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An encryption scheme based on chaotic dynamics is presented. This scheme 
makes use of the efficient and reproducible generation of cryptographically secure 
pseudo random numbers from chaotic maps. The result is a system which encrypts 
quickly and possesses a large keyspace, even in small precision implementations. This 
system offers an excellent solution to several problems including the dissemination 
of key material, over the air rekeying, and other situations requiring the secure 
management of information. 
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1. INTRODUCTION 

In this paper, we investigate the potential for employing chaotic dynamics as 
a reliable, secure, and rapid encryption tool in symmetric cryptography. The basic 
idea of cryptography is to alter a message in such a way as to make it unintelligible 
to anyone except the intended recipient.I2 The original message, M, also referred to 
as the plaintext, is represented by a finite string of symbols from a given alphabet, S,. 
The encryption procedure codes the message using a transformation, E, that depends 
on a set of parameters, K, called the key. The result is an encrypted ciphertext 

C = E(M;K) 

which is meaningless to an unintended observer. In a symmetric cryptosystem, the 
recipient of the ciphertext retrieves the original message by using the same key as the 
sender and employing a decryption transformation, D: 

D(E(M;K);K) = M. 

Both the sender and recipient of the message must share the same key for the 
message to be successfully interpreted. 

In the past, cryptography was used primarily within the military, intelligence, 
and diplomatic communities. With the increased speed and facility of data transfer 
allowed by modem computer systems, cryptographic applications have also appeared 
in banking, personnel administration, computer networking, and counter-narcotics 
activities. 

The emergence of new cryptographic concerns in non-traditional areas of 
interest has led to the development of several iterated ciyptosystem. An iterated 
cryptosystem relies upon the repeated application of weak functions to produce 
cryptographically strong results. The most popular of these, the Data Encryption 
Standard (DES), was adopted by the National Bureau of Standards in 1977.3 The 
DES, along with a large number of cryptosystems inspired by it, survived attempts at 
attack for several years. However, in recent years effective attacks on these systems 
have appeared, based on the method of differential cryptanalysis. This method has 
exposed design flaws not only in DES, but in many other iterated cryptosystems, 
showing that the time required to defeat some of these schemes can in many cases be 
reduced to a matter of minutes or even seconds on personal computers4. Although 
DES itself appears relatively secure at this time, the fact that it has revealed 
exploitable weaknesses increases the need for alternative cryptosystems. 
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A drawback of iterated cryptosystems is the extreme difficulty associated with 
proving their security. One way to avoid this problem is to develop a cryptosystem 
working from an a priori strong foundation. An example of such a system is the one- 
time pad cryptosystem. The one-time pad is the only cryptosystem which can be 
proven to be secure. However, in light of the severe requirements it demands in order 
to guarantee security, the one-time pad is not practical for general use. 

The one time pad requires, for any plaintext message M composed of i bits, 
a unique and random string K, also consisting of i bits, with a uniform distribution. 
The space of all possible strings K is the keyspace. Encryption of the plaintext is 
achieved through simple combination of these two strings by some bitwise 
mechanism, in this case we will define the ciphertext C to be the exclusive-or (XOR) 
product of M and K.  The distribution of the random string K is uniform and 
independent of the distribution of M, which implies that the distribution of C is 
uniform and independent of the distribution of M as well. Since the string K is 
random, any attempt to decrypt the ciphertext, without knowledge of the string K, 
possesses only a minimal chance of success. 

As mentioned above, the proper use of the one time pad entails requirements 
which greatly limit its practicality. The first requirement is obvious; the one time pad 
requires the secure distribution of as much key material as plaintext. Second, a new 
random string must be used for each encryption, as attacks employing multiple 
ciphertexts encrypted under the same key are trivial.' The impracticalities associated 
with these two requirements are referred to as the key management problem. Making 
use of the one time pad as an effective foundation for a new cryptosystem requires 
the elimination of the key management problem. In order to do this the amount of 
information needed to drive the cryptosystem must be significantly decreased without 
diminishing the scheme's security. 

In the work reported here, we present a variation of the one time pad that 
yields a practical solution to the key management problem. The pseudo random 
behavior of chaotic dynamics is used to produce pseudo random sequences from a 
small amount of initial information. These pseudo random numbers are then 
combined with the plaintext message to generate the cipher text. This concept is 
supported by two properties of chaotic dynamics: sd (i) its highly irregular character 
successfully mimics truly stochastic behavior and (ii) its deterministic nature ensures 
simple, rapid, and accurate reproducibility. A general discussion of cryptographically 
suitable methods of pseudo random number generation is presented in Section 2. The 
application of chaotic dynamics to a practical solution of the key management 
problem is discussed in Section 3. The actual implementation of chaotic dynamics in 
an encryption scheme is examined in Section 4, and preliminary conclusions derived 
from this work are summarized in Section 5. 
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2. PSEUDO RANDOM IUUMBER GENEMTION 

The development of a secure cryptosystem invariably requires effective and 
secure random number generation. Some of the more popular random number 
generators in use today are based on the linear congruential method, the middle 
square method, multiplicative methods, and mixed methods. These are enhanced 
by additional techniques such as data perturbation, swapping random sample queries, 
cell suppression, partitioning, and complex bitwise manipulation. These methods have 
met with varying degrees of success in different applications, but they do not provide 
a definitive answer to the random number generation problem.*10 

An ideal generator would produce a truly random sequence. However, this is 
impossible since both the generation and the analysis of a truly random sequence 
would require infinite information content. An actual generator can, therefore, 
produce only a pseudo random sequence for which various measures of randomness 
can be defined."= For practical use in a given application, we require that a pseudo 
random number (PRN) generator possess: (i) reproducibility, (ii) computational 
efficiency, and (iii) adherence to standards related to that specific application. 

For instance, consider the computational efficiency of a PRN generator. The 
generator must be both rapid in the production of a pseudo random sequence and 
economical in its storage. In some cases, there is a direct trade-off between the two 
qualities. A routine designed to generate numbers to be used to dynamically encrypt 
real time transfer of data is more concerned with the speed at which it can generate 
a pseudo random sequence. A routine intended to generate PRNs to be used in the 
encryption of electronic documents which are then stored must incorporate efficient 
storage considerations. The configuration which possesses the maximum utility for a 
particular application must therefore be determined based on the requirements of 
that application. 

When employed within cryptographic applications, the PRN generator comes 
under the scrutiny of a well informed enemy, equipped with modem computational 
resources. The enemy's goal is to reproduce a particular sequence of pseudo random 
values. The enemy does not possess the unique initial information (i.e. initial values, 
seeds, and other variable parameters) associated with the sequence he wishes to 
regenerate. For the generator to be useful cryptographically, any attempt by the 
enemy to reproduce subsequent portions of a pseudo random sequence given a finite 
portion of that sequence (referred to as an attack) must have a trivial chance of 
success in any useful amount of time. 
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To insure security against the enemy, we avoid a purely statistical notion of 
randomne~s~’*~ and instead adopt a more cryptographically practical definition. Any 
statistical benefits incurred from a particular PRN generator which are not directly 
associated with its adherence to our cryptographic definition of random are cosmetic, 
and add little to the generator’s usefulness. A cryptographically strong pseudo random 
number generator (CSPRNG) must produce sequences of values which: (i) possess 
minimal internal correlation, (ii) convey minimal critical information regarding their 
origin, and (iii) are absolutely dependent upon unique and sensitive initial conditions 
for proper reproduction. 

In order to be useful cryptographically, a PRN generator must produce 
sequences with minimal internal comelation. By this, we mean a sequence of PRNs 
must possess an acceptably small correlation between subsequent values and close 
neighbors. Furthermore, any long range correlations (periodicity) are equally 
undesirable. The existence of such correlations can offer information regarding the 
nature of the CSPRNG used to produce the sequence. The availability of such 
information is contrary to the purpose of the generator and must be avoided. 

The critical information content of the sequences generated by a CSPRNG 
must be carefully monitored. Critical information content is the quality of a sequence 
that associates it with the composition of a particular PRN generator and the specific 
parameters it employs. Output which completely retains critical information may be 
easily attniuted to a particular PRN generator. Similarly, an output which retains 
minimal critical information can not practically be associated with any one particular 
method of PRN generation. For example, any member of an unaltered sequence of 
iterates resulting from some recursive process retains all the critical information 
necessary to recreate that sequence in either direction. In this sense, the critical 
information content of a sequence is directly related to the degree of internal 
correlation between its members. One method of Visualizing the critical information 
content of a sequence is through the use of PoincarC plots, which display a member 
of a sequence, xn+; ,versus another member, x,. Depending upon the underlying 
dynamics of the PRN generator and the value of the lag i ,  such a plot eventually 
reveals a structure which is directly dependent upon the critical information content 
of the sequence. 

A CSPRNG must require unique initial conditions for the generation of a 
pseudo random sequence, and be sensitive to any changes in those conditions. Ideally, 
each initial condition should eventually yield a unique pseudo random sequence, and 
no correlation should exist between two initial values and the similarity of the output 
they generate. In a realistic application, however, we do not exclude the possibility 
of multiple initial conditions resulting in the same output. This is acceptable as long 
as the number of such initial conditions is relatively small. 
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Based on these three requirements, using nonlinear maps in a chaotic regime 
to implement CSPRNGs appears promising. The reproducibility of sequences 
generated by these maps is guaranteed by their deterministic character. The 
computational efficiency of the generator is a result of their recursive nature. A 
computer-based application performs few operations per iteration, making the 
generation of long strings of iterates simple and quick. The sensitivity of chaotic maps 
to minute changes in initial condition insures that the generator will also be sensitive 
to such changes. Furthermore, statistical tests show that the output of chaotic maps 
can be efficiently transformed so as to relate minimal critical information and possess 
practically no internal correlation. 
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3. APPLICATION TO THE KEY MANAGEMENT PROBLEM 

We present the following application of a chaotic dynamics-based CSPRNG 
to the key management problem. 

The PRN generator performs all operations in b bit floating point precision. 
The first stage of the generator employs rn nonlinear chaotic maps, Cl, C, ... C,,,, 
operating on the unit segment. These maps require rn initial values (seeds), each a 
b bit floating point value designated Kl, Kd ... K .  Each map iterates its respective 
seed 2 times, producing the iterates CIpI(K,), CfJ(K&, ... , Cmrn(KJ. Tfiese iterates are 
combined via the exclusive-or operation, referred to as XOR and denoted by o, to 
give a value R,: 

This number is then transformed into a pseudo random integer, pl = I(Rl), by 
extracting one byte (8 bits) from a specific address in the binary representation of Rl 
and expressing it as an integer. The value pl is the first member of the pseudo 
random sequence of integers pa pa ..., p,. Additional values are generated by the 
same process using the rz' set of chaotic iterates C!dl(KJ, i=l,..,m, as the new keys 
for the  PI+^)^ round. 

The sequences produced by the PRN generator described above possess the 
properties outlined in the description of a CSPRNG. The sensitivity to unique initial 
conditions is derived from the use and combination of multiple chaotic maps. The 
sequences' internal correlation and critical information content are then minimized 
by the use of the XOR and integer generation procedures. By selecting the byte used 
to generate the pseudo random integer near the end of the XOR product, minimal 
differences in initial conditions are expected to precipitate quickly into significant 
differences in the pseudo random sequence. The result is a quick and efficient 
CSPRNG. 

As proof of principle, and as a reference for further applications, the PRN 
generator described above was implemented on an IBM compatible personal 
computer. Full documentation on the hardware and software specifications used are 
included in Section 4. All arithmetic is performed in 64 bit extended floating point 
precision. 

Two chaotic maps were used, namely the Bernoulli Shift: 

x,,, = 2xn mod 1 

Xn+r = ilxn(1-xn) 
and the Logktic Map: 
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whose properties are well studied. Both possess simple recursive structures which 
make computer implementations quick and efficient. Iterates are XORed together, 
and the binary byte consisting of bits 48 through 55 of the 64 bit XOR product is 
extracted and converted into an integer. The initial information requirements consist 
of one 64 bit floating point seed for each map, a 64 bit 1 value for the Logistic Map, 
and an 8 bit integer value I describing the number of iterations between subsequent 
values in the pseudo random sequence. This set of values is referred to as the key. 

Using the CSPRNG presented above, a variation of the one time pad 
cryptosystem is achieved as follows: A message M of length L is separated into its 
component characters mi. These characters are represented as integer values based 
on their position in the alphabet S,,,. For illustration, the standard ASCII character 
set, which represents characters as 8 bit integer values, has been used. Using the 
method presented in the previous section a pseudo random integer sequence P of 
length L is generated, with eight bit integer components pi. The ciphertext C is 
expressed in terms of its components e,, defined as: 

ci = Mi @ p i .  

Decryption follows an entirely parallel scheme (See Fig. 1). 

The Chaotic Dynamics XOR Cryptosystem (CDXC) enjoys a distinct 
advantage over the standard one time pad method. Each use of the traditional one 
time pad requires as much key material as plaintext, resulting in the key management 
problem discussed in the previous section. However, our variation of the one time 
pad requires a constant, relatively small amount of initial information for each 
message to be encrypted, regardless of its length. The initial information requirements 
of this particular application consist of three 64 bit values and one 8 bit value, or 200 
bits of information. This translates to the secure distribution of 25 ASCII characters 
per encryption, effectively eliminating the key management problem associated with 
the traditional one time pad while retaining its security. 
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, 

Encryption of a Plaintext Character. 
This chart represents the encryption of a plaintext character using the encryption 

scheme presented in section three. Due to the properties of the XOR operation, decryption 
is achieved by an identical mechanism. In decryption the input consists of a ciphertext 
element, cn, while the output is a plaintext character mn. 

Plaintext 
Character 

- 

Seeds - Seeds 1 and 2 are 6 bit floating point values on the unit 
segment. 

- X represents the Lambda parameter of the Logistic Map, a 
b bit floating point number that takes values in the range 

h 

of (3.99.4). 

t, S - L and S represent the Logistic and Shift maps. respectively. 

€?J - This symbol indicates the XOR (exclusive-or) operation. 

t - I is the random integer generation process described in section 
three. 

i Ciphertext 

Element 
Cn 

Firmre 1 





To demonstrate the utility of the CDXC, a computer application was developed. 
The computer hardware used in the development of the DOS version of this program 
consists of a Northgate Computer Systems, Inc. 386 personal computer running 
Microsoft's MS-DOS 5.0. This machine makes use of the Intel 80386 - 25 MHz 32 bit 
processor and the Intel 80387 numeric coprocessor. The 80387 numeric coprocessor 
provides for the quick manipulation of floating point operations, and is capable of 
supporting an 80 bit extended precision floating point mode. Standard IEEE rounding 
modes are also supported, the default state of round to nearest was used in all 
floating point calculations. The source code was developed using Borland Turbo 
C++ version 3.0. 

The core of CDXC is the encryption algorithm presented in the previous section. 
Additional routines were added to handle user input and file VO. The program is a 
command line encryptor; when invoking it a source file is specified on the command 
line. This fie serves as the input for encryption, thepzaintext, and is overwritten by 
encrypted output, the ciphertext. As described before, a pseudorandom 8 bit value 
(one byte) is extracted from the XOR product of two chaotic iterates, and is XORed 
with a plaintext byte. The XOR value of the pseudo random and plaintext bytes is 
output as the ciphertext byte. Due to the properties of the XOR operation, 
encryption and decryption are identical functions. To decrypt a file, CDXC is invoked 
with the encrypted file specified as the source file. By supplying the proper initial 
conditions, the correct pseudo random sequence is generated and XORed with the 
ciphertext, reproducing the original plaintext. 

The DOS version of this program has been extensively tested with various types 
of files, functioning equally well on both text and binary data. Furthermore, CDXC 
runs very quickly. Even on a low end platform like the 80386 computer used here, 
it outpaced several software implementations of the DES, with throughput on the 
order of 16Wsec (average). Note that this rate includes the delay caused by disk 40, 
which was optimized through the use of multiple buffers but still requires a significant 
amount of time for large files. 

A UNIX version of this program was developed, using vendor supplied compilers 
to compile the code on different workstations. An HP 9000/730 workstation was used 
as the primary development platform, with versions ported to IBM RISC/6000 580 
and SGI Indigo (R3000) workstations. Ciphertexts were interchangeable between 
these three machines. A message encrypted on one machine was correctly decrypted 
on another, dispelling our initial fear that differences in architecture and consequently 
different methods of addressing floating point numbers on different workstations 
would prevent encryption and decryption across platforms. The high throughputs for 
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these workstations, displayed in the table below, makes this cryptosystem ideal for 
applications involving high speed transfer of data over networks and phone lines. 

* - No Version Available 
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5. DISCUSSION 

The cryptosystem presented in Section 3 effectively removes the key management 
problem of the one time pad for a large number of practical applications, without 
decreasing its security. The benefits derived from employing chaotic maps in 
encryption are best evaluated when this cryptosystem is subjected to various methods 
of attack used by an enemy. Consider, for example, two trivial methods of attack: (i) 
Brute Force attacks and (ii) Key Guessing attacks. It is not difficult to demonstrate 
their inefficiency as long as we observe certain rules which must be applied to our 
scheme. 

The term Brute Force Attack can describe any one of several types of attacks on 
a cryptosystem, most of which resort to an exhaustive search of some set of 
parameters intrinsic to that cryptosystem. A typical Brute Force Attack might attempt 
to decrypt a ciphertext by using every possible key, until the correct key is found. 
Such an attack is, in the case of CDXC, impractical due to the computational 
infeasCbility of examining its large keyspace. However, while the chances are minimal, 
it is not inconceivable that such an attack might (very) rarely succeed. In order to 
maintain the security of the scheme a unique key must be used for every encryption. 
Doing so prevents the decryption of multiple ciphertexts in the extremely unlikely 
event of the enemy obtaining the key €or a particular ciphertext. 

A Key Guessing attack is employed when the enemy suspects a biased distribution 
of initial conditions over the keyspace. Such a situation might arise when the user of 
the cryptosystem chooses keys which fit a discernible pattern, such as common 
English words or obvious combinations of the date or time. In this situation, an 
enemy can make use of this knowledge to reduce the size of the keyspace to a 
practically accessible size. In order to avoid such attacks, the key selectionprocess must 
possess a unfom dkmbution over the keyspace. If this rule is followed a Key Guessing 
attack becomes impractical. 

While the two attacks presented above are by no means fully representative of the 
arsenal of an experienced cryptanalyst, they serve to define the two main guidelines 
which must be observed when employing this cryptosystem. If these rules are 
followed, we may defer to the proof of the one-time pad’s security as an argument 
for the security of this scheme, but a find argument can not be made until the PRN 
generation method has undergone extensive analysis and attack. 

Further examination of the properties of the cxyptosystem and its associated PRN 
generator must begin with a careful scrutiny of the character of the chaotic maps. 
The quality of the PRN generator relies on whether or not these maps allow for the 
uniform distribution of bits over the eight bit address from which the pseudo random 
byte is removed. In addition to an examination of the quality of the maps used in the 

13 



PRN, the irreproducibility of its output must be verified. It is necessary to 
demonstrate, beyond simple arguments of plausibility, that reproduction of the output 
of the PRN generator is computationally infeasible in a reasonable amount of time, 
without the exact initial conditions used in the creation of that output. Also, periodic 
behavior in the PRN generator must be addressed. While periodicity has not yet been 
observed, its existence might prove to be a complication, possibly causing unwanted 
redundancies in the ciphertext. Similarly, the effect of finite precision arithmetic on 
the PRN generation process must be considered. Calculations involving finite 
precision are known to cause relatively small periodic loops in sequences of chaotic 
iterates. An examination of this phenomenon reveals that careful selection of map 
parameters may serve to minimize the effects of any precision-related periodicity. 

The speed and security associated with this cryptosystem makes it ideal for use 
jn any situation which demands these qualities. For example, the high throughput of 
our initial software implementation makes it an ideal candidate for use in the 
transmission of encrypted electronic mail across networks, encrypting "on the fly". A 
refined software application of this scheme, or a dedicated hardware implementation, 
would operate at speeds sufficient for the dynamic encryption of high speed data 
transfer, making the real time encryption of digital communications practical. The 
scheme's strength makes it equally useful for the encryption of high security 
documents and information. Such demands might arise due to the results of industrial 
espionage, electronic theft and laundering, or violations of network security. While 
this scheme i s  sufficient for applications requiring speed or security, its powerful 
combination of the two qualities makes it suitable for applications which demand 
both, offering a versatile alternative to iterated cryptosystems. 
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