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MULTI-RING PERFORMANCE OF THE KENDALL SQUARE 
MULTIPROCESSOR 

Thomas H. Dunigan 

Abstract 

Performance of the hierarchical shared-memory system of the Kendall 
Square Research multiprocessor is measured and characterized. The per- 
formance of prefetch is measured. Latency, bandwidth, and contention 
are analyzed on a 4-ring, 128 processor system. Scalability comparisons 
are made with other shared-memory and distributed-memory multiproces- 
sors. 
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1. Introduction 

In September of 1991, Kendall Square Research (KSR) installed their first mul- 
tiprocessor (serial number one) at Oak Ridge National Laboratory (ORNL). The 
32-processor KSR was procured as part of the High Performance Computation 
and Communication (HPCC) initiative. During the first year, the KSR system 
was evaluated and a number of applications (including Grand Challenge appli- 

cations) were ported to the shared-memory KSR [7]. In September of 1992, a 

second ring of 32 processors was added, and we began further evaluations of the 
performance and scalability of the KSR multiprocessor. 

It is generally believed that shared-memory multiprocessors are easier to pro- 
gram than distributed-memory multiprocessors, which usually employ a message- 
passing programming model. However, bus- based shared-memory multiproces- 
sors usually include fewer than 30 processors, whereas distributed-memory mul- 
tiprocessors often contain hundreds of processors. Thus it is with great inter- 
est that we study the KSR shared-memory multiprocessor, as it supports both 
shared-memory and scalability to hundreds of processors. This report summarizes 
our initial experiences with multi-ring KSR multiprocessors. 

The distinguishing feature of the KSR multiprocessor is its shared-memory 
architecture. Each processor has 32 megabytes of memory. Up to 32 processors 
are connected to a slotted, pipelined ring, called an ACE:O. Larger configurations 
are formed by connecting ACE:O’s to an interconnecting ring (ACE:l) with direc- 
tory/routing modules ( ARD’s), providing up to 1,088 processors. The memories 
of all of the processors are part of a 40-bit virtual address space managed as a 
cache, where the ring is used to transport cache lines to satisfy “cache faults.” 
Custom CMOS chips manage the cache, ring, and ring-to-ring routing. Section 
2 and [18] provide more detail on the actual implementation. 

The KSR shared-memory architecture is similar to the bus-based, uniform 
memory architecture (UMA) Sequent multiprocessors in that there is one cached 
address space. The KSR differs from the Sequent in that the Sequent does not 
have a notion of ‘‘local cache,” and in that the KSR architecture is extensible 
beyond 30 processors. The BBN shared-memory multiprocessors, a nonuniform 
memory architecture (NUMA), share KSR’s extensibility, but under the BBN’s 
Uniform operating system there is no caching. Instead, a reference to a “remote” 
shared location will always be remote, and replication is under software control. 
KSR differs from the mesh-based, distributed shared-memory multiprocessors 
DASH [14] and PLUS [l] in that these multiprocessors do not provide strongly 
ordered read/write memory operations. DASH and PLUS must use explicit syn- 
chronization operations when a specific ordering is required in accessing a shared 
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location. The KSR memory architecture is both sequentially consistent [12] and 
strongly ordered [43, so ordinary read/write memory operations can be used to 

implement synchronizations. The KSR’s ring-based memory architecture is quite 
similar to MEMNET [2]? except that a MEMNET processor has a local memory 
independent of the ring-based shared memory. Also, a shared memory location 
on MEMNET has a “home” location, a feature not required on the KSR. Delp 
[2] notes that the ring topology supports broadcast and provides an ordering of 

memory accesses so a coherency protocol is easy to implement. Both KSR and 
MEMNET pipeline the ring, so that more than one memory transaction may 
be on the ring at the same time. The Swedish DDM [lo] [ll] is a cache-only 
memory architecture (COMA) like the KSR but is based on a hierarchy of buses 
and directories. 

Additional details of the implementation of the KSR shared-memory architec- 
ture are provided in Section 2. Section 3 describes various performance measure- 
ments of the memory hierarchy of multi-ring KSR systems. Section 4 discusses 
the scalability of algorithms and applications on multi-ring KSR systems. Section 
5 summarizes scalability issues. 

2. Implementat ion 

The KSR ACE:O consists of a 34-slot backplane populated with 32 processor 
boards, or cells. The remaining two slots are used for interconnects (ARD’s) 
to the next level of the ring hierarchy (ACE:l). Each cell consists of 12 cus- 
tom CMOS chips. Four Cell Interconnect Units (CIU) and four Cache Control 
Units (CCIJ) manage the shared memory. The remaining chips comprise the four 
functional units - the Cell Execution unit (CEU), the 30 Megabytes/second 
(MBs) external 1/0 unit (XIU), the integer unit (IPU), and the floating point 
unit (FPU). An instruction pair is executed on each cycle, with one member of 
the pair coming from either the CEU or XIU and the other member coming from 
either the FPU or IPU. Thus an address calculation, load/store, or branch can 
be executed concurrently with either an integer or floating point instruction. 

Each cell runs at 20 MHz, and the floating point unit supports a pipelined 
adder and multiplier for a peak performance rate of 40 Megaflops per cell. Thus 
the KSR processor is very similar to other superscalar processors such as the Intel 
i860 and the IBM RS/SOOO (see Appendix A). The floating point unit uses 64 
64-bit registers, and the integer unit has 32 64-bit registers. The CEU uses an 
additional set of 32 40-bit address registers. Each cell holds a 256KB data cache 
and a 256KB instruction cache, and a 32 MB daughter board is attached to the 
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from: 

hardware cache 
local memorv 

back of each processor board. Release 1.0 of the OSF-based operating system 
consumes about 14 Megabytes on each cell. KSR calls the local memory on each 
processor cache and refers to the 256KB data cache as the subcache. 

The memory of every cell is part of a single 40-bit virtual address space 

managed as a hierarchy of caches. If a processor requests a location that is not in 
the local data subcache then the data is fetched from the on-cell memory (cache). 
If the data is not in the on-cell memory, then the data is fetched from the memory 
of one of the other cells on the ring(s). In each case the processor stalls until 
the data arrives. The latencies and capacity of each level of the cache hierarchy 
are listed in Table 2.1 [18]. The hardware subcache is two-way set associative 
with random replacement and write-back and uses a 2KB unit of allocation and 
a 64-byte unit of transfer. The memory cache is 16-way set associative with a 

16KB allocation unit and a 128-byte unit of transfer (subpage) from the ring. 
Various options are available for managing a “set-full” in the memory cache [18], 
and alternate strategies are still being evaluated. 

cycles capacity 

2 256KB 
18 32MB 

Memory Latencies 

1 

ACE:O 126 1GS 
ACE: 1 600 34GB 

Table 2.1: Vendor-stated memory latencies and capacities. 

An ACE:O consists of two subrings, each 128 bits wide and clocked at 40 MHz 
(twice the processor clock speed), implemented in a 34-slot midplane. Thus the 
data rate and bisection bandwidth of an ACE:O is 1 GB/second. Ring requests 
are interleaved on the two subrings based on the context virtual address. The 
ring is managed as a circular pipeline with four stages. The 128-byte packet 
(plus header) occupies ten pipeline stages. The time for the leading edge of a 

packet to travel the ring is 3.4 ps [22]. Another 3.4 ps is consumed in launching 
the request, retrieving the data from the responder’s cache, and delivering the 
data to the requesting processor. The expected latency then is about 6.8 ps. If 
the next generation processor ran twice as fast, the latency could be expected to 
drop to 4.7 ps. The interconnecting ring (ACE:l) in a multi-ring configuration 
is another 34-slot midplane operating at 1 GB/second, but the interconnection 
speed from an ACE:O to an ACE:1 is only 100MB/second. ( A  system, however, 
can be figured with multiple ACE:l connections (ARD’s) from an ACE:O.) 

KSR provides several mechanisms (prefetch, poststore, automatic prefetch) 
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to avoid or reduce the latency of a cache fault. The programmer or compiler can 

use a non-blocking prefetch instruction (up to four may be in progress from each 
processor) to reduce the latency. It takes a processor 13 cycles to issue a prefetch, 
and another 23 cycles to service the reply. It takes the responding processor 
23 cycles to issue the reply. These figures suggest that the maximum request 
rate of a processor is roughly 40MB/second, and the maximum service rate of a 

processor is roughly 100MB/second. (In the next section we will measure these 
data rates.) The poststore instruction broadcasts a subpage to all processors 
that have an invalid copy. The poststore can reduce coherency misses and the 
attendant latency. Coherency cache misses are further reduced by automatic 
prefetch or “read snooping.” If a processor sees a memory reply on the ring for 

a cache line that is presently invalid in its own cache, it will update its cache 
with the new data. Multiple requests for the same subpage on another ring are 
collapsed into a single request by the ARD, thus reducing ring traffic and load on 
the processor that owns the subpage. Instructions to lock and unlock 128-byte 
subpages are provided for serializing updates to shared information. 

3. Multi-ring Memory Performance 

A number of low-level tests were developed to evaluate the performance and scal- 
ability of the KSR memory system and its locking and synchronizing primitives. 
Tests were developed to measure latency and bandwidth of single and multiple 
ring configurations. Contention-free tests were used to validate the vendor-stated 
memory performance numbers (Table 2.1). Several concurrent memory tests were 
used to identify bottlenecks in contending for a single shared-memory location 
and to measure the aggregate data rate and scalability of interconnected rings. 
The KSR’s performance is compared with other multiprocessors whose configu- 
rations are summarized in Appendix A. 

Latency and bandwidth 

We measured the latency from the cache to the subcache at about 1 ps, in close 
agreement with the number of cycles stated by KSR in Table 2.1. (A cycle is 0.05 
ps . )  If the datum is not found in the local cache, the processor stalls and a request 
is issued on the local ring. We measured the latency between two  processors on 
the same ring to be 6.9 p s ,  which gives a data rate of 18.6 MB/second with the 
128-byte data packet. The rate is measured to the subcache. 

If the data item is not on the local ring, the request packet is routed to an 
appropriate ACE:O via the interconnecting ring (ACE:l). Thus a request packet 
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that must travel to another ring, traverses three rings. The measured latency is 

24.7 ps with a corresponding data rate of 5.2 MB/second. 
If a KSR processor does not find data in its cache, then the resulting latency 

or access time will depend on whether the data is found on the local ring or a 
remote ring. If p processors are being used in the parallel application, and the 
needed data item is equally likely to reside on any of the p - 1 other processors, 
then we can calculate the expected access time for a cache-miss on a multi-ring 
KSR (Figure 3.1). For a single ring ( p  < 33), the access time is just 6.9 ps. 

If p > 32, then the expected remote access time grows asymptotically toward 
24.7 ,us. (If another level of the KSR hierarchy were available (ACE:2), another 
two rings would be traversed, and we conjecture that the curve would ramp up 
again, asymptotically approaching 35 ps.) Although a function of the application, 
this increasing access time could cause the performance of an application to 
degrade as processors axe added. Remote access times for other scalable shared- 
memory multiprocessors (DASH [14] and DDM [lo]) also grow with the number of 
processors. Non-scalable shared memory multiprocessors (Cray Y-MP, Sequent, 
Encore) have flat remote access times. 
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Figure 3.1: Expected average access time for a cache miss. 
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We developed some simple test codes that demonstrated that both prefetch 
and poststore can eliminate the latency in a cache fault. Our initial experiences 
with inserting prefetch and/or poststore in real applications showed little im- 
provement in performance. Prefetch, however, can also be used to increase the 
effective bandwidth between two processors. Up to four prefetches per processor 
can be issued, providing a measured data rate of over 36 MB/second from one 
processor to another on the same ACE:O [8]. If the two processors are on different 
ACE:O’s, then the prefetch bandwidth drops to 19 MB/second. 

Ring and processor contention 

Several tests were constructed to measure the performance of the memory system 
under concurrent use, in an effort to determine if the processor or interconnect 
ring was the limiting factor in memory performance. 

In [8] we measured the prefetch data rate between independent processor pairs 
running concurrently on a single ring (PI 4 P2, P3 -+ P4,. . .). We performed 
the same tests on multiple-ring configurations and found that the aggregate data 
rate still scales linearly with the number of processor pairs, with the data rate 
from one processor to another at 36 MB/second. For 16 pairs (one ACE:O), the 
aggregate rate is 573 MB/second. For 64 pairs (four ACE:O’s), the aggregate 
rate is 2.2 GB/second (Figure 3.2). The aggregate data rate is not affected by 
multiple rings, since no pair crosses a ring boundary in our pairing scheme. 

However, if one member of each pair is on a different ring (PI 4 P32, P2 + 

P33,. . .), then the single-pair prefetch rate drops to 18 MB/second. For multiple 
cross-ring pairs, the aggregate rate increases linearly up to 90 MB/second for 10 
processors (5 pairs), but then flattens and declines as the 100 MB/second link 
between the ACE:O and ACE:l becomes saturated (Figure 3.3). 

Another test was an exchange of data between processor pairs using prefetch 
(PI +j Pz, P3 t) P4,. . .). In this test, a processor both provides and requests 
data. In the exchange, the provider data rate drops from 36 MB/second to 25 
MB/second, but the aggregate rate (provider + requester) climbs to 50 MB/second. 
(Note, if the two processors are on separate rings, the aggregate data rate for an 
exchange drops to 32 MB/second.) For 16 pairs (one ACE:O) doing exchanges, 
the aggregate rate is 811 MB/second. Again, the rate scales linearly even for 
multiple rings, since a pair does not cross a ring boundary. 

If we measure the data rate of a shift operation between processors using 
prefetch (3 PI 4 €’2 -+ P3. - . -+ Pn 4)) then we detect a slight reduction in the 
aggregate rate when a ring-crossing is required. For example, for 34 processors 
the aggregate exchange data rate is 850 MB/second, but the aggregate shift data 
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16 32 48 64 80 96 112 128 
processors 

Figure 3.2: Aggregate memory throughput for concurrent prefetch. 

rate is 834 MB/second. The shift data rate between processor 32 and 33 and 
between 34 and 1 is only 16 MB/second because of the ring crossing. 

Additional tests were constructed to measure the speed that a single pro- 
cessor can service memory requests from other processors. From our prefetch 
measurements, the maximum data rate between two processors on the same ring 
is 36 MB/second. If we have multiple processors requesting distinct data from a 
single processor, we measure the maximum service rate for a processor at about 
75 MB/second (Figure 3.4). The figure shows the aggregate data rate for vari- 
ous numbers of requesting processors with and without prefetch. We performed 
various tests with the server processor idle and with it touching local pages. The 
activity of the server processor seemed to have little effect on the rate at which 
it serviced memory requests from other processors. However, Figure 3.4 shows 
that the service processor is slowed by the memory requests of the other proces- 
sors. Notice that the prefetch server’s data rate (the rate at which it touches 
local pages) is slower than the server without prefetch. Since the data is already 
local, the extra prefetch instructions have only a detrimental effect on the server 
processor. Thus prefetch may not always benefit an application, and the optimal 
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Figure 3.3: Aggregate memory throughput for concurrent prefetch across two 
rings. 

use of prefetch is still m open research question [15]. In some cases, poststore 
can also degrade overall performance [21]. 

In summary, with the present speed of the processors and ring, the speed of 

the processors seems to be the limiting factor in memory performance. The one- 
gigabyte-per-second ring can sustain eight million transactions per second [19], 
and none of our concurrency tests were able to saturate the ring. 

Memory contention 

The previous tests had processors competing for the same ring or the same 
"server" processor, but not for the same memory location. A number of tests 
were used to see how the KSR scales when multiple processors try to update 
one or more shared locations or hot spots. Our worst-case contention test is 
p processors continually updating the same shared location. Like other shared 
memory multiprocessors (Sequent and BBN), the average time for the KSR to 
update a single shared location grows linearly with p [8] even across multiple 
rings. The shared location bounces from processor to processor as each processor 
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Figure 3.4: Aggregate data rate for multiple processors faulting independent 
data from a single processor. 

updates the value. A more realistic test is having p processors update m shared 
locations some fraction of the time, f ,  the remaining time being used to access 
local variables. We developed a simple, probablistic, hot-spots test where p pro- 
cessors continuously update the m shared variables. Each processor selects the 
m variables in a random order. The results of this test were consistent with the 
results of our implementation of Nanda's parameterized shared-memory test [ 161. 
Nanda's test permits us to select the fraction, f ,  of the workload that will be 
shared-variable updates and to randomly select which shared variable to update 
for each pass through the workload. A workload is an amount of local comput- 
ing randomly interspersed with a given fraction, f ,  of shared memory updates 
to rn = p shared variables. Figure 3.5 shows the average workload time ver- 
sus the number of processors for a 1% and 10% shared update fraction using p 

shared variables on p processors. Nanda argues that the workload time grows as 

1 - (1 - f / r n ) P .  Our measurements on the Sequent, BBN, and the single-ring 
KSR confirm this relationship [8]. However, for the multi-ring configuration illus- 
trated in Figure 3.5, the contention curve is a series of curves. The access times 



- 10 - 

1WL.i 1% shared update traction 

16 32 48 64 88 96 112 128 
processors 

Figure 3.5: Work load time for p processors and p shared variables. 

climb rapidly at ring crossings, as processors on the “new’9 ring will most likely 
find the shared variable they need to update on another ring and will experience 
the longer multi-ring latency. The average workload time increases with p even 
though the total amount of computation is increasing linearly with p as well, that 
is, the per-processor amount of computation is constant. This suggests that ap- 
plications with shared-memory updates need to have a computational component 
that increases faster than p for performance to scale. 

Locks and barriers 

Updates to shared variables are usually controlled by locks. On the KSR a 

hardware lock instruction, gsp, is provided to lock a 128-byte block of memory. 
The gsp is the basis of the slower, but more socially acceptable, mutez library 
routines. In the absence of contention, the average time for lock and unlock is 2.5 
ps using gsp. If two processors on the same ring are contending for the lock, then 
the average time is 14 ps. If each processor is on a different ring, the lock-unlock 
time is 32 ps. Figure 3.6 shows the lock-unlock times when p processors contend 
for the same lock. 
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Figure 3.6: Lock-unlock time. 

Nanda [lS] argues that the expected lock-unlock time is proportional to ( p  - 
l ) ( k  + t,), where IC is the time the lock is held and t ,  is the time to access the 
shared location that is the lock. As we noted earlier, the time to update a single 
shared location by p processors grows linearly with p ,  so the lock-unlock time 
grows quadratically with respect to the number of processors. For the KSR, 
the coefficients of the quadratic change for each adltional ring of processors 
contending for the lock. Clearly, an application that contends for a single lock 
may not scale well. 

KSR provides a barrier subroutine to synchronize processes or threads. A 
simple implementation would use a single lock, but as the preceding paragraph 
shows, such an implementation would not scale well. KSR provides the program- 
mer with an n-ary tree barrier which scales roughly linearly with the number of 

processors. Figure 3.7 shows average barrier delay for a four-ring KSR using a 
tree width of four. Barrier times for the iPSC/860 and the Delta are provided 
for comparison. By contrast, barrier synchronization is provided by hardware on 
the CM5 and requires only a few microseconds. 

4. Scalability Experiences 

A simple parallel implementation of a dense Cholesky matrix factorization in 
C exhibits the effect of ring-crossings on performance. Figure 4.1 shows the 
megaflop rate for factoring a 1024 x 1024 and 2048 x 2048 matrix on a 4-ring KSR. 
This implementation uses a single lock ( g s p )  to control a queue of columns to be 
done, and a set of spin-locks to control when a column is ready for access by other 
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Figure 3.7: Average barrier delay. 

processors. Poststore had no noticeable effect on the spin-locks, probably because 
the processors were already spinning on the lock by the time it was released by 
the owning processor. Performance for the 1024 x 1024 matrix flattens for larger 
number of processors because the amount of computation per processor is not 
sufficient to hide the overheads of parallelism and memory latency. 

By contrast to the simple dense Cholesky, the 1000 x 1000 LINPACK repre- 
sents the vendors best effort at parallelizing a code. Figure 4.2 compares KSR’s 
performance (coded by Nick Camp of KSR) to the Intel Delta and iPSC/860 [3]. 
On a single processor, the machines achieve about 31 Mflops. The difference in 
performance among the machines is mostly attributed to bandwidth (the Delta 
and the iPSC/SSO have roughly the same latency) and to the lower latency of 

the KSR. Again note the dip in performance at the ring-crossing. Table 4.1 com- 
pares LINPACK performance of the three multiprocessors for the largest matrix 
size that gives the optimal performance. With more computation and larger 
messages, the Delta performs slightly better than the KSR. 

The first parallel application to be ported was a 19,000 line FORTRAN code 
that calculates energy densities for high temperature superconducting materials 
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Delta 
iPSC /860 

16 32 48 64 80 96 112 128 
processors 

8K 1.7 12.5K 3.5 
9K 1.4 12K 2.6 

Figure 4.1: Megaflops for dense C Cbolesky. 

[9]. The code already contained explicit Cray parallel micro-tasking directives, so 

porting to the KSR merely required changing the names and arguments for thread 
creation and joining and for lock management. The parallel version exhibited 
near linear speedup and achieved 540 Mflops on 60 processors. The application 
is embarrassingly parallel, so it performs well on most parallel processors. The 
computational kernel (based on a complex ZAXPY) runs at 9.1 Mflops on a single 
KSR processor. (For comparison the kernel runs at 24.4 Mflops on an Intel Delta 
processor and at 39.7 Mflops on the new Intel Paragon processor.) We used only 
60 of 64 processors on a two-ring KSR because KSR performance usually scales 

Massively Parallel LINPACK 
128 CPUs 

Table 4.1: Massively parallel LINPACK for 64 and 128 processors. 
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Figure 4.2: Megaflops for 1000 x 1000 double-precision LINPACK. 

better if the user avoids the processors with disks and network connections. 
Serial and parallel versions of a sparse-matrix Cholesky using SPARSPAK 

([17]) were ported to the KSR. The sparse Cholesky code includes implicit par- 
allel directives for the Cray and Sequent, and those directives map nicely into 
corresponding KSR directives. The latency of the KSR memory prevents the 
KSR from achieving the speedups of the Sequent or Cray (Figure 4.3), but the 
memory architectures of the Cray and Sequent are not scalable. (For the same 
number of processors, the KSR outperforms the Sequent when measuring actual 
run-time of the sparse Cholesky.) A global climate modeling code (CCM2) based 
on Cray directives was ported and scaled well up to 32 processors on the KSR. 

A parallel implementation of a hypercube simulator was ported to the KSR[5]. 
The simulator uses fork(" to create sub-tasks and System V shared memory and 
semaphores to communicate among the sub-tasks. Performance for this sim- 
ulator was poor and did not scale well on the KSR compared to the Sequent 
implementation. Only a single shared buffer was used for message exchange, so 

the longer latency of the KSR (compared to the Sequent) and the contention for a 

single lock degraded performance. By contrast, the implementation of Argonne's 
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Figure 4.3: Speedups for sparse Cholesky factorization. 

tcgrnsg message-passing library performs well on the KSR. Tcgmsg uses a pool 
of shared-memory message buffers for each processor and has separate locks for 
each buffer. Two KSR processors on the same ring passing messages using tcgrnsg 
have a message-passing latency of 71 ps and a bandwidth of 7.7 MB/second. If 
the two processor are not on the same ring, the latency climbs to 162 p s  and the 
bandwidth drops to 3.4 MBlsecond. (By comparison, the Delta has a latency of 

60 ps and rn 8 MB/second bandwidth; see Appendix A.) 
Figure 4.4 shows the KSR performance for three of the benchmarks from the 

Stanford Parallel Applications for Shared Memory (SPLASH) suite [23]. This 
suite has been used to compare simulations of other scalable shared-memory 
multiprocessors (DASH and DDM) with the Encore (a bus-based shared-memory 
multiprocessor similar to the Sequent). The water code simulates the movement 
of 384 water molecules. The mp3d code simulates a wind tunnel with 3,000 
particles for 1,000 time steps. The Cholesky is a sparse matrix factorization 
using the bcsstklii input matrix. The KSR speedups are somewhat less than the 
Encore [23] and appear comparable to the simulated results for the DASH [23] 
and the DDM [lo]. The problem sizes are small and need to be increased for 
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Figure 4.4: Self-relative speedups for various SPLASH benchmarks. 

5. Summary 

The low level tests described in this report have measured the performance of 

the KSR memory system with and without contention for the ring, for a pro- 

cessor, and for one or more shared locations, demonstrating that the memory 
system performance is limited by the speed of a processor. Applications that do 
not contend for shared locations should scale well, but applications that contend 
for shared locations will probably see performance drop as processors are added, 
particularly at ring crossings. For applications whose computational component 
scales faster than p ,  performance may continue to improve with increasing p .  Ap- 
plications ported from non-scalable shared-memory multiprocessors will likely ex- 
hibit smaller speedups on scalable shared-memory rnultiprocessors like the KSR, 
particularly multi-ring applications. We found that applications from smaller 
shared-memory multiprocessors often used a single lock. For those applications 
to scale to the larger number of processors available on a KSR, the applications 
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needed to be modified to use a hierarchy of locks and often required a re-design 
of the use of shared variables. Performance may be further increased by using 

prefetch or poststore and by improving data locality. 
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Appendix 

A. Comparative Architectures 

The KSR is compared with a number of other processors in this report. This ap- 
pendix summarizes the architectures and configurations used in the comparisons. 
The processor architecture of the IBM RS/6000 and the Tntel i860 share several 
common characteristics with the KSR processor: independent integer and float- 
ing point units and pipelined independent adder/multipliers in the floating point 
units. The Sequent and BBN parallel processors provide contrasting shared- 
memory architectures. Finally, the TMC and Intel distributed-memory parallel 
processors provide contrast to KSR’s shared-memory model. 

BBN TC2000 

The BBN TC2000 at Argonne National Laboratory (ANL) is a 45 processor 
shared-memory parallel processor. Each processor is a Motorola 88000 running 
at 20MHz with 16 MB of memory fronted by a 16KB data cache and a 16KB in- 
struction cache. All of the memories are interconnected by a 2-stage 8-way switch. 
The system can be expanded up to 512 processors. The Uniform programming 
environment (under nX 2.0.6) provides the program with both local and explic- 
itly allocated shared memory. The shared memory may be allocated in another 
processor’s memory, and thus a non-uniform memory access (NUMA) model is 
supported. In the absence of contention, a remote reference typically takes less 
than two microseconds, and a single channel of the switch has a bandwidth of 

40 MBs [20]. The architecture could be used with other memory management 
policies [13]. Compiles on the BBN were done with -0 -Ius. LINPACK 100 x 100 
double-precision was 1.0 Mflops using -0LM -autoinline. Dhrystone (v1.0) was 
19.4 Mips. 

Intel iPSC/860 and DELTA 

The Intel iPSC/860 hypercube and DELTA mesh distributed-memory parallel 
processors both use the 40 MHz i860 processor. The i860 has an 8KB data cache 
and 8 MB of memory (16 MB on the DELTA) with a memory bandwidth of 160 
MBs. The processor has independent integer and floating point units, and the 
floating point unit has an independent pipelined adder and multipler for a peak 
rate of 64 MAops. The iPSC/860 has a maximum configuration of 128 processors. 
The processors are interconnected with a hypercube network with a latency of 
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about 60 microseconds and a bandwidth of 2.8 MBs per channel [”I. The DELTA 
is a mesh connected parallel processor located at Caltech with a maximum con- 
figuration of 512 processors. The mesh has a latency of about 50 microseconds 
and a measured bandwidth of about 17 MBs/channel[6]. The processors run NX 
3.3 and compiles were done with - 0 3  -Knoieee on a separate “host” processor. 
LINPACK 100 x 100 double-precision was 6.5 Mflops [3]. Dhrystone (v1.0) was 

29.4 Mips. 

Sequent Symmetry 

The 26 processor Sequent Symmetry located at ANL is based on 80386/387 pro- 
cessors (16 MHz) with a Weitek 3167 floating point co-processor. Each processor 
has a 64KB cache, and 32 MB of memory is shared by all processors on a 54 MBs 
bus. The maximum configuration is 30 processors. The processors run Dynix 
3.1.2, and compiles were done using -0. LINPACK 100 x 100 double-precision 
was 0.37 Mflops [3]. Dhrystone (v1.0) was 3.6 Mips. 

TMC CM-5 

A Thinlung Machines CM-5 processor nodes consists of a 32 MHz SPARC RISC 
processor with four vector units and 16 MB of memory. The nodes are connected 
by a 20 MB/second hypertree data network. A separate control network provides 
support for broadcast, reduction, and synchronization. Message-passing latency 
and bandwidth times were measured using CMMD 2.0. 
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