

. ~~.~ L

. -. -- ~ . . .

, . . - . . 1.::

I

ORNL/TM-12506
, --

Engineering Physics and Mathematics Division

Mathematical Sciences Section

5' I,, '>.

ANALYZING PICL TRACE DATA WITH MEDEA

Alessandro P. Merlo *
Patrick H. Worley

Dipartimento di Inforrnatica e Sistemistica
University of Pavia
Via Abbiategrasso, 209
1-27100 Pavia
Italy

+ Oak Ridge National Laboratory
Mathematical Sciences Section
P. 0. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

Date Published: November 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U.S. Department
of Energy, by the Italian Research Council (C.N.R.) under Grant
92.01571.PF69 and by the Italian MURST under the 40% and 60%
Projects.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DCAC05-8401221400

3 4 4 5 6 0 3 7 7 2 5 2 7

. * ..

Contents

1 Introduction . 1
2 The Portable Instrumented Communication Library 3
3 The MEasurements Description Evaluation and Analysis tool 5
4 PICL-MEDEA Integration . 7

4.1 Workload components . 7
4.2 Parallel metrics . 7
4.3 Performance parameters . 8

5 ACaseStudy . 11
5.1 Measurements . 13
5.2 Preliminary analysis: performance parameters and parallel metrics 15
5.3 Workload characterization . 15

5.3.1 Workload models . 18
5.3.2 Functional description . 18
5.3.3 Results . 21

6 Conclusions . 21
7 Acknowledgments . 22
8 References . 23

... . 111 .

ANALYZING PICL TRACE DATA WITH MEDEA

Alessandro P. Merlo

Patrick €1. Worley

Abstract

Execution traces and performance statistics can be collected for parallel applications on

a variety of multiprocessor platforms by using the Portable Instrumented Communication

Library (PICL). The static and dynamic performance characteristics of performance data

can be analyzed easily and effectively with the facilities provided within the MEasurements

Description Evaluation and Analysis tool (MEDEA). This report describes the integration

of the PICL trace file format into MEDEA. A case study is then outlined that uses PICL

and MEDEA to characterize the performance of a parallel benchmark code executed on

different hardware platforms and using different parallel algorithms and communication

protocols.

- v -

1. Introduction

The demands for hardware and software resources of a computer system significantly influence

its performance. Therefore, the quantitative description of resource consumption when running

an application plays a fundamental role in every performance evaluation study 121. The best

way to obtain such a quantitative description for a system is to take measurements while the

system is processing its real workload. However, the set of data collected by the monitoring

tools represents a detailed “discrete” description of the behavior of the measured applications.

While such a characterization is very useful when used as input to visualization tools, it is inap-

propriate when applied to system modeling, where a compact and manageable representation

of the workload processed by the real system is needed.

The process of deriving a compact representation of the workload, workload characterzzatron,

can be subdivided into several phases [ll]. The input t o the process is the data collected by

monitoring the execution of a given application over the system. Output includes both standard

data analysis results, which provide useful insights into the behavior of the application, and

workload models, which can be used as input to either simulation or analytic system models.

How the data is analyzed and how the model is derived are functions of the type of questions

being addressed about the performance of the computer system, the type of data collected, and

the level of detail at which the analysis will be performed. For example, at some point in the

process, the basic unit of work that is considered in a quantitative description of the workload,

the workload component, must be specified.

While the type of analysis that is appropriate for a particular workload characterization will

vary as different questions are asked or different computer systems evaluated, many mathe-

matical techniques are common to a variety of analyses. To support this commonality, and to
support the general data exploration process that is common to all workload characterization,

researchers at the University of Pavia have developed the MEasurements Description Evalua-

tion and Analysis tool (MEDEA) [15]. The basic aim of MEDEA is to define an integrated

environment in which to perform workload modeling studies. The different operations required

to fully examine the behavior of the applications submitted to a system have been logically

subdivided into modules, each performing a specific manipulation over the performance data

and the intermediate results produced at each step of the workload characterization process.

Figure 1 shows the overall structure of MEDEA and its relationships with other tools used in

the workload characterization process.

The collection of performance data is often a difficult task in itself, especially on systems

without dependable operating system or hardware support for the collection of useful trace

files. One portable option for the collection of performance data for message-passing computer

systems is t o use the Portable Instrumented Communication Library (PICL), developed at

Oak Ridge National Laboratory, when implementing application codes [SI. PICL implements a

generic messagepassing interface able to support interprocessor communications on a variety
of different hardware platforms.

- 2 -

Data
manipulation m-

Parallel
systems

Data
visualization

Real workload PlCL applications

MonitGrin; tools PlCL tracing facilities

Workload models Parallel metria

Figure 1: Overall structure of MEDEA and its relationships to other evaluation tools.

- 3 -

Furthermore, PICL tracing routines allow the user to collect detailed information on the be-

havior and performance of parallel programs. The trace files generated by PICL can be used

as input to performance visualization tools, e.g. ParaGraph [SI [9], for performance tuning and

debugging, as well as to performance evaluation tools like MEDEA.

This report describes the integration of PICL trace data into MEDEA, as illustrated in Fig. 1,

indicating how the static and dynamic characteristics of the workload generated by PICL
applications can be analyzed with the facilities provided within MEDEA. Sections 2 and 3
give a brief description of the main features provided within PICL and MEDEA, respectively.

Section 4 deals with the integration of PICL and MEDEA: the selection of possible workload

components and the specification of the corresponding performance parameters are outlined

here. Section 5 outlines an experimental application. A few conclusions are summarized in $6.

2. The Portable Instrumented Communication Library

A detailed performance analysis of a computer system under its real workload can be achieved

by means of event-driven monitors, i.e., tools that capture the events generated by a program

and store them into trace files. However, the trace file formats adopted by different monitoring

tools are, in general, quite different from one another (see, for example, [3], [6], [lo], [12]),
with each developer defining a specific record format able to address those events of interest

for the particular system being evaluated. This lack of standardization makes it difficult to

easily analyze trace files collected on different systems, but is a reflection of system differences

that cannot simply be eliminated by a standardization process. Recently, there has been a

movement toward establishing a standard metaformat in which to specify trace file formats [l].

If this approach is adopted, it will ease one aspect of integrating new types of trace data into

tools like MEDEA, but it will not eliminate true semantic differences between the information

collected on different systems or with different tools. The integration of new types of trace

information will always require careful thought and design.

The PICL trace file format was chosen for integration with MEDEA because of the wide avail-

ability and utility of PICL trace files. The machine independent layer of PlCL has proven to

be a sufficient framework to support portability between different platforms, and the trace file

format used by PICL is flexible enough to collect data for performance evaluation. Moreover,

while many of the available traces are generated from PICL programs, a significant number are

generated directly by other event-monitoring systems or via postprocessing, so that they can

be visualized with ParaGraph.

The PICL trace file format was recently significantly modified, to better support the collection

of information found to be most useful in visualization tools and in workload characterization,

and to be more extensible [16]. The new trace file format has been incorporated into ParaGraph,

and is being considered for use in other event monitoring systems. Because of the significant
new capabilities of the new format, and because of its adoption outside of PICL, it is the new

format that has been integrated with MEDEA.

- 4 -

Record

type

[int]

The basic structure of PICL trace records is shown in Table 1.

Event Timestamp Processor Task Number of Data Data
type ID ID data fields descriptor

[int] [double] [int] [int] [int] [int or string]

Table 1: Basic structure of PICL trace records.

Four different record types are currently supported by PICL: user-defined, event, statistics, and

s u bs e t - d e fin at i o n .

e User-defined record types are used to specify the data associated with user-defined events.

e Event record types are used to collect detailed information needed for a visualization

tool like ParaGraph or for the analysis of user events by means of MEDEA, as will be

explained in $4.1.

e Statistics record types are used to collect profile data of system and user-defined events.

e Subset-definition record types are used to define subsets, e.g., of processors or processes,

for which cumulative statistics are to be collected.

The process of workload characterization using PICL trace files is based primarily on the

analysis of event and statistics record types. The tracing facilities provided within PICL allow

the user to specify the amount and the type of data to store into trace files: if detailed data are

needed, then for each event generated by the application, timestamped entry/exit records are

stored for the processor and the process associated with the event; if only global information is

needed (e.g., when it is not important to know the exact timing of the single events but when

we are interested in the corresponding cumulative times), then the statistics records can be

used to characterize the general behavior of an application at low overhead, since only these

types of data will be collected during the tracing activity.

The event types currently supported by PICL cover most of the event data utilized in perfor-

mance evaluation studies of message-passing parallel applications. The most important cat-

egories of these events are user-dejined, interprocessor communication, I/O, synchronization,

resource allocation, and tracing.

e User-defined events allow the user to specify that the execution of a subroutine or even

arbitrary code segments be considered an event of a certain type, allowing the logical

structure of the application to be represented during subsequent analysis;

e Interprocessor communication events represent PICL commands for enabling, disabling,

or invoking interprocess communications, including, for example, send and receive;

e 1/0 events are used to collect performance data on (physical) I/O, which strongly influence

the performance of most real parallel applications;

- 5 -

e Synchronization events currently supported include “clock normalization’’ and “barrier” ;

0 Resource allocation events deal with the allocation/deallocation of processors to a given

application;

e Tracing events are recorded with the dual goals of allowing a correct interpretation of

the trace files and of providing a measure of the overhead implied by the tracing activity

itself.

3. The MEasurements Description Evaluation and Analysis tool

The construction of accurate workload models requires the application of different types of

statistical and numerical techniques interacting together t o fully characterize the behavior of

the applications submitted to a system. During the design phase of MEDEA [14], the need for

integration between these different underlying techniques and the need for portability across a

variety of computer platforms led to the choice of a standard development environment. As a

consequence, MEDEA is currently implemented on UNIX systems running X Windows/Motif l .

Figure 2 shows the main window of the graphical interface provided by MEDEA. Every module

specified in the overall structure of the tool (see Fig. 1) can be identified in the active graphical

elements of this window.

Figure 2: Main window of the graphical interface of MEDEA.

Data manipulation module. The data manipulation module performs a preliminary anal-

ysis of the trace data in order t o correlate the events recorded during the execution of an

application. Traditional performance indices, such as computation and communication times,

and parallel metrics, such as speedup and efficiency, can then be derived by filtering the trace

data. Initially, MEDEA required that all trace data be in the format generated by the PARal-

le1 MONitor (PARMON), a distributed event-driven monitoring tool [12] for transputer-based

MIMD architectures. In order to parse other trace file formats, format-specific trace file analysis
facilities must be added to the data manipulation module, as has been done for PICL.

‘MEDEA requires at least Xl lR5 and Motif 1.1.4.

- 6 -

Format manipulation module. Within MEDEA, a format is a subset of the performance

parameters that can be associated with the specific workload Component under study. The

f o r n a t manipulation module of MEDEA allows user-defined subsets of parameters to be stored

in an internal library. ,4s a consequence, repeated workload analyses on different trace files can

be performed with fewer interactions with the graphical interface.

Cluster analysis module. The cluster analysis module is used to examine the statistical

properties of the measured data set. For example, it can be used to identify groups of workload

components having homogeneous characteristics with respect to some predefined parameters.

The multidimensional clustering algorithm implemented within MEDEA is the IC--means, an

iterative nonhierarchical method of partitioning data sets [7]. Each partition is derived by

minimizing the distances between each workload component and the centroid of the cluster it

belongs to. At the end of the analysis, the optimal partitions (if any) are derived according to

the overall mean square ratios of the evaluated clusters.

Fitting module. As outlined in $1, workload models must be compact and easily manage-

able. The f i t t ing module provided within MEDEA allows the user to derive analytic descriptions

of the dynamic behavior of the wcrkload from the measured data. The analytic models are
described in terms of one or more of the collected parameters, and are able to represent the

variations of the workload parameters with respect to any independent variables, including

time.

Functional description module. The process of workload characterization can be ap-

proached from two different viewpoints. The physical viewpoint describes the behavior of the

system and the applications by means of indices related to resource consumptions, such as
computation and communication times. This quantitative approach is the one realized by the

data manipulation and the cluster analysis modules of MEDEA. The functional viewpoint gives

a logical description of the workload. In this case, the classification of workload components

is based, for example, on the type of applications or on membership of particular components

in a specific cluster The functional description module of MEDEA deals with the functional

viewpoint.

Data visualization module. The graphical visualization of parameter values, derived di-

rectly from the trace data or from the results of analyses performed within MEDEA, is often

an important tool in understanding the characteristics and the behavior of the workload. The

daia visualization module of MEDEA provides this facility.

- 7 -

4. PICL-MEDEA Integration

MEDEA uses the information stored in PICL trace files to derive models of the workload

generated by the measured applications, and this is the only direct dependence MEDEA has

on PICL. However, the selection of appropriate workload components and of the corresponding

performance parameters is strongly dependent on the type of information collected into the

trace files.

Since PICL tracing routines allow the user to specify the level of detail and the amount of data

to collect during the execution of an application, the information that can be derived in the

workload characterization process may he different from trace file t o trace file. If detailed trace

files are used as input to MEDEA, then the tool looks for each single event entry/exit pair

and, according to the event record type, correlates this new information to the previous ones

in order to accumulate statistics that refer to the performance parameters used to characterize

the workload components. If trace files are used that contain only statistics records, then

MEDEA parses only those records that contain global information. In the following sections,

specifications for the possible workload components and the corresponding parameters are given.

4.1. Workload components

The workload submitted to a system may be analyzed at different levels of detail, according to

the “granularity” of the components selected for the modeling activity. As mentioned in $1, a

workload component is defined as the basic unit of work that is considered in a quantitative

description of the workload. Three different approaches (or granularities) have been adopted

in MEDEA for the analysis of PICL trace files: program-oriented, processor- or task-oriented,

and user-event-oriented.

In the program-oriented approach, a trace file is analyzed from a global viewpoint and infor-

mation about the behavior of the application considered as a whole can be derived. The basic

workload component is the program itself. The processor-oriented approach derives a more de-

tailed analysis of a trace file, in which the tasks executed on each single processor are selected as
representative workload components. (While the programming paradigm supported by PICL,

and assumed by ParaGraph, only allows one process per processor, the trace file format can

be used to record data from applications with more than one process per processor.) Finally,

in the user-event-oriented approach the facility provided within PICL for defining arbitrary

code segments t o represent distinct workload components allows MEDEA to use the ‘‘logical’’

or Kusern view of the application when analyzing its behavior.

4.2. Parallel metrics

Parallel profiles represent one of the best tools for analyzing the dynamic behavior of an ap-

plication [13]. If detailed PICL trace files are used as input to MEDEA, then the number

of processors in use as a function of the execution time can be evaluated with respect to the

- 8 -

Execution profile
Computation profile
Communication mofile

different types of operations performed by the processors. An example communication profile

is shown in Fig. 3.

1/0 profile

Speedup
Efficiency

I 1

0 . 5 0 . 5 2 0 . 5 4 0 . 5 6 0.58 0 . 6 0 . 6 2 0 . 6 4

Time [secsl

Figure 3: Example of communication profile.

When the performance of an application is measured for a varying number of processors, parallel

metrics such as speedup, efficiency, efficacy, and execution signature can be use to characterize

the behavior of the workload [5].

Table 2 lists the parallel metrics that can be evaluated by means of the data manipulation

module of MEDEA.

I Receive Drofile I Efficacy I
I nansmi t Drofile 1 Execution signature I

Table 2: Parallel metrics evaluated by MEDEA.

4.3. Performance parameters

The selection of meaningful parameters to be considered in the workload characterization phase

represents one of the most critical steps of this process. Table 3 lists the parameters that are

currently used to characterize the program-oriented and the processor-oriented approaches.

- 9 -

Time parameters

Execution time (extime) 1/0 time (iot ime)

Com pu t ation time (cptime) Communication enable/disable time (iptime)

(cmtime) Synchronization time (cktime) Communication time
Receive time (rctime) Resource allocation time (rstime)

Transmit time (trtime) System time (sytime)

Volume parameters

Volume of data exchanged (ttdata) Volume of transmitted data (trdata)

Volume of received data (rcdata) Volume of 1/0 data (iodat a)

Occurrence parameters

Number of receive requests (rcnum) Number of 1/0 requests (ionum)

Number of transmit requests (rcnum) Number of processors (prnum) .

Total event time (ctime)
System events time (stime)

Table 3: Parameters for the program-oriented and the processor-oriented approaches.

User events time (u time)
Hidden system events time (hstime)

Number of event occurrences (cnum)
Number of svstem events (snum)

I Number of user events (unum) J

Number of hidden system events
Number of hidden user events

(hsnum)
(hunum)

Table 4: Parameters for the user-event-oriented approach.

These parameters differ from those adopted for the other two approaches. In the following

discussion, we use the trace records in Tab. 5 to explain the meaning and usage of the param-

- 1 0 -

eters. Here, the first field in each record denotes an event entry (-3) or an event exit (-4),
the second field denotes the event type id, and the third field denotes the timestamp for the

record. The other fields can be ignored for the following discussion. System events have types

ids less than -10, and user events have nonnegative type ids. The indentation in Tab. 5 has

been introduced to indicate nesting of events: and neither the indentation nor the timestamp

labels, e.g., (timestamp a), reflect what PICL would produce.

-3 0 0.000016 6 0 2 2 0 0
-3 -52 0.000128 6 0 1 2 0

-4 -52 0.000516 6 0 3 2 8 0 0
-3 1 0.000711 6 0 2 2 0 0

-3 -52 0.000818 6 0 1 2 1

-4 -52 0.001643 6 0 3 2 8 1 5
-3 -21 0.001665 6 0 3 2 8 1 7

-4 -21 0.001711 6 0 0

-3 2 0.001982 6 0 0
-4 2 0.002005 6 0 0

-4 1 0.002013 6 0 0

-4 0 0.002067 6 0 0

(timestamp a)
(timestamp b)
(timestamp c)

(timestamp d)

(timestamp e)
(timestamp f)
(timestamp g)
(timestamp h
(timestamp i)
(timestamp j)
(timestamp k)
(timestamp 1)

Table 5: Example trace records.

In PICL applications, user-defined events can correspond to any arbitrary code segment. As a

consequence, the presence of nested user events is very common, especially if the user events

are associated with the execution of program subroutines. With respect t o the example trace

records in Table 5, two nested events (of types i and 2) can be recognized within the “main”

event of type 0.

When these PICL trace records are analyzed according to the user--event-oriented approach,

the following meanings and values are assigned to the identified parameters for user events of

type 0.

total event t ime is the elapsed time between the entry record for a type 0 event (timestamp a)
and the corresponding exit record (timestamp 1) if the event type occurs once, or is the

sum of the elapsed times if it occurs multiple times:

d i m e = 0.002067 - 0.00016 = 0.002051 secs .

sys tem events t ime is the sum of the execution times of any system events that are nested

at the first level of type 0 events (a type -52 event starting at timestamp b):

stime = 0.000516- 0.000128 = 0.000388 secs .

- 11 -

user events time is the time spent executing user events nested at the first level of type 0

events (one type I event):

ulime = 0.002013 - 0.000711 = 0.001302 secs .

hidden system events time is the time spent to execute system events that are detected

in nested user events (type -52 and type -21 events nested in a type I event):

hstime = (0.001643 - 0.000818) + (0.001711 - 0.001665) = 0.000871 secs .

number of event occurrences is the number of times type 0 events have been executed on

a given processor: cnum = 1.

number of system events is the number of system events that are nested at the first level

of type 0 events (a type -52 event starting at timestamp b): snurn = 1.

number of user events is the number of user events that are nested at the first level of

type o user events (one type I event): unum = 1.

number of hidden system events is the number of system events occurring within nested

user events (type -52 and type -21 events beginning at timestamps e and g, respectively,

and nested within a type 1 event): hsnum = 2.

e number of hidden user events is the number of user events nested within user events at

the first level (one type 2 event): hvnum = 1.

5. A Case Study

This section outlines a workload characterization study that uses MEDEA to analyze PICL
trace data. The study is presented to illustrate how MEDEA can be utilized to analyze PICL
trace data, what types of analyses are possible, and, hopefully, how useful the insights available

from the analysis are. In consequence, the emphasis in the exposition is on the experimental

methodology. While preliminary results from the study are mentioned at the end of the section,

the analysis of the data is ongoing. The complete analysis will be presented in a later report.

The application used for the study is PSTSWM, a messagepassing benchmark code and parallel

algorithm testbed that solves the nonlinear shallow water equations on a sphere [17]. This code

models closely how CCMS, the Community Climate Model developed by the National Center

for Atmospheric Research, handles the dynamicd part of the primitive equations. PSTSWM

was developed to compare parallel algorithms and to evaluate multiprocessor architectures for

parallel implementations of CCM2.

PSTSWM uses the spectral transform method to solve the shallow water equations. During

each timestep, the state variabies of the problem are transformed between the physical domain,

- 1 2 -

where most of the physical forces are calculated, and the spectral domain, where the terms

of the differential equation are evaluated. The physical domain is a tensor product longitude-

latitude grid. The spectral domain is the set of spectral coefficients in a spherical harmonic

expansion of the state variables.

Transforming from physical coordinates to spectral coordinates involves first performing a fast

Fourier transform (FFT) for each line of constant latitude, generating results on a waveniimber-

latitude grid. This is followed by integration over latitude for each line of constant wavenumber,

approximating the Legendre transform (LT). The inverse transformation involves evaluating

sums of spectral harmonics and inverse FFTs, algorithmically analogous to the forward trans-

form.

Parallel algorithms are used to compute the FFTs and to compute the vector sums used to

approximate the forward Legendre transforms. Processors are treated as a two dimensional grid,

with the longitude dimension mapped onto row processors and the latitude dimension mapped

onto column processors. Thus, the specified aspect ratio determines how many processors are

allocated to computing the FFTs and the LTs. Many different parallel algorithms are embedded

in the code, and the choice of algorithms is determined via input parameters at runtime.

In this study, variants of two parallel algorithms to compute the forward Legendre transforms

are compared. Both parallel algorithms are based on (1) computing local contributions to the

vector of spectral coefficients, (2) summing the “local” vectors element-wise over a logical ring

of processors, and (3) broadcasting the result to the members of the ring. Both algorithms

send P - 1 (equal-sized) messages per processor to compute the global sum and P - 1 mes-

sages to implement the broadcast, where P is the number of processors in a processor column.

Each message in the summation is sent to the logical right neighbor, while each message in the

broadcast is sent to the logical left neighbor. The algorithms differ in when the three stages are

executed. The first algorithm, ringsurn, first computes all local contributions, then computes

the global sum, and finally broadcasts the results. The second algorithm, ringpipe, interleaves

the calculation of the local contribution with the global summation in a pipeline fashion, and

interleaves the broadcast with the computation that uses the result, also in a pipeline fashion.

Thus, the ringsum algorithm isolates the communication from the computation, preventing

communication and computation from interfering with each other and (more) effectively syn-

chronizing the processors in the interprocessor communication. The ringpipe algorithm allows

the communication and computation to be overlapped, and requires less memory than ring-

sum. The question addressed by the study is whether attempting to overlap communication

with computation is cost effective on a given architecture.

To address the question, PSTSWM was executed on four different platforms: the Intel iPSC/2,
iPSC/860, Touchstone DELTA, and Paragon machines. The Intel iPSC/2 and iPSC/860 sys-
tems are distributed memory, hypercube-connected parallel architectures [4]. The processor

elements are the Intel i80286/387 and the Intel i860, respectively. The communication hard-

ware, based on bit-serial channels, is the same for both the systems. The Intel Touchstone

DELTA and Paragon systems are distributed memory, wormhole-routed, mesh-connected par-

allel architectures. The processor elements are the Intel i860 and the Intel i86OSP, respectively.

- 1 3 -

iPSC/2 iPSC/860 DELTA

Interconnect hypercube hypercube mesh

Table 6 summarizes the main features of the parallel systems we used for this study.

Paragon

mesh

CPU type

Clock rate
Memorv/node

80386/387 860 860 860SP

l6MHz 40MHz 40hJHz 50MHz
4MB 8MB 16MB 16MB

Table 6: Hardware characteristics of the architectures for the experimental study.

5.1. Measurements

On each architecture, PSTSWM was executed on a logical 1x16 mesh topology, calculating

each FFT sequentially and each LT in parallel. Multiple runs were made using both ringsum

and ringpipe algorithms, with varying implementations of the algorithms, underlying commu-

nication protocols, and number of communication buffers. The following naming convention

identifies a given experiment:

Capplicat ionname> .<algorithm-t ype> .<protocol-opt ion>.<buf f ering-opt ion>

A guideline for the interpretation of trace file names is as follows:

Algorithm type. Each stage of both algorithms is characterized by sending data to one

neighbor, receiving data from another, and using the data to update a running sum. The

following options differ in the order of these operations.

ringpipe:

1) type 00: calculate local contribution (calc)/sum/send/receive

2) type 01 : calc/sum/send/receive or calc/sum/receive/send

3) type 02: calc/receive/sum/send

ringsum:

1) type 10: send/receive/sum

2) type 11: send/receive/sum or receive/send/sum

3) type 12: same as 10, but posting receive requests early

4) type 13: same as 11, but posting receive request early

Algorithms of type 01, 11, and 13 implement a conservative protocol, where the odd numbered

processors in the logical ring send first and receive second, and the even numbered processors

- 14 -

receive first and send second. This protocol works even when system buffer space is limited,

and will also work on systems supporting only synchronous communication. Algorithms of type

12 and 13 use nonblocking receive requests to indicate where messages should be stored when

they arrive.

Protocol option. On Intel multiprocessors, PICL supports both blocking and nonblocking

communication requests and both regular and forcetype communication protocols. In block-

ing requests, control does not return to the calling process until the corresponding operation

is complete. In nonblocking requests, control returns immediately, and further inquiries are

required to determine when the corresponding operation is complete.2 The forcetype protocol

assumes that a receive request ha. been posted at the destination processor before a send re-

quest is made at the source, thus allowing the elimination of some handshaking overhead, but

it requires that the user insure that this condition holds.

1) type 0: blocking send - blocking receive

2) type 1: nonblocking send - blocking receive

3) type 2: blocking send - nonblocking receive

4) type 3: nonblocking send - nonblocking receive

5) type 4: blocking send - nonblocking receive with forcetypes

6) type 5: nonblocking send - nonblocking receive with forcetypes

7) type 6: blocking synchronous send/receive (for algorithms of type 01, 11, and 13)

Protocol option type 6 uses extra handshaking messages to guarantee that messages are not

sent until the corresponding receive requests have been posted. This simulates what occurs

when using synchronous communication requests.

Buffering option. When nonblocking receives and/or sends are used and extra buffer space is

available, some of the receive requests can be posted “early” and some sends completed “late”,

potentially eliminating system buffer copying overhead and allowing additional communication

and computation to be overlapped.

1) type 0: use no extra communication buffers

2) type x: use the maximum number of extra communication buffers

Example. As an example, the trace file pstsvm. 02.3. Orefers to the execution of PSTSWM us-
ing the ringpipe algorithm with the computational paradigm “calc/[send/receive I receive/send]” ,
assuming the “nonblocking send - nonblocking receive” communication protocol and no extra
communication buffers.

2Note that a send request on Intel multiprocessors is complete when the buffer containing the message being
sent can be altered without altering the message, and does not indicate that the message has been received by
the destination process.

- 15 -

5.2. Pre l iminary analysis: performance parameters and parallel metrics

We executed PSTSWM on the parallel systems described in 55, varying the algorithm type and

the protocol and buffer options. From each execution, we collected a detailed trace file using

the tracing facilities provided by PICL. As outlined in j4.1, these trace files can be analyzed

at different levels of detail, according to the granularity of the workload components selected,

which, in turn, is a consequence of the objectives of the analysis. We evaluated the usefulness

of overlapping communications and computation using the program-oriented approach: each

trace file was analyzed by MEDEA from a global viewpoint and a subset of the performance

parameters described in Tab. 3 were used to characterize the behavior of the application. In our

study, total execution, computation, communication, receive and transmit times were selected

as representative parameters. Their values were used as input to MEDEA, and the parallel

metrics described in $4.2 were used to obtain a first insight into the dynamic behavior of the

application runs.

As an example of the differences between the experimental runs, Fig. 4 and 5 show the receive

profiles derived from the execution on the Intel Paragon for pstswm. 02.4. I. and pstswm. 12.4.0.
The first is a ringpipe algorithm based on a “calc/receive/sum/send” execution paradigm. It

uses the “blocking send - nonblocking receive with forcetypes” communication protocol options

and the maximum number of extra communication buffers. This algorithm maximizes the o p

portunity for overlap of communication and computation phases. pstsm. 12.4.0 is a ringsum

algorithm based on a “send/receive/sum” execution paradigm. It uses the same communication

protocol as the ringpipe example, but without any extra communication buffers. The protocol

option minimizes the overhead of interprocessor communication for any given send/receive pair,

but the algorithmic options do not attempt to interleave the communication and computation

or to eliminate all system buffer copying.

Figures 6 and 7 give a detailed view of the first communication phase shown in the receive

profiles of these algorithms. Note that two subphases, summation and broadcast, can be easily

identified for the ringpipe example (Fig. 6): each phase starts with a peak in the number of

receiving processors, corresponding to the early posting of nonblocking receive requests by the

single tasks, and then contains communications patterns involving a small number of processors

at any one time as the explicit handshaking required when using forcetypes takes place. These

patterns are separated by computation intervals during which no communication is performed

at all, Le. the sequential FFTs. In the ringsum example (Fig. 71, there is only one peak when

the summation/broadcast has been started, and then an almost continuous communication

pattern can be identified as the messages move around the logical ring.

5.3. Workload characterization

The behavior of each experimental run is represented by a single point in a five-dimensional

space, as determined by the number of performance parameters selected in 55.2. In our study,

the statistical properties of this data set have been examined by means of the cluster analysis

and the functional description modules of MEDEA for each multiptocessor platform,

- 1 6 -

14

12

10

8

6

4

2

0

P a r a g o n : pstswm.02.4.x

5

T i m e [secsl

Figure 4: Receive profile for the pstsvm. 02.4. x ringpipe algorithm.

P a r a g o n : pstswm. 12.4 .O
14

T i m e [secsl

5

Figure 5: RRceive profile for the pstsam. 12.4.0 ringsum algorithm.

- 17 -

Faragon: pstswm.02.4.x

12

f =: ..{ I
a

. a
Time [secsl

Figure 6: Detailed view of the first communication phase for the pstswm.02.4.x ringpipe
algorithm.

Paragon: pstswm.12.4.0
14

12

m U

s 2 10

z
z *

2 6

U

a

>
4
a, 0

u
0
u
0 4 n
3
2

2

0
0.5 0 . 5 5 0.6 0.65 0.7 0 .75 I

Time [secsl

8

Figure 7: Detailed view of the first communication phase for the pstsam.12.4.0 ringsum
dgorit hm.

- 18 -

5.3.1. Workload models

As mentioned previously, the behavior of a real workload is very complex and difficult to repro-

duce, and the amount of information collected into trace files is, in general, difficult to manage.

In consequence, system studies usually require that a model, or simplified characterization, of

the workload be constructed. Even though the execution of a workload is usually a determin-

istic phenomenon, it is often modeled as a nondeterministic one, with statistical techniques

being applied. As outlined in $3, MEDEA classifies processes in preparation for construction of

workload models by means of the li-means clustering algorithm. In order to make meaningful

comparisons between the performance parameters selected for our analysis, the values of these

parameters are first scaled so that they lie in a common interval. Then the partitioning of

workload components is derived.

In our study we analyzed 56 trace files (corresponding to the execution of PSTSWM for the dif-

ferent implementations of the ringsum and the ringpipe algorithms and varying the underlying

communication protocol and the number of communication buffers) for each architecture. The

following tables summarize the optimal partitions of the workload components with respect to

the overall mean square ratios of the evaluated clusters.

The means of the execution, computation and communications times represent the values for the

centroid of the corresponding cluster. They can he used, together with the standard deviations,

as input to either analytic or simulation system models to reproduce the behavior of real

workload.

Note that these experiments are part of a larger exercise in determining optimal algorithm

parameters for problems that will be used on the largest configurations of each multiprocessor.

To capture the right granularity when running on only 16 processors, the problem sizes were

scaled. Thus, there is some difference between the different sets of experiments, and raw timings

cannot be compared between the multiprocessors. The timings for the DELTA and the Paragon

do represent the same problem though, and can be compared.

5.3.2. Functional description

The composition of each cluster has also been investigated from a functional viewpoint.

We constructed a preliminary characterization by projecting the experimental runs onto a

subspace identified by two of the selected parameters. Figure 8 shows the projections of the

ringsum and the ringpipe algorithms within the e x t i m e c p t i m e subspace for experiments run

on the Paragon (see Table 10). While the first and second cluster can be easily identified, the
remaining partitions do not have well defined shapes. This indicates that the extime and cptime
parameters are insufficient to characterize the workload generated by algorithms belonging to
the third and to the fourth cluster. The relationships that characterize the last two partitions

involve the whole subset of performance parameters the cluster analysis was based on. For

example, if we consider the projections within the rctime-trlime subspace (see Fig. 9), the

third and fourth clusters are well shaped too.

- 19 -

Cluster Percentage
Cluster 1 17.0%
Cluster 2 47.2%
Cluster 3 35.8%

Cmtime Ext ime Cptime
mean std dev mean std dev mean std dev

139.577 0.561 137.659 0.225 1.712 0.797
144.483 0.350 141.450 0.169 3.013 0.334
142.571 0.247 137.376 0.167 5.514 0.303

Table 7: Workload model for the trace files collected on iPSC/2.

Extime I (Jptime I Gmtime I Cluster 1 Percentage I mean I std dev I mean 1 std dev I mean I std dev

Table 8: Workload model for the trace files collected on iPSC/860.

I Cptime I Gmtime Extime
I Cluster I Percentage I mean 1 std dev I mean 1 std dev 1 mean I std dev

Table 9: Workload model for the trace files collected on DELTA.

Extime I Cptime I Gmtime I Cluster 1 Percentage I mean I std dev I mean I std dev I mean I std dev

Table 10: Workload model for the trace files collected on Paragon.

- 20 -

3.25-

3.2-

-
ul

0 3 .15 -
I

a.
5
c: 3.1-
u

0
4

2

u

0
V

u

2 3 . 0 5 -

3-

2.95

+ +

Trace f i l e s c o l l e c t e d on Paragon

C l u s t e r 1 Q

X C l u s t e r 2 +
C l u s t e r 3 0
C l u s t e r 4 X

X

Q
0

0 4 0 ++ + 0

09 n o

6 0 *
i!? e* ** +

0 +

d
e + +

4.

P a
+

I I I I I I 1 I I
3.2 3 . 3 3 . 4 3.5 3.6 3.1 3 . 8 3 . 9 4 4.1 1

X
X

X

-
0.35-

ar m -
m 0 . 3 -
rl
u
5 0.25-

E
E 0.2-
h

0.15-

0.1-

0.05

Execu t ion t i m e [secs I

X 0
X 4 *+=+ +

* e
I I I I I I I

Figure 8: Projections within the extime-cptime subspace.

Trace f i l e s c o l l e c t e d on Paragon

O:::: 0 . 4

ff

0

C l u s t e r 1 Q
C l u s t e r 2 +
C l u s t e r 3 0
C l u s t e r 4 X

+ +
++ +

+ *
+

X 0 0
+

d
+

Receive t i m e [secs]

2

8

Figure 9: Projections within the rctime-t .dime subspace.

- 21 -

As a second step in our functional characterization process, the coniponents belonging to a

specific cluster can be listed in order to obtain better insights into the model of the workload

being evaluated. As an example, Table 11 lists the applications grouped into the fourth cluster

of the workload model for the Paragon.

1 Paragon: cluster 4 1

Table 11: Composition of the fourth cluster of the workload model for the Paragon.

Note that all the components belonging to this cluster correspond to trace files derived from

ringpipe algorithms based on the “send/calc/receive” execution paradigm. Furthermore, this

cluster groups together those PSTSWM runs utilizing nonblocking receive communication pro-

tocols and extra communication buffers. The cluster also includes the experiment utilizing

nonblocking send - nonblocking receive communications with forcetypes and no extra commu-

nication buffers (pstsam.02.5.0). These results imply that the forcetype protocol does not

change the fundamental behavior of this algorithm when using extra communication buffers,

but that extra buffers are unnecessary (on the Paragon, using this algorithm) when forcetypes

are used with nonblocking sends and receives.

5.3.3. Results

This case study has important implications on how these multiprocessors should be used. The

preliminary results confirm that the utility of overlap varies across the platforms. Moreover,

the techniques required to productively exploit overlapping communication with computation

also vary between the architectures, even though their programming models are identical. For
example, overlap is useful, and simple to characterize and exploit, on the iPSC/2. I t is even

more important for efficiency on the iPSC/860, but is more difficult to utilize effectively. Tech-

niques maximizing the possibility of overlap have a marginal utility on the Touchstone DELTA,

and it is doubtful whether overlap is the reason for the efficiency. The performance analysis

on the Paragon currently changes with every operating system upgrade, but its performance

characteristics, with regard to exploiting overlap, seem to lie between the those of the Touch-

stone DELTA and the iPSC/SSO. We are currently quantifying these observations with further

experiments and analysis, and will report on the results in a future report.

6. Conclusions

In this report we described the integration of the Portable Instrumented Communication Li-
brary (PICL) trace file format into the MEasurements Description Evaluation and Analysis tool

- 22 -

(MEDEA). This integration was motivated by the wide availability and utility of PICL trace

files, and by the capabilities in MEDEA for easily analyzing the static and dynamic characteris-

tics of parallel workloads from trace data. We also described a workload characterization study,

to indicate exactly how PICL data can be analyzed using MEDEA. In our initial experiences

in using MEDEA to analyze PICL trace files, we have found the combination of these tools to

be effective and powerful in workload characterization studies.

Our experiments on the Paragon also point out the utility of having portable tools like PICL

and MEDEA. While the Paragon will have a full suite of performance monitors and tools in

future releases of the system software, they were not available for these experiments. This is
typical in the analysis of early or experimental systems. It is important to understand the

performance of early systems quickly, and PICL and MEDEA allow us to measure and analyze

performance on these systems without depending on the availability of vendor-supplied tools.

7. Acknowledgments

In addition to the research programs directly funding this work, we acknowledge the Computer
Hardware, Advanced Mathematics, and Model Physics (CHAMMP) program of the U.S. De-

partment of Energy for supporting the development of the benchmark code PSTSWM and the

collection of the performance data used in this research.

This research was performed in part using Intel iPSC/2, iPSC/SSO, and Paragon multiprocessor

systems at Oak Ridge National Laboratory (ORNL). The iPSC/2 is owned by the University of

Tennessee, and both it and the IPSC/860 are managed by the Mathematical Sciences Section

of ORNL. The Paragon is managed by the Center for Computational Sciences at ORNL.

The research was also performed using the Intel Touchstone Delta System operated by Caltech

on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided

by Argonne National Laboratory (ANL). We gratefully acknowledge the help of Brian Toonen

at ANL in collecting the data on the Delta.

- 23 -

8. References

[l] R. A. AYDT, The Pablo self-defining data format, tech. report, Department of Computer

Science, University of Illinois at Urbana-Champaign, March 1992.

[2] M. CALZAROSSA AND G. SERAZZI, Workload Characterization: A Survey, Proceedings of

the IEEE, 81 (1993).

[3] T. €I. DUNIGAN, A Message-passing Multiprocessor Simulator, Technical Report

ORNL/TM-9966, Oak Ridge National Laboratory, Oak Ridge, T N , 1986.

141 - , Performance of the Intel iPSC/SSO and nCUBE 6400 Hypercubes, Technical Report

ORNL/TM-11790, Oak Ridge National Laboratory, Oak Ridge, T N , April 1991.

[5] D. EAGER, J . ZAHORJAN, AND E. LAZOWSKA, Speedup Versus Eficiency an Parallel

Systems, IEEE Transactions on Computers, 38 (1989), pp. 408-423.

[6] G. A. GEIST, M. T . HEATH, B. W . PEYTON, AND P. H. WORLEY, A User’s Guide l o

PICL: A Portable Instrumented Communication Library, Technical Report ORNL/TM-

11616, Oak Ridge National Laboratory, Oak Ridge, TIL’, August 1990.

[7] J . A. HARTIGAN, Clustering Algorithms, John Wiley, 1975.

[8] M. T. HEATH AND J . A. ETHERIDGE, Visualizing the performance of parallel programs,

Technical Report ORNL/TM-11831 , Oak Ridge National Laboratory, Oak Ridge, T N ,

May 1991.

[9] M. T. HEATH AND J . A. ETHERIDGE, Visualizing the performance of parallel programs,

IEEE Software, 8 (1991), pp. 29-39.

[lo] V. HERRARTE AND E. LUSK, Studying parallel program behavior with apshot, Technical

Report ANL/TM-91/15, Argonne National Laboratory, Argonne, IL, August 1991.

[ll] R. JAIN, The Art of Computer System Performance Analysis, John Wiley & Sons, New

York, 1991.

[12] P. LENZI AND G. SERAZZI, PARMON: PARallel MONitor - User’s Guide Release 1.0,

Technical Report R3/95, University of Milan, October 1992.

[13] M. R. LEUZE, L. W. DOWDY, AND K . H. PARK, Multiprogramming a disiributed-memory

multiprocessor, Concurrency: Practice and Experience, 1 (1989), pp. 19-33.

[14] A. MERLO, MEDEA: MEasurements Description Evaluation and Analysis tool - User’s

Guide Release 1.0, Technical Report R3/117, Progetto Finalizzato C.N.R. “Sistemi Infor-

matici e Calcolo Parallelo”, Roma, Aprile 1993.

- 24 -

[15] A. MERLO AND P. ROSSARO, MEDEA: Design Document, Technical Report R3/92, Pro-

getto Finalizzato C.N.R. “Sistemi Informatici e Calcolo Parallelo” , Roma, Settembre 1992.

[16] P. H. WORLEY, A New PICL Trace File Format, Technical Report ORNL/TM-12125,

Oak Ridge National Laboratory, Oak Ridge, TN, October 1992.

[17] P. H . WORLEY AND I. T. FOSTER, PSTSWM: A Parallel Algorithm T’estbed and Beneh-

mark Code f o r Spectral General Circulation Models, Technical Report ORNL/TM-12393,

Oak Ridge National Laboratory, Oak Ridge, TN. (in preparation).

- 25 -

ORNL/TM-12506

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. T. S. Darland
3. J . J . Dongarra
4. J . B. Drake
5. T. H. Dunigan
6. G. A. Geist
7. J . A. Kohl
8. M. R. Leuze
9. D. R. Mackay

10. C. E. Oliver
11. G. Ostrouchov

12-16. S. A. Raby

17.
18-22.
23-27.
28-32.

33.
34.
35.

36.
37.

38-39.

T. H . Rowan
R. F. Sincovec
R. C. Ward
P. H. Worley
Central Research Library
ORNL Patent Ofice
K-25 Applied Technology Li-
brary
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

40. Donald M. Austin, 6196 EECS Building, University of Minnesota, 200 Union
Street, S.E., Minneapolis, MN 55455

41. Robert G. Babb, Oregon Graduate Center, CSE Department, 19600 N.W. Walker
Road, Beaverton, OR 97006

42. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center,
Moffet Field, CA 94035

43. Henri E. Bal, Vrije Universiteit, Department of Mathematics and Computer Sci-
ence, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

44. Gianfranco Balbo, Dipartimento di Informatica, UniversitA di Torino, Corso Svizzera
185,I-10149 Torino, Italy

45. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

46. Adam Beguelin, Carnegie Mellon University, School of Computer Science, 5000
Forbes Avenue, Pittsburgh, PA 15213-3890

47. Robert E. Benner, Parallel Processing Division 1413, Sandia National Laborato
ries, P. 0. Box 5800, Albuquerque, NM 87185

48. Philippe Berger, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Camichel-
F, 31071 Toulouse Cedex, France

49. Donna Bergmark, 745 E & T C Building, Hoy Road, Cornel1 University, Ithaca,
NY 14853

- 26 -

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Maurelio Boari, Dipartimento di Elettronica, Informatica e Sistemistica, Univer-
sitb di Bologna, Viale Risorgimento 2, 1-40136 Bologna. Italy

Ansgar Boehm, Department of Computer Science 111, University of Erlangen/
Niiremberg, Martensstrasse. 3, D-8520 Erlangen, Germany

Don Breazeal, Intel Supercomputer Systems Division, 15201 K.W. Greenbrier
Pkwy, CO1-01, Beaverton, OR 97006

Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street Cambridge,
MA 02138

James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

Greg Burns, Trollius Project Leader, Academic Computing, The Ohio State Uni-
versity, 1224 Kinnear Rd., Columbus, OH 43212

Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P. 0. Box 3000, Boulder, CO 80307

Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House,
University of Tennessee, Knoxville, TN 37996

Maria Calzarossa, Dipartimento di Informatica e Sistemistica, Universiti Degli
Studi di Pavia, Via Abbiategrasso 209,I-27100 Pavia, Italy

Brian M. Carlson, Computer Systems Research Institute, University of Toronto,
Toronto, Ontario M5S 1A1, Canada

Ron Casselman, Systems and Computer Engineering, Carleton University, Ot-
tawa, Ontario KlS 5B6, Canada

Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,
NC 27709

Doreen Y. Cheng, Principal Engineer, Computer Science Corporation, NASA
Ames Research Center, MS 258-6, Moffett Field, CA 94035

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

Dennis Cottel, Naval Command, Control and Ocean Surveillance Center, RDT&E
Division, San Diego, CA 92152-5000

Alva Couch, Department of Computer Science, Tufts University, Medford, MA
02 155

Tom Crockett, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp-
ton, VA 23665-5225

Ron Daniel Jr., Cambridge University Engineering Department, Trumpington
Street, Cambridge CB2 lPZ, United Kingdom

Michel Dayde, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Camichel-
F, 31071 Toulouse Cedex, France

- 27 -

69. Craig Douglas, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 10598-0218

70. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

71. Donald J . Dudziak, Department of Nuclear Engineering, llOB Burlington Engi-
neering Labs, North Carolina State University, Raleigh. NC 27695-7909

72. Dannie Durand, Bellcore 21)-335 , 445 South Street, Morristown, NJ 07962

73. Derek Eager, Department of Computer Science and Engineering, Sieg Hall, FR-35,
University of Washington, Seattle, WA 98195

74. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box
2158 Yale Station, New Haven, CT 06520

75. Jean-Marc Fellous, Center for Neural Engineering, University of Southern Califor-
nia, Los Angels, CA

76. Edward Felten, Department of Computer Science, University of Washington, Seat-
tle, WA 98195

77. Charles Fineman, Ames Research Center, Mail Stop 269/3, Moffet Field, CA
94035

78. Jon Flower, Parasoft Corporation, 2500 E. Foothill Boulevard, Suite 205, Pasadena,
CA 91107

79. Anthony Ford, Meiko Limited, 650 Aztec West, Bristol BS12 4SD, United King-
dom

80. Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

81. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
132444 100

82. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Avenue N , Suite 500, Seattle,
WA 98119

83. Joan M. Francioni, Computer Science Department, University of Southwestern
Louisiana, Lafayette, LA 70504

84. Offir Frieder, George Mason University, Science and Technology Building, Com-
puter Science Department, 4400 University Drive, Fairfax, Va 22030-4444

85. Robert E. Funderiic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

86. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47401

87. Alan George, Vice President, Academic and Provat , Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

88. Ian Glendinning, University of Southampton, Department of Electronics and Com-
puter Science, Southampton, SO9 5NH United Kingdom

- 28 -

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

Andy Grant, Computer Graphics Unit, Manchester Computing Centre, University
of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom

William D. Gropp, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

Eric Grosse, A T k T Bell Labs 2T-504, Murray Hill, NJ 07974

John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, IA 50011-3020

Robert, M. Haralick, Department of Electrical Engineering, Director, Intelligent
Systems Lab, University of Washington, 402 Electrical Engineering Building, FT-
10, Seattle, WA 98195

Gunter Haring, Department of Applied Computer Science, University of Vienna,
Lenaugasse 218, A-1080 Vienna, Austria

Ann €1. Hayes, Computing and Communications Division, Los Alamos National
Laboratory, Los Alamos, NM 87545

Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, 11,
61801-2300

Stephen Hellberg, Department of Electronics and Computer Science, University
of Southampton, SO9 5NH, United Kingdom

John L. IIennessy, CIS 208, Stanford University, Stanford, CA 94305

N. J . Higham, Department of Mathematics, University of Manchester, Gtr Manch-
ester, M13 9PL, England

Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, US. Department of Energy, Washington, DC
20585

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Leah H . Jamieson, School of Electrical Engineering, Purdue University, West
Lafayette, IN 47907

Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

Lennart Johnsson, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Building,
Cornell University, Ithaca, NY 14853-3901

- 29 -

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125-129.

130.

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77001

Tom Kitchens, Office of Scientific Computing, ER-7, Applied Mathematical Sci-
ences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

Peter A. Krauss, Lehrstuhl fuer Rechnergestuetztes Entwerfen, Technische Uni-
versitaet, Muenchen, Germany

Domenico Laforenza, Parallel Processing Group, CNUCE - Istituto del CNA, Via
Santa Maria 36, 56100 Pisa, Italy

Michael Langston, Department of Computer Science, University of Tennessee,
Knoxville, T N 37996-1301

Richard Lau, Office of Naval Research, Code 111MA 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

Robert L. Launer, Army Research Office, P. 0. Box 12211, Research Triangle
Park, NC 27709

E. D. Lazowska, Department of Computer Science and Engineering, Sieg Hall,
FR-35, University of Washington, Seattle, WA 98195

James E. Leis, Rt. 2, Box 142C, Broadway, VA 22815

Eric Leu, Swiss Federal Institute of Technology, Department of Computer Science,
Operating System Laboratory, I N - Ecublens, CH-1015 Lausanne, Switzerland

Ted Lewis, Research Director, Oregon Advanced Computing Inst., 19500 NW
Gibbs Boulevard # l O l , Beaverton, OR. 97006

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, England

Rik Littlefield, Pacific Northwest Laboratory, MS K1-87, P.O.Box 999, Richland,
WA 99352

Ivo de Lotto, Dipartimento di Informatica e Sistemistica, Universitk Degli Studi
di Pavia, Via Abbiategrasso 209, 1-27100 Pavia, Italy

Ewing Lusk, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, MCS 221 Argonne, IL 60439-4844

Allen D. Malony, Department of Computer and Information Science, University
of Oregon, Eugene, OR 97403

James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

Alessandro Merlo, University of Pavia, Dip. di Informatica e Sistemistica, Via
Abbiategrasso, 209,I-27100 PAVIA, Italy

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Boulevard, Pasadena, CA 91 125

- 30 -

131. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

132. Richard Muntz, Computer Science Department, University of California at Los
AngeIes, Los AngeIes, CA 90024

133. David Nelson. Director, Office of Scientific Computing, ER-7, Applied Mathemat-
ical Sciences, Office of Energy Research, U.S. Department of Energy, Washington,
DC 20585

134. Randolph Nelson, IRM, P.O. Box 704, Room H2-D26, Yorktown Heights, NY
10598

135. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

136. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

137. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

138. Steve Otto, Oregon Graduate Institute, Department of Computer Science and
Engineering, 19600 NW von Neumann Drive, Beaverton, OR 97006-1999

139. Cherri Pancake, Department of Computer Science, Oregon State University, Cor-
vallis, OR 97331-3202

140. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

141. James C. T. Pool, Deputy Director, Caltech Concurrent Supercomputing Facility,
California Institute of Technology, MS 158-79, Pasadena, CA 91125

142. David A. Poplawski, Department of Computer Science, Michigan Technological
University, Houghton, MI 49931

143. Thierry Priol, IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

144. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

145. Bernhard Ries, Intel Corporation, European Supercomputer Development Center,
Dornacher Str. 1 , W-8016 Feldkirchen b. M., Germany

146. Emilia Rosti, Dipartimento di Scienze dell’Informazione, UniversitA degli Studi di
Milano, Via Comelico 39, 20135 Milano, Italy

147. Diane T . Rover, 155 Engineering Building, Department of Electrical Engineering,
Michigan State University, East Lansing MI 48824

148. Ahmed H . Sameh, Department of Computer Science, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455

149. Joel Saltz, ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,
VA 23665-522

- 31 -

150. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry
Road, San Jose, CA 95120

151. Carlo Savy, Dipartimento di Inforrnatica e Sistemistica, Universitg di Napoli, Via
Claudio 21, 1-80125 Napoli, Italy

152. Robert B. Schnabel, Department of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-
0430

153. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94085

154. James L. Schwarzmeier, Cray Research, Inc., 900 Lowater Road, Chippewa Falls,
WI 54729

155. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

156. The Secretary, Department of Computer Science and Statistics, The University of
Rhode Island, Kingston, RI 02881

157. Giuseppe Serazzi, Dipartimento di Elettronica e Informazione, Politecnico di Mi-
lano, Piazza Leonard0 da Vinci 32, 1-20133 Milano, Italy

158. Kenneth C. Sevcik, Computer Systems Research Institute, 10 King’s College Road,
University of Toronto, Toronto, Ontario M5S 1A1, Canada

159. Margaret L. Simmons, Computing and Communications Division, Los Alamos
National Laboratory, Los Alamos, NM 87545

160. Horst D. Simon, NASA Ames Research Center, Mail Stop T045-1, Moffett Field,
CA 94035

161. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

162. Marc Snir, IBM T.J. Watson Research Center, Department 420/36-241, P. 0.
Box 218, Yorktown Heights, NY 10598

163. Danny C. Solensen, Department of Mathematical Sciences, Rice University, P. 0.
Box 1892, Houston, TX 77251

164. Giandomenico Spezzano, Consorzio per la Ricerca e le Applicazioni di Inforrnatica
(CRAI), Localita S. Stefano, 1-87036 Rende (CS), Italy

165. Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

166. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

167. Paul N. Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000,
Boulder, CO 80307

168. Wei Pai Tang, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada N21 3G1

- 32 -

169. Bernard Tourancheau, LIP ENS-Lyon 69364, Lyon cedex 07, France

170. Anne Trefethen, Engineering & Theory Center, Cornel1 University, Ithaca, NY
14853

171. Cecile Tron, IMAG, INPG (LMC), 46, av Felix Viallet, 38031 Grenoble Cedex,
France

172. Sue Utter Honig, Computer Science Department, 4105C Upson Hall, Cornel1 Uni-
versity, Ithaca, KY 14853

173. Roberto Vaccaro, Istituto per la Ricerca sui Sistemi Informatici Paralleli (IRSIP),
CNR, 1-80125 Napoli, Italy

174. Marco Vanneschi, Dipartimento di Inforniatica, Universita di Pisa, Corso Italia
40, 1-56124 Pisa, Italy

175. Mary Vernon, Computer Sciences Department, University of Wisconsin, 1210 W.
Dayton Street, Madison, WI 53706

176. Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street N.W.,
Washington, DC 20550

177. Michael D. Vose, 107 Ayres Hall, Department of Computer Science, University of
Tennessee, Knoxville, T N 37996-1301

178. Tammy Welcome, Lawrence Livermore National Lab, Massively Parallel Comput-
ing Initiative, L-416, P. 0. Box 808, Livermore, CA 94550

179. Steve Weston, Scientific Computing Associates, Inc., One Century Tower, 265
Church St., New Haven, CT 06510

180. Mary F. Wheeler, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 77251

181. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamta, NM 87545

182. John Zahorjan, Department of Computer Science and Engineering, Sieg Hall, FR-
35, University of Washington, Seattle, WA 98195

183. Hans Zima, Department of Statistics and Computer Science, University of Vienna,
Brunner Strasse 72, A-1210 Vienna, Austria

184. Roland Zink, Institute of Parallel and Distributed Supercomputers, University of
Stuttgart, Univ. Stuttgart, IPVR, Breitwiesenstrasse 20, W-7000 Stuttgart 80,
Germany

185. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N
37831-8600

186-187. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

