the best algorithms do vary with architecture, number of processors, and problem size. 

We compare the optimal algorithms with a robust and asymptotically optimal algorithm, to  

indicate the importance of optimizing on the different platforms. We also use the results of 
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the algorithmic comparison to  identify the performance-critical aspects of each platform and 

to make simple scaling predictions. 

8.1. PSTSWM: A Testbed Code 

To permit a fair comparison of the suitability of the various algorithms for atrnosplieric models, 

we have incorporated the algorithms in a single testbed code called PSTSWM (for parallel 

spectral transform shallow water model). 

PSTSWM is a message-passing parallel implementation of the sequential Fortran code STSWM 
2.0 [ZO]. STSWM uses the spectral transform method to solve the nonlinear shallow water 

equations on a rotating sphere; its data structures and implementation are based directly on 
equivalent structures and algorithms in CCMZ. 

PSTSWM differs from STSWM in one major respect: vertical levels have been added to permit 

a fair evaluation of the transpose algorithms. This is necessary because in a one-layer model, 

a transpose algorithm reduces to a onedimensional decomposition of each grid and hence can 

utilize only a small number of processors. The addition of vertical levels also has the advantage 

of modeling more accurately the granularity of the dynamics computation in atmospheric model. 

In all other respects we have changed the algorithmic aspects of STSWM as little as possible. 

In particular, we did not change loop and array index ordering. Although such changes would 

probably improve performance of some algorithms, our goal was to have a code as sirnilar to  a 

real atmospheric model as possible. 

PSTSWM is structured so that a variety of different algorithms can be selected by runtime 

parameters. The FFT can be calculated using the distributed, O(Q)  transpose, or @(log&) 

transpose algorithms. The LT can be calculated using either the ring sum, butterfly s u m ,  

O(Q)  transpose, or @(log&) transpose algorithms. In addition, the distributed FFT can use 

either the tw*block algorithm that permits computation/communication overlap or the one- 

block algorithm, and the ring sum LT can use either the overlap or nonoverlap algorithms. 

Additional parameters select a range of variants of each of these major algorithms [36]. Note 

that all parallel algorithms were carefully implemented, eliminating unnecessary buffer copying 

and exploiting our  knowledge of the context in which they are called. At the present time, 

this allows us to  achieve better performance than can be achieved by calling available vendor- 

supplied routines. Hence, it provides a fairer test of the parallel algorithms. 

8.2. Target Computers 

We performed experiments on the five parallel computer systems listed in Table 7. These 

systems have similar architectures and programming models, but vary considerably in their 

communication and computational capabilities. Our values for t ,  and t ,  differ from those 

reported by most researchers [10,11] because we measure the time required to swap floating- 

point values between two processors rather than the time to  send bytes from a source to  a 

destination. Also, the computational rate is measured by running PSTSWM on a single node 
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Name os Processor 
nCUBE/2 VERTEX R3.2 nCUBE 2 
iPSC/860 NX 3.3.2 i860 
DELTA KX/M R1.5 i860 
Paragon O S F / l  R1.1.2 i86OSP 
Paragon SUNMOS i86OSP 

Table 7: Parallel Computers Used in Empirical Studies 

Network P 
hypercube 1024 
hypercube 128 

I6 x 32 mesh 512 
16 x 32-mesh 512 
16 x 32 mesh 512 

Name t ,  (psec) t ,  (psec) 

iPSC/860 200 1.4 
DELTA 240 0.84 
Paragon (OW) 350 0.18 
Paragon (SUNMOS) 230 0.04 

nCUBE/2 240 2.3 
Single-processor MFlops/sec 

1.2 
9.8 
9.8 
11.6 
11.6 

and so is an achieved rather than a peak rate. 

The Paragon experiments used the OSF-based R1.1.2 operating system and the low-overhead 

SUNMOS operating system from Sandia National Laboratories and the University of New 

Mexico. As both systems are still evolving, any conclusions as to their performance will be short- 

lived. They are interesting for this study, however, because they have significantly different 

performance characteristics. 

8.3. Methodology 

PSTSWM incorporates too many algorithmic variants to  permit a comprehensive study of all 

possible combinations of parameters, problem size, computer, and processor count. Hence, we 

proceeded in two stages: algorithm selection arid algorithm comparison. 

Algorithm Selection. We first performed a series of tuning experiments to identify “op- 

timal” communication parameters for each FFT and LT algorithm variant on each computer. 

For example, these parameters specify whether to  use blocking or nonblocking sends and re- 

ceives, or what schedule to use when the order of communication requests is not fixed by the 

algorithm. These experiments were performed using one-dimensional decompositions (Px = 1 

or fi  = l ) ,  allowing FFT and LT algorithms to be studied in isolation. Problem dimensions 

were reduced to  provide the correct computation and communication granularities. For exam- 
ple, when evaluating the ring sum algorithm for a 16 x 8 processor grid at T85L32 resolution, 

a 1 x 8 processor grid was used with the number of vertical levels reduced by a factor of 16 

(from 32 to  2). 

We initially evaluated communication parameters only on “largest” and “mid-sized” computer 

configurations: for example, P = 512 and P = 128 on the Paragon. If one set of communication 
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parameters proved consistently superior, no further experiments were performed. We expected 

the performance impact of communication parameters to be insensitive to problem granularity 

and number of processors, and we found this to be true in most cases When a difference 

was significant, we selected the parameters that worked best for the larger configurations. 

In all cases, subsequent experiments for a given platform and algorithm used a fixed set of 

communication parameters. These experiments were also used to eliminate noncompetitive 

FFT and LT algorithmic &ants. 

Algorithm Comparisons. A second set of experiments compared all possible combinations 

of the remaining FFT and LT algorithms on all possible aspect ratios for each power of two 

number of processors supported by each computer. For example, on the Intel DELTA and 

Paragon, we used 1 ,  2 , 4 ,  8, 16,32, 64, 128,256, and 512 processors; for 32 processors, we tried 

the aspect ratios 1 x 32, 2 x 16, 4 x 8, 8 x 4, 16 x 2, and 32 x 1. 

To measure the importance of the algorithm tuning and comparison, we repeated these exper- 

iments using a reference algorithm comprising the O(Q)  transpose FFT and LT algorithnis. 
The reference algorithm uses a particularly simple and portable communication protocol and is 

asymptotically optimal in the sense that it has the smallest data volume ( tu, ) ;  as the problem 

size grows, this term comes to dominate communication costs in all of the parallel algorithms. 

All experiments used the performance benchmark described in [34]: global steady state non- 

linear zonal geostrophic flow. Experiments were performed for problem sizes T21L8, T42L16, 
and T85L32. 

8.4. Results: Algorithm Selection 

In presenting the results of the algorithm selection experiments, we do not discuss the co~ii- 

munication parameters studied (see [36] for details) but focus on the algorithms. Table 8 

summarizes both the algorithms considered and those selected for further consideration on dif- 

ferent machines. For the most part, the table is self-explanatory. We always selected at least 

one distributed algorithm and one transpose algorithm for both the LT and FFT. In some cases, 

two distributed or transpose algorithms were selected, indicating that both were competitive 

for at least some of the problem sizes and processor counts being investigated. The number 

of distinct parallel spectral transform algorithms selected for each platform is also indicated 

in Table 8. For example, on the iPSC/860, seven algorithms were selected: 2 parallel FFT 
algorithms x 3 parallel LT algorithms plus the reference algorithm. 

8.5. Results: Algorithm Comparisons 

Tables 9 and 10 list the best algorithm for each computer, problem size, and procmsor count. 

Table 9 lists the best “FFT algorithm/LT algorithm” pair, where the FFT and LT algorithms 

are denoted by the keys listed in the first column of Table 8. If the best algorithm uses a one- 

dimensional decomposition (i.e., either the FFT or the LT is  not parallelized), then no algorithm 
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Type 
nCUBE/2 
nCUBE/2 
nCURE/2 
iPSC/860 
iPSC/860 
iPSC/SSO 
DELTA 
DELTA 
DELTA 
PG-OSF 
PG-OSF 

Table 8: Parallel Algorithms Considered in Algorithm Selection Studies, and Algorithms 
Selected for Algorithm Comparison Studies on nCUBE/2 (N), iPSC/860 (I), DELTA (D),  
Paragon-OSF (P), and Paragon-SUNMOS (S). A dash indicates a noncompetitive algorithm 
that was not considered for further study. The reference algorithm is included in the nuinber 
of algorithm comb in at ions. 

T L  2 

21 8 -/R 
42 16 - 

85 32 ---- 
21 8 -/R 
42 16 - 
85 32 - 

21 8 -/B 
42 16 -/R 
85 32 - 

21 8 -/B 
42 16 - 

Key I Phase 1 Algorithm 1 Variant 

no overlap 
overlap 

@(Q) transpose 
@(log Q) transpose 

no overlap 
overlap 

Butterfly sum 
O(Q)  transpose 
@(log&) Transpose 

Number of algorithm combinations 

SUNMOS 
SUNMOS 

I ( D I  P 1 S 

Y Y Y Y  

7 ] 7 ] 1 3 1 1 3  

42 16 -/B 
85 32 - 

Table 9: Best Parallel Algorithms as a Function of Machine/OS, Problem Size, and Processors 

I Machine I Problem 1 

PG-OSF I 8 5  I 32 I - 
SUNMOS I 2 1  I 8 I -/B 

Process 
8 1 16 I 32 
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Problem 

T I L  

Table 10: Best Logical Aspect Ratios as a Function of Machine/OS, Problem Size, and Proces- 
sors 

Processors 
2 1  4 1  8 1  16 1 32 I 64 I 128 I 256 I 512 

7 

21 
42 
85 
iPSC/860 

8 1 x 2  1 x 4  1 x 8  1 x 1 6  8 x 4  8 x 8  8 x 1 6  1 6 x 1 6  - 

16 - - 1 x 8  1 x 1 6  8 x 4  8 x 8  1 6 x 8  1 6 x 1 6  1 6 x 3 2  
32 - - I - - 4 x 1 6  1 6 x 8  3 2 x 8  3 2 x 1 6  

21 
42 
85 

8 1 x 2  1 x 4  1 x 8  4 x 4  8 x 4  8 x 8  8 x 1 6  - - 
16 - 1 x 4  1 x 8  1 x 1 6  8 x 4  1 6 x 4  1 6 x 8  - - 
32 - - - I 4 x 8  1 6 x 4  1 6 x 8  - - 

21 
42 
85 

8 1 x 2  1 x 4  1 x 8  8 x 2  8 x 4  4 x 1 6  8 x 1 6  1 6 x 1 6  - 

16 1 x 2  1 x 4  1 x 8  1 x 1 6  8 x 4  1 6 x 4  1 6 x 8  1 6 x 1 6  1 6 x 3 2  
32 - - - 1 x 1 6  1 x 3 2  3 2 x 2  3 2 x 4  3 2 x 8  8 x 6 4  

Paragon-OSF 
21 8 
42 16 
85 32 

1 x 2  1 x 4  1 x 8  8 x 2  8 x 4  8 x 8  8 x 1 6  8 x 3 2  - 
- 1 x 4  1 x 8  1 x 1 6  1 6 x 2  1 6 x 4  8 x 1 6  1 6 x 1 6  1 6 x 3 2  
- I - - 4 x 8  1 6 x 4  1 6 x 8  1 6 x 1 6  3 2 x 1 6  

Paragon-SUNMOS 
21 8 1 x 2  1 x 4  1 x 8  2 x 8  4 x 8  8 x 8  
42 16 1 x 2  1 x 4  1 x 8  1 x 1 6  8 x 4  1 6 x 4  
85 32 - - - - 1 x 3 2  2 x 3 2  

8 x 1 6  8 x 3 2  - 
1 6 x 8  1 6 x 1 6  1 6 x 3 2  
1 6 x 8  3 2 x 8  1 6 x 3 2  
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is listed for the unparallelized transform. Table 10 lists the aspect ratio associated with the best 

algorithm (i.e., the number of processors allocated to the FFT and LT, respectively). We see 

considerable variety, with 12 of the 30 algorithm combinations being optimal in some situations, 

as well as a variety of different aspect ratios. The variation in the aspect ratios stems both 

from the use of different algorithms in different situations and from limitations on transpose 

algorithms because of the number of vertical levels. 

The tables do not indicate how much difference there is between different algorithms. Figures 2 

and 3 provide some of this information. They shows on each machine at  T42 and T85 resolution 

the performance of the reference algorithm and three other “interesting” algorithms: normally 

those algorithms that proved to be optimal for some processor count on that machine and 

problem size. (In a few cases, an algorithm that is optimal for just one processor count is 
omitted, if another algorithm has similar performance.) Performance is given relative to  the 

performance of the best algorithm at each processor count. 

Specific comments on the empirical results follow: 

1. The reference algorithm is never optimal, and in some cases is ninety per cent worse than 

the best algorithm. 

2. Some form of transpose forms part of the optimal algorithm combination in almost all 

cases on 16 or more processors. On maximal processor configurations, the algorithm T/T 
(O(Q)  transpose for both FFT and L?’) is either optimal or nearly optimal in  almost all 

cases. Notice that this algorithm is identical with the reference algorithm except that its 

communication parameters have been tuned for the particular machine. 

3. The algorithm combination that is optimal in the largest number of configurations is 

T/R: O(Q)  transpose FFT and (overlapped) ring summation LT. This seems a good 

candidate for a standard algorithm, although its performance degrades for large P ,  par- 

ticularly on the Paragon. This situation may change when the message coprocessor on 

the Paragon is enabled, decreasing message startup costs and better supporting compu- 

tation/communication overlap. 

4. Because the FFT involves more data than the LT, optimal algorithms on small numbers 

of processors (16 or less) mostly decompose data structures in a single dimension so as 
to avoid communication in the FFT, and use either the ring summation or butterfly 

summation algorithm for the LT. When the FFT is parallelized, transpose algorithms are 

almost always superior to  distributed FFTs. Algorithm combinations such as O/R and 

D/T are optimal in a few configurations, but are not consistent in their performance. 

Finally, Fig. 4 give the execution time for the best algorithm on each computer as a function 

of P ,  for problem sizes T42 and T85. We see considerable variation in execution times, with 

the nCUBE slower than the other machines by an order of magnitude, and the Paragon un- 

der SUNMOS fastest in almost all situations. The 512-processor SUNMOS time for T85L32 

represents a computational rate of 4.3 GFlops/second. 
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Figure 2: Performance of various parallel algorithms on nCUBE/2, iPSC/SSO, and Intel Delta, 
relative to the best algorithm at that processor count. 
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Figure 3: Performance of various parallel algorithms on Intel Paragon, relative to the best 
algorithm at that processor count. 
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Figure 4: Execution time for 12 time steps of best algorithms for different P ,  at T42 and T85 
resolutions. 
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8.6. Discussion 

These results demonstrate the limitations of asymptotic analysis: the asymptotically optimal 

transpose algorithms are not the most efficient in many situations, particularly for snlitller 

P .  The results also demonstrate the importance of tuning algorithms to the communication 

characteristics of a particular machine. In some cases, tuning makes a greater difference than 

the choice of algorithm. 

A parallel spectral transform code designed for portability should probably incorporate several 

parallel algorithms. The testbed code PSTSWM indicates that this is feasible. The most useful 

algorithms seem to be the two transpose algorithms for both F F T  and LT, and the overlapped 

ring sum LT algorithm. A distributed FFT algorithm would also be needed if the number of 

vertical levels is small. A program designed to execute on a small number of processors ( 1 B  

or less) can decompose data structures in one dimension only, and use butterfly summation or 

overlapped ring sum LT algorithms. 

9. Caveats and Generalizations 

We have attempted to make our empirical studies relevant and comprehensive. But the gen- 

erality of the study required some simplifying assumptions, and certain algorithms were not 

examined. In this section, we briefly discuss some of these issues. Algorithm comparisons may 

need to be repeated if problems of interest differ drastically from our simplifying assumptions. 

Benchmark codes like PSTSWM make this feasible. 

Problem size. For these experiments, problems sizes and processor counts were all powers 

of two. All of the algorithms work best in under these conditions. Some, like the O(1ogQ) 
transpose and distributed FFT algorithms, do not work at  all on a nonpower-of-two nurtiber 

of processors. Other algorithms suffer performance degradation. Nonpower-of-two problem 

dimensions also cause load imbalances, and the amount of performance degradation is strongly 
algorithm dependent. 

Real weather and climate models often use a number of vertical levels significantly smaller 

than the other dimensions of the problem. For example, T213L31 i s  used in some operational 

weather-forecast models [22]), corresponding to a 640 x 320 x 31 physical grid. The transpose 

FFT algorithms suffer because they must use a larger number of processors for the LT than an 

algorithm that uses a distributed FFT. 

Decomposing “field” dimension. As mentioned in 55.2, one technique for applying the 

transpose algorithms when there are few vertical levels is to partition the state variables among 

the processors also. (This issue did not arise in our  experiments, because our example problems 
had sufficient vertical levels relative to other problem dimensions.) This technique can be used 

in two ways in a transpose FFT/distributed LT algorithm: 
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la. Starting with the usual (Zx, J y  , K )  distribution of the physical grid, we transpose within 

processor rows over both I< levels and 8 fields. We compute the FFTs, then transpose 

back (again within rows) to a (Mx, J y  , K )  decomposition of the Fourier grid. We then 

proceed with the LT. A similar approach is used for the inverse transform, although only 

5 rather than 8 fields are available. This approach performs twice as many transposes 

as the transpose FFT/distributed LT algorithm, but can use 5 times more processors 

without load imbalance. It has been used successfully in  the message-passing version of 

CCM2 [7]. 

lb .  We can avoid the double transpose at the cost of redundant work and some other addi- 

tional communication by duplicating one field and decomposing over Ii levels and 3 sets 

of 3 fields. After the FFT, we then have separate distributed LT calculations for 6 ,  4,  
and C for the forward transform. For the inverse transform, we have 5 1 -  LT calculations 

to  distribute over (fields 6, 4, <, U ,  V ) ,  and the U and V calculations require the updated 

6 and 4 fields. The simplest approach, assigning U and V to  the 6 and 4 “columns,” 

requires duplication of 6 and 4 between processor columns and significant load imbalance 

and redundant work. A better load-balancing strategy would require something equiva- 
lent to  an additional transpose and would still not eliminate all redundant work. Note 

that load imbalance in the inverse LT due to assignment of fields also implies load im- 

balaiice in the inverse FFT. We gain (at best) the ability to use 3 times more processors 
with this approach. 

There is a single approach to distributing fields during the transpose FFT in a transpose 

FFT/transpose LT algorithm: 

2. Again duplicate one field and decompose over 3Ii‘ sets of fields, transposing across pro- 

cessor rows. After the FFT, transpose within processor columns, with each processor 

column computing forward LTs for either 6, 4, or <. For the inverse transform, we again 

need to assign the U and V calculations, duplicating the updated 6 and 4 fields. Similar 

communication and computation costs arise. 

The double transpose FFT cannot be applied here because the transpose LT requires that the 

field and vertical dimensions remain decomposed if all processors are to be utilized. 

We feel that the most promising of these approaches is ( la) .  It is simple, is relatively in- 
dependent of problem size and number of processors, and incurs no additional computation 

cost. 

Serial FFT algorithm. FFT routines that can handle vector lengths with factors of 2, 3, 
4, and 5 allow a larger set of problem sizes to  be treated. In addition, exploiting a factor of 

4 is approximately 30 per cent faster than two factors of 2. These routines can be exploited 

directly in transpose FFTs. The distributed FFT can also be generalized, but some efficiency 

is lost. 
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Generalized B(log &) algorithms. A range of hybrid algorithms combining aspects of the 

O(1ogQ) and 0(Q) transpose algorithms can be defined that trade off message counts and 

communication volume in different ways. For example, the Q(log Q) algorithm can be niodifkd 

to use log,& stages by communicating with 3 other processors at  each stage, assuming that 

the problem size and number of processors support this. Another approach is to use a switch, 

taking a few steps of the O(1ogQ) algorithm, then switching to  the O(Q)  algorithm, analogously 

to the butterfly sum algorithm. 

The distributed F F T  can also be modified to use log, Q stages and can then exploit factors of 

4 to reduce computation costs. And it is possible to apply a transpose-like algorithm within 

the FFT itself 191. 

These hybrid algorithms can improve performance somewhat in regimes where message startup 

costs and data volume costs are comparable. However, they place additional requirements on 

problem size and processor counts. 

Mesh-based algorithms. We have restricted ourselves to algorithms designed for one- 

dimensional processor meshes. In cases where nonsquare logical meshes were mapped to ap- 

proximately square physical grids, it would be possible in principle to utilize specialized algo- 

rithms that exploit the extra connectivity [2,30]. Because our experiments show that “optimal” 

processor grids are mostly close to square, we believe that these algorithms would not change 

our results. This issue will be addressed in further research. 

Future work. In order to perform empirical investigation of some of the issues discussed in 

this section, we plan to incorporate into PSTSWM both distributed and transpose versions of 

the 2-3-4-5 parallel FFT, the double transpose FFT, and the hybrid e(&)-@(log Q)) transpose 

algorithms. These add additional capabilites for problem and machines sizes that we have not 

yet examined, but should not change our preliminary conclusions. Given the success of the 

overlap ring sum algorithm, we will also implement the overlap butterfly sum algorithm. This 

may increase the range of optimality of the transpose FFT/distributed LT algorithms on some 

machines. 

10. Conclusions 

We have conducted a detailed analysis and empirical investigation of parallel algorithms for the 

spectral transform method. This study lias allowed us to identify optimal algorithms for various 

problem size and machine parameter regimes. This information should be directly useful to 

developers of parallel spectral-transform-based climate and weather models. 

Most of the observed performance trends can be explained using our analytic performance mod- 

els; this gives us confidence both that these models are correct and that the parallel algorithm 

implementations incorporated in our testbed code are efficient. I t  also provides a basis for 
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extrapolating the results obtained here to  other regimes. However, the modpls as described 

here are not sufficiently detailed to provide detailed performance predictions. In future work, 

we will investigate to what extent the empirical studies can be used to generate performance 

models that can be used for prediction. 

This exhaustive study of alternative algorithms, communication techniques, and aspect ra- 

tios suggests some conclusions regarding parallel libraries. It is common practice in parallel 

computing to select parallel algorithms on the basis of asymptotic analysis, and then to incor- 

porate these algorithms in portable libraries that are used unchanged on different computers. 

The results of this study emphasize three limitations of this approach. First, asymptotically 
suboptimal algorithms may be superior in many interesting regimes. Second, reference irriple 

mentations of parallel algorithms designed for portability can be considerably less efficient than 

implementations tuned for a particular machine. Third, interactions between algorithms can 
impact performance; hence, for peak performance it can be important to optimize algorithm 

combinations rather than individual algorithms. 

Our work suggests three techniques that can be used to  overcome these limitations. First, de- 

tailed analytic models that take into account constant factors and issues such as load imbalance 

can be used to  develop improved understandings of  algorithmic tradeoffs. Second, libraries can 

be defined to incorporate multiple algorithmic options selectable at  runtime. This allows codes 

to  be tuned for different problem or machine characteristics, either by the programmer or au- 

tomatically on the basis of runtime performance data. Third, testbed codes such as YSTSU'M 
can be used to  explore algorithmic alternatives, 
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