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The Joint U.S.-Japan Seminar in the Environmental Sciences was based on the premises that 
questions remain concerning the factors that control many of the regularities observed in ecological 

communities and that increased collaboration between researchers in the United States and Japan can 
contribute to answering these questions. The papers included in this report resulted from the 

Seminar. These papers as well as workshop discussions summarized here outline the main issues that 

face theoretical ecology today. The papers cover four different areas of theoretical ecology: 
(1) individual species adaptations, (2) ecological community-food web interactions, (3) food web 
theory, and (4) concepts related to the ecosystem. 
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REPORT ON A JOINT US.-JAPAN SEMINAR 
lN THE ENVIRONMENTAL SCIENCES 

BACKGROUND OF SEMINAR 
The idea of a joint U.S.-Japan Seminar in the environmental sciences was based on the 

following premise. Despite recent progress in understanding ecosystem behavior, questions remain 

concerning the factors that control many of the regularities observed in ecosystems. 

Fascinating general patterns have been noted, for example, in community structure (e.g., 

a h e n  1977,1978; Pimm 1980a,b; Rejmanek and Stary 1979; Briand 1983; Briand and a h e n  1984), 

but there is as yet no general theory that can explain the observed patterns. Theoretical ecologists 

have been sharply divided in their views on what the basic factors are that control the structure of 
ecological communities. Despite the recent publication of several edited volumes devoted to this 

subject (e.g., DeAngelis et al. 1983; Price et al. 1984; Strong et al. 1984; Kikkawa and Anderson 1986), 

gaps between competing viewpoints seem little closer to being resolved. 
A new approach is needed to attain a generally accepted body of theory of ecological 

communities (and more generally of ecosystems as well, since abiotic factors and flows of energy and 
matter must be part of any general body of theory). We believed that a Joint United States - Japan 
Seminar, structured along the lines described below, could be the beginning of a cooperative effort 

to achieve a synthesis of alternative views. 
The general theme of the workshop revolved around the following questions. Are there 

regularities in ecosystem structure and, if so, do these regularities reflect constraints related to 
dynamic stability, energy, or other factors on the ecosystem? How do ecosystem properties and the 

characteristics of individual species change during succession and/or evolution? Finally, and most 
importantly, can theoretical ecologists who approach the study of ecosystems from different viewpoints 

achieve a unified theoretical perspective that will stimulate greater progress in understanding and 
prediction? Some areas where a unified perspective would be particularly useful in resolving different 
viewpoints are briefly described below. 

A variety of regularities has been noted in the vertical and horizontal structure of trophic 

webs (Pimm and Lawton 1977, 1978; Cohen 1977, 197% Sugihara 1982; Briand 1983) and in the 

numbers and types of connections between species (Rejmanek and Stary 1979; Pimm 198Oa,b; Briand 

1983; Briand and Cohen 1984). However, interpretations of the causes of these patterns have been 
divided. The observed consistently short lengths (usually three or  four links at most) of trophic chains 

in communities have been attributed variously to energy limitation (Yodzis 1980, 19Sl), interspecific 
population dynamics (Pimm and Lawton 1977,1978; Pimm 1982), and (in part, at least) probabilistic 

considerations (Auerbach 1984). A wide variety of hypotheses has also been offered for the fact, 
observed by a h e n  (1978), that niche overlaps of species competing for resources can be represented 
on a one-dimensional niche space (Yodzis 1982; Critchlow and Steams 1982; Sugihara 1982; a h e n  
1983). A synthesis is needed either to decide among alternative causal explanations or  to show that 
there is a synergistic interaction among the different proposed causal factors. Other equally puzzling 
patterns include the "species scaling law" (Briand and Cohen 1984), stating that the mean proportion 

of numbers of basal, intermediate, and top species remain invariant at approximately 0.19, 0.53, and 
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0.29, and the "linked-species scaling law" (Briand and Cohen 1984), stating that the ratio of mean 

trophic links to species remains invariant at approximately two over a whole range of variation of 

numbers of species in food webs. 
Another main area where regularities have actively been sought is in the phenomenon of 

successional and evolutionary changes in ecological communities. Both Drake (1983) and Post and 
Pimm (1983) studied the assembly of food webs by species invasions through time using computer 
simulations of Lotka-Volterra systems. Drake showed that only a small subset of species is capable 

of invading these food webs, while Post and Pimm showed that the rate of species turnover declined 

with time. These results are only computer simulation results; a deep understanding of how species 
composition should change through time may require mathematical analysis. 

Other theoretical ecologists, studying ecological systems from the point of view of energy and 

material flows rather than species composition, have proposed that deterministic trends should occur 

in a number of energy, nutrient, and information relationships during the course of succession or 
evolution. Some of the hypothesized trends are the following: (a) biomass and the amount of 

biomass maintained per unit of energy input should increase (Odum 1969), (b) nutrient cycles should 
become tighter through time (Odum 1969), (c) utilization of energy in the ecosystem should become 

more efficient through time (Margalef 1963), (d) ecosystems should evolve so as to maximize the 
power (Odum and Pinkerton 1955), and (e) ecosystems should evolve to maximize the information 

theory index called "ascendancy" (Ulanowicz 1986). Some of these generalizations have been 
questioned (e.g., Drury and Nisbet 1973) and some may not be completely consistent with others. 

These hypotheses should be examined systematically along with the hypotheses for changes in species 

composition, using both computer simulations of the sort used by Drake (1983) and Post and Pimm 

(1983), and more general mathematical analyses. 
The above brief overview shows that there are many unresolved problems in the subject area 

of ecological communities, concerning both their structural properties and successional or evolutionary 
changes. An active search for new perspectives to help in attaining a deeper theoretical understanding 

of community structure and dynamics has led to a diversity of modeling approaches. For example, 
Abrams (1982, 1984) has attempted to relate community dynamics to optimal foraging strategies of 

consumers. Cohen and Newman (1985) proposed a simple neutral model, the "cascade" model, of 
food webs that requires only a knowledge of the numbers of functional species and links, plus the 

assumption that species are ordered in a cascade-type hierarchy, to predict other empirically observed 

food web characteristics. Ulanowicz (1986) developed an approach to ecological communities based 

on mathematical matrices of nutrient and energy flows. Patten and his colleagues (e.g., Higashi et  al., 

1989; Patten 1985; Patten and Auble 1981) have proposed a general theory of ecosystems as 
hierarchically organized networks in which indirect effects play a major role. Pimm's (1979a,b, 
1980a,b, 1982) hypotheses concerning food web structure and resilience are based on computer 

simulations of sets of Lotka-Volterra equations. The approaches have all been useful, but a more 
unified perspective would clearly help in relating these approaches to each other. 

The above outline of mathematical approaches mentions primarily U.S. scientists. However, 
at the same time, Japanese theoreticians have developed a great body of mathematical theory. This 

work appears to be relevant both to developing a unified mathematical framework and to helping 
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resolve some of the questions concerning ecological communities listed earlier. This body of 
mathematical theory is not generally known in the United States, which was an important reason for 

bringing together Japanese and U.S. scientists. 
At the center of the Japanese contributions to mathematical ecology has been the work of 

Professor Ei Teramoto of Kyoto University and a group of colleagues (H. Ashida, H. Nakajima, 
N. Shigesada, K. Kawasaki, and N. Yamamura), known to many through their collective nom de plume 

as "Mumay Tansky" (Tansky 1976, 1978). The basic objectives of this group have been to study 

dynamic stability of food webs as a function of energy flow and trophic structure and to develop the 

mathematics to describe successional processes in food webs. What is particularly important about 

this work is that it is, in general, applicable to highly complex systems. For example, recent work by 
Shigesada enables one to consider N species interacting through interference competition and to 

determine which subset of these species will be eliminated and which will persist in equilibrium. 
Nakajima has been able to predict mathematically what sort of community will develop through 

successional (or evolutionary) time if new species having different characteristics continue to invade. 
He found that a particular quantity, resource utilization, increases with successional change in such 

models. The techniques used by these theorists and other mathematical ecologists in Japan are 
original and powerful. They have not in general been used to address the major questions that are 
being confronted by U.S. ecologists. 

In addition, Japanese empirical ecologists have developed their own conceptual theories, 

emphasizing a holistic and phenomenological view of natural communities and ecosystems. A major 
focus has been placed on life-style differentiation within communities. 

Professor Teramoto had the original idea of holding this meeting to initiate a start towards 
resolving the issues discussed above and to develop a unified perspective. He asked D. L. DeAngelis 

to write a proposal to the International Program Section of NSF to secure funding for several 

theoretical ecologists from the U.S. and Japan. The plan was for the seminar to have a workshop 
format. Funding was granted and the meeting was arranged to be held at  the East-West Center in 
Honolulu. Appendix A lists the participants of the meeting and Appendix B lists the papers 

presented. The papers and workshop discussions met the desired goal of outlining the main issues 
that face theoretical ecology today. 

SCfENTlFlC REPORTS AND DISCUSSION 

An important aspect of the reports presented at  the Seminar, besides their scientific contents, 

were their relationships with one another. Do they relate as components of a unified perspective? 

At the highest level one can divide approaches that center on a population dynamics point 
of view from those centered around the flows of energy and matter. According to the traditional 

"population dynamics" point of view, there is a hierarchy that extends from the smallest units, the 
individual organisms, to single-species populations, then to single-trophic level communities made up 

of populations, and finally to food webs made up of several trophic levels. Constraints due to natural 
selection at  the individual level affect all of these levels. Each of these topics has traditionally been 
a field of study in its own right. 
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The task of attaining a unified perspective requires understanding the interfaces of these fields; for 
example, understanding how the characteristics of individual organisms affects dynamics at  the 

population or food web level. 

According to the "systems ecology" point of view, flows of energy and matter are of great 

importance. These flows must obey physical constraints, such as the laws of thermodynamics. The 
area where ecological theory is most in need of unification, or at least of more intense work is the 

interface between population dynamics and the systems ecology of flow of energy and matter. This 
should most naturally occur at the food web level, since it is only there that all the organisms of an 

ecosystem are present for a complete cycle of nutrients through the biota. 
Ideally, one should study all of the aspects of the ecosystem discussed above together. 

However, in a practical sense progress is often best made by approaching the whole problem by 
looking at only a few pieces at a time. The papers presented at the Seminar can be classified to fall 

into four general categories. 

1. The influence of individual adaptive strategies of individual species (as evolved through 
natural selection) on population, community, food web, and ecosystem dynamics. 

2. Community level theory, especially as it relates to the community as part of the larger 
structure of the ecosystem. ("Community" is here taken to mean a set of species that occupy 
a single trophic level and potentially compete.) 

3. Food web theory. 

4. Ecosystem theory, emphasizing energy and material flows and macroscopic indices of the 
system derived from information theory and thermodynamics. 

Abrams, P. P. 1982. Functional response of optimal foragers. The Am. Nat. 120:382-390. 
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Individual Adaptations: 
Effects on Multispecies Systems 

One of the clearest trends towards unification of different areas of ecological theory is the attempt 
to build individual adaptive strategies of species, which have evolved through natural selection, into 

models of populations, communities, and food webs. 
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REPRESENTING BIOLOGICAL COMMuNJTfEs CONTAINING 
OPTIMALLY FORAGING HERBIVORES: IMPLICATIONS OF 

A D m  BEHAVIOR FOR COMMUNITY STRUCl'URE 

Peter A. Abrams, Department of Ecology & Behavioral Biology, University of Minnesota, 318 Church 
Street S.E., Minneapolis, MN 55455 

INTRODUCTION 

Pimm's (1979, 1980, 1982) pioneering work on food webs adopted a simple Lotka-Volterra 
representation for between-species interactions. This type of community modelling derives from 

earlier representations of large communities using Lotka-Volterra equations beginning with 
MacArthur and Levins. Similar models characterize many studies of food webs up until the present 

time (e.g., Post and Pimm 1983, Yodzis 1982, Drake 1988). When very little is known of the details 

of biological interactions, it seems reasonable to assume linear per capita effects on the growth rates 
of species that eat or are eaten by a given species, However, we all know that the world is a very 

nonlinear place, and are left with the nagging worry that conclusions based on Lotka-Volterra models 
may be misleading us in important ways. The question of linearity is especially worrying when 

considering theories that explain the lack of certain types of communities or food webs based on the 
dynamical instability of corresponding models with linear per capita effects. 

One important source of nonlinearities is adaptive behavior on the part of the species in the 

community. The processes of finding food and avoiding being eaten both generally involve costs and 
benefits, and a variety of organisms have been shown to adjust their behavior based on those costs 
and benefits (e.g., Stephens and Krebs 1986, Kerfoot and Sih 1987). This has been shown to have two 

types of effects in models of adaptive organisms: (i) interspecific effects of population density on  per 

capita growth rate tend to become nonlinear (if they are not already so), and (ii) a variety of 

interactions (which are themselves generally nonlinear) arise between species that do not eat or are 
not eaten by each other. Adaptive behavior by a species on one trophic level is likely to affect the 

population growth rates of other species on the same trophic level which share predators or  parasites 
(Holt 1984, 1987; Holt and Kotler 1987; Abrams 1987~). This includes higher order interactions, in 
which one species affects the interaction of hvo others. adaptive behavior by either predators or  prey 
affects the stability of the predator-prey interaction (Abrams 1982, 1984, Sih 1984; Ives and Dobson 

1987; Hassell and May 1985). Adaptive behavior by a species on one trophic level may result in 
interactions between the species on higher and lower trophic levels (Abrams 1984, Mittelbach and 

Chesson 1987). In spite of this diversity of effects, the influence of adaptive behavior on interactions 
within communities has received relatively little theoretical, and even less empirical attention. 

It is perhaps not surprising that the interactions produced by adaptive behavior are absent 
from general models. In the case of higher-order interactions, for example, there has been 

considerable documentation that such interactions exist in various communities, but there is no body 

of theory predicting what sorts of higher order interactions will occur in what circumstances. If one 
begins with a community description that includes only direct trophic relationships, one has no 

guidance about what higher order actions will usually occur. By beginning with a model that assumes 
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adaptive behavior, the higher order interactions arise as a natural consequence of adaptation, and no 
special body of “higher order interaction theory” is required. 

Rather than present a general survey of the effects of adaptive behavior in food web models, 

I will concentrate on such behavior in a specific group of organisms that is present in most real and 

model food webs: herbivores. Herbivores have traditionally received less attention from most 
theoretical community ecologists than have other functional groups. In particular, very little is known 

about the implications that adaptive foraging by herbivores has for the form of plant-herbivore 

population models. In the majority of food web models, and the majority of review articles on plant- 
herbivore models, herbivores are indistinguishable from carnivores except by their location in the food 

web, and perhaps by their lower trophic efficiency. Because all non-detritus-based food webs contain 

plants and herbivores, and because these two groups often comprise the vast majority of the 

community’s biomass, understanding plant-herbivore interactions is often essential for understanding 

community structure and dynamics. 
A variety of models of plant-herbivore interactions have been discussed in recent reviews of 

plant-herbivore dynamics (Caughley and Lawton 1981; Crawiey 1983). A notable feature of these 

models is that the form of the herbivore species’ functional response(s) has been similar to those used 

in traditional predator-prey models. At the same time, the authors of these and other articles stress 
that herbivores often face a very different set of foraging decisions than do carnivores, and this would 
lead one to expect different functional responses, if herbivores forage adaptively. For many, if not 
most, herbivores, edible items are abundant, but much of the potential food is undesirable due to: 

(1) lack of specific nutrients or improper balance of different limiting nutrients; (2) low concentrations 
of all nutrients; and (3) the presence of toxins or inhibitors of the digestive process. Low nutrient 

concentrations constitute a problem because the size of the digestive system and the passage rate 
through it are both limited. Some analyses of optimal diet in herbivores have considered how an 

individual herbivore should behave when faced with these foraging problems (reviewed in Stephens 
and Krebs 1986, Chapter 5). However, this work has not been extended in models of plant-herbivore 

population dynamics. The purpose of the present article is to provide a foundation for that extension 
by describing the functional responses that would be predicted for an adaptive herbivore species faced 
with one or more of the above foraging problems. In addition, I will consider, although in a less 
systematic manner, the implications that such functional responses have for the form of plant- 
herbivore population dynamics. Because most of the models include 2 or more plant species, and 
some include more than one herbivore, they may be viewed as simple food webs. Each of the three 

foraging problems is treated in turn in the following analysis. 

THE PROBLEM OF NUTRITIONALLY INCOMPLETE FOODS 
Early in the history of optimal foraging theory, Westoby (1974) pointed out that many 

generalist herbivores must consume more than a single plant type in order to obtain a diet that 
supports survival and/or reproduction. Theory related to the optimal use of such nutritionally 
complementary foods has been discussed by Covich (1972). Pulliam (1975), Leon and Tumpson (1975), 
Rapport (1980), Tilman (1980, 1982), and Abrams (1987a,b). The problem of nutritionally incomplete 
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resources is, of course, not restricted to herbivores, and is an important consideration in adaptive 
resource exploitation by plants. 

An extreme form of complementarity occurs when an individual's fitness is solely a function 
of the resource whose intake is lowest relative to requirements. This case serves to show especially 
clearly the types of effects that can arise with less extreme forms of complementarity. Such 
nonsubstitutable resources should usually be exploited in such a way that a constant ratio of intake 

rates of the two forms is maintained (Abrams 1987a,b). The case in which there are two 

nonsubstitutable resources and there exists a tradeoff between abilities to consume each type, has been 

analyzed in detail (Abrams 1987a,b); if the functional response on each resource is given by C&, the 

optimum values of C, and C,  are those that maximize C,R, subject to the constraint that C$, = 
BC&, where B is the desired ratio of intake rates. If the maximum possible C, is a linearly 

decreasing function of C,, k,C,+ k&= 1, then equal intake rates imply the following functional 

response forms: 

These response differ from those used in most predator-prey o r  food web models in that they 

imply negatively frequency dependent consumption. More effort must be devoted to obtaining a 

resource as its availability declines in order to maintain a constant ratio of intake rates. 
Christopher Kitting, who observed such constant ratio foraging by an intertidal limpet feeding on two 
algal species (1980), suggested that such foraging should be destabilizing if the herbivore had a 

significant impact on the population densities of the plants. However, until recently, there has been 

no theoretical analysis of simple food webs in which the herbivores pursued such a strategy. Abrams 
and Shen (1989) have recently examined the dynamics of one consumer-two resource, and two 

consumer-two resource models in which resources are self-reproducing populations, and the 
consumers pursue a constant ratio strategy of resource intake, with functional responses given by the 

above formulas. If the resources are logistic and the functional responses are as given above, a one- 

consumer version of such a model has the following form: 

- dR, = rlRl(L - 21 - B R l Y  

dt K2R1 + BIG14 
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The dynamics of both one and two consumer species systems is surprisingly complex. Some of the 

more notable features of these population dynamics are summarized below: 

(1) Single-consumer systems are characterized by a single stable equilibrium at low rates of 
resource exploitation, but have three equilibria at sufficiently high rates of exploitation ("high 
exploitation rates" means that a small resource intake rate is required for zero consumer 
population growth). 

(2) Depending on parameter values, when three equilibria exist in a one-consumer system, there 
may be either one or two attractors; if there are two attractors, there may be either two 
locally stable points, or a stable point and a limit cycle. If there is a time delay in the 
consumer's numerical response to altered resource densities, there may be two alternative 
limit cycles. 

(3) 'bo-consumer systems have a single equilibrium point, which is unstable when the resource 
densities at that point are sufficiently low. Thus, high exploitation rates result in oscillatory 
population dynamics. The correlations between the population densities of the competing 
consumers are usually negative at moderate exploitation rates, but positive at high 
exploitation rates. Figure 1 illustrates the range of dynamics that occur in a simple, 
symmetrical case when the consumer's resource requirement for zero population growth is 
varied. 

These and other related results are presented in greater detail in Abrams and Shen (1989). 

Some less extreme forms of nutritional complementarity result in constant-ratio strategies of 
resource exploitation (Abrams 1987b). and therefore can result in the same functional responses and 

the same range of population dynamics described above. Any type of nutritional complementarity will 

cause negatively frequency dependent predation to be adaptive in most circumstances. 

Speculation about the form of many-species models leads to a number of possible differences 
between models based on the above framework, and those with "Lotka-Volterra" herbivores. One of 

the results that can be derived from Eqs. (2) is that increasing the herbivore's (consumer's) D value 

by increasing its death rate can, depending on the attractor at which the system is located, result in 
an increase in equilibrium or average herbivore population density (Abrams and Shen 1989). It is 

possible that, in many-species models, an increase in total carnivore population or an evolutionary 

increase in carnivore hunting efficiency might increase total herbivore population density. If the plant 
species in a community can be separated into a small number of nutritionally complimentary groups, 
then there will be mutualistic interactions between the plants within a group, as the result of their 

effects on the herbivore's funcnional response. An increase in one plant species will result in reduced 
effort by the herbivore to consume all plant species in its nutritional group. At the same time, there 

are negative interactions between plants in different nutritional categories. If these nutritionally 
different plants also compete directly for resources, the indirect interaction arising from the 

herbivore's functional responses could affect conditions for coexistence, often making coexistence less 
likely. 

Omnivores are perhaps even more likely than herbivores to consume nutritionally 
complimentary foods. The functional responses predicted for omnivores that feed on both animal and 

plant food are especially likely to involve complementarity (example in Rapport 1980), and the 
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the text. The model is symmetrical; the resources have identical logistic growth parameters, and the required ratio of resource 
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adaptive responses may be similar in form to those discussed here. Preliminary analyses of 3-species 
models in which an omnivore feeds on both a predator and its prey, suggests that dynamic instability 

and large amplitude population cycles are very common when Eqs. (1) specify the omnivore’s 
functional responses. If there are unusually few omnivores (Pimm 1982), and if dynamic instability 

has something to do with this fact (Pimm 1982), it may be because of the particular effects of 
functional responses like those given by Eqs. (1). 

THE PROBLEM OF LIMITED GUT CAPACITY 
There is considerable evidence suggesting that many herbivores are limited by the quality of 

the available food, rather than the quantity. If they are not able to digest sufficient amounts of low 
quality food, herbivores may still be food limited while the world is green. Belovsky (1978, 1986a,b) 
has amassed considerable evidence suggesting that many generalist herbivores are constrained in their 

diet both by the limited time available for foraging and by their limited rate of processing low quality 
food. The diet of many mammalian herbivores may be classified into high and low quality 

components (often forbs and grasses respectively), and a large part of the optimal diet problem 

consists of adjusting the relative amounts of each type consumed (Belovsky 1986a,b). The optimal 

diet problem may then be posed as follows: The herbivore has a maximum consumption rate D, 
determined by its gut capacity and the passage rate of material through the gut. R, and R, are the 

densities of nutritionally low and high quality foods respectively, and A, and A, are the nutrient 

contents per unit volume for these two types. (It is assumed that there are no nutritional interactions 
between the foods; there is only one limiting resource, but it may be calories, nitrogen, or something 
else.) C,  and C, are the consumption rate constants for the two food types, so that Cp, is the volume 
of food ingested per unit time while searching for food i. The Ci are scaled in time units relative to 

the length of the maximum foraging period. If the two food types are not consumed simultaneously, 

the foraging strategy is defined by the amount of time spent foraging for resources i, t;. The optimum 

diet is the solution to the linear programming problem, maximize td,C,R, + tgi,C&, subject to the 

constraints: (i) t ,  2 O; (ii) t ,  t 0; (iii) t ,  + t, > I; (iv) C,R, + C ~ R ?  s D. me complete solution of 
the problem is given in Eqs. (5 )  below (see Abrams 1989a). Of interest here is the case in which both 

foods are consumed in the optimal diet. This implies that constraints (iii) and (iv) are binding and 

that the time allocations for foraging for each type of food are 

D - C.& C,R, - D 
tl = t2 = 

C,Rl - c24 C,R, - c2&2 

The functional responses are given by t,CP, , which yields 
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some threshold density. There is also likely to be some flexibility in foraging time for any species that 
does not spend 24.0 hours per day in foraging activities. In a more realistic model, increasing the 

amount eaten would have some positive and some negative fitness effects, the latter depending on the 

bulk of the food. As a result, the foraging problem becomes equivalent to the case of foods 

containing a common set of toxins; the negative effects of too much food may be modelled using a 

common framework whether the negative effects are due to toxins or simply to excess volume. Such 

models are treated in the following section. 

THE PROBLEM OF FOODS CONTAINING TOXINS 

ONLY ONE FOOD TYPE AVAILABLE 
A herbivore that consumes a single (homogeneous) food containing toxins o r  digestion 

inhibitors must balance the positive effects of energy and calories against the negative effects of the 

toxins. A n  individual's intake depends on the amount of time or effort (denoted t) spent in obtaining 

food (whose availability in the environment is denoted R ) .  The rate at which food is ingested is given 

by f(R)t, where f is the ingestion rate per unit energy or time expended on foraging, and is an 

increasing function of R. The functional response of the species is given byf(R)t. Both the positive 

and negative effects of ingestion are functions of f(R)r. The optimum t is found by setting the 

derivative of the expression for fitness with respect to t equal to zero, and solving for t. Because c 
enters into the expression for fitness only as the product f(R)t, the solution (assuming there is an 

admissible value of t  that satisfies the equation and is a maximum) has the formf(R)t = constant. 
This implies that the functional response is a constant. It is also possible that the optimum value of 
t is its maximum or minimum value, the latter generally being zero. For example, if t represents 

proportion of available time spent foraging, t=l may represent the optimum foraging strategy at low 

food abundances, resulting in a functional response having the formf(R). However, for a large range 

of food densities, the optimum t lies between its extreme values, and the functional response will be 

a constant. Functional responses that are constant except at low resource densities would also be 

expected in the case of an organism with an inflexible gut capacity (as in the previous section) that 
consumed a single food type. 

It is straightforward to determine the local stability of a consumer-food model of the usual 
differential equation form (May 1973, Rosenzweig 1971, Armstrong 1976) in which the consumer 

species has a constant functional response at  the equilibrium point. If the consumer is completely 
food limited, the equilibrium will be unstable if and only if the equilibrium food density is lower than 

the food density resulting in maximum food population growth (e.g., KL! in the case of logistic food 

population growth). Stability would be less likely than if the consumer had a Holling type 1, 2, or 

3 functional response. 

ONE TOXIC A N D  ONE NONTOXIC FOOD 
In this and the following analyses of systems with two food types, it will again be assumed that 

the two foods cannot be consumed simultaneously. This assumption applies if the two foods occur 
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in different habitats or are consumed using different foraging methods, or if food handling (e.g. 
chewing) consumes most foraging time, so that any additional time devoted to consuming one food 

reduces by that amount the time used consuming the other. One or the other of these alternatives 
seems to apply to most generalist herbivores. The modelled herbivore adapts by adjusting the 

amounts of time and/or effort devoted to obtaining each of the two food typeso To simplify the 

discussion, I will refer to t as the proportion of available foraging time devoted to consuming food 

type number 1. An individual’s functional response on food type 1 will therefore be tC,(R,), where 

C,  is an increasing function of R,, and denotes the intake rate per unit time (or effort) devoted to the 

first food type. (Note the difference in the meaning of C in this section and the previous one; here 

it denotes a function rather than a constant.) Similarly, the functional response on the second food 

type is given by (l-t)C2(R2). C, is an increasing function of R,. Type 1 will be assumed to contain a 

toxic or digestion-inhibiting substance. In a niore general model in which both resources were toxic, 
it would be necessary to include two time allocation variables, because it might be suboptimal to 

spend all available time foraging. Because resource 2 is completely nontoxic in the present case, 
unused time can always be profitably spent foraging for that resource. 

The positive effects of food consumption may be expressed as an increasing function of a 

weighted sum of the two functional responses. If the nutrient or caloric value per unit mass of food 

type i is A,, the fitness-enhancing effects of food consumption will be some increasing function f of 

the quantity, 

YI,C,(R,) + (1 -w2c#9 (6)  

The nezative effects will be expressed as an increasing function g of the ingestion rate of resource 1 

(the toxic food type). If the negative effects do not depend on total caloric intake, individual fitness 
may be expressed as the difference between f and g. If the negative effect is a reduction in digestive 

efficiency, this effect may be described by a decreasing function h of toxin intake, and fitness is more 

appropriately expressed as the product off and h. Both of these alternatives are considered below. 

The optimum value of t may be found by differentiating the expression for individual fitness 
with respect to t ,  setting equal to zero, and solving for 1. It is also necessary that the second derivative 

of fitness with respect to t be negative. In the additive model, fitness is cf - g), and the optimum ;I is 

determined by 

It is clear that unless the toxic resource yields a higher nutritional return (Le. A,C, > A2CZ), Eq. (7) 

will have no solution, and resource 1 should not be included in the diet (recall that f and g are 

increasing functions). In the multiplicative model, t is adjusted to maximizefi; the optimum t is 

therefore determined by 



j’h’C, + hf(A,C, - A2C2) = 0 (9) 

subject to 

2Lf‘(A,C1 -A,C,)h’C,] + fh‘‘C; + hfN(AIC, -A2C,) < 0 ( 10) 

In either case, it should be clear that the optimum twill generally depend on both resource densities, 
and consequently, both functional responses will be functions of both resource densities. It is possible 

to reach a number of conclusions about the nature of the functional responses without making any 

assumptions about the specific forms of the functions C,, C,,f, and g or h. 

The following analysis examines the following questions from a general standpoint for the 

additive model: (1) how does the optimum t change with a change in the density of each resource?, 

and (2) how do the two functional responses incorporating the optimum t change as a function of the 

density of each resource? 

Formulas for &JR, and &JR, may be derived by implicit differentiation of expression (S), 
yielding 

to - C{{g”C,t + g’ - A,F’ - (A,C, - A2C2)A,#’) 
(11) - -  

4 (A,C, - A2C2)2fN - Cfg” 

It is possible for either of these expressions to be either positive or negative; they may have the same 

sign or opposite signs. Biological considerations and consideration (8)  suggest that g” is more likely 
to be positive (than negative), and j” is more likely to be negative. Both of these conditions favor, 

but do not insure, a negative &&R, and a positive &&R, 
Of somewhat greater interest is the form of the functional responses, which are given by t,C, 

and (l-to)C,. The sign of the derivatives of the functional responses with respect to the two resource 

densities may be determined using expressions (11) and (12). For resource 1, this yields 
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It i s  possible for the functional response on the toxic food (R,) to decrease as R, increases; Eq. (13) 

implies that this occurs if and only if 

Thus, if the positive effects of increased nutrient intake are rising slowly, at a decreasing rate, it is 

possible for increases in the toxic food type to result in a decrease in its consumption rate. The 

functional response on the toxic resource must increase with its density if the benefit function f is 

increasing in an accelerating manner (f" > 0). 

Increasing the density of the nontoxic resource may either increase or decrease the functional 

response on the toxic resource, as shown by expression (14). The two terms in the numerator (14) 

have signs opposite of the two terms in the numerator of (13). Therefore, under a wide range of 

conditions, the effect of the nontoxic resource density on the toxic resource functional response is 
opposite to the effect of toxic resource density. 

The expressions analogous to (13) and (14) for the functional responses on resource 2 are: 

It is again possible for each of these derivatives to be either positive or negative. The biologically 

more plausible functions (positive g" and negative f") favor a response on resource 2 that increases 
with its own density, and with the density of the toxic resource. Nevertheless, exceptions to both of 
these predictions are quite possible. 

Although this analysis has not produced any general rules about the signs of the derivatives 

of the functional responses, biologically reasonable forms forfand g seem much more likely to result 
in a decreasing functional response on the toxin-containing food than on the nontoxic one. 
Decreasing functional responses are also possible under the multiplicative model, and the signs of the 

second derivatives off and h that favor such responses are the same as the signs off" and g" that favor 

similar responses in the additive model. 

TWO OR MORE TOXIC FOODS 
It is simple to extend the above framework to the case of two toxic foods. As above, a 

function f describes the positive fitness effects of resource consumption, and a function g describes 
the negative effects. The model differs from that in the preceding section only in that g is an 
increasing function of the intake rates of both resources. The argument of g may not be a simple 
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weighted sum of the intake rates of both foods if the different foods contain different toxins. It is 

clear that the range of possible functional response forms is even greater than in the case of a single 
toxic resource. Because the single toxic resource model is a limiting case of this more general 
situation, it is also clear that decreasing functional responses may occur with this two-toxic resource 
model also. The two-toxic resource case is treated in greater detail in Abrams (1989a). If f has the 

same form as in the additive model of the previous section, g is a function of a weighted sum of the 
intake rates of the two resources (B,C,t, 4- B2C2(l-cl)), and resource 1 has the greater reward rate 

(A,C1 > A2C2), then the functional response on resource 1 decreases with its own density provided 

that an intermediate optimum c, exists, and 

(18) 

(where the second derivative condition for c, to maximize fitness ensures that the denominator will 
be negative.) This condition links the discussion of bulky resources in section I1 with the discussion 

of toxic resources in the present section. Bulk can be thought of as a form of toxin that leads to a 

cost function whose second derivative, g“, is very large (and positive) when intake rate fills the gut 
completely. Expression (18) shows that this will favor a decreasing functional response on the 
resource that yields a greater nutrient intake rate per unit time, as was true for the specific case of 
the model considered in section 11. 

The population dynamics of models that explicitly incorporate adaptive foraging on toxic 

foods have yet to be explored. The possibility of decreasing functional responses suggests that 

oscillatory population dynamics will also occur frequently in these models. Almost any possible form 
of indirect interactions between resources may be created by the consumers’ (herbivores’) functional 

responses. 

CONCLUSIONS 

A L 3 m  FUNCTIONAL RESPONSES OF CARNIVORES 

Plant-herbivore community models that incorporate the functional responses described above 

will clearly differ from Lotka-Volterra type models. However, because most community models do 

not incorporate adaptive behavior of any kind, it may not be apparent that the functional responses 

described above differ from the functional responses of adaptive carnivores. Most carnivores consume 
nutritionally substitutable foods (many spiders may be exceptions; see Greenstone 1979). Abrams 
(1987b) discusses adaptive variation in functional responses that may occur with nutritionally 

substitutable resources; in general, such variation can be described as positive frequency dependence. 
Carnivores should concentrate their searching efforts on the most available prey (unless the (energy 
content)/(handling time) is too low.) This results in switching behavior, which has been incorporated 
into some very simple community models (e.g. Murdoch and Oaten 1975, Matsuda et al. 1986). In 
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general, switching stabilizes population dynamics. The short term effects between different food 

species that arise because of the predator's functional response are mutualistic (Abrams 1987~). 

SUMMARY 

The three foraging problems commonly faced by generalist herbivores all result in functional 

responses that differ markedly from any that are frequently used in carnivore-prey models. It is 

common for the amount eaten of some food types to decrease as the amount available increases, and 
the relative time and/or effort devoted to obtaining different types is seldom describable by the 
positive frequency dependence that characterizes many optimally foraging carnivores. Although 
relatively few food-web models incorporating such functional responses have been studied, those that 

have suggest that the functional responses may produce "unusual" population dynamics. The dynamics 
may or may not be atypical of what occurs in nature, but they certainly differ strikingly from those 

observed in analogous food webs with functional responses appropriate for carnivores. The results 
provide an additional argument for the need to consider behavioral responses of species when trying 

to understand community structure and/or dynamics. We are still a long way from knowing how 
incorporating adaptive behavior would change the conclusions derived from Lotka-Volterra food web 

models with many species, but preliminary results for very small communities suggest substantial 
differences in dynamic behavior. Most of the problems addressed by Pimm (1982) and others using 

Lotka-Volterra type food web models have yet to be addressed using models with adaptive foraging 
by either herbivores or other species in the food web. 
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CHARACTERISTICS OF SPECIES INTERACTIONS OF MACROBENTHOS IN 
TIDAL FLATS: A SUMMARY WfTH A PERSPECTIVE 

Akio Tamaki, Faculty of Fisheries, Nagasaki University, Bunkyo-cho, 1-14, Nagasaki 852, Japan 

INTRODUCTION 

For a long time, most patterns of abundance and distribution of invertebrate species in marine 
soft bottoms have been explained by correlations with physical factors in the environment. Since the 

197Os, species interactions have also become recognized as important agents generating patterns. 

Among various habitats in marine soft bottoms, intertidal flats (both sand flats and mud flats) are 

systems suitable for investigating species interactions, due to their accessibility and their calmness for 
maintaining field experimental equipment as compared with exposed sandy beaches. 

In this paper, I outline characteristics of the species interactions which organize the benthic 

communities in temperate-zone tidal flats, and point to several problems in our approaches to these 

interactions for future research. 

The main target organisms here in the size spectrum of tidal-flat benthos are macrofauna, on 
which studies have been most intensively carried out. Macrofauna are usually defined as those 

organisms whose adults are retained on a 0.5-mm mesh sieve (Eleftheriou and Holme 1984). Most 
numerically dominant taxonomic groups of macrofauna are polychaetes, small crustaceans, and 

mollusks (bivalves and gastropods). 

SPECIES JNTEXACIIONS OF MACROFAUNA 
Species interactions of macrofauna prevailing in tidal flats are classified in Table 1. First, the 

interactions are divided into two categories: I. those between non-carnivorous species (mainly deposit- 

feeding, suspension-feeding and grazing benthos) and 11. the effects of predators on the abundance 

patterns of prey species. Interspecific interactions in Part I are subdivided into (A) repressive and 

(B) promotive relationships. Although mutualistic symbiosis (mutualism) and parasitism may be 

potentially very important interactions in structuring soft-bottom communities, their contributions to 
the overall dynamics of the benthic communities have received little attention in community-oriented 

soft-bottom studies; thus, they are not taken up here. 
Hereafter, I will give a brief summary of the results of studies for each process of the species 

interactions listed in Table 1. Most interactions cited in this paper come from those found in tidal 

flats, but examples from exposed sandy beaches and shallow subtidal soft bottoms are also included. 

Furthermore, I will point to what I feel to be most serious problems in these studies and give a 
proposal for better understanding the organization mechanisms of tidal-flat benthic communities. 

NICHE DDFFERENTlATION 

It may be implicit in most writings on community ecology that most species should interact 
strongly with only a few other species and mainly those with comparative body sizes (Fenchel 1987, 

p. 97). Furthermore, it may also be a common belief in the ecological literature that differentiation 
of niches and/or morphologies through competition in the past should have reduced the intensity of 
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Table 1. Species interactions in tidal-flat macrobenthos 

I. Behveen non-carnivorous macrobenthos 
A. Repressive relationships - - ~  Competition 

(a) Reduced competition via niche differentiation (? Past competition) 
(b) Severe competition (Current competition) 

- Direct ingestion or exclusion of larvae 

- Indirect exclusion through changing the sediment properties 

(2-1) Interference competition 
- Direct exclusion 
- Indirect exclusion through changing the sediment properties 
(2-2) Exploitation competition for food 

(1) Inhibition of larval recruitment by adults 

(2) Competition between adults 

B. Promotive relationships -"-- Commensalism 

A. Intermittent predators 
11. Influences from predators 

(1) High-tide carnivores 

(2) Low-tide carnivores 

(1) Epibenthic carnivores 

(2) Infaunal carnivores 

B. Resident predators 

competition and thus brought about coexistence of competitors in the present, although some persons 

disagree with this view (Connell 1980). For marine soft-sediment benthos, a number of studies have 

been done in this context, and they often deal with relationships among taxonomically closely related 

species or those within the same feeding guild; see Branch (1984, pp. 490-508) for examples of such 
relationships. The partitioned resources involve habitats (horizontal segregation or vertical 

stratification in the sediment), food resources (particularly for deposit feeders), and time (e.g. breeding 
seasons), and these partitionings are at  times accompanied by character displacement (Fenchel 1975a, 

b; Fenchel and Kofoed 1976). 

However, these niche-differentiation studies are not without problems. The most serious 

pitfall seems that we are apt to overlook large influences of some species which are operationally 
removed from the target system for the very simple reason that they are taxonomically remote or 
belong to different feeding guilds. As shown in the subsequent sections, interphyletic interactions 
(those between distantly related competitors or those between hosts and commensals) are often 

prevalent in the benthic communities in tidal flats. Under such large influences, how can we evaluate 
the significance of resource partitioning between closely related species or between members of a guild 

to the population dynamics of each species (in particular, for the smaller macrobenthos) and to the 
organization of the whole benthic community? So far as I know, none of the niche-differentiation 

studies for tidal-flat macrobenthos have been done bearing this point in mind. 
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LNHIBITION OF LARVAL RECRLJITh4ENT BY ADULTS 

Inhibition of larval recruitment by established adults has been considered important in 

structuring marine soft-bottom communities (Thorson 1966; Woodin 1976). Both laboratory and field 
manipulative experiments have demonstrated that adults of many macrobenthos, which are non- 

carnivorous to other adults, can depress recruitment directly by ingesting settling larvae and newly 

settled juveniles (Highsmith 1982; Tamaki 1985) and indirectly by burying juveniles with sediment 

displaced by burrowing, feeding, and defecating (Brenchley 1981; Wilson 1981). Ingestion of larvae 

and juveniles by "non-carnivorous" macrobenthos should make the structure of benthic food webs 

more complex (Feller et al. 1979). These influential adults may be expected to target o r  unconsciously 

involve all larvae and juveniles that they can encounter regardless of the species, including those of 
their own (Thorson 1966; Woodin 1976). In support of this, several studies have demonstrated that 
lawde of many species are depressed indiscriminately (Crowe et al. 1987; Hunt et al. 1987), and 
combined information from various sources on the effects of "villains" on "victims" (Thayer 1983; 

Woodin 1983) may also support this accidental nature. However, the outcome of the actions of adults 

varies depending on the functional types (feeding and mobility types, etc.) of the adults and on the 
size, escaping ability, and susceptibility of the recruits (Woodin 1976, 1983). 

Most of the efforts to test the negative influences of established adults on larval recruitment 
with field enclosures and exclosures could confirm the effects only ambiguously because they do not 

check, at  the same time, the following two other possible causes: the juveniles of a species are absent 
from an experimental plot because (1) the settling larvae have actively avoided the substrate of this 
plot due to the lack of attractant cues (Highsmith 1982) or the presence of repellent cues (Woodin 

1985), which are associated with the sediment; (2) the larvae have been passively transported to some 
other places by hydrodynamic forces (Le. waves, currents, and turbulent flows)(Eckman 1983; Butman 
1987). A far more difficult task in the adult-larval interaction studies is to quantitatively evaluate, in 

the natural conditions, what portion of the population of the planktonic and newly settled larvae is 
eliminated by established adults and what significance this elimination has for the whole population 

dynamics of the affected species. The deletion of planktonic larvae in one locality may be replenished 

from the neighboring localities through the exchange of the waters, but it is also difficult to determine 

with what certainty this occurs. 

INTERFERENCE COMPETlTION BETWEEN ADULTS 
Recently, studies relating to "interference competition" have remarkably increased in number 

for soft-sediment benthos. However, as pointed out by Barnes and Hughes (1988, p. 89), many studies 
only deal with the outcomes of accidental "collisions" resulting from bioturbation (biological 

disturbance of sediment) caused by the locomotory, feeding, and defecating activities of organisms; 
identification of the contested resources is often unclear. Interference competition in the strict sense 
can be seen in several forms of competition for space: (1) In systems composed of taxonomically 

related, highly mobile crustaceans, inferior competitors are either driven to less preferred habitats 
(Croker 1967; Rees 1975; Grant 1981) or experience reductions in survival rates, individual growth 
rates, and fecundity (Croker and Hatfield 1980); (2) Several instances have been presented on systems 

comprised of species with limited mobilities (e.g. bivalves, polychaetes). Intraspecific competition 
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often causes even spatial patterns in micro-distributions (Holme 1950; Levin 1981). However, caution 

must be used in explaining the meso-scale distribution patterns; some studies ascribed horizontal 

segregation of competitors to emigration of adults of inferior species (Levinton 1977; Peterson and 

Andre 1980), but the more plausible mechanisms may be habitat segregation such as through 

competition in the past, or through inhibition of larval recruitment by adults, or through spatially 

differential survival rates; (3) Sediment-stabilizing species (e.g. a dense assemblage of tube-building 

species) and destabilizing species (e.g. a dense assemblage of burrowing species) are sometimes 
incompatible with each other, and members of each group of species involve a variety of taxa and 
trophic modes (Woodin and Jackson 1979; Thayer 1983)(but see Sect. 8). The horizontal segregation 
of these two groups may be brought about through interactions between adults (Brenchley 1982) as 

well as adult-larval interactions (Brenchley 1981; Wilson 1981 j. 
In demonstrating that adults of species A are absent due to competitive exclusion by species 

B, we must check possibilities of not only emigration and mortality but also habitat selection and 

hydrodynamic transportation of species A. Furthermore, competition may result in reductions in 

individual growth rates and fecundity. No studies have examined all. the above demographic 

population parameters at the same time. 

EXPLOITATION COMPETITION FOR FOOD 

There are two major feeding modes in marine soft-sediment macrobenthos: deposit-feeding 
(including grazing of microflora) and suspension-feeding. Many researchers have suggested that 
natural populations of macrofaunal deposit feeders are food limited. In particular, Levinton (1972) 
argued that deposit feeders have competed for this limiting resource (bacteria, microalgae, and detrital 
material) over evolutionary time, resulting in the specialization of feeding niches. Most of the 
effective demonstrations of the occurrence of current competition for food in deposit feeders are for 

intraspecific competition (reductions in survival rates, individual growth rates, fecundities, and increase 

in emigration rates), and the majority of these studies have been done in the laboratory (Tenore and 

Chesney 1985; Forbes and Lopez 1986; Zajac 1986; Morrisey 1987) with only a few successful 
experiments carried out in field enclosures (Branch and Branch 1980; dlafsson 1986; Morrisey 1987). 

Evidence for current interspecific competition for food is far less (Fenchel and Kofoed 1976; Alongi 
and Tenore 1985). This scarcity of documented examples of interspecific competition for food may 

support hvinton’s (1972) hypothesis of the trophic specialization between coexisting species. 
Alternatively, however, most deposit feeders may not actually face shortages of food either owing to 
its ample supply or owing to the effective regulation of population densities by intraspecific 
competition, predation (Sect. 9), and/or physical disturbance precluding interspecific cornpetition from 

taking place. 
Levinton (1972) also argued that the supply of phytoplankton, the major food source for 

benthic suspension feeders, is spatially and temporally variable in terms of quantity and the species 
present, and that as a consequence, suspension feeders are unlikely to compete for long enough to 

reach exclusion which can lead to niche specializations. It has been shown that soft-sediment 
suspension feeders tend to compete for space (Hancock 1973; Peterson and Andre 1980); however, 

only a few studies showed the operation of intraspecific competition for food (Stiven and Kuenzler 
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1979; Peterson 1982; FrCchette and Bourget 1985---a11 for bivalves in the field enclosures), and to my 
knowledge, no convincing evidence for current interspecific competition for food has appeared on 
both the micro- and meso-scales except for only a few suggestive results (Peterson and Black 1987). 

Thus, it is likely that food limitation is, if anything, more common among deposit feeders than 

suspension feeders. However, this may simply reflect the difficulty in demonstrating the abundance 
pattern of foods suspended near the seabed as compared with those deposited in the sediment (cf. 
FrCchette et al. 1989). Difficulties underlying these exploitation-competition studies -- to identify the 

food items of each species, to present quantitative data on the extent of depletion of these foods by 

this species in the natural conditions, and to link this to detrimental influences on other species --will 

be hard to overcome. 

COMMENSALISM 

Although, for a long time, promotive relationships received little attention in community- 

oriented ecological studies for marine soft bottoms (Dayton and Oliver 1980), the situation has 

recently been changed. Most of the studies on interspecific promotion deal with commensalism, in 
particular various effects of the activities of larger macrobenthos on smaller macrobenthos o r  
meiobenthos. Commensalism found so far may be categorized as follows: (1) Body cavities and 
surfaces, underground burrows, and tubes of large benthos often accommodate uninvited guests within 

them (e.g. Ricketts et al. (1985) and Nybakken (1988, Ch. 10) for many instances); (2) Large 
bioturbating infauna irrigate and fertilize the surrounding sediment simultaneously. This alteration 

of the physico-chemical conditions of the sediment causes attraction of meiobenthos or smaller 

macrobenthos directly through enlarging underground, habitable oxidized space for them or indirectly 

through stimulating growth of microorganisms (bacteria, microalgae, ciliates, etc.) which are food of 
grazing and deposit-feeding benthos (Hylleberg 1975; Reise 1985, Ch. 11; Flint and Kalke 1986); 

(3) Sediment reworking and tube irrigation by a deposit-feeding polychaete reduces the quantity of 
particulate organic matter (POM) at the sediment-water interface and increases concentrations of 

dissolved nutrients in the water column, and these effects cause an increase in the individual growth 

rate of a smaller filter-feeding bivalve (Weinberg and Whitlatch 1983). The beneficial mechanisms 
involved may be stimulation of microfloral populations as food for bivalves and preclusion of clogging 

of the feeding structures of bivalves with POM; (4) Myers (1977) suggests that some burrowing species 

benefit from decreased compaction and/or cohesion of the sediment which have beforehand been 

excavated by other burrowing infauna; when they occur in looser sediments, burrowing species should 

be less subject to epibenthic predators because they quickly hide themselves in the sediment, and 

hence are able to allocate more energy to life processes other than escape (e.g. growth and 

reproduction). Such an advantageous behavior of choosing looser sediments is likely to evolve. But 
only a few examples exist which are suggestive of this behavior (Levinton 1977; Dayton and Oliver 

1980, p. 107; Brenchley, 1982; Tamaki 1988); (5) Disturbed patches such as feeding excavations and 

fecal casts created by large benthos and demersal fish are utilized as suitable microhabitats often with 
favorable resources (such as detrital food) for smaller benthos (Rhoads and Young 1971; Thistle 1980; 

VanBlaricom 1982; Tsuchiya et al. 1989; see also a review in Probert 1984); (6) Dense assemblages 

of protruding tubes of macrobenthos provide suitable microhabitats not only for clinging epibenthos 
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but also for sediment-dwelling benthos (Mills 1967; Gallagher et al. 1983), probably because tubes 

increase the topographic complexity of the area and because sediments around tubes can have greater 

abundances of potential food for macrobenthos (bacteria (Eckman 1985); diatoms (Sanders et a). 
1962); meiobenthos (Eckman 1983)). Furthermore, dense tube mats provide stable substrata to 

function as refuges for smaller macrobenthos against epibenthic predators/disturbers (Mills 1967; 

Woodin 1981) or wave disturbance (Bailey-Brock 1979). 

The connection between commensals and their hosts may be strict in some cases (e.g. 
(1) above) (obligate commensalism), but in many cases commensals seem to be loosely dependent on 

the “functions” of the life processes of the hosts (in other words, “types” of microhabitats (or 
sometimes on larger scales) created by the hosts’ bioturbating activities) irrespective of the identity 

of the host species (facultative commensalism). Colonization by commensals (larvae and/or adults) 

of these secondary habitats has both active and passive (hydrodynamic accumulation) components, and 
studies on these processes are now growing. Furthermore, analyses will be needed which pinpoint the 

life stages that are most important in determining the population growth of commensals and which 

rank several possible effects of hosts according to their demographic importance. Such an attempt 
(e.g. Weinberg et al. 1986) has rarely been made. 

FUNCTIONAL, GROUPS 

In the current competitive and commensal relationships among macrobenthic species shown 
so far (in particular, Sects. 4,5, and 7), indiscriminate or accidental encounters between species have 

often been found; in some cases, however, the resultant response types were well predicted in terms 
of functions of the interacting species (feeding and mobility types, effects of life processes on sediment 

properties, etc.) irrespective of their taxonomic positions (e.g. Woodin 1976, 1983). But this does not 
necessarily mean that a group of macrobenthos with a similar function behave as a functional unit. 

For analysis of the structure of any animal community, it may be fascinating and of great practical 

value to be able to find infrastructures within it (see Paine 1980). In macrobenthic communities of 

tidal flats, a burrowing species group (sediment destabilizers) and a tube-building and other sedentary 

species group (sediment stabilizers), each including a variety of taxa and trophic modes, seem to be 
incompatible with each other, and to form spatially segregating distinct patches; members of the one 
group exclude or reduce densities of those of the other group by way of the contrasting effects on 
sediment characteristics, and within the same group, “help” each other in competition with the 
opponent group (Woodin and Jackson 1979; Brenchley 1981, 1982; Wilson 1981). But this view, 
which postulates symmetrical competition and mutualism, is only partially true if at  all. As pointed 

out by Thayer (1983) and Posey (1987), most of the examples which seem to support the above 

functional-group hypothesis involve asymmetrical interactions in which large or active species exclude 
smaller forms or exclude organisms that individually have little effect on sediment characteristics. 

Although a time-delayed reciprocal competition seems potentially possible via adulr-larval interactions 
(e.g. Highsmith 1982; see Sect. 4), few field examples exist where smaller animals, no matter how 
dense, exclude larger active species (Posey 1987). Also, mutualistic relationships have only been partly 
demonstrated (e.g. Brenchley 1982). Since the population dynamics of smaller macrobenthos in tidal 

flats are often organized under the overwhelming hierarchical influences of the larger macrobenthos 
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either positively (commensalism) or negatively (asymmetrical competition), it may be difficult to detect 
if any mutualistic beneficial interactions or current reciprocal competitions are occurring among 

smaller macrobenthos. 
Thus, at  present, the functional groups as originally suggested may be rather an abstraction; 

in order to correctly test this hypothesis, it will be necessary to consider at  least the following three 
problems: (I) We should quantitatively measure rates at which each species stabilizes and destabilizes 

sediments under different regimes of waves and currents (e.g. Jumars and Nowell 1984). But, except 

for the simplest system in which effects of multiple species on sediments are additive (Peterson 1980), 

how can we reconstitute a group's total bioturbation rate from each measure?; (2) It must be noted 

that the component species belonging to one functional group should not only be in "cooperation" 

with each other against the opponent group but be more or less in competition for limited resources 

because of the similarity of their niches. These antagonistic interactions will be reflected in benefits 

and costs, respectively, which may be measured in terms of various demographic population 
parameters (survival, growth, fecundity, emigration, etc.). Thus, before acknowledging any one set of 
two opposing functional groups, we must establish a standard with which we can compare these 

benefits and costs for the component species in each group; (3) These benefits and costs should not 
be judged only within one locality. For example, inferior competitors in the one functional group may 
still enjoy benefits by the group's action against the opponent group if they are effectively replenished 

from the neighboring localities through the exchange of their planktonic l a m e .  But how can we know 
these exchange rates? 

Despite the limited predictability of the above functional-group hypothesis in the ecological 
time-scale, competition between sediment destabilizers and stabilizers might have significant 

evolutionary consequences for the determination of the macrobenthic community structure in soft 
bottoms. Thayer (1983) summarized the strategies for winning the "war" in sediments as follows: 

(1) be large; (2) be mobile and/or disturb sediment rapidly; (3) occur in dense populations. Based on 
this asymmetrical manner of competition, he suggested that biological disturbance of marine sediment 

has increased over geologic time, especially in causing the reductions of the dominant Paleozoic 
benthos, the immobile organisms that lived on unconsolidated substrate (bulldozing hypothesis). 

INFLUENCES FROM PREDATORS 
It is difficult to remove predators from soft-sediment habitats because they are either large 

and mobile o r  infaunal and cryptic. Thus, to assess the influences of these predators (both predation 

and disturbance of sediment) on the structure of macrobenthic communities, enclosure or exclosure 
cages are usually established in the field. The problems with such caging studies come from the 

difficulties (1) to separate predator effects from cage artifacts (Virnstein 1978; Dayton and Oliver 
1980) and (2) to apply results obtained in a narrow caged area to a far wider natural area without 

detailed knowledge of the behavior and abundance patterns of predators in time and space. 
Furthermore, identification of the whole food webs, including consumption of larvae by adults of non- 
carnivorous macrobenthos (see Sect. 4), is very difficult for soft-bottom communities (see Feller et 

al. 1979). As a result, only a portion of the predator-prey system can be manipulated. 
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Predators appearing in tidal flats can be divided into intermittent and resident predators. 

Intermittent predators include high-tide carnivores (demersal fish and large decapod crustaceans) and 
low-tide carnivores (birds). Resident predators include epibenthic carnivores (nurslings of demersal 
fish (e.g. gobiids), shrimp, and crabs, etc.) and infaunal carnivores (turbellarians, nemerteans, 

polychaetes, gastropods, etc.). 
One of the most extensive works to assess the effect of predation in structuring benthic 

communities in tidal flats has been carried out in the German Wadden Sea (Reise 1985). By means 

of cages with various mesh sizes installed in several kinds of habitats in the tidal flat, Reise examined 

the impact of various sizes of epibenthic predators and revealed that (1) intermittent, large predators 

prey on the older, large-sized individuals, affecting the benthic community only moderately, and that 
(2) carnivorous nurslings of fish, crabs, hermit crabs, and shrimps, which remain in the tidal flat or 
migrate back and forth with the tides, indiscriminately consume both meiofauna and juveniles of 

macrofauna, and hence usually prevent many of macrofaunal species from attaining the carrying 
capacity of their habitat. However, these effects of predators could be reduced by internal predation 
within the predators' group, by the presence of refuges (e.g. seagrass) in the sediment surface, and by 

different physical conditions. 

From the above results and a review on the caging experiments to exclude epibenthic 
predators (Peterson 1979), three tendencies appear general for macrobenthos within cages that exclude 

predators (Barnes and Hughes 1988, p. 93): (1) an increase in total density; (2) an increase in species 
richness; (3) no significant tendency toward competitive exclusion by some dominant species. The 
latter two contrast markedly with results of some predator-exclusion studies conducted in rocky shores 
(e.g. Paine 1971, 1974), although the data from soft sediments and rocky shores are not really 

comparable due to the disregard of the smaller benthos in rocky-shore studies. Peterson (1979) 
suggests a number of explanations for such "anomalies" of soft-sediment macrobenthos: 

(1) ineffectiveness of both interference competition (the types as seen on rocky shores) and 

exploitation competition; (2) reduced competition due to vertical habitat partitioning in the sediment; 

(3) effectiveness of inhibition of larval recruitment by adult macrobenthos to maintain populations 

at low levels (see Sect. 4), at which adult competition is not likely to be severe. In soft bottoms, 
however, some top predators may be able to organize the benthic community structure by regulating, 

for example, the density of large bioturbating infauna (= sediment destabilizers) such as arenicolid 

polychaetes and thalassinidean decapod shrimps which themselves have large influences on the other 
macrobenthos (Posey 1986); in such cases, these predators may play a role comparable to a keystone 

predator (starfish) in rocky shores (cf. Paine 1971, 1974), although large bioturbating infauna are less 
susceptible to epibenthic predation because of their habitats deep in the sediment. Also, predation 

within the epibenthic predators' guild can have positive indirect effects on some components of non- 
carnivorous benthic communities (Kneib 1988). 

The roles of infaunal predation in controlling the structure of soft-bottom communities have 
not been as extensively studied (see Commit0 and Ambrose 1985). The present interest of the most 
active researchers seem to detect three-level (epibenthic predators, predatory infauna, other infauna) 
or more multiple interactions, stressing an indirect positive effect of epibenthic predators on non- 
carnivorous infauna (Ambrose 1986). 
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CONCLUSIONS 

Among the several categories of species interactions in macrobenthos inhabiting tidal flats 
(Table l), inhibition of larval recruitment by adults (Sect. 4), current interference competition between 

adults (Sect. 5 ) ,  commensal relationships (Sect. 7), and epibenthic predation of juvenile macrobenthos 

(Sect. 9) appear to be prevalent, although this may rather reflect the ease with which we can treat and 

demonstrate the occurrence of these processes as compared with other kinds of interactions. 

Furthermore, despite the still insufficient data amassed in the benthic studies so far, I predict that the 

following tendencies will be general concerning these prevailing processes: (1) In predacious aspects 
of these interactions including consumption of larvae or juveniles by adults of macrobenthos, 
predators often indiscriminately prey on everything which is small and is present close to the sediment 
surface; (2) In the other aspects of adult-larval interactions and in interference competition between 
adults, encounters between species are often accidental; (3) In adult-adult competitions, asymmetrical 

rather than reciprocal competition is prominent; (4) In commensal relationships, facultative rather 

than obligate combinations of species are more often found. Based on the results of his extensive 

work on the benthic community in a tidal flat, Reise (1985) has similarly pointed out the 

characteristics of the species interactions in macrobenthos, particularly stressing the importance of 

indiscriminate epibenthic predation in keeping the macrobenthic assemblage below the carrying 
capacity of its habitat. 

If it is true that such loosely connected interactions should prevail over strict o r  refined 
relationships between macrobenthic species or between macrobenthos and their predators, several 
reasons may be proposed for this: (1) Because the environment of tidal flats is variable and marginal, 
constituting a narrow ecotone between land and sea or between fresh and sea waters, specific 

interactions between organisms of tidal flats and those either from land or from subtidal seas are 

unlikely to develop (Reise 198S), and broad-niched species may have been selected (Levinton 1982, 

p. 388); (2) Tidal flats often occur in an insular pattern interacting with each other through the 

exchange of planktonic larvae which are unlikely to adapt to local sources of facilitation and mortality 

(Reise 1985; Underwood and Fairweather 1989). Adaptations of organisms over evolutionary time- 

scales are more likely to be in response to diffuse, collective processes (Underwood and Fairweather 

1989); (3) Tidal flats are geologically young, precluding the development of refined relationships 
(Reise 1985). To these may be added another reason: in particular, intertidal sandy mud (or muddy 

sand) flats constitute an ecotone between exposed sandy beaches and protected mud flats, containing 
species primarily adapted to shifting sedimentary environments and those primarily adapted to very 

stable substrata. Encounters between these differently adapted organisms will be facultative. In 
addition, most species primarily adapted to an unstructured and physically controlled habitat of 

exposed sandy beaches tend to be unspecialized generalists with broad niches (McLachlan 1983). Of 
course, some of the reasons may be attributable to the characteristics of species interactions which 

soft-sediment benthic communities in shallow waters in general share. 

In contrast to the low connections between species prevalent in tidal flats, outcomes of the 

interactions between life types or functions of benthic species appear predictable to some extent. In 
this context, efforts to seek out functional groups (Sect. 8) as an infrastructure of the whole tidal-flat 

benthic community may not be vain. However, these analyses should not be made in disregard of the 
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characteristics of the component species. To substantiate analyses of the community organization of 
macrobenthos based on their functions, at the least it is desirable that changes in the various 

demographic parameters of each species population caused by the species interactions should be 

measured in the natural conditions as well as in the laboratory and the field experimental plots. 
Moreover, using the results of these experiments, simulation studies will be feasible to approximate 

to the phenomena observed in nature and to rank the importance of the various interactions for the 

critical life stages in regulating the population dynamics (cf. Weinberg et al. 1986). 

I feel that there are three major serious deficiencies in our approaches to the roles of species 

interactions in shaping the tidal-flat macrobenthic communities. The first problem is in studying 
various aspects of the interactions separately as if each process proceeds singly; this may miss some 

more important interactions. The second problem is in synthesizing an image by gathering results 
obtained in different localities each having different background habitat structures (geomorphological, 
hydrodynamical, sedimentary, and other physico-chemical conditions, etc.) or obtained at  different 

occasions in a same locality each experiencing different seasonal and episodic events. The third 

problem comes from our poor knowledge of the ecological links between tidal flats and their adjacent 
subtidal seas and between neighboring tidal flats; in some cases, the tidal-flat macrobenthic community 

structure may be determined mainly by the rates and timing of recruitment of macrobenthos from the 
water column (cf. Underwood and Fairweather 1989) or of the arrival of their predators from land 

or offshore sea (e.g. Reise 1985, p. 106). In order to overcome these problems, two kinds of 
approaches will need to be addressed in our empirical research programs: (1) attempts to detect a set 

of tidal-flat comniunities with their adjacent subtidal communities which interact via both the 

exchange of planktonic larvae of macrobenthos and the movement of their predators; (2) studies 

aiming at elucidating the dynamics of each of these regional communities, taking up as many species 
interactions as possible. 
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Commurtity - Food Web Interactions 

By community we mean here a set of species occupying a single trophic level and potentially 

competing for resources (although often the term is used to refer to all the biota in an ecosystem, and 

we will make a note of it when the term is used in this way in later discussion). Theoretical 
community ecologists seldom study communities independently of other aspects of the ecosystem, since 
abiotic aspects, such as disturbances and nutrients, and biotic aspects, such as predators, are almost 
crucial in shaping communities. Hence, community ecology by nature has a somewhat wider 

perspective, as exemplified by the papers at the Seminar dealing with ecological communities. 
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SOME THEORETiCAL APPROACHES TO COMMtTNlTY ASSEMBLY 

George Sugihara, Scripps Institution of Oceanography, University of California, San Diego, 
La Jolla. CA 92093 

INTRODUCrIlON 
Rather than restrict attention to modelling classical secondary succession per se, I propose 

to consider the broader question of community assembly and development, for which secondary 
succession may be but a single important case. This survey, therefore, will concentrate on generic 

approaches to studying the temporal evolution of communities while omitting the details of classical 

succession. 
As reviewed by Usher in this volume, considerable effort has already been invested in 

developing predictive models of secondary plant succession {see also Shugart 1984). These range from 

simple Markovian plant replacement models, suitable for short time predictions (Usher 1979, Horn 
1975) to the highly detailed dynamic replacement models designed to simulate long-term histories of 

vegetation at specific sites (Shugart 1984, Solomon 1986). By contrast, despite having similar roots, 
the deeper problem of community assembly has not benefitted from such a concentrated or unified 

modelling effort. Indeed the approaches that exist appear fragmentary, drawn for the most part from 
several classical topics in population and community ecology. One purpose of this essay will be to 

begin to survey some of these fragments as they relate to community development in order to suggest 
the assembly problem as an interesting focus for future research. 

I shall organize this review into two parts, statics and dynamics. The section on statics will 
discuss semi-deductive procedures for extracting process information from static patterns and will 

include relevant aspects of studies on the topological structure of food webs, the species abundance 
problem and island biogeography. The section on dynamics will explore a general framework for 

studying the process of species additions to a system, and will discuss the notion of climax, the 

invasion problem and the evolution of simple predator-prey systems. 

STATICS OF COMMuNlTy ASSEMBLY 

Each of the approaches below attempts to derive assembly rules from some static aspect of 
the final structure of an ecological ensemble. These results may be very general or specific depending 

on the chosen level of analysis: from broad statements such as "gears must mesh according to size", 

to specific statements such as "part A attaches compatibly to part 3 in a certain sequence." Although 
the term "assembly rule" was originally coined in this latter sense, to describe rules for coexistence for 
exclusion for a specific species assemblage (Diamond 1975), I shall extend its usage here to include 

fundamental generic constraints on system development. 

TOPOLOGY OF NICHE SPACE 

sufficient from empirical regularities in the topological structure of food webs. 

This section will discuss a general rule for community assembly deduced as necessary and 
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Euler conceived of the generalized graph as a simple way of representing the topological 
structure of a complex system. A generalized graph consists of a set of vertices, and a set of edges 

joining vertices. Two useful graphical representations of ecological systems may be constructed from 

food web data by choosing either the consumers or the resources, as the vertex sets. Here vertices 
represent subsets of either resources or consumers; pairs of vertices are connected by edges if and only 
if the subsets that they represent intersect. 

If each vertex corresponds to a consumer species, or more precisely, to the subset of resources 

used by a given consumer species, then we have the consumer overlap graph G(C) (Cohen 1977). On 
the other hand, if each vertex corresponds to a resource, or to the subset of consumers which use a 

given resource, then we have the community resource graph G(R) (Sugihara 1983, 1984). The n- 
pointed "cliques" or fully connected constellations of vertices (resources) in G(R) correspond to n- 

dimensional trophic niches for consumers. If we inflate G(R) in a higher dimensional space so that 

each species n-dimensional niche now becomes an n-pointed convex polyhedron o r  simplex, we can 

generate the so-called simplical complex model of the communal niche K(R)  (Atkin 1974, Casti 1979, 

and independently Sugihara 1983). K(R) is similar to G(R) but gives a more robust geometrical 
portrait of how the n-dimensional species niches are packed together. 

As suggested at the outset, the importance of these representations rests in their practical 
ability when applied to real data to detect deep order in the construction of ecological systems. Such 

order is revealed in the following temporally robust structural regularities (Sugihara 1984). These 
patterns were extracted from more than 60 real data sets for natural systems, and place natural 

systems in an exceedingly narrow subset of mathematical possibilities. 

P1) G(C) can often be collapsed down to a particular 1-dimensional representation known as an 
interval graph (Cohen 1977). 

P2) G(C) and G(R) have the triangulation or rigid circuit property, Le., all circuits are effectively 
paved with triangles (Sugihara 1983). 

P3) K(R) lacks holes. Intuitively, species are packed densely over the space of resources so that 
K(R) appears as a simple topological solid rather than a multidimensional swiss cheese 
(Sugihara 1983). 

Although the full significance of these patterns has yet to be appreciated, it has been possible 

to use them to deduce a generic necessary and sufficient rule for sequentially assembling ecological 

systems. The technical details of this deduction are discussed elsewhere, but the intuitive essence of 

the rule is that species tend to enter a system (if successful) conservatively, by attaching to single 
trophic guilds rather than by bridging multiple trophic guilds. That is, insofar as ecological systems 
develop by the sequential addition of species, their consumer overlap graphs G(C) should tend to 
grow in a connected tree-like fashion radially, rather than by bridging isolated clusters of species or 
forming large loops. Ecological assembly, therefore, mirrors the typical case in evolution if 
convergence is rare, and tends to produce tree-like hierarchically structured systems (Sugihara 1983). 
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NICHE PARTITIONING THEORY 
The tradition of niche partitioning theories, used to explain certain species abundance 

patterns, is another plausible approach to the assembly problem. The basic idea here is to compare 
various rules for partitioning the total abundance (biomass or individuals) of an ensemble with the 

observed pattern of species relative abundance. At the appropriate phenomenological level, it may 

be reasonable to expect a correspondence between the manner in which abundances are apportioned 

and underlying system structure. On a more mechanistic level, these different apportionment rules 

should produce corresponding differences in the distributions for determining the parameters of a 

dynamic model. Of particular interest here is the presence of ubiquitous empirical regularities in 

species relative abundances; namely, Preston’s canonical lognormal distribution ( y  31) and the related 

species-area constant (zJh). Such robust empirical regularities in static distributions of commonness 

and rarity could point to the operation of equally general rules of community assembly (Sugihara 
1980, however see May 1975, Connor and McCoy 1979, Sugihara 1981). 

The three main hypotheses of niche apportionment are Motomura’s (1932) geometric series 
model, MacArthur’s (1957) broken stick model, and the niche hierarchy model (Sugihara 1980). In 

the geometric series or niche preemption model, the community is assembled sequentially by allowing 

each successive species to preempt a fraction k of the resources left by the previous species. The 

broken stick model is essentially a null assembly or spontaneous creation hypothesis in that no order 

or sequence is involved. Rather, abundances are apportioned by simultaneous random subdivisions. 
Although neither of these apportionment hypotheses produces the observed canonical lognormal 

distribution, the niche hierarchy model which is intermediate between these two extremes, does 
produce this distribution and generates the consequent species-area exponent as well. The specific 

motivation for this model was to duplicate the hierarchical structure seen in a niche overlap 
dendrogram. Each branch of the dendrogram, therefore, corresponds to a subdivision of abundance, 
with different subdivisions possibly involving different sets of niche factors. Here communal biomass 
is sequentially subdivided by randomly choosing (without regard to size) one branch at  each step for 

further subdivision. 

Of interest to the previous section is that this simple model for dividing abundances follows 

consistent from the conservative assembly rule deduced from topology (both contain a suggestive 

parallel with evolution). A new species does not stem simultaneously (break with) separate branches 

of an ecological (or evolutionary) tree, but rather arises as a bud from a single branch. That is, new 

species do not usually enter as a bridge or concatenation of branches. Therefore, it is possible that 

this rule for sequential breakage of abundances in taxocenes may be an expression of same 
topologically conservative assembly rule deduced as necessary and sufficient for larger ecosystems. 

BIOGEOGRAPHICAL EXPERIMENTAL. ASSEMBLY RULES 
Darwin established an excellent precedent for using static biogeographical observations to 

direct thinking about the temporal process of single species evolution. In similar vein, it has been 
productive to use biogeographical information on the composition of different multispecies 

assemblages to derive constraints for communities. 
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Jared Diamond, who originally coined the term "assembly rule" for communities (1979, 
gathered extensive data on species distributions of birds inhabiting a series of islands in New Guinea. 

He  observed that only certain combinations of species ever occurred together and that others 
appeared to be forbidden in a statistically significant way (but see Connor and Simberloffs 1979 

criticism, and Gilpin and Diamond's 1984 defense). He  was thus able to construct, by inference, 

several partial tables of compatible and forbidden combinations of species to generate a set of 

empirical exclusionkoexistence rules for birds on these islands. Moreover, he observed that the ability 

of specific combinations to occur together seemed to depend on the context of the other species in 

the assemblage. This led Diamond to the following generalizations about community assembly. 

1) Some stable communities may consist of unstable subcommunities. 

2 )  A n  unstable whole may be produced from stable (subcommunities). 

3) The invisibility of a subensemble (e&, guild) may depend on the presence or absence of other 
species (e.g., from other guilds) in the system. 

These properties have a simple dynamic interpretation that will be discussed in section 2. 

It is worth mentioning that assembly taken as a compatible parts problem has a long history 

in experimental and field manipulations (e.g., Dayton 1971, Paine 1966, Davidson 1985). More 

recently, Philippi et al. (1985) has completed an extensive controlled laboratoly study of a 30 species 

Drosophila system designed to produce assembly rules from the combinatorial patterns of coexistence 
and exclusion (see also Drake 1985). This is the most complete study of its kind that I know of, and 
verifies many of the phenomena listed above that Diamond inferred circumstantially from 
biogeographical data. 

DYNAMICS OF COMMUNITY ASSEMBLY 
T h i s  section will explore a heuristic framework for studying the dynamics of community 

development and will survey some results obtained from simple models of relevance to the assembly 

problem. 

HISTORY INDEPENDENCE AND CLIMAX 
The dynamics of community development will depend critically on whether the final 

composition of the system of interest is or is not dependent on global initial conditions. These global 
initial conditions describe the inputs in the historical trajectory of the system; i.e., initial population 

values and the specific timing and order of species introductions. 
Let 

be the ordered inoculation vector for the system describing the particular order, the initial population 

sizes, xi, and the timing, ti, of species introductions to the system. Note that if species i and i+l are 
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added simultaneously, then t, = f,+l. At the other extreme, suppose each z* system generated by the 

sequential dynamic operator F(S, ( ) )  has a unique positive global stable equilibrium, w,’(n) >O,  

consisting of some n-sizes subset of {xl, ..., x , } ,  then we may speak of adding each i+ l  species 

sequentially to the positive equilibrium determined by F(S, ( ) .  Hence, F(S,(‘) may be thought of as 

sending an initially unordered set of species {xl, ..., x p } ,  where initially for each invader x,.(*)=e, 

through a sequence of p equilibria finally to a unique positive globally stable equilibrium consisting 

of an n species subset of {xl, ..., 5). That is, 

where after p steps the dimension of the equilibrium is n, n4p xi(r)>O , and Z* is an E 
P 

neighborhood of the$“ equilibrium that can be reached in finite time. Furthermore? within each step 

of F(S,(*)), if a species goes extinct (x, = 0) it remains so for all time unless reintroduced at a later 

stage in S.  Unless otherwise stated, for ease of exposition, we shall only consider the case ofp distinct 

species each appearing only once in S.  

In general, and in particular for Volterra systems, for a given unordered set of species {xp ,..., 

This property, as we shall see in section w,) and a given F, different SJt) may produce different x”t. 
P 

22, underlies Diamond’s assembly rules. If however, x’*(n) is unique for {xl, ..., xp} and F, then it is 
P 

- 
independent of S,” ; i.e., independent of all feasible global initial conditions on the set {x,, ..., xp}.  

In classical secondary succession, if there is a unique climax that can be reached from all 

feasible starting points, then it must be independent of S.  Such a climax system may be modelled, for 

example, by a Markov process (Horn 1975) since it is history independent. In this case, it is irrelevant 
to the assembly of the climax whether the initial floristic composition is complete (Egler 1954, Drury 
and Nisbet 1973) (Le., S,(O); ti = t ,  = ... = f,,) or whether species are added sequentially (t l  c tz c ...e 
f,,). Such differences may affect the transient dynamics and the sequence of extinctions, but they will 

not affect the final stationary state x” . 
A convenient tool for characterizing the idea of sequence dependence versus independence 

is a variation of Siljak’s (1975) notion of connective stability. An n-species dynamic system is said to 

be connectively stable if all subsystems generated by the set of all 2n2 distinct interconnection 

matrices is stable. That is, if all possible ways of eliminating specific pairwise interactions among 
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components is stable. This condition, however, is unrealistically robust and does not address the 

assembly problem. 
A milder and more useful condition may be obtained if we consider, rather, only the subset 

of interconnection matrices generated by the n!  ways of eliminating "whole" species (not just pairwise 
interactions). A dynamic system is elimination stable if all possible subsets of species are stable. 

For example, consider the system: 

and its stability matrix A whose elements 

and where x* is the independent equilibrium of the n* subset of species, A new stability matrix 
n 

BA ' is formed by zeroing out corresponding rows and columns defined by the interconnection matrix 
E,  leaving on the nrh subset of species. That is, { A  = FL4E + D) where E and D are diagonal 

matrices such that the diagonal elements of E and D respectively, are e, = 0 or I, and dii = 0 if e, 

r 0 or -1 if e, = 0. Notice that the elements o fA  will, in general, depend on the new equilibrium 

defined by E. The system (1) is elimination stable if it is stable for all n. 
It is easy to see that if F is a feasibly restricted family of n Volterra equations such 

that B=(A+A 3/2 is negative definite, and x'(n) is a locally stable positive n-species equilibrium 

generated by 

F(S*(ij) : (x,s...&) - ?(n) 

then the system defined by x ' (n)  is elimination stable if and only if it is independent of S,,*(t) for 

a given unordered set of n species {x,,, ..., x,,}. That is, because of the global stability of Volterra 

systems for which B is always negative definite, if one can take them apart in any order, one can 
reassemble them from the equilibrium components {xl, ..., I,,} in any order. 

In the above system, an n-component climax community is independent of global initial 

conditions S,(t> if and only if it is elimination stable. This ceases to be true, however, with the 

insertion in S of transient species. If, however, 
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having p-n transient species, is independent of S, then the system defined by x’ ‘(n) must be 

elimination stable. That is, with transient species included in the sequence, elimination stability is a 

necessary but not sufficient condition for sequence independence. Nonetheless, it should be possible 

to eliminate the n climax species in any order for 3 ‘(n), to generate n! equilibrium sequences S,,(*), 

xi(‘) = e, all leading to x” *(n). 

HISTORY DEPENDENCE AND ASSEMBLY 

Suppose a globally stable n-species equilibrium x” ‘(n) generated by (1) is not elimination 

stable. That is, there are subsets of {A+., x,,} for which a stable feasible equilibrium does not exist. 

This implies that some or possibly all of the ordered additions S,(*) under F will fail to produce 

x’ *(n). Denoting the subset of successful sequences as {S‘,,(*)}, it is clear that the degree to which 

{S’,,(*)} is small compared with n!, is the degree to which history dependence o r  the uniqueness of 
the assembly sequence is important. 

In the sense used by Diamond (1975) and Gilpin and Case (1976), the small size of {S’,,(*))) 
gives definition to their use of the term assembly rule. The extent to which a system o r  subsystem is 

not elimination stable, measures the narrowness of possible pathways leading to x’ *(n). That is, the 

smaller {S’,,(*)}, the more precise the assembly rules. 
In random simulations of competitive Volterra systems, Gilpin and Case (1976) found that 

arbitrary removals of single species from stable n-species systems left the remaining n-1 species 

systems stable at a frequency rapidly diminishing as n increased. Therefore, in such randomly 
generated systems, assembly rules may become more restrictive in the later stages of system 

development, forming an ever increasing bottleneck. This follows, in part, from the fact that randomly 

generated dynamic systems are more difficult to stabilize with size (May 1973). 

DENSITY MEI)IATED FACILITATION AND INVASION RESISTANCE 
The results of Gilpin and Case (1976), Pimm and Lawton (1978), May (1973) and Drake 

(1985), indicate the possibility that a given n-species Volterra system with a stable positive equilibrium 

sequence of these n stable species {x,, ..., x,J will produce X ‘(n), Le., {FS’,,(*)} = ip. Rather, as 
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has been demonstrated in simulation experiments (Drake 1985) it may be possible to achieve x' '(n) 

only by inserting transient species into S(*) so that 

It may be shown that the effect of adding the transient species is to alter the equilibrium 

densities in the sequential systems in a manner that allows sequential stable coexistence and invasion. 

This effect may be called density mediated facilitation to distinguish it from physiological facilitation. 

It should be noted that even if no equilibrium sequence S,(*) will produce x (n) there i s  - *  

always some sequence S,(G that will yield x' '(n). That is to say that the timing and not just the 

order of species additions may be important in system assembly. 

It is possible that a given finite set of species {xt  , ..., x,,) may contain a subset which is 
resistant to invasion by all other members of this set. Invasion resistance may be the case in some 
climax systems and it is easy to construct simple examples using Volterra equations where this is true. 

Although it is clearly not true in general (e.g., no-transitive species replacement cycles (Buss and 
Jackson 1979)), simulation studies using Volterra equations have found that long invasion sequences 

(p > 1000) with species drawn redundantly from a fEed randomly generated species pool tend to 

produce invasion resistant communities (Drake 1985). It should be emphasized, however, that this 
result clearly depends on having a finite species pool whose interaction parameters do not change. 

Because one can always "create" a species which can invade any given Volterra system, no natural 
system will ever be non-invisible in an evolutionary sense. 

INVASION SUCCESSION AND EVOLUTION 
In the preceding discussion of F(S(*)) with xi(*) = e we considered sequential invasions to 

stable positive equilibria. At each step in F(S(*))  an invasion will either fail or it will produce a new 

equilibrium system possibly not including the invader itself. What are the conditions for successful 

invasion? 

MacArthur and Levins (1967) studied the conditions for the successful invasion of a 

symmetrical two-species Volterra competition system 

where 
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~ ~ 2 0 ;  a12=6;21=aR 

and 

kl=&=kR 

for the resident species 1 and 2; and for the invader I 

They found that the invading species, I, can increase when rare (Le., invade) when the following 

inequality is satisfied: 

W R  kl -. 
1 +aR 

Clearly, the ability to increase when rare is necessary for invasion, and in this particular case, 

it is also sufficient (condition (5) guarantees a stable 3-species equilibrium). Numerical simulations 

of generalized Volterra predator-prey systems show that the condition “ability to increase when rare” 
is sufficient in over 80% of the cases (Post and Pimm 1984). That is, an invader which can initially 
increase when rare will seldom exit the system without indelibly altering the equilibrium. 

It is easy to extend the condition (5) of MacArthur and Levins to the n-species case where 

competition among the n residents aR is equal, kR equal and ail = ali = aI, i = (l,..,n), Condition 
(5 )  then becomes 

If the number of residents, n, is large, we can relax the equality requirement on aI and aR and 

replace them by their expectations hi and 6, to obtain 
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where k, = kR. The term ir, in the numerator is the expected competitive effect between the invader 

and the residents, and the term 8, in the denominator is the expected competitive interaction among 

the residents themselves. This condition shows that i t  is easier to invade if interactions among 

residents are stronger (results in smaller resident populations) and/or if the competition between the 

invader and the residents is weaker. Clearly, as 8, decreases, then 6, will eventually decrease and 

invasion will become more and more difficult with time. 

Although illustrated in this special case, invasion difficulty in F(S,,(*)) as n increases has been 

observed in a number of computer studies in both linear and Volterra predator-prey systems (Post 

and Pirnm 1983, Drake 1985) and appears to be a robust property. 

A criterion similar to (6) for the "ability to increase when rare" has been proposed by 

Shigesada, Kawasaki, and Teramoto (1984) for Volterra systems with interference competition. Of 

special significance is their discovery that for special systems like (4) whose interspecific coefficients 

can be rewritten as a$ = cisj, where ci =- 0 and Sj > 0 is the coefficient of interspecific interference, 

the quantity G, =E pf* will always increase with each successful invasion. Nakajima further showed 

that for equation (4) the quantity G , = c  Qi* will increase with succession [i.e., F(S(*))J if each I?' 

system's stability matrix is symmetric and negative definite. In general, it is possible to show how for 

a globally stable sequence of equilibria produced by F(S(* ) )  one can measure the development of the 

system (Le., shifts in x * )  by a sequence of liapunov functions whose sum is strictly increasing. 
A general derivation of the necessary condition for invasion, "ability to increase when rare", 

may be conveniently obtained from a non-equilibrium neighborhood stability analysis evaluated at the 

point where the invader population is zero (x,(*)=O) and the resident's populations are at 

N 
equilibrium (ZR) (Czapleski 1973, Allen 1976). It can be shown that if the augmented system is 

unstable at this point, then the invader's population will always increase. 

Denoting A, as the n x n stability matrix of the resident system Eq. (1) whose elements are 
4.. = 

IJ 

X*i(- ?Kx '9 1, 
axj 

it follows that because s,(*)=O, then aii = 0 for i (1, ...$). This simplification allows the determinant 

of the augmented ( n + l )  x (n+l)  system having the general form of equation (1) to be expressed 
conveniently 
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Hence, the eigenvalues for the augmented system { A , )  are simply the eigenvalues for the original 

system { A R )  plus the new eigenvalue for the invader, Af = q,. Therefore, the condition “ability to 

increase when rare” is the condition that the invader’s eigenvalue at  this point have a positive real 

part, or that 

which for the general system (1) means that fi(x’) c 0. Because Volterra systems are a special case 

of (l), we can use (7) to derive MacArthur and Levin’s condition (5)  from (4). 
Condition (7) has been called the evolution condition because it is required for a newly 

evolved species to enter the general system (1). A qualitative analysis of this condition for the two 

species Volterra predator-prey case suggests that such systems tend to evolve toward higher 
predatodprey biomass ratios (Allen 1975). A more careful analysis (Hirata 1982) confirmed this result 

by showing how selective drift in parameter values will occur with successive evolutionary 

replacements of both predator and prey species, moving the system monotonically toward higher 

predator/prey biomass ratios. 

MULTIPLE STAEHE STATES AND ORDER THROUGH COLLAPSE 
At the other extreme from sequential equilibrium invasions F(S(*)) ,  is the idea of building 

systems from the top down, with the entire n-species pool {x l ,  ... J,,}, initially present. As in Egler’s 
(1954) “initial floristic composition hypothesis”, assembly here may be thought of as occurring through 

a process of selective extinctions or dynamic decay. The generated dual under F of the inoculation 

vector, S,,(O), is the extinction vector, f 

which records the order and timing of species departures from the system. If E # 4, then F(S,(O)) 
n-k 

does not lead to a stable positive n-species equilibrium, and we have a sequential collapse of the n - 

k system, X * (n-k). What are some properties of x” * (n-k) and ? 

Gilpin and Case (1976) used simulations to study the collapse of F (S,(O)) in randomly 

initialized systems of Volterra competition equations (S,(O) chosen uniformly from an n-dimensional 



simplex). Although they did not study [ directly, they estimated an empirical rule for the number 

of distinct 2 * (n-k) equilibria, so called “multiple stable states”, as a function of n. They found that 

although there are potentially n! combinations of species, the number of observed stable combinations 

grew much more slowly ( < exp(0.2(n-l)) ). Furthermore, even though the starting conditions were 
random, certain outcomes were more likely to occur than others. 

Both of these results suggest selectiveness in the dynamics of decay, and the possibility, 

therefore, of a bias toward specific orderings of € . It is clear that without singularities, a given 

system and initialization of these Volterra systems will produce a unique x” ‘(a-k) and 

Section 1.1 listed the triangulation property of niche overlap graphs G(C) as a nonrandom 

property of natural systems (no G(C) contains minimal circuits of length greater than 3). It is worth 

noting that the connectance structure of a system of Volterra competition equations may also be 

described by a consumer overlap graph, G(C). To what extent could the observed triangulation 
property be selected for in the dynamics of decay? 

Numerical simulations of randomly structured (non-triangulated) Volterra competition 
systems, initialized with all population sizes starting at 1, [FS(O) with s(0) = ( l , l , l ,  ..., l)] show a 

marked tendency for the collapsed n-k systems to become triangulated (Sugihara 1983). Therefore 
independent of the topological assembly rule described earlier for the sequential addition of species, 
it may be possible to obtain topological order from the sequential collapse of randomly structured 

systems. The basis of this behavior must be due, in part, to the fact that triangulation in G(C) tends 

to be dynamically stabilizing (Sugihara 1983). 

There should be a tendency, therefore, for E to contain species involved in non-triangulated 

(large) circuits. 

The triangulation property of real systems, and its relation to stability has a suggestive link 

with another discovery by Lawlor (1979) and Yodzis (1982) that such natural systems, when modelled 

by empirically fitted Volterra equations, tend to be more stable (faster return to equilibrium) than 
equivalent randomly structured (non-triangulated) ones. Here, the triangulation property is seen to 

be present at  all thresholds of interaction strength (Sugihara 1984). This property of real systems, 
therefore, may be responsible for their high dynamic stability. 

S m Y  
A variety of theoretical approaches for understanding the assembly of ecological systems are 

surveyed. Among the static approaches, both the topology of real trophic niche spaces and the 

observed patterns of species abundances suggest a very conservative method for successful species 
additions to a system. This conservative assembly rule echoes the normal case in evolution in that 
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it requires that systems grow in a tree-like fashion rather through the concatenation (convergence) 

of distantly related branches (guilds). On a more tactical level, static biogeographical information on 
species presence and absence in an area may be used to derive assembly rules as a compatible parts 
problem. The dynamic basis of compatibility rules is discussed in terms of the concepts of global initial 

conditions S(t> sequential dynamics F(S) and elimination stability. This preliminary framework is 

intended to focus discussion for future mathematical studies of assembly in dynamic systems. 
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INTRODUCTION 
Much field and laboratory work has suggested that competition and predation have profound 

effects on shaping community structures. In some communities, a single trophic level in isolation can 
not sustain many species owing to competition, but the presence of predation from other levels can 

lead to a community of a higher species richness. For instance, Paine (196tj, 1974) showed that 
removal of the top predator from an intertidal community of marine invertebrates resulted in a 
decrease in the number of major space-utilizing species. Similar effects have been widely observed 
in aquatic (Slobodkin 1964; Paine 1966; Dayton 1971; Porter 1972) and terrestrial systems (Darwin 

1859; Summerhayes 1941; Connell 1961; Harper 1969). Such a phenomenon is referred to as 
predator-mediated coexistence. Conversely, it has a k o  been observed that addition of extra predator 

species can lead to a decrease in the number of constituent species, and we call this situation 
predator-induced instability (Harper 1969; Paine and Vadas 1969; Hurlbert et al. 1972; Adicott 1974; 

Janzen 1976; May 1971; Lubchenco 1978). 

The Lotka-Voltem models for a 2 prey-1 predator and a 2 prey-2 predator system have been 
extensively investigated to elucidate mechanisms of predator-mediated coexistence (Cramer and May 
1972; Roughgarden and Feldman 1975; Fujii 1977; Caswell 1978; Vance 1978; Teramoto et  al. 1979; 

Freedman and Waltman 1984; Hallam 1986) and predator-induced instability (May 1971, 1973). 
However, a general analysis of multiple species systems consisting of more than four species has not 

been fully explored, although there are a great deal of computer simulations based on real 

communities (Gilpin 1975; DeAngelis 1975; Gilpin and Case 1976, Goh and Jennings 1977; Pimm and 

Lawton 1977; Yodzis 1978, 1981; Pimm 1984). In multiple species communities, further complicated 

interactions are expected to occur among prey and predators. Consider a community consisting of 

multiple competing species. If a predator specializing on one particular prey species invades the 
community, it may cause a decrease in the density of that species. Subsequently, some of the species 
not preyed upon may increase their population sizes, being relieved of competition from the prey 
species. Furthermore, if 

more than two predator species feed on competing species, one predator may influence other 
predators, either detrimentally (indirect competition between predators) or beneficially (indirect 

This in turn could lead to a decrease in some other competing species. 
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mutualism between predators), through altering the structure of the competition community 
(Lubchenco 1978; Milton 1947; Dodson 1970; Dungan 1987; Kerfoot 1983; Levine 1976; Vandermeer 

1980). Thus the direct and indirect effects of predation and competition may result in various 
community structures if the number of constituent species is large. 

In this article, we focus on a community consisting of multiple interfering competitive prey 
species, and a number of specialists that consume the prey species. To describe the dynamics of the 

prey species in isolation, Shigesada et al. (1984) previously presented a simple model using the Lotka- 

Volterra equation, in which certain restrictions were imposed on the parameters representing 

interspecific interference competition. They showed that the system in general has multiple stable 

equilibria and the structure of these equilibria are cIassified into two types, depending on what 

characteristic properties the constituent species have in terms of two parameters: the relative strength 
of intraspecific interference to interspecific interference and the relative intrinsic growth rate 

(intrinsic growth rate divided by susceptibility to interference from other species). To examine the 
effect of predation on the structure of this competition community, we assume that a number of 
predators (specialists) immigrate one after another into the community. If a given invasion is 

successful, the community will attain a new stable equilibrium state, whose structure is also 

characterized in terms of the above parameters, By comparing the community structures before and 
after each invasion, the effects of the invading predator are evaluated. In this analysis we deal with 
two situations in which the competition community is either closed or open with respect to 
reimmigration of the species once extinct in the initially isolated competition community. The effect 

of predation on a closed community is analytically investigated in 93, while an open community needs 

computer simulations as shown in +I. In both cases, we show under what conditions predator- 

mediated coexistence or predator-induced instability result and how indirect mutualism or indirect 
competition arise between predators specializing on different prey species. 

STRUcmTREs OF COMMUNITIES WITH INTEREERENCE COMPETITION 

The competitive community has been extensively studied using a Lotka-Volterra model for 

N competing species: 

N 

dt j = l  

a. 
-2 = (ei - c pdri>xj for i = 12,.-*JV, 

where Xi is the population size of species i, ei is the intrinsic rate of growth and ,uii is the coefficient 

of competition of the jbh species on the ith species. 

Here we assume that prey species interact mostly through interference cornpetition. Qpical 
examples of interference competition have been observed in sessile animals and plants that live on 
rocky shores, and in motile animals that defend territories by aggression or poisoning (Case and 
Gilpin 1974; Gilpin et al. 1986). To describe interference competition, Shigesada et al. (1984) have 
previously presented a simple model which adopts the Lotka-Volterra equation. In that model, the 
competition coefficients pii are assumed to be given as a product of two factors as follows: 
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where p ,  represents the intrinsic interference of the ith species to other species and is termed the 
interspecific inte$erence coefficient. We use a, to distinguish intraspecific interference from interspecific 

interference, p,. o,( e 1) is termed the susceptibility, wherein we assume that species i can reduce the 

effect of interference from other individuals of any species by a factor of u,, owing to its defensive 

ability. 
Substituting p,, defined by (2)  for the Lotka-Volterra equation (1) and changing units of 

variables, we have the following basic equations: 

where I = { 1,2, ...,N}, and 

x i  = P,X, ei = cia, and y i  = aJpi. (4) 

For the convenience of discussion, we assign subscripts to each species according to rank in decreasing 
order of ei( = ei/ui): 

e, et s ... > eN. (5) 

Thus a species with a higher intrinsic growth rate or a smaller susceptibility occupies a higher rank. 
Each species is further classified depending on whether its intraspecific interference is larger than its 

interspecific interference ( yi= a,lpi> l), or vice versa (y,  c 1). Hereafter, we call a species with y, > 1 

an auto-competitor, and a species with yi < 1 a hetero-competitor. 

Equations (3)  have been extensively analyzed; all the equilibrium states are expressed in 

explicit forms and their stability properties analytically examined (Shigesada et al. 1984; Kawasaki et 

al. 1990). Here, we briefly introduce some results of the analysis. 

An equilibrium point of (4) is obtained by setting xi 
procedure provides 2N equilibrium points: 

where I = { 1,2, ... A}, P is an arbitrarily chosen subset of I ,  and 

= 0 or f,(x)=O for all i, and this 

for iEI-P,  (6) 

c Ed- 
CEP 

(7) 
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Among these equilibria, biologically meaningful solutions should be nonnegative (Le., xi'>O for id'). 
Stability properties of these nonnegative equilibrium points can be analyzed by means of the standard 
linearized method together with a Liapunov function, leading to the following stability criterion: 
Stability Criterion Any solution of ( 3 )  which starts from an arbitrary positive initial point always 

approaches an equilibrium state having either of the following structures, I or 11: 

I. x- = (x;& ,... &O,O ,..., O), 

where xi' is given by (6) for P=P, z { 1,2, ...J}, and s (1 s s 5 N) is an integer for which 

11. x * = (x; $A&... J,*,O, ... ,oJ;o, ... ,O). (9a) 

where xi* is given by (6) for P=P,,,, e { 1,2, ...,f} + { w } ,  and t and w (0 I: t < w s N) are integers for 
which 

t i  > 0 for &P,, t,,, < 0, (9b) 

(94 e, > c(p,.J > e,+,* 

Since species i with t p - 0  is an auto-competitor and species i with ti;.<0 is a hetero- 
competitor, relations (8b) and (9b) indicate that in case 1, all surviving species are auto-competitors, 

occupying ranks from 1 through s. On the other hand, case I1 consists of surviving auto-competitors 

occupying the ranks from 1 through t and one surviving hetero-competitor (species w) whose rank is 

lower than t. Note that the top rank may be occupied by a hetero-competitor; in such a case none 

of the auto-competitors can survive (i.e., w =1, s=O). Figure 1 schematically illustrates the 

community structures of types I and 11. 
To summarize the characteristics of stable equilibrium states of interference competition 

communities: (1) Among all the auto-competitors, survival is hierarchically determined in the rank 
order of e;. (2) The number of surviving hetero-competitors is at most one. (3) If a hetero-competitor 

of rank w can survive, it will exclude all species whose ranks are lower than w. 

EFFECT3 OF INVASIONS OF PREDATORS ON A CLOSED COMPETITION COMMUNITY 

Let us now proceed to analyze the effects of predation on an interference competition 

community as described in the previous section. Consider an isolated cornpetition community that 
has already reached a stable equilibrium state having either of the two structures, type I or I1 as shown 

in Fig. 1. We then assume that a number of specialist predators immigrate into this competition 
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I. 

rank: 1 2 ... s ... W ,  ... wi ... wk ... N 

o o o o x x x x x x x x  
11. 

rank: 1 2 ... t ... w1 ... wi ... wk ... N 

0 0 0 0 x x x . x x x x  

Figure 1. Possible structures of stable communities with interference competition. 
N species are ranked in decreasing order of e,/a,. These species are further classified 
into auto-competitors (yi = a,@, > 1) and hetero-competitors (yi e 1). The ranks 
of hetero-competitors are indicated by wI,wz, ..., wlr. 1. All the surviving species are 
auto-competitors which occupy ranks from the top down to s. 11. Auto-competitors 
occupy the ranks from 1 through t and a single heterocompetitor occupies a lower 
rank. 0, auto-competitor; 0, hetero-competitor; X ,  extinct species. 

community one after another. Suppose that the time intervals between successive immigrations of 
predators are long enough so that pre-occupant species have already reached a stable equilibrium state 
before each new predator immigration. We regard a predator as a successful invader if the 

community colonized by a small propagule of the predator moves into a new stable equilibrium state, 
in which the predator becomes a constituent member. Once a predator invades successfully, the 
population sizes of pre-occupant species will change and some may become extinct, thereby altering 

community structure. 
Hereafter, we focus on two situations in which a competition community is either closed or 

open. We define a competition community as closed if, once competing species in the initially 

isolated community become locally extinct (species assigned by x in Fig. l), they are never allowed 

to reimmigrate into the community at  those times when a new predator invades. On the other hand, 
the resident species in the initial community (species assigned by 0 in Fig. 1) can reimmigrate, even 

if they become temporarily extinct upon invasion of predators. We might regard such a closed 

competition community as a functional group or a guild as termed by Root (1967). We define a 
competition community as open, if reimmigrations of initially extinct competitors (species assigned 
by x in Fig. 1) are also allowed during successive invasions of predators. In this section we treat 
invasions of predators in a closed competition community. Invasions in an open competition 
community will be treated in the next section. 
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Consider a stable equilibrium community, which has been established after successive 

When the n-th predator immigrates to this community, the invasions of the (n-1)th predator. 
dynamics of the community are given by the following equations: 

where I is the set of species that can stably survive in the closed competition community in isolation: 

I=P,= { 1,2, ...J} for case I and I+,,= { 1,2, ..., r,w} for case 11, and G is the set of n predators, each 
of which specializes on a competitor of rank ki (i=l,Z,..n); i.e., G= {k  &...,k,,}. X, (LEI) is the 

population size of competing species of rank i. Y; (LEG) is the population size of the predator 
specializing on competing species of rank i. K; 
is the predation rate of predator i and q' is the product of y and the conversion rate of the prey to 

the predator. q,. is the death rate of predator i. 
Changing units of variables by (4) and 

ki and e/ai ( le i  ) satisfy (2) and (9, respectively. 

I yi = (K3/(Ji)Yp di = qip]lc;, K i  = KJpi, 

we express (10) in the form: 

d -xi = ai(ei - 
di A 4  

xj - ypi - yi)xi 5 Gi(z)xi (icG), 

d 
-yi = Ki(-di + xJyj E Ri(z)yi dr (i€G), 

where z=(x,y) = (x l~* ,  . . . .XN~~~Y~*, . . .Y~~~) .  Since we assumed that the preexisting community has attained 

a stable equilibrium state,z',the initial condition of (12) is given by z(t=O)=t'+b, where 6 is an 

arbitrarily small vector. If the n-th predator which specializes on a competing species of rank k, 

(called predator k,) can successfully invade the preexistent communityf, the following should be 

satisfied: 

H k S a  = Kk$-dka .t - f k )  ' 0. (13) 

We can show that when (13) holds, system (12) always approaches a globally stable equilibrium point, 

2 = (iy^),which i s  given by (Shigesada et al. 1989), 
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G is a set of competing species that serve as prey. Since predator k, is capable of invading, G always 

contains kn but not necessarily the preoccupant predators, because the presence of predator k, may 

cause extinction of some resident predators. s  ̂ is a set of competing species that survive but are not 

preyed upon. (=I-$-@ is a set of competing species that go to extinction, and gP is the set of 

predators that survive in the preexisting community but go to extinction in the resulting community. 

These sets 9, d, E and Ep are uniquely determined from the requirements that equilibrium 2 should 

be nonnegative and locally stable: 

If we denote by Z, 3, 6, and ,!? the quantities corresponding to the preexisting stable state,z' 

is given by (14) in which A is substituted for -. Thus the change in the population size of each 

species after invasion of the n* predator is calculated by subtracting .t = {Qi) from z' = { Z J ~ } :  

and hence the numerator in the r.h.s. of (17) is always positive. On the other hand, the denominator 

becomes negative if the set of surviving competitors that have never been preyed upon(i.e., S-mJ 
includes a hetero-competitor, and positive if otherwise. Summarizing the above analyses, we obtain 

the following (see also Fig. 2): 

Remark Consider a closed competition community that has been invaded by a number of specialist 
predators and has reached a stable equilibrium state. When a new predator (the n* predator) invades 
this community, the resulting community has the following properties: 
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Figure 2. Changes in the community structure by invasion of the n' predator on a 
closed competition community. In the lower row, thespecies in a closed competition 
community are arranged in decreasing order of rank. The surviving species after 
invasion of the nrh predators are indicated by circles (0, auto-competitor; 0, hetero- 
competitor) and extinct species by cross X. The circle with an arrow in the upper 
row designates a predator: the dotted version of the circle is a newly invading 
predator (the n' predator); the solid version is a pre-occupant predator. Signs +, 
0 and - indicate an increase, no change and decrease, respectively, in the population 
sizes compared before and after invasion of the n* predator, all pre-occupant species 
except the prey species increase their population sizes. Thus predator-mediated- 
coexistence and indirect mutualism between predators are induced. (b) If there 
remains a hetero-competitor not preyed upon after invasion of the nm predator, the 
hetero-competitor increases, while all other pre-occupant species except the prey 
species decrease their population sizes. Thus predator-induced-instability and 
indirect competition between predators are induced. 

(a) If there exists no hetero-competitor that is not preyed upon in the resulting community, all 
the pre-occupant species except prey species increase. Furthermore, some previously extinct 
species become able to survive in the resulting community. Therefore, predator-mediated 
coexistence and indirect mutualism between predators are induced (Fig. 2a). 

(b) If there remains a hetero-competitor not preyed upon in the resulting community, the hetero- 
competitor increases its population size, while all other preoccupant species except prey 
species decrease. In particular, some preoccupant prey species with lower ranks and their 
predators may become extinct. Therefore, predator-induced instability and indirect 
competition between predators are induced (see Fig. 2b). 
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The above results are explained as follows: because the prey species attached by the newly 
invading predator decrease, interference from that prey species will be reduced so that all other 

species tend to increase (case (a)). However, if there remains a hetero-competitor not predated upon 
as in case (b), it obtains the greatest advantage from this effect, preferentially increasing its population 

size. As a result, other species present will be exposed to strong interference from this hetero- 

competitor, and hence tend to decrease, some occasionally driven to extinction. 

INVASIONS OF PREDATORS IN AN OPEN COMPEIlTION COMMUNITY 

In the previous section, we dealt with a closed competition community in which any species 

initially extinct in the isolated competition community is never allowed to reimmigrate afterward. 

However, if the community is always exposed to immigration of previously extinct species (an open 

community), the organization of the community upon each invasion of a predator will take a different 

course from that of a closed competition community. 
To address the above question, we again consider Eq. (10) for I={1,2,..N and 

G = { k  Jc2...,kn}. Note that in the present case, I is the set of all the competitors as defined in Sect. 
2 ranked from 1 through N in contrast to the case of the closed community in which Z is the set of 
competitors excluding the initially extinct ones. 

Let us first consider the case that a single predator, say predator k,, invades a competition 

community, which has already attained a stable equilibrium state having either of the two structures, 

type I or 11, as shown in Fig. 1. The dynamics of such a community is given by (10) for I=(1,2,..N, 

G={k,} ,  which has been investigated by means of local stability analysis of equilibrium states 

(Shigesada et al. 1989). The results of the analyses show that the predation effects predicted in the 

closed communities also appear in the open communities; a predator specializing on a hetero- 
competitor acts to increase the population sizes of other species, while a predator specializing on an 

auto-competitor leads to decrease or increase of species richness, depending on whether or not the 
community contains surviving hetero-competitors not preyed upon. Moreover, some properties 

specific to the open community are revealed; predation on a hetero-competitor sometimes induces 

the survival of another hetero-competitor that was previously extinct, and this newly surviving hetero- 

competitor also acts to change species composition. Therefore, the direction of change of each 
population size, in this case, is not necessarily fixed as in closed communities. 

These properties specific to the open community generally seem to become more prominent 

with successive invasions of multiple predators. However, if the number of invading predators is 

greater than two, stability analysis of (10) will no longer be feasible without the help of sirnulation. 

Here we carry out a preliminary computer simulation for the special case that I=G= {1,2, ...,A9 and 

parameters are restricted to the following particular values: 
The set of prey consists of 10 species (Z={1,2, ..., 10)) with parameters 

“1 = 10 - O.Sx(f-1); ai=csi=l (ZEI), 

1.42 for i E {6,7y9)y 
.6 for i E I - (6,7,9}. Pi = 
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Predators have the following parameters: 

Among the 10 prey species, species 6, 7 and 9 with ai< pi are hetero-competitors and other species 

are auto-competitors. Applying the stability criterion presented in Sect. 2 to the prey community 
shows that this competition community has the following three locally stable equilibrium states, 

(a), (b) and (c): 

Equi. x: 
s€QE-----".--..-..---.-.-- 

(a) 5.15 3.90 2.65 1.40 0.15 0 0 0 0 0 
(b) 0 0 0 0 0 7.50 0 0 0 0 
(c) 0.41 0 0 0 0 0 6.76 0 0 0 

According to the prior classification scheme, equilibrium state (a) is of type I, and (b) and (c) are of 

type I1 (see also Fig. 1). 
The 10 predators are assumed to have the identical predation abilities and death rates. Each 

predator may survive if its food (prey) is  abundant enough so that its growth rate exceeds its death 

rate. 
We choose three different initial conditions: The prey species start from the neighborhood 

of either of the three locally stable states, (a), (b) and (c). For each equilibrium state x', we actually 

set X(t  =O) =x 1- 6, where 6 = ( and the predators initially have the same small size, 
y(t=O) = 0.1 ( i d ) .  

Starting from these initial points, solutions of (10) are numerically calculated for various 

death rates q. Figure 3 demonstrates an example of numerical data of z(t) for q =2. The species 
compositions finally attained after a sufficiently long time are shown in relation to the initial 

conditions and the death rates q in Fig. 4. When the death rate is large (q >7.5), none of the three 
initial states allow invasion of the predators, because the growth rate of each predator does not exceed 

its death rate ( is .  - q + X,'*<O for all i). Let us look at the case of smaller q, for instance, q=6. 
When the prey community is at  equilibrium (a) in the beginning, no predator can yet invade. On the 
other hand, if the prey community starts from either (b) or (c), one predator specializing on the 
hetero-competitor can invade. As a result, some auto-competitors in higher ranks (species 1 and 2 

in case (b); species 2 in case (c)) are able to reimmigrate and survive, raising the species richness of 
the community. These characteristic effects of predation pressures are essentially similar to those 
exhibited in closed communities as was shown above. When the death rate q becomes still smaller, 
a new feature emerges. For the case of q=3,  the prey communities starting from either (b) and 

(c) will approach to the same final state as that from initial state (a), in which the hetero-competitor 

is excluded, even though it was most abundant initially. This result is explained as follows; among 
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Figure 3. The temporal changes of population sizes of an open community. The 
solution of (10) with parameters given by (lS), (19) and q = 3  with initial condition 
(b) is presented. Solid curves numbered (1 through 6) represent prey species, and 
broken curves with circled number (1,2,3 and 6), predators. Predator 6 diminishes 
its prey (species 6), finally leading to extinction of this prey-predator pair, which in 
turn stimulates survival of prey and predators of higher ranks. 

the invading predators, the one specializing on the most dominant hetero-competitor grows most 
rapidly at  first, and exhausts its prey to a low level. Thus, the interference previously exerted by the 

prey (the hetero-competitor) will diminish, and auto-competitors in higher ranks will be allowed to 

grow. As a result, interference from these auto-competitors is intensified so much as to exclude the 

hetero-competitor along with its predator. When q is further reduced to 1, this tendency is 

emphasized even more; 7 predators can always invade successfully irrespective of the initial states, and 

will approach the same equilibrium state in which the 7 prey-predator pairs and a competitor not 

preyed upon (species of rank 8 )  can survive. Note that not only auto-competitors but also hetero- 
competitors which were previously extinct can survive, and that all the prey species retain their sizes 
at  the same level, X,'=q (ieG). Therefore, the diversity of the community increases in the sense of 
both species richness and evenness of species abundance. In summary, as the multiplicity of invading 
predators increases, more competing species are allowed to coexist, leading to higher community 

diversity . 
As demonstrated in the present work, a closed competition community always has a unique 

stable equilibrium state for a given set of species, so that the dynamical behavior can be completely 
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Figure 4. Changes of community structures by invasions of multiple predators into 
open competition communities. The lower trophic level (consisting of 10 
competitors) is initially at either of three stable equilibrium states, (a), (b) or (c). 
Then small propagules of predators (specialists) and the competitors simultaneously 
immigrate into this lower trophic community. The dynamical change of the 
community structure is examined by solving (10) with the aid of a computer. At the 
ultimate time, each species either persists or goes to extinction; 0, surviving auto- 
competitor; 0, surviving hetero-competitor; 1, surviving predator. + ,- and 0 indicate 
the direction of size change of a competitor compared before and after simultaneous 
invasions of predators. q denotes the death rate of predators. As q decreases, more 
predators can successfully invade at the same time. As a result, more competitors 
which were previously extinct become able to survive, leading to an increase in the 
species richness of the community. 
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predicted. In contrast, an open competition community generally possesses multiple stable equilibria; 
which equilibrium will be actually realized depends on the initial population size of each species. The 

initial sizes of reimmigrating species play a particularly important role in organizing community 
structures, because even if they finally become extinct, their temporary invasions may cause the 

community to shift to another stable state among the multiple equilibrium points. Furthermore, 
although any solution of (10) for the present case approaches asymptotically a stable equilibrium 

point, there may exist some unstable equilibria that involve limit cycles or chaos, if the parameter 
values or initial points are set in different ways. Indirect mutualism or competition between 

predators will also arise in the open community, although we did not examine it, because we have only 
dealt with simultaneous invasions ol  multiple predators (not successive invasions of predators as in 

the case of the closed community). 
Finally, in the present model, we assumed (2) to describe interference competition among 

prey species. Although this assumption may be too restrictive to represent a real community, it allows 
us to deduce qualitative features of stability and structures of a competition community. 

Furthermore, we are only concerned with the case that predators are specialists. The actual 

community, however, should be more complex, in general including both specialists and generalists. 

Predation by generalists would operate in a more complex manner compared with that of specialists 
(May 1973; Vandermeer 1980). Further studies of mixed invasions of specialists and generalists are 
in progress. 
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SUMMARY 
Coevolutionarily stable community (CSC) structures are studied when predators search for 

several species of prey distributed in a number of patches. A community is called a CSC when no 
mutant predator with different food preference have a selective advantage over the individuals of the 

wild type of the same species. We consider not only the equilibrium structure but also the dynamic 

structure of a CSC, in a food web of two trophic levels. In a CSC, (1) the number of predator species 

which simultaneously utilize two common patches does not exceed the sum of the numbers of prey 
species in the two patches. In a simpler model, in which only one species of prey lives in each patch, 

(2) the number of connections indicating predatory interactions between prey and predator species 
does not exceed the sum of the numbers of species in the two trophic levels. Especially, when all 
handling times of predation are sufficiently short, (3) two predator species rarely utilize two common 
prey species simultaneously. Finally we discuss the relationship between our results based on 
Darwinian coevolution, Joel Cohen's 'non-interval" food webs and George Sugihara's 'hole' in 
the resource graph. 

INTRODUCIION 
Classical competition theory (MacArthur and Levins 1964, 1967; Levin 1970) predicts that 

the number of consumer (or predator) species does not exceed the number of resource (or prey) 

species and that two consumer species cannot be too similar in their resource utilization. These 
predictions are based on feasible (non-trivial) steady states as a necessary condition for existence. 

Whereas a homogeneous resource distribution is assumed in the classical competition theory, 
Tilman (1952) showed that the number of predator species persisting in a patchy (or heterogeneous) 

environment may be greater than the number of prey species. Classical theory assumes the system 
to be at equilibrium, but several authors have developed nonequilibrium theories incorporating 

nonlinearities in resource utilization (Koch 1974; Levins 1979; Armstrong and McGehee 1980). They 
pointed out via computer simulations or analytically that two or more species can coexist on one 

biotic resource. 
Classical competition theory is based on the individual selection paradigm. MacArthur and 

Levins (1967) implicitly considered evolutionary convergence of resource utilization patterns in a 
niche space. Their idea virtually coincides with the concept of the evolutionarily stable strategy 
introduced by Maynard Smith and Price (1973; see also Lawlor and Maynard Smith 1978). Matsuda 
and Namba (1989) considered a community to be coevolutionarily stable. A coevolutionarily stable 
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community (CSC; termed by Roughgarden 1979, 1983) is a community in which no mutant predator 

with a different food preference has a selective advantage over individuals of the wild type of the same 
species. They elucidated an upper limit of the numbers of predator species coexisting in a CSC. 

Their result shows that the number of predator species which simultaneously utilize two common 

patches does not exceed the sum of the numbers of prey species in the two patches. 
The structure of food webs is an important problem in community ecology. Some authors 

discuss the relation between ecological stability and the number of species assuming that a food web 
is randomly connected (May 1972). Gardner and Ashby (1970) used "connectance" (C) as a measure 

of community complexity. C is defined as the ratio of the actual number of interspecific interactions 
to all possible combinations of interactions. They and other authors argue that the probability that 

a steady state is stable decreases as the connectance increases (see Pimm 1982). 

However, the connecting pattern of a food web is not random but is directly determined by 

prey choices of predator species. A predator species may have developed an efficient way to use prey 
in a patchy environment in the course of Darwinian evolution. Some authors studied the relationship 

between ecological stability of a prey-predator system and the optimal (or evolutionarily stable) 

foraging property of one or a few predator species (Comins and Hassell 1979; Matsuda et al. 1986, 

1987). In this paper, we examine necessary conditions for a pattern of prey choices and patch uses 
of some predator species to be coevolutionarily stable. We further discuss the relationship between 

the CSC structure and Joel Cohen's "non-interval community food webs' or George Sugihara's 
'hole' of the resource graph. 

DOES THE NUMBER OF PREDATOR SPECIES EXCEED THAT OF THE PREY SPECIES? 
We assume that many species of prey live in a patchy environment and that predators of some 

species can move widely and frequently between patches and feed in many patches. We express by 

I, K and M the numbers of prey species, predator species and patches, respectively. Each prey species 

lives in some patches. Although an individual predator can search for any prey in any patch, we 

assume random searching with respect to search for a particular prey in a patch. 

x ip :  the density of the it' prey species in the p" patch, 
We use the following notations: 

9 = (X1PyX2P p...#). 

yk: the density of the kth predator species, 0, = (yl, y;, ..&)). 

I? the set of prey species in the p" patch, 

b,? the encounter rate of an individual of the k" predator species with individuals of the i" prey 
species in the 

p"' patch, (i=1,2,.--,I, k=1, 2,...&). 

h,: the handling time of the k"' predator species to the i" prey species. 
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uk: the net energy gain of the kLh predator species when it feeds on an individual of the i" prey species 
(we assume that h,  and uJ, are constanls independent of p). 

fkv: the fractional allocation of searching effort (patch use) of the Kh predator species to the p" patch, 

( 0 < p i 1, CJk' = 1 ). 

gkv: the attacking probability (prey choice) when the kCh predator species encounters the i" prey 
species in the 

ptb patch ( 0 5 g,' 5 1 )- 

Ekp: the per capita prey intake rate of the k" predator species in the p* patch. 

R,: the per capita total prey intake rate of the Kh predator species. 

r'": the growth rate of the i" prey species in the pth patch. 

uVp: the intra- or  inter-specific competition coefficient measuring influence of the j" prey species to 
the i" prey species in the p" patch. 

8,: the intrinsic death rate of the k" predator species. 

A,@, 2): the mortality of the Kb predator species due to competition between predators and predation 
by the higher predators. 

We assume that R, is described as the sum of prey intake rates in M patches (Ek") weighted by patch 
uses cfk')). Namely, 

M 

where 

gib&&' 

Therefore, we can describe the prey-predator system as 

id* 



To elucidate the coevolutionary change in patch use fkp and prey choice g,’ of predators, 

suppose that a community, in which a wild type predator feeds on prey in a manner specified by 

coefficients { fkv } and { gap }, is invaded by a sufficiently small number of mutant individuals of the 
k” predator (k=1,2, .4. We assume that the mutant may differ only in patch use fkp and prey choice 

gikr from the wild type. 
For a community described by system (3) to be a coevolutionarily stable community (CSC), 

it is necessary that any mutant of any species of predator has no larger per capita prey intake rate 
than the wild type of the same species. Since we have assumed that no loss of searching effort occurs 

( Cfkp = 1 ), the predator should use only the patch in which the prey intake rate is the highest vc 
=OifE,’>E;),beimsif~ andr ~ p a s i t i v e w h e n E , ’ > E , ’ , a m u u n t w i t h p a ~ u s e ~ ~ )  = fl +&,O) 

has a selective advantage over the wild type fk’Ekp $. fkvEkv c v k p  + f,’)Eky. Thus, in a CSC, 

both fkp andf,” are positive only when El;” = E,Y (Matsuda and Namba 1989). It would also be 
related to the “ideal free distribution” of Fretwell and Lucas (1970) in which a population of a 

predator species distributes among patches so as to keep the instantaneous rates of gain equal at any 
time for all members of the population (Parker 1984). 

= 1 and Ekp takes the same value for any patch satisfying Since > 0, 

Thus, the per capita prey intake rate is the same in any patch so long as the predator uses the patch, 

and it coincides with the mean per capita prey intake rate of the predator species, R,. 
By the same reasoning as in the optimal diet theory introduced by MacArthur and Pianka 

(1966), the k” species of predator should ignore the a’“ species of prey (g,,” = 0) if uJhp is smaller 

than the mean per capita prey intake rate in the p* patch (&’). Conversely the former should 

always attack the latter (g&p = 1) if uik/ha > Ekp. 
Joining the result that E,’ = Rk for every k satisfyingf,’ > 0 with the one that g,’ = 1 if 

and only if u,/h, > EpL,  Matsuda and Namba (1989) concluded that g,’ = 1 if and only if urkjhik > 
Rli. Since it is assumed that uilr and h, are independent of p, then g,” also becomes independent of 

p in a CSC. Namely, if members of a predator species do not attack members of a prey species upon 
an encounter in a patch, then the predator also ignores the prey in other patches. On the contrary, 
if  a predator species feeds on a prey species in some patch, then the predator should in fact exploit 

the prey in any patch so long as it contains the prey and is utilized by the predator. 

To investigate further properties of patch use and prey choice in a CSC, we assume that a 
CSC is at steady state. Although system (3) can exhibit a stable limit cycle in which the number of 
predator species exceeds the number of prey species (Waltman, Hubbell, and Hsu 1980), we may 
expect that it has a dynamically stable steady state if the handling time and the interspecific 
competition coefficients are sufficiently small, while the intraspecific competition coefficients are 
sufficiently large. If we ignore competition between predators and assume absence of higher predators 
( A k  = 0), then EPv = b k  at a steady state in a CSC ifh’ > 0. 
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Since E,’ = 8 ,  must be satisfied for every k satisfying fkw > 0, g,” can be uniquely 

determined; 

E,’ = 8 ,  is transformed into a system of linear equations with respect to prey densities in the pm 

patch x’, 

b$+fi; = 6 J l +  b > s J ] ,  (for all k sarisfying >O) (6) 

where the sum is taken for all i satisfying u,JhJr > The number of unknownsx,’ is equal to o r  

smaller than the number of prey species in the pfb patch. On the other hand, the number of 

equations is the number of predator species that utilize the pm patch. Thus, if these equations are 

independent, then a necessary condition for existence of positive equilibrium densities (xkw > 0) of 
prey species to exist is that the number of predators utilizing the p* patch (fkw =- 0) does not exceed 
the number of prey species in the ptb patch. Thus, as shown in Figure 1, the number of predator 
species which utilize a particular patch does not exceed the number of prey species in the patch 
(Matsuda and Namba 1989). 

Therefore, the result of classical competition theory (MacArthur and b i n s  1964; Levin 1970) 

holds in every patch, while there remains a possibility that the total number of predator species in the 
whole system exceeds that of prey species. 

ARE THERE mNON-INTERVAL” FOOD WEBS IN A CSC? 

In the previous section, we have assumed that A, = 0 and that the system rests at a steady 

Even if AI > 0 and/or prey densities fluctuate permanently, the following relation must be 
state. If either of these assumptions is relaxed, the above results may require some alterations. 

satisfied in a CSC: 

Thus, g,’ is independent of p in general, while the number of predator species using a particular 

patch can exceed that of prey in the patch if R, is not constant. However, if two patches p and v are 

simultaneously utilized by K predator species, then the densities of prey species in the two patches 

must satisfy K equations, E,” = E&”. Thus, the number of predator species which simultaneously 
utilize the two common patches does not exceed the sum of the numbers of prey species which are 
attacked by a t  least one predator species among K predator species in the two patches (Matsuda and 
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Figure 1. A sketch of CSC structure when A, = 0 and the community is at  a steady 
state. Two and three prey species live in patches I and 11, respectively, as well as 
four predator species. If the patterns of patch use denoted by solid lines are given, 
then the connection designated by dashed lines are forbidden in a CSC, since the 
number of predator species utilizing a patch cannot exceed the number of prey 
species in the patch. 

1989; see Fig. 2 in this paper). Note that if a prey species lives in both patches, the species 

is doubly counted. 

To acquire further information on patch use, we consider a simpler case in which each patch 
is occupied by only one prey species. We focus on two trophic levels in a food web and concentrate 

upon K particular predator species and J particular prey species. There may be another predator 
species which utilizes one of the J prey species, another prey species which is utilized by one of the 

K predator species, and some other species in the higher or lower trophic levels which interacts with 
one of the K predator species or one of the J prey species, respectively. If the k" predator species 
utilizes S, species of prey (k=1,2, ...,K, 0 I; S, I; 4, then the number of unknowns (xi) is at  most J and 
the number of equations ( E l  = R,) is equal to C,(S,-l) . The total number of connections which 

indicate actual predatory interactions between predator and prey satisfies 
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Figure 2. A sketch of CSC structure in the case of Ak > 0 and/or in the non- 
equilibrium case. Two and one prey species live in patches I and 11, respectively. If 
predators A, B, and C utilize both patches, then predator species D cannot use both 
patches. 

X cSk s K + J, 
t= 1 

since &(&-l) s J .  The maximum number of interactions between the J species of prey and the K 
species of predator is equal to JK. Thus, the connectance C is not more than (J+Iy)/JK in a CSC. 
If the handling times are negligible, then E l  = E,/ becomes a linear equation. There always exists a 

trivial solution, j ( t )  = $‘(I) = 0. For the existence of non-trivial solutions, the CSC condition must 

be replaced by 
K 

(see Fig. 3). This means that the number of connections is smaller than the sum of the numbers of 
predator species and prey species. Note that the connectance C in a CSC decreases as the numbers 
of species J and K increase. 
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Figure 3. A sketch of part of a CSC and its resource graph, when only one prey species lives in each 
patch and handling times are negligible. Prey species i and ii are eaten by predator species A ,  ii and 
iii are eaten by B, and so on. (a) The number of connections among these eight species is 7. Adding 
another connection is forbidden in a CSC. (b) The resource graph representing the same structure 
as (a). A line segment (indicated by B )  connecting i and ii means that these prey species are eaten 
by predator B. In a CSC, any set of segments in a resource graph does nox make a "circle". 



Cohen (1978) introduced the terms "interval" and "non-interval" (see also &hen and Palka 
in press, for some examples of a non-interval graph). Resource utilization of a predator species can 
be specified by a line segment joining prey species belonging to the predator. For example, if 

predator A and B eat prey i, B and C eat ii, and C and D eat iii, then four line segments can be 

arranged along a line (see Fig. 4(a)). Such a food web is called an interval. In addition to these niche 

overlaps, if both D and A eat a prey species, iv, then this pattern cannot be expressed by segments on 

a line. However, the pattern can be expressed by overlapping lines in a plane as shown in Fig. 4(b). 

This is an example of non-interval food webs. @hen (1978) demonstrated that a fraction of non- 

interval webs is larger in random webs than in natural webs (see also &hen and Palka, in press). In 

a non-interval food web, the number of connections between prey and predators is often (but not 

always, see Cohen 1978, p. 107, his Fig. 24) greater than or equal to the sum of the numbers of prey 
and predator species in the web. Thus, we can argue that a non-interval food web is rarely found in 

a CSC. 
Sugihara (1984) used some ideas from graph theory in the study of food web structures. His 

resource graph, G(R), consists of vertices representing prey species and undirected edges which 
indicate that the two prey species are eaten by a single predator. In the resource graph, G(R), 

Sugihara introduced some concepts; a "2-simplex" consisting of three or more vertices is a graph in 

which all of the prey are utilized by at least one common predator species, and a "one-dimensional 

hole" is a hollow polygon in which every pair of neighboring prey species (vertices) is utilized by at 
least one predator, but no predator eat all prey species (see Fig. 5; hereafter we will simply call the 

2-simplex and one dimensional hole by "simplex" and "hole", respectively). Sugihara (1984) showed 
that, of the sixty communities that could possibly have holes, only two in fact did. Thus, he argued 
that holes are extremely rare in real food webs. 

We predict some properties of a CSC in this paper and the previous paper (Matsuda and 
Namba 1989). Our results are similar (but not exactly the same, as shown by Cohen, personal 
communication) 10 Joel Cohen's assertion with respect to non-internality of the niche overlap graph 

and also similar to George Sugihara's argument. However, our predictions are derived from 

coevolutionary stability of a prey-predator system, while the latter two authors based theirs on static 
analysis of food webs. 
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Figure 4. Cohen’s (a) interval and (b) non-interval niche overlap graphs. See text. 
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Figure 5. (a) A simplex and one-dimensional hole in a resource graph, and (b) a sketch of a corresponding food web. Predator species A eats 

prey species i and iii, 3 eats i and ii, C eats ii, iii, and iv, respectively. Since prey ii, iii and iv are eaten by predator G, these vertices make a 

simplex. Prey i, ii and iii make a hole. A community characterized by this graph is not coevolutionarily stable. 
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A NOTE ON THE SPECIES ABUNDANCE RELATION 
THE GEOMETRIC SERIES DISTRlBUTlON 

Ei Teramoto, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-21, Japan 

ABsTRAcr 
The geometric series distribution has been proposed by several authors as one of the 

mathematically representative distribution functions of the species abundance relation (May 1975, 
Pielou 1969). As a supplementary note, we present here several kinds of models of interacting multi- 

species systems which similarly lead to the geometric series distribution. 

INDEPENDENTLY GROWING COLONIES FORMED BY IMMIGRATION 

We consider a number of growing colonies on an island which are successively established by 

a pioneer immigrant from the main land. We assume that the immigration of a new founder occurs 

in time interval Ar with probability XAt and each colony independently grows with the same 

Malthusian growth rate e. If the primal colony is established at time f = O ,  the probability that k 
colonies are found on the island at time t is given by 

Then the k" colony which is established in the time interval ( f , t f A t )  with probabilityp(k-l#)lA? has 
population size e'(T-') at  time T (>t), while the size of the primal colony is n,=eCT. Therefore the 
expected relative value of population size of the k" colony at time T can be calculated as 

where a sufficiently long time T i s  assumed. 
Thus, in this case, it has been shown that the population sizes of colonies are given by a 

geometric series distribution. On the other hand, if the colonies are formed by the pioneers from 

members of preexisting colonies on the island, the population sizes are given by a hypergeometric 

series distribution, as already shown by Yule (1924) in his discussion on the speciation process in 

general. 
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THE LOGISTIC GROWTH OF COLONIES 

Here, in the same model, let us consider the case that the growth rate of colonies diminishes 

as the total population on the island increases. The equations of the population growth of colonies 

are given by 

where i and N; are the number of established colonies and the total population on the island at time 
t ,  respectively. K = e/v is the carrying capacity for the total population. Summing Eqs. (3) gives 

dN/& = ( l - N j K ) N i  

and the solution 

-e@-?q -1, N,O) = KNi(tJ[Ni(rJ + ( K - N J f J J e  

Notice that this solution can be used until an additional new colony is formed. Comparing (3) and 
(4), we have the relation 

In ( n,(r)/n,(tJ 1 = In wi(r)/Nj(Q 1 . (6) 

Thus the solution of Eq. (3) can be obtained as 

Now, we shall consider again the formation of colonies at times to = 0,t1,t2, .4,... successively. 

If the i* colony is formed at time ti.], then clearly there exist i colonies in the time interval ti.] s t < 
ti. By Eq. (7), the population size of the k" colony nk(ti) for k=1 ,2 ,  ...$ at time li is given by 

and the total population of i colonies Ni(fi) at time ti is 

In the next time interval (ri,ri+,), we must take into account the supposition that the (i-t 1)th 

colony with population size ni+](ri) = 1 is newly added at the instant ti, so that the initial value of the 

total population in this time interval is 
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Ni+,(Zj) + Ni(ti) .c 1. 

Thus, using the following notations 

-d$ -ti_ 1) 
Ni(ti-,) = N;, pi = e 

we can obtain the coupJed recurrence formulae 

where N i  = 0 and n&,) = 1. 

The formation of new colonies can successively occur until the total population reaches the 

carrying capacity K. Therefore, the upper limit of the possible number of colonies i,, = S is decided 
by the condition N,' < K < Ns+; and the last colony is formed at  time Then, using the 

recurrence formulae ( l l ) ,  (12) and (7) with tO=tS.l, we can obtain the population sizes of colonies at  

time t > zs., as 
s-1 

ni(f) = K[N,' + (K-N,)p]-'rJ ZqN; + (K-N;)pj)]-l,  
j - i  

k = 12, ...,& 

where = e-E('-t8-l) . Thus, taking the limit c-m, we finally obtain 

s-1 

where N,' can be evaluated by the recurrence formula (11). 

Now, as we assumed previously, if the colonies are formed by a Poisson process, the average 

time tj of the formation of the (j+ 1)" colony becomes ti = j / A  and, using these average values we have 

aj = e4*. Figure 1 shows the growth of the total population calculated by Eqs. ( l l ) ,  where the 

parameter values are e' = 1.2 and l /h  = 5. In this case there are 19 colonies (S = 19) at  the final 

stage. In Fig. 2, the logarithm of population sizes nk(m) is plotted as a function of rank k (rank size 
relation), which shows a linear relation that is a geometric series distriburion in the wide range of k 
values, excepting cases in which population sizes are small. 
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A STRONG COMPETITION MODEL 

In 1932, Motomura showed that the data of population sizes of bottom fauna obtained by 

Miyadi (1931) can be fairly represented by a geometric series distribution, and a possible explanation 
was given by Uchida (1943) and Motomura (1947), using a simple competition model. 

They considered that each of S species (1,2, ..., S) ranked in descending order of competitive 

dominance has n individuals and these nS individuals are randomly distributed over the area A .  It is 

assumed that each individual occupies its own habitat area a e < A ,  but in each of these habitats only 

one individual of the most dominant species can survive. 

The probability that this unit habitat area contains no individual of species 1 is 

(1 - u/A)" = r n ,  (15) 

where r = 1 - a/A and the probability that at least one individual of species 1 occupies this area is 1 - 
r". On the other hand, the number of available habitat areas is Ala; therefore, the average number 

of survivors of species 1 i s  given by 

<n,> = (1-r")A/u = (1-r*)/(l-r) 

The probability that no individual of species 1 but at least one individual of species 2 i s  found 

in this area is P(1-P"); thus, the average number of survivors of species 2 is given by 

<n,> = r"(1-r")A/a = r"(1-r")/(l-r) .  (17) 

Similarly, the probability that no individual of species I,& ..., k-1 but a t  least one individual of species 

k is found in this area is r(k-'N(l-f), and the average number of survivors of species k i s  given by 

This Motomura-Uchida model may be the simplest intuitive model which exhibits the geometric series 

distribution. 
Now we show a stochastic version of the above model. Let us again consider a unit habitat 

area which can be occupied by only one individual. From the species pool consisting of S species, an 
individual invades this area with probability l A t  in the time interval At and the success of invasion 
occurs only when the former habitant is one of the lower-ranked species. 

The probability that this area is occupied by an individual of species k at time t ,  Pk(t), satisfies 

the equation 
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where the first term represents the probability that the former inhabitant of lower rank is replaced 

by the invasion of an individual of species k,  and the second term is the probability that the individual 

of species k which already occupied this habitat is replaced by an invader of higher rank. 

If we introduce the generating function 

where T = At, we have 

aF aF 
ar az i-z 

+ z- = -(l-F). - 

The solution with initial condition P,(O) = aiio, F(z,O) = zio can be obtained as 

F(z,r) = 1 - (l-z)(l-z'oe-'p~)/(l-ze-') 

= 1 - (1 -z)p +ze-=+ZZe-2r+...+z'p-' e -w')' I. 

The probability pk(t) is given by the coefficient of 2, and we have 

Therefore, if there are M available unit habitat areas, the expected population size of species 

= M P&) is given by a geometric series distribution, though due to the k at time I, 
assumptions all habitats are occupied by the most dominant species 1 at the final stage. 

A LOTKA-VOLTERRA MODEL OF ONE-SIDED COMPETITION 

In this section, in order to re-examine the above competition model from the standpoint of 
population dynamics, we shall consider a btka-Volterra competition model of S species ranked again 
in descending order of competitive dominance. Here we assume that each species suffers competitive 

interference only from species of higher rank. Then the dynamical change of a population of the k& 

species is given by 
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k 

dnddt = (rk - xabnj)nk,  k = 12 ,..., S. 
j = l  

Here, for mathematical simplicity, we assume that the coefficients akj can be written as 

where aj and pj are intrinsic factors of intra- and interspecific interference respectively, and these 
effects on the kth species are reduced by a factor ok (.e 1) owing to the defensive ability of the k" 

species. Then Eq. (24) can be rewritten as 

k-1 

&Jdt = ok(ek - xk - 1 vfij)xk, k = 1,2 ,... ,S , 
j - 1  

wherex, = ah& e, = rJu, and v, = PJak 

0) of the equations 
Here let us consider the positive stationary state which can be obtained as a solution ( X ~ S  > 

k-1 

ek - X; - ~/ri. = 0, k = 1,2, ..., S , 
j = l  

from which we can readily have the relation 

where a, = 0. Thus we can obtain the solution of Eqs. (27) in a form 
k-1 

= (4 - 4 - 1 1  ' - ej-112 = 1,2V..9s 2 

j = l  

where 
k-1 

A = IT (1-vi). 
i =j 

u 

Therefore, if we consider a special case such that 
vi = Pi/ai < 1 and e, 2 ei.l for all i, 

the Eqs. (29) give a positive stationary solution and its global stability can also be shown; the 
Lyapunov function is given by 
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Furthermore, if e, = e for all i, we have 

k-1 
x, = e and xk = H ( l - v >  k = 1,2 ,..., S 

j=1 

Hence, the population size distribution is given by a geometric series distribution, where ai = a and 

vi  = v for all i: 

nk = (e /a) ( l -v )k- l .  (32) 

SUMMARY 
As a supplementary discussion on the species abundance relation, we present several kinds 

of models which similarly lead to the geometric series distribution. It has been shown that, in the case 
of size distribution of growing colonies, the geometric series distribution is derived from a compound 
process of the Poisson process of immigration of new pioneers, and the Malthusian growth of 
established colonies. It is also shown that a similar rank-size relation can be obtained even when 
taking into account logistic growth of the total population. 

On the other hand, populations of a multi-species system with a strictly ordered rank of 
competitive dominance seem to show the characteristic pattern of the geometric series distribution, 

as shown by the original model given by Motomura and Uchida, and by its stochastic version given 
in Sect. 3. This supposition has also been supported by considering the solution of Lotka-Volterra's 

equation of a one-sided competition model. 
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Food Web Theory 

At the level of the food web a broad array of research directions exists. In recent years, the ecological 

theory of food webs has to some extent broken away from the classical equilibrium theory approach 

and is more oriented towards studying the dynamical implications of detailed mechanisms at lower 
levels (e.g., interactions between populations or subpopulations) without making prior assumptions 

about stability at the system level. This is reflected in the emphasis on spatial scale, temporal 
variability and disturbances in some of the talks. The search for general unifying principles is still a 
driving force behind much of the work in food web theory, however. 
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THE TEMPORAL VARIABJLlTY OF SPECIES DENSITIES 
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and 
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Department of Ecosystem Management, University of New England, Armidale, N.S.W. 2351, Australia 

INTRODUCTION 

Ecologists use the term ’stability’ to mean a number of different things (Pimm 1984a). One 
use is to equate stability with low variability in population density over time (henceforth, temporal 
variability). Temporal variability varies greatly from species to species, so what affects it? There are 

at  least three sets of factors: the variability of extrinsic abiotic factors, food web structure, and the 

intrinsic features of the species themselves. 

We can measure temporal variability using at least three statistics: the coefficient of variation 
of density (CV); the standard deviation of the logarithms of density (SDL); and the variance in the 

differences between logarithms of density for pairs of consecutive years (called annual variability, 
hence AV, by Wolda 1978). There are advantages and disadvantages to each measure (Williamson 

1984), though in our experience, the measures are strongly correlated across sets of taxonomically 
related species. The increasing availability of long-term data sets allows one to calculate these 
statistics for many species and so to begin to understand the various causes of species differences in 
temporal variability. 

THE VARIABJLITY OFTHE ENVIRONMENT 
Temporal variability will depend on the variability of the abiotic factors that directly 

determine a species’ survivorship and reproduction. We might expect a population’s temporal 

variability to be higher where key abiotic variables are themselves more variable. British bird 
populations, for example, have densities determined, in part, by the severity of cold winters (Pimm 

1984b). So we might expect communities experiencing more variable abiotic conditions to have 
species whose densities are similarly more variable. Nalicky (1976), for example, found that the 

numbers of emerging caddisflies were more variable from year to year in a stream that varied in 

temperature from 0 to 19”C, than in a nearby similar one that varied from only 6.0 to 6.3”C. 

Similarly, McCowan and Walker (1985) noted the high similarity of species composition of plankton 
samples taken years apart from the Central Pacific Gyre. The Gyre is a gently-circulating, well-mixed 

body of water. These high similarities contrast with the low similarity of plankton samples taken only 
hours apart from turbulent areas in the California current. Salinities were much more variable in the 

Current than in the Gyre. 
Not all such comparisons succeed. Wolda (1983) tested Elton’s (1958) assertion that tropical 

species have populations that fluctuate less (are ”more stable”) than those of temperate species. Using 
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data on a variety of insect taxa, Wolda concluded that “tropical insects are about as stable, ... as 
temperate insects, even insects from a relatively undisturbed tropical forest”. 

Pimm (1984b) suspected that resident species of British birds, which experience occasional 
hard winters, should be more variable than migrant species. For whatever reasons, migrant species 

are marginally more variable than resident species. 

FOOD WEB EFFECTS 

While changes in  physical variables may affect a species’ density directly, they must also affect 

density indirectly by changing the density of the species’ food supply, competitors, predators and 
parasites, and mutualists. We should expect the patterns of interactions within a community, i.e. the 

food web, to affect population variability. Comparisons have involved different systems of putatively 
different food web complexities: tropical systems versus simple temperate systems and natural systems 

versus simple agricultural systems. These systems differ in ways other than just complexity, however, 
and so differences in population variability may be due to other causes. As already noted, there do 

not appear to be obvious differences in variability between tropical and temperate populations. Insect 

species in agricultural systems, however, do appear to be more variable than those in forest 

communities (Wolda 1983, Rejmanek and Spitzer 1982). 

An alternative way to explore the role of food web structure on temporal variability is to 

consider the arguments that relate temporal variability to the diet breadth of a species. MacArthur 

(1955) argued that species exploiting many food species should be less temporally variable than more 

specialized species. If one food species failed, then a polyphagous species could switch to alternative 
supplies, while a more specialized species could not. In fact, host switching is not necessary for this 

argument. Some polyphagous insect species may be composed of separate sub-populations that each 
specialize on different local hosts (Fox and Morrow 1981). The failure of one of these hosts may 
severely affect the sub-population, but the total population may be little affected. 

Interestingly, Watt (1964) suggested a diametrically opposite affect to MacArthur’s. Consider 

species that are usually rare -- held there by inclement conditions or effective predators. During rare 

favorable conditions, polyphagous species have the potential to exploit a larger proportion of the 

environment and to spend less time searching for suitable resources than specialized species. Thus, 
polyphagous species may increase more rapidly, attain higher densities, and so be more temporally 

variable. Specialized species living in monocultures of their prey will also be able to increase quickly 

and be highly variable. (Perhaps this explains why insect herbivores in agricultural communities are 

so variable.) 
These two opposing arguments are summarized in Fig. 1. MacArthur’s idea relates 60 the 

effects of deviations below the norm (crashes), while Watt’s idea relates to deviations above it 
(outbreaks). There may be data to support both MacArthur’s and Watt’s arguments. For aphids and 
moths in Britain, we (Redfearn and Pimm 1988) have found either no correlation or negative 
correlations between temporal variability and the degree of polyphagy (Fig. 2a). Rejmanek and 
Spitzer (1982) found a positive correlation between temporal variability and the degree of polyphagy 

in Noctuid nioths in South Bohemia (Fig. 2b). 
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Figure 1. Caricature of the two opposing arguments of MacArthur (1955) and Watt (1964). 
MacArthur suggested that specialist species may be more variable because they are likely to be more 
susceptible to population crashes. Watt said that polyphagous species may be more variable because 
they may be able to attain higher numbers during favorable periods. (After Redfearn and Pimm 
1988.) 
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Figure 2. Variability versus polyphagy for (a) 26 species of British aphids analyzed by Redfearn and 
Pimm (1988) and collected by the Rothamsted Insect Survey at Silwood Park, England (see Redfearn 
and Pimm, 1988 for references to the raw data) and (b) 72 species of South Bohemian Noctuid moths 
analyzed and collected by Rejmanek and Spitzer (1982). Variability is measured as the standard 
deviation of the log,,(N,), where N,  is the annual density in year t ,  calculated over (a) 13 to 16 years 
and (b) 12 years. Polyphagy is estimated a) by the logarithm of the number of recorded host plants 
and (b) as the following categories: l-on one plant genus, 2-on one family, 3-on two to three families, 
and 4-011 more than three families of plants (Rejmanek and Spitzer 1982). 
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Parallel arguments may be applied to the diversity of predators a species suffers: more diverse 

communities might be predicted to provide more reliable control of a set of prey species, which would 

then have less variable densities. Hansson and his colleagues (Hansson 1987, (and see review in 

Hanski 1987) have shown that voles (Clefhriononzys and Microtus species) are more variable in the 
north of Scandinavia than in the south. High variability is associated with multi-annual cycles, which, 

moreover, are synchronous across species, including insectivorous shrews and birds. These latitudinal 
differences, Hansson argues, stem from there being only one important (and specialized) vole predator 
in the north (the least weasel, Mustela niralk). In the south, there are a variety of generalized 

predators (e.g. the fox, Vulpes oulpes). These predators, though important to the voles gain most of 
their food from other herbivores (e.g. rabbits, OryCrolagus cuniculus). Thus, it is the greater diversity 

of predators in the south that ultimately result in the voles being less variable there. 

INTRINSIC SPECIES DIFFERENCES 
Species differ in many ways that could affect the responses of their densities to abiotic 

variables and the densities of the species with which they interact. One approach to investigating 

these species differences is to examine the relationship between body size and temporal variability. 

We have assembled 202 previously published population studies of terrestrial animals that were 
conducted at least annually and for at least 15 years. The data comprise 116 bird studies, 43 mammal 

studies, and 43 insect studies. The majority of the bird data were collected by the British Trust for 
Ornithology’s (B.T.0) Common Bird Census and are published annually in Bird Study. The data were 

supplied to us by the Trust’s director, R. J. O’Connor. Many of the insects are British moths and 
aphids collected by the Rothamsted Insect Survey. References to the annual reports presenting these 

data are given in Redfearn and Pimm (1988). Most of the remaining studies were used o r  referred 
to by two other comparative studies of population dynamics (Tanner 1966, Peterson et al. 1934). 

Finally, 19 miscellaneous studies were assembled by Stuart L. Pimm’s graduate ecology class of 1986. 

Both references and data for all but the B.T.O. studies are available on request on IBM-compatible 

5.25” discs. 

We have calculated three indices of variability (CV, SDL, AV) for each population over just 

15 years. Temporal variability increases continuously as more years of data are included in the 
estimate of temporal variability. Whatever the measure of temporal variability, small-bodied species 

were significantly more variable than large-bodied species (P < 0,0001, in all cases; Fig. 3). This 
correlation was probably anticipated by most of our readers, but it is not inevitable, nor is its 

explanation obvious. The correlation may be due to body size directly or through correlations of body 
size with reproductive rate, longevity, or other factors. 

BODY SIZE 

Small-bodied species may be more vulnerable to inclement weather and so be more 
temporally variable than large-bodied species (Lindstedt and Boyce 1985). Data on the percentage 
decline of British bird species, of various body sizes, during hard winters support this idea 
(Cawthorne and Marchant 1980). 
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RATE OF POPLJLA'I'ION INCREASE 

The rate of population increase, r, has a strong correlation with body size (Southwood 1981): 

large-bodied species have low rates of increase. Rate of increase may affect temporal variability in 

diametrically opposite ways (Pimm 1984b). 

(i) Populations with high r will recover from population crashes more rapidly than those with 

low r. Thus, following the same initial decline, high r populations will spend less time at low densities 

and may, therefore, be variable than low r species. This relationship holds for British bird 

populations (Pimm 1984b), in which temporal variability depends on the decrease in abundance 

following hard winters and the rate at which normal abundances are recovered. 

temporally variable than those with low r, for one 
of two reasons. (1) If there are time delays in mortality and natality, populations with sufficiently high 

r may first overshoot, then undershoot equilibrium, leading perhaps to simple two-point cycles, or to 
much more complicated dynamics as r increases (May et al. 1978). In our collection of population 

studies, obviously cycling species were nor always small-bodied (hence high r ) .  But, cycling species 

tended to be more temporally variable than non-cycling species of the same body size (Fig. 3). This 

suggests that if high I' causes cycling and this contributes to high temporal variability, the effects are 
independent of, and additional to, the main effect of body size in determining temporal variability. 

Small-bodied species are highly variable even when no cycles are apparent. We have an important 
caveat: many of the populations may show simple cycles, but these may not be apparent in only 15 
years of data. (Many of the species for which we did detect simple cycles were counted for much 
longer than 15 years.) Nor can we exclude the possibility that populations show complex, yet 
deterministic changes of density; the analyses of Schaffer and Kot (1986) show that such populations 
may be much more common than once thought. (2) The second reason for a positive correlation 
between reproductive rate and temporal variability, involves our supposing that the equilibrium 
density of a population is itself variable. Species with high I' will track this variable equilibrium, while 

populations with low r will respond more slowly, and not tend to track the equilibrium. This 
possibility may hold for Noctuid moths, in which high r species are the more variable (Spitzer e t  al. 
1984). (This is the opposite result from that which we have discussed for British birds.) 

Whether one finds a positive or a negative correlation between r and temporal variability may 

reflect the time-interval between counts and the time over which the population is counted relative 
to the life-span of the organism, as much as species-to-species differences. Thus, we would expect all 

populations to track very long-term environmental changes, and to  have corresponding changes in 

density. Over short periods, high r populations may track better than low r populations, and so low 
r populations will vary less. And over intervals dominated by rare, but severe population crashes, 

high r species will vary less, 

(ii) Populations with high r may be 

LONGEWTY 
Large-bodied species also tend to be long-lived (Bonner 1965), so large-bodied species might 

be expected to vary less in density, because, in the extreme, i t  may be the same individuals that are 
counted in each of the years of the study. In contrast, small-bodied species may have gone through 



107 

several generations in each of the years. A hypothetical population of adult redwood trees might 
show no density variation at all over, say, 15 years! 

In order to evaluate this effect, we would need to calculate temporal variability from 
generation to generation rather than from year to year. There is a simpler alternative though. 

Animals that weigh less than 0.lkg (small birds, small mammals, and insects) are likely to complete 
their lives within a year, or to have generation times on the order of a year (Bonner 1965). The 

negative relationship between temporal variability and body size not only holds for this subset of the 

data (Fig. 3), but the associated regressions have even more negative slopes than for the combined 

data, For this subset, the different years of data must generally involve different individuals, and so 
large-bodied species averaging out fluctuations cannot be the reason for why there is a negative 

correlation. 

OTHER FAmORS 
Small-bodied species may be more variable because they are more specialized than large- 

bodied species. This seems the least likely explanation for the overall negative correlation. First, as 
we have already mentioned, polyphagy does not necessarily decrease variability, and when it does, the 

correlation is rarely a strong one. Second, although within taxa, large-bodied species tend to be more 

polyphagous (Wasserman and Mitter 1978), it seems unreasonable to suggest that mammals are less 

variable than insects because they are sufficiently more polyphagous than insects. 
There must be many other correlates of body size that also affect temporal variability. 

However, the species that contribute to the relationship in Fig. 3 are diverse both trophically and 
taxonomically. The very smallest species (aphids) are herbivorous as are the very largest species 
(mammals). So the negative relationship is not due to trophic differences. 
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PERFECT A N D  APPROXIMAE AGGREGATIONS IN MODEL, ECOSYSTEMS 

Yoh Iwasa, Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan 

SUMh4ARY 
Simple ecosystem models sometimes work much better than complex and realistic ones both 

in understanding and in predicting an ecosystem’s behavior. Here I report a recent advancement in 
the theoretical study of simplification of models by the aggregation of variables. First, the necessary 

and sufficient condition for perfect aggregation of nonlinear dynamics is presented and applied to 
several examples of ecological models, including the growth of a cohort, an exploiter and its resource, 

a population with spatial structure, a stage-structured population, and a multi-species system. The 
perfect aggregation condition can be extended to stochastic dynamic models. These support the 

aggregation of similar or substitutable variables. Next, the best approximate aggregation of dynamical 
systems is studied, which minimizes a certain criterion of inconsistency between aggregated and 

original systems. Aggregation giving the least square deviation of a vector field is obtained for any 

nonlinear dynamical system. Best aggregations of linear systems around the equilibrium is then 

examined by using various criteria to minimize, such as (1) difference in vector field, (2) difference 
in variables at a certain point in time, (3) difference in temporally averaged variables, and (4) the 

temporal average of the square difference in variables. In short, the best aggregated dynamics greatly 

depend on the choice of criterion, in particular the selection of the time horizon and of the weighting 

according to the initial state. 

INTRODUCTION 

The reduction of dimensionality of models by aggregating variables is a fundamental aspect 

of ecological modelling. Every ecological description includes some degree of aggregation, because 

any model, no matter how large and detailed it is, is made possible by neglecting further details within 

each component. 

A realistic model includes all the processes that potentially affect the system we study, in 

order to explain and predict as many aspects of the system’s behavior as possible. As the model 
becomes more complex, the parameter estimate from available data becomes increasingly difficult and 

unreliable. 
Even when computation capacity allows us to deal with a large and realistic model, an 

aggregated or otherwise simplified model may work better than a corresponding complex one. For 
example, Ludwig and Walters (1985, and also Ludwig 1953) constructed optimal fishing policies using 

different mathematical models whose parameters were calculated from simulated data. They 
demonstrated that a small and highly aggregated model may be much better in estimating the true 

optimal fishing policy than a large model, even for data generated using the latter model. In addition, 

smaller models are easier to comprehend, and thereby give better intuition about the systems they 

describe. Small models also have an obvious economic advantage. 
The study of general properties of model aggregation is therefore an important issue in 

theoretical systems ecology, and has been studied for conservative flow systems (O’Neill and Rust 



112 

1979; Gardner et al. 1982; Cale et al. 1983), and also in more general systems (Luckyanov et al. 1983; 

Luckyanov 1984; see Sugihara et al. 1984 for a general discussion). 

In this paper I summarize recent theoretical studies of the aggregation of dynamics in 

ecological modelling (Iwasa et al. 1987, 1989; Gard 1988). If a detailed model as a system of 
(nonlinear) differential equations and the manner of combining the variables into a smaller number 

of macrovariables are given, the perfect aggregation condition tells us whether there exists a simplified 

dynamical system for the macrovariables which is consistent with the original system (Iwasa et  al. 

1987). The perfect aggregation condition can be extended to stochastic dynamic models (Gard 1988). 

When the perfect aggregation is not possible, the best approximate aggregated dynamics may be 

searched, which minimizes a given measure of the inconsistency (Iwasa et al. 1989). 

PEFGWX AGGREGATION 

PERFECT AGGREGATION THEOREM 
The general framework of the aggregation problem for dynamical systems is as follows 

(Fig. 1). There exist microdvnamics which describe the full behavior of the system: 
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Figure 1. Scheme for aggregation of nonlinear dynamics. Here microdynamics f, 
(active) aggregation function g,  and aggregated dynamics F are all regarded as 
mapping. Together with passive aggregation function (g tilde), which is naturally 
induced by g, the consistency of these four mappings is equivalent to the perfect 
aggregation condition. 
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where i = l,..,n. There are nt niamovariubks calculated from the microvariables using the aggregation 

firncrion g,(XI,..J,J. 

where j=l,..,m, with m < n. One then wonders whether there are aggregated dynamics for these 

macrovariables, such that 

where j=l,..,ni, and these could be consistent with the microdynamics (1). If so, we say that perfect 

aggregation is realized in the scheme of microdynamics (1) and aggregation function (2). 
The study of when exact aggregation is possible gives a general idea of what the systems are 

which allow us to aggregate without large mistakes in macrovariables. The aggregated dynamics give 
the rate of change in macrovariable (j=l,..,ni> as 

where X = (Xl,..,X,J, while the microdynamics combined with the aggregation function (2) yield 

Two dynamics are perfectly consistent if (4) and (5 )  are the same for all X (Luckyanov et al. 1983; 

Iwasa et al. 1987). 

Theorem 1 (Perfect Aggregation Theorem) Suppose the functions fi and gj are continuously 
differentiable on an open set D. Assume for each Y, the set g-'(Y) = { X E D  g(X)=Y) is connected. 

Define the mxn matrix-valued functions B = {BJ and A = {Aji} on D by 

Then perfect aggregation of (1) is implemented by (2) if and only if 

AB"B = A on 0, 
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where B' is the generalized inverse of the matrix B. 

See Iwasa et al. (1987) for proof. The generalized inverse B' of an mxn matrix B is an nxm matrix 
defined by the symmetry of both B'B and BB' and by the equation 

where I is the mxm identity matrix (Penrose 1955). 

B' =B'(BBT)-' (superscript T denoting transpose). 

When the matrix B has full row rank, 

ECOLOGICAL EXAMPLES OF PERFlECT AGGREGATION 

To illustrate how to apply the perfect aggregation theorem, I now examine several examples 

from ecological modelling. 
(1) A conzniunity of competitors 

competitors, the dynamics may be written: 

The most familiar model for interacting species is the Lotka-Volterra system. For three 

3 

dXjdr = rJr,(l - xa# , /KJ ,  
j = l  

(9) 

where i = 1, 2, 3, and Xi indicates the abundance of species i. Assume a, = 1, for each i. Suppose 

we are interested only in the abundance of one of the species, say X,, and ask whether we can 
aggregate the abundance of the other two into a single variable. Namely, we are asking about the 

possibility of perfect aggregation with the aggregation function: 

Yl =xl +x* Yz =x,. 

In examining this system we are led to set 

112 8 

B = (: :I, and therefore B' = (x' d. 
The condition Eq. (7) becomes: 

The first four equalities indicate that the two species to be lumped must be functionally similar, for 

no error to result. However, the last equality in (11) implies that there may be asymmetry in inter- 
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specific competition between the two species if their average effect is the same as for intra-specific 

competition. 

(2) A size structured population 

classified into several life history stages or size classes, N,, N2, .., N,, which follow the dynamics: 

The second example is the dynamics of a stage structured population. Individuals are 

where mi and gi are the fertility and growth rate, respectively, of an individual of stage i. Only the 

youngest stage is assumed to receive density dependent mortality (ul+vN,). 
Let us consider separating the juveniles into their own class but lump all the older stages into 

a single group: 

Here we have weighted each class by its biomass bi so that Y, and Yz represent the total biomasses of 
juveniles and adults. 

Theorem 1 tells us that the aggregation (13) can be perfect if and only if 

m#, = mJb, = .. = mJb,,, 

and 

Equation (14a) indicates that the fertility of an adult at various stages must be proportional to the 

weight, and (14b) says that relative growth rate minus mortality loss is common to all the adult stages. 
The aggregated dynamics are: 

(3) Cohon dynanzics 

Both examples above are linear aggregation. The theorem can apply to nonlinear aggregation 
too. Consider the following dynamics of the number of individuals X, of a cohort and the average 

individual weight X,: 
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Now we examine the possibility of aggregating into 1-dimensional dynamics with the total biomass Y 

= XJ2 The necessary and sufficient condition for perfect aggregation is 

v(XJ = vJ, and K(X,) = KJX,. (17) 

The aggregated dynamics are then: 

(4) Bploiter and resource 

Another example of nonlinear aggregation is a population of size X, and its resource species 

X,: 
dX,ldt = rX1( l-X,IKXJ), (19) 
d&jQ.t = mx.. - X,a(Xd. 

X, grows logistically, with a carrying capacity K(X,) that depends on the abundance of the resource. 

The resource X, multiplies with Malthusian parameter nr, but is consumed by the species XI, whose 

per capita rate of resource consumption is o(X,). Calculations show that the ratio Y = X,/X, lead to 

perfect aggregation if and only if 

where c is an arbitrary constant. The aggregated dynamics are: 

(5 )  A spatially structured population 

One of the most common applications of variable aggregation is neglect of spatial 

heterogeneity in population dynamics. As the simplest example, consider a species living in two 

subhabitats (indicated by i= 1,2). Suppose that the organisms interact within each subhabitat and 

migrate randomly between them. The population sizes of organisms in two subhabitats, ut and u2, 

follow: 

wherefi(ui) is the rate of population growth in the i-th subhabitat, and D is the migration rate. 

Under what conditions can we neglect spatial structure without incurring error? We usually 

assume that, if the migration rate between habitats is sufficiently large, the size of the whole 
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population can be treated as a single variable instead of following the population size within each 
subhabitat. Perfect aggregation, however, is not possible in the realistic situation. Consider the 

aggregation into the total population size U = u,+u,. Theorem 1 tells us that perfect aggregation is 

possible only when both fi(u) and f2(u) are linear with the same coefficient for the first-order term, 

which is severely restrictive. 

From these studies, we conclude that similar or substitutable variables may be aggregated 

without causing a large error, and that perfect aggregation condition is sometimes too stringent to 

hold widely. 

A STOCHASTIC DYNAMICS AGGREGATION MODEL 
Recently Gard (1988) extended the above perfect aggregation theorem for deterministic 

models to models expressed as stochastic differential equations. For example, cohort dynamics (16) 

become 

where dB,/df is the white noise indicating purely random stochastic fluctuation without autocorrelation. 

Consider the aggregation into a l-dimensional model with the total biomass Y = X,& Following the 

chain rule of stochastic differential equation (It0 integral), we can derive the set of stochastic 
differential equations for the macrovariable Y, and the perfect aggregation holds if the latter can be 
written using macrovariable(s) only. 

Perfect aggregation now requires conditions for stochastic terms in addition to those for 
deterministic terms. Gard (1988) shows that the perfect aggregation of stochastic model (23) is not 
more restrictive than that for the deterministic model (16), because the conditions for stochastic terms 

are automatically satisfied. In general, however, the perfect aggregation of stochastic dynamics is more 

restrictive than that of a corresponding deterministic model. 

APPROXMATE AGGREGATION 

AGGREGATION OF MINIMUM DIFFERENCE IN A VECTOR FIELD 
The study of perfect aggregation made it clear that the perfect consistency requirement is 

unpractically restrictive. In the following, we study the best upproxinzate aggregation of dynamical 
systems which attain the minimum inconsistency between aggregated and original systems. 

The perfect aggregation condition is derived from the consistency of the vector field. As a 

measure of the inconsistency between two dynamical systems, we might use the difference in vector 

field: 
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where 1.1 indicates the Euclidean vector norm, and w ( X )  is a positive function ( w ( X )  > 0) 
indicating a weighting with respect to variablesX=(X,,..,XJ, and is normalized as fw(X)dX = 1. The 

measure (24) is zero when perfect aggregation is realized. 

The optimally aggregated dynamics (or the besr aggregated dynamics) corresponds to the 

choice of functions Fj(Yl,..,Ym) which minimize (24) for given microdynamics, L(X,,..,XJ, and given 
aggregation functions, &(X,,..,X,J. When perfect aggregation is impossible, the dynamics which give 

the best fit in one part of the state space may not give a good fit in other regions; then weighting 

factor w ( X )  is necessary to specify the desired compromise. 

Let h(X)  be an ni-dimensional vector whose jth element is the right hand side of Eq. (5 ) ,  the 

rate of change in by microdynamics. From (4) and ( 5 ) ,  we can rewrite (24) as 

Then we have the following: 

Theorem 2 Let F ( Y )  be the best aggregated dynamics, i.e. those that minimize F as given by (25). 

At every point Yat  which F(Y)  is continuous, 

holds, where U, is the set of X for which g(X) is in &neighborhood of Y, U, = {X I Ig(X)-YI < 
8 ) .  
This theorem says that the best aggregation, if no constraint is placed on the choice, can be calculated 

as the appropriately weighted average value of h(X). 

A more convenient expression is obtained if we regard the weighting function w ( X )  as she 
probability distribution of a random variable X, although there is no element of stochasticity in the 

original formulation. Then Eq. (26) can be expressed in terms of the conditional expectation of h(X): 

The measure of deviation F for the best aggregated dynamics (27) can be interpreted as the variance 
of microdynamics h(X) remaining after that explained by the value of macrovariables g(x>. 

For a given point in time t ,  the difference between aggregated dynamics and microdynamics 
for general nonlinear dynamical systems can be made small if the difference in the two vector fields 

is sufficiently small. The minimum difference in the rate of change in variables implies the best fitting 
of macrovariables on a short time scale. However, the difference in macrovariables produced by a 



119 

small difference in vector fields grows exponentially with time t ,  indicating that the aggregation is 
accurate only for the finite time horizon. 

Good fitting in vector fields does not in general preserve important features of the dynamical 
systems after aggregation of variables. In Iwasa et al. (1989) this is illustrated by two examples: In 
the first example, the best vector field fitting around the origin causes the shift of the equilibrium. 

In the second example, the best vector field aggregation keeps the location of the equilibrium 

consistent with the original dynamics but its stability is now changed. Both the location of equilibria 

and their stability are related to the system’s behavior in the far future, and may not be guaranteed 
by the best vector field fitting. 

AGGREGATION CRITERIA WITH DIFFERENT TIME SCALES 
Sometimes, prediction of models in the far future, for example, may be more important than 

those in the near future, when we discuss the long term consequences of continued application of 

stress. In other circumstances, it may be the short term which is of interest. In this section, we 
investigate systems aggregated according to several criteria which emphasize different time scales. 

Unlike vector field fitting (Theorem 2), mathematics here requires the explicit solution of the 
dynamics, and therefore we restrict our attention to linear dynamical systems with a steady state at  
the origin: 

system could I ch 

I )  

dX,ldt = t= CM$b 1 

rise from linearization around a singular oint in nonlinear system, with X 
representing deviations from that point. We assume that the matrix M is stable, i.e., all the 
eigenvalues have a negative real part. We further assume that the aggregated dynamics are also linear: 

II 

dY,/dt = CjkYr 
k= 1 

If the main objective is to predict the state of the system at some future time I, then we 

require that Y(t), as produced by the aggregated dynamics, be close to the vector predicted by the 

microdynamics. We may regard a dynamical system as a mapping from an initial stateX(0) to a future 

state X(t )  at time t with matrix exp(Mf), and the aggregated dynamics with matrix exp(Ct). In the 

aggregation scheme illustrated in Fig. 2, the same linear aggregation, with matrix 8, is used for 
mapping from X(0) to Y(0) and that from X( t )  to Y(t). At time t, the aggregated dynamics give: 
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Figure 2. Scheme of the aggregation of a linear dynamical system. The 
microdynamics translate the initial state X(0)  to the state X ( t )  by multiplication by 
the matrix exp(Mt), whereas the aggregated dynamics replace M by C. Perfect 
aggregation requires that BeM' equal e%; the best approximate aggregation minimizes 
a weighted difference between these when perfect aggregation is impossible. 

and Y(t) calculated from the microdynamics is: 

If these two are the same for all initial states X(0)  for all t ,  the aggregated dynamics provide a perfect 
surrogate according to the given criterion. 
(1) Mininiunz difference in vector field 

First, we apply the vector field approximation developed in the last section. If the weighting 
w ( x )  is a spherically symmetric normal distribution centered at the origin, the best aggregated 
dynamics which minimizes (24) are with matrix 

C = B M B + .  (31) 

This is the case in which the consistency of aggregation in the immediate future is of large importance. 

(2) Minimum difference in variables at a particular time 
A candidate for the measure of inconsistency between two dynamics is the difference in the 

variables calculated by the two dynamics at a particular point in time f: 
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where w(XJ is a normal distribution spherically symmetric about the origin. A particular aggregated 
dynamical system which is very good if the original system starts from one choice of initial conditions, 
may be quite poor along another trajectory. The weighting w(XJ in (32) defined a compromise which 

gives acceptable consistency for various initial conditions. 

The dynamics C which achieve the minimum of (32) are: 

c = log@ eKp(Mr) B+)/r, (33) 

, which depend on the specified point in time t .  

(3) Minintum difference in the temporal average of variables 

We may be interested in predicting variables suitably averaged over time rather than those 
at  a single time point. For example, the average value of variables X(t )  weighted according to a 
negative exponential distribution: 

will emphasize the behavior of the system on a time scale of order t. Then, the optimal aggregation 
which minimizes the difference 

is: 

c = (I - fB(z-M+)-'B+J-')/r. 

If we let 7-0, we obtain 

lim C = B M B', 
r-a 

(35) 

(36) 

which is the same as (31), the best dynamics when the short time scale is emphasized. In contrast, 
for a very large t ,  the optimal C in (35) tends to the limit 
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llm C = ( B  M-' B+)-'. 
+-' 

(37) 

fininiunz teniporal average of dinerence in variables 

We may use, as a measure, the time average of squared distance in maaovariables: 

where p ( t )  is a weighting factor over time, 

Equation (38) is zero if and only if the aggregation is perfect. A set of conditions determining the 

best aggregated dynamics can be derived (Iwasa et al. 1989), but unfortunately they are too 
complicated to be practical. 

To illustrate the difference between the best aggregated dynamics corresponding to the various 

criteria above, we consider the special case in which A4 is  real and diagonal, and the aggregation 

matrix B is of size Ixn: 

M =  (39) 

We assume 0 > A, > .. > An. The aggregation is the lumping of the n variables into a weighted sum; 
hence C i s  a scalar (1x1 matrix). The problem is to approximate a summation of n exponential 
functions with different exponents by a single exponential function, provided that the initial condition 

is consistent. 
The results are summarized in Table 1. The best coefficient depends on the criterion to 

minimize: (1) The vector field fitting gives the arithmetic mean of eigenvalues as the optimal 

aggregation. The same result is obtained for other criteria if weighting over time emphasizes the short 
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term (either t-0 or s-0). (2) In contrast, if the long term horizon is of concern, the result depends 
on the particular choice of criteria. The optimal coefficient may be the dominant eigenvalue, the 

harmonic mean of eigenvalues, or something else. (3) The result for minimizing the average of the 

difference in macrovariables is too difficult in computation to be practical. 

CHOICE OF AGGREGATION FROM A RESTRICTED C L A S S  
For the best aggregation in Theorem 2, we assumed that the aggregated dynamical system can 

be freely chosen, provided only that it  is autonomous. However, often one must restrict the choice. 

For example, when the best linearly aggregated system is sought for a given linear dynamical system, 

usually the aggregated dynamics are also assumed to be linear. Similarly, the search for aggregation 
in the Lotka-Volterra system is often restricted to models of the same Lotka-Volterra form, with a 

smaller number of components. In these cases, Theorem 1 may not be useful except when the best 

aggregated dynamics happen to be in the restricted class of systems. 

One approach for finding the optimally aggregated dynamics from a restricted set is to search 
for the best (set of) parameters. The general theorem for this procedure is given in Iwasa et al. 

(1989), which is too complicated to be useful. 
A more practical way to find a reasonably good aggregated system is to determine free 

parameters by using either the consistency of the location of equilibria or of rhe linearized dynamics 

at several different points sequentially, in a suitable order according to the importance of 

characteristics of the model. For example, the location of a particular equilibrium may be regarded 
as the most important characteristic of the given model; after satisfymg this, one can add other criteria 

to guarantee consistency of the second steady state, or of the linearization about the first, etc. 

DISCUSSION 

In the present paper, I reviewed recent theoretical studies of the perfect aggregation and the 

best approximate aggregation of dynamical systems used in ecological modelling. By regarding a 
system of differential equations as mapping from space variables to their rate of changes, we can 

extend the aggregation theory of Zinearfiincrions developed in economics and statistics (Theil 1954, 

1957, 1959; Ijiri 1965, 1971; Chipman 1976) to that of nonlinear dynanzical syslenu. 

The condition for perfect aggregation is here presented in a form comparable to the one for 

linear dynamics in automatic control theory (Aoki 1968, 1978) and that for linear functions in 

economics (Ijiri 1968, 1971; Chipman 1976). The theory for aggregation in ecological systems now 
fits well to the framework of general aggregation problems. 

Analysis of examples for linear aggregation seems to support the idea that lumping of 
variables which are functionally similar or substitutable produces good aggregation (e.g. Vemuri 1978), 

which in turn may justify "natural" ways to aggregate variables, based on concepts such as the guild, 
trophic level, block, and clique. 

In practice, however, it is rare for a given nonlinear system to satisfy the condition for perfect 
aggregation, although it may be approximately so. The perfect aggregation condition is often too 
stringent to deal with all the practically important applications of variable aggregation, as 

demonstrated in particular by the aggregation of the spatially structured population. 
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Table 1 

(1) Vector Field Approximation 

(2) Approximation at a Time Point 

C = (l /r)log[c bfexp(A$)/x ba .  
i i 

(3) Approximation of Temporal Average 

When r-0, C = b z A / c  b;, 
i i 

(4) Minimum Temporal Average of Difference in Variables 

Let the weighting with respect to time be 
p ( t )  = exp(-t/r)/r, (for t > 0). 

C is a positive solution of a polynomial 

0 = p : { 1 / ( 1 / 5  - 2€)2 - l/(l/T - c - Ad',. 
k 

When r-0, C = b,'A/E b,', 
i i 

When r-m, C is the solution of 

[the arithmetic mean of Ai] 

[the arithmetic mean of Ai] 

[the dominant eigenvalue] 

[the arithmetic mean of ai] 

[the harmonic mean] 

[the arithmetic mean of Ai] 

A more practical problem is to find the approximate aggregated dynamics which minimize 
some measure of inconsistency between the aggregated and the true dynamics. The approximate 

function problems in economics (Ijiri 1971; Chipman 1976) are extended to the best aggregation with 
the least square deviation in a vector field in nonlinear dynamics (Theorem 2). 
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In spite of the generality of Theorem 2, however, the shortcoming of the vector-field fitting 
is evident. The location of equilibria and their stability may be changed as the result of best 

aggregation of vector-field fitting, in spite of the fact that these are often considered to be the most 
important feature of dynamical systems (e.g. Zeigler 1976; O'Neill and Rust 1979; Cale and Odell 

1979; 1980). 
We therefore studied other criteria for inconsistency. Our study shows that, when perfect 

aggregation is impossible, the best aggregated dynamical system depends on (1) the time scale and 

(2) the region in which high accuracy of approximation is required. 

Procedures used in previous studies on aggregation in ecological modelling can be examined 

from the general theoretical framework of aggregation developed here. The nature and magnitude 
of inconsistency produced by aggregation of variables in model ecosystems have been examined 
extensively either in linear systems (O'Neill and Rust 1979; Cale and Odell 1979, 19801, or in 
conservative flow systems (Gardner et al. 1982; Cale et al. 1983). In population genetics, @hen 

(1985) considered the aggregation of "fitness in each environment" rules giving rank among genotypes. 
Hirata and Ulanowicz (1985) developed aggregation of a system of steady flows between compartments 

by evaluating the performance of aggregation using an index based on information theory. 
Another technique to simplify model ecosystems is to separate fast and slow dynamics, in 

which variables changing much faster than the ones concerned are regarded as being at  the quasi- 
equilibrium, while variables changing very slowly are treated as constants. This method is widely used 
in ecology (e.g. MacArthur 1972; Schaffer 1981; Ludwig et al. 1978; Mangel 1982). Such time scale 
differences often accompany hierarchical structure of interaction (Simon and Ando 1961), and graph 
theoretical techniques are sometimes useful in finding suitable way of aggregation and decomposition 
of models. Simplification using time scale difference is also related to aggregation (see Iwasa et a]. 
1989). 

In the present paper, we searched for the aggregated dynamics assuming the set of 
macrovariables given. In some cases, however, the number and identity of macrovariables may also 

be left at the modeler's discretion. In that case, a much larger dimensionality is often needed, than 

the number of variables to predict by the model. In automatic control literature, aggregation of linear 

dynamical systems is discussed when the aggregated system is used to predict the "output" (Aoki 1968, 

1978; Hickin and Sinha 1975a, b; Sinha and Kuszta 1983). We can examine the question of model 
dimensionality in the context of ecological modelling if the model is used to predict a given set of 

aspects from a given set of data (Iwasa and Levin manuscript). 
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The Ecosystem and 
Macroscopic Concepts 

The ecosystem level unites the biotic components of populations, communities, and food webs 

with the abiotic components of energy flux, nutrient flux and other physical factors related to these 
flows (e.g., temperature, weather events) into a total system perspective. Few of the papers classed 

as dealing with the ecosystem level actually deal with all of these things simultaneously. They do, 

nevertheless, shift the emphasis away from the purely biological phenomena to the concomitant flows 

of matter and energy. They also attempt to understand total system behavior through analogies from 
information, cybernetic, or thermodynamic theory through macroscopic indices borrowed from these 

fields. Hence, theoreticians approaching ecological systems from this viewpoint attempt a unified 

perspective by integrating ecology into the physical sciences (whereas theoreticians beginning from 
individual adaptations attempt a unified perspective oriented around the concept of natural selection 

at  the individual level). 





131 
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ABSTRACT 
The present note is concerned with how the ecosystem maintains its energy and matter 

processes, and how those processes change throughout ecological and geological time, o r  how the 

constituent biota of an ecosystem maintain their life, and how ecological (species) succession and 

biological evolution proceed within an ecosystem. To advance further Tansky's (1976) approach to 
ecosystem organization, which investigated the characteristic properties of the developmental process 

of a model ecosystem, by applying Margalefs (1968) maximum maturity principle to derive its long 

term change, we seek a course for deriving the macroscopic trends along the organization process of 

an ecosystem as a consequence of the interactions among its biotic components and their modification 
of ecological traits. Using a simple ecosystem model consisting of four aggregated components 
("compartments") connected by nutrient flows, we investigate how a change in the value of a 
parameter alters the network pattern of flows and stocks, even causing a change in the value of 

another parameter, which in turn brings about further change in the network pattern and values of 
some (possible original) parameters. The continuation of this chain reaction involving feedbacks 

constitutes a possible mechanism for the "coevolution" or "matching" among flows, stocks, and 

parameters. 

ECOSYSTEM ORGANIZATION AND CONSTITUENT BIOTA COEVOLUTlON 

A general question of concern is: What are the characteristic properties of ecosystem 
organization, and how does the ecosystem work? More specifically, how does the ecosystem maintain 
its energy and matter processes, and how do those processes change throughout ecological and 
geological time? Or, from a different point of view, how do the constituent biota of an ecosystem 
maintain their life, and how does the ecological (species) succession and biological evolution proceed 
within an ecosystem? As for trends in the developmental process of ecosystems, several alternative 

hypotheses have been proposed in terms of various optimality principles, such as maximum energy flux 
(Lotka 1922a,b), power (Odum 1971), maturity (Margalef 19681, and ascendancy (Ulanowin 1986). 

Tansky (1976) investigated the characteristic properties of the developmental process of a model 
ecosystem, applying Margalefs maximum maturity principle to derive its long-term change. To 
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advance further Tansky's approach to ecosystem organization, we now seek a course for deriving the 
macroscopic trends along the organization process of an ecosystem as a consequence of the 
interactions among its biotic components and their modification of ecological traits. 

To make a first step in this direction, we will consider a simple ecosystem model consisting 

of four aggregated components, referred to as the ecosystem "compartments", connected by flows of 
nutrients to each other. Using this simple system, we will illustrate a new general idea for 
investigating how a change in the value of a parameter alters the network pattern of flows and stocks, 

even causing a change in the value of another parameter, which in turn brings about further change 

in the network pattern and values of some (possible original) parameters; the continuation of this 

chain reaction involving feedbacks constitutes a possible mechanism for the "coevolution" or 

"matching" among flows, stocks and parameters. 

A SIMPLE ECOSYSTEM MODEL WITH A PRODUCER-DECOMPOSER CYCLE 
Clmsider a simple ecosystem model depicted in Fig. 1, which consists of four compartments, 
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Figure 1. A model ecosystem consisting of four compartments which are connected to each other 
by flows of nutrient transfer. 

primary producer (compartment P) ,  litter and detritus (compartment L) ,  decomposer (compartment 
D),  and nutrient pool (compartment N), connected by flows of nutrient transfer. Let P, L, D, and N 

also be used to denote standing stocks of nutrients in the corresponding compartments, andf,denote 
the flow to compartment X from compartment Y. Then, the dynamics of this model system are given 
by the following set of differential equations: 
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dL 
dt - = f* + f m  - f D L  

dD 
dt 
- = f * L  - fu  - f m  

We assume that the flows are determined by (are functions of) the standing stocks in several 

compartments and some parameters that characterize local (compartment level) processes such as the 

nutrient uptake rate of the primary producer. Specifically, we will assume that the flows have the 

following functional dependencies: 

where a and b are parameters that represent the coefficients of some local processes and satisfy the 

conditions that 

For example, parameters a and b may be considered to represent the nutrient uptake rate of the 

primary producer ( P )  and the decomposition rate for the decomposer (D), respectively. Furthermore, 

we assume that 

for all flows, Le., any flow increases as its donor increases in stock. 

STABILITY AND SENSITMTY ANALYSES OF THE MODEL SYSTEM 

d P d L d D d N  Equations (l), representing a closed system, imply - + - + - + - = 0, from which 

we have P+L+D+N = c (constant). Thus, for instance, substituting c - (P + D + N) for L in 
fDL(D,L;b), we have a closed form for the dynamics of three variables P, D, N: 

d d t d d t  
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The dynamics of L is determined from the other variables' dynamics through the equation L = c - (P 

Given values of parameters a and b, let P,(a,b), D,(a,b) and N,(a,b),  respectively, be values 

for variables B, D, and N at a steady state of the dynamical system defined by Eqs. (5); then (P,(u,b), 

D,(a,b), N,(a,h)) is a solution for a set of algebraic equations: 

+ D + N ) .  

The local stability condition for this steady state can be readily derived by linearizing the 

system (5 )  around the steady state; a simple fomi of suficient condition for stability is that 

Le., the biofic compartments P and D are both self-regulatory. In the following we assume that the 
model system under consideration satisfies this stability condition for steady states, and further that 

the changes in values of the parameters are slow relative to those of the variables so that the system 

traces its trajectory on a "slow" manifold consisting of points that "map" different values of the 

parameters into the corresponding stable steady states. 

The sensitivities of the steady state (P,(a,b), Dl(a,b), N,(a,b)) with respect to changes in the 
values of parameters a and b can be evaluated in terms of the sets of partial derivatives 

(aPl/&, aD,/&, aN,/aa) and (dP,/ab, aD,/ab, dNl/i3b), respectively. Taking the partial derivatives with 

respect to a of the functions P,(a,b), D,(a,b) and N,(a,b) of a and b which are implicitly defined by 
Eqs. (6), we have 
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R 

where R is the linearization (community matrix) of the system ( 5 )  around the steady state (P,(a,b), 

M a & ) ,  N,(a,b)): 

Thus we have 

where S = -R-'. This result may be interpreted as follows [for a full development of this point, see 

article by Nakajima in this volume]: change in parameter a may directly cause a change in the net 
inflow (growth) for each of compartments P and N ,  which may in turn bring about changes in the 

value of P'(a,b) directly and indirectly through a causal chain; these chained influences together 

constitute the change in the value of P,(u,b) due to a change in parameter a. Likewise, we have for 

parameter b 

THE BASIC IDEA 

= - L I E  VALUES OF P-A GIVEN PARAMETER B 
Given a specific value for parameter b, let a'(b) denote an ESS-like value for parameter a 

[ESS stands for evolutionary stable strategy (Maynard Smith and Price 1973)], Le., a value of CI such 
that once the primary producer with a'(b) prevails, a primary producer with any value for parameter 

a other than a*(b) can not invade; then a'@) must satisfy the following conditions: 
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for a = a'(h), P = Pl(n'(b),b), D = D,((a'(b),h), N = N,(a*(b),b). Therefore, a'@) is given as the 

fourth component of the solution (P'(b), D'(b), N'(b), a'(b)) of the set of Eqs. (6) and (12) for a given 

value of parameter b. These four equations, each defining a surface, together determine a curve as 

the intersection of the surfaces they define in the five-dimensional Euclidian space of (P,DJV,a,b). 
(P'(b), D'(b), N'(b), a'(b)) constitutes a one-parameter expression of the curve with b the parameter, 

and function a = a'(b) represents the projection of this curve onto the (a,b)-plane (Fig. 2). 

P~D,N 
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a 
b 

Figure 2. The curve determined as the intersection of the surfaces each of which is 
defined by one of four equations (6) and (12) in the five-dimensional Euclidian space 
of (P,D,N,u,b), and the projection of this curve onto the (u,b)-plane, which is 
represented by the function a = a'(b). 
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To investigate the dependency of the ESS-like value of n on the value of by we consider the 

derivative du'ldb. By taking derivatives of the functions P'(b), D'(b), N'(b), ~ ' ( 6 )  of b defined 

implicitly by equations (6) and (12), we have 

By multiplying R" from the left to both sides of this equation, we get 

where S' = - Rpl. Thus, derivative da'ldb can be expressed as follows: 

do' 

where IR'I denotes the determinant of matrix R .  

is zero. Further, using this formula (17) 

the following can be proved. Assume that IR,I[(afdaP)(aZfd&aN) - (afdi3N)(a2fdaaEP)] .c 0. Then, 

because &/dD > 0, the sign of the derivative da'/db coincides with that of 8@b; thus, as far as 

Note in (17) that da'ldb equals zero when 
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a larger decomposition coefficient b is favored for the decomposer (D), the ESS-like value a'@) for 

the producer's parameter a increases with 6. Within the value range of b where da'ldb is positive, a 

lower level of b would induce a lower level for a*, while a higher level of b would select a matched 

higher level of a'; that is, the ESS-like value of the producer's parameter a matches the decomposer's 

parameter 6 (Fig. 3). 

ESS-LIKE VALUES OF PARAMETER B GIVEN PARAMETER A 

We can make a similar analysis for a dual case in which, given a specific value for a,  we 

consider the ESS-like value b'(a) for parameter 6. First, consider the following set of equations: 

a 

b 

Figure 3. An illustration of the ESS-like value a* of parameter a matching to  the 
level of parameter b within the value range of b where da*/db is positive; that is, a 
lower level of b would induce a lower level for a*, while a higher level of b would 
select a matched higher level of a*. 
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Let (D,(a,b), P,(a,b), L,(a,b)) be a solution of the set of equations (lsa), (18b) and (lSc), representing 

a steady state of the dynamical system (1) for a given pair of values of parameters a and b. The ESS- 

like value b'(a) for a specific value of a is given as the b-component of the solution @(a), P*(a), 
L'(a), b'(n)) of the set of four Eqs. (18). 

Using the same method used in the case for a'(b), we have the following formula for the 

derivative db*/do: 

where ITl[ is the determinant of the matrix that represents the linearization of equations (18) 
around the solution (P'(a), L'(a), D*(a), b*(a)). 

PRODUCER-DECOMPOSER MATCHING: COEVOLUTIONARY PROCESS OF THEA AND 
B VALUES 

An intersection of two curves a = a'(b) and b = b'(a) of the ESS-like values for parameter 
a and b, respectively, represents a pair of CSS-like values (n,,b,) for parameters a and b [CSS stands 
for coevolutionary stable state (Roughgarden 1983 Matsuda and Namba 1989)], i.e., a pair of values 

(ad,,) for a and b such that once the parameters a and b attain those values, a primary producer with 
any a value other than a, or  a decomposer with any b value other than b, may not invade, and thus 
the parameters a and b remain at  those values. 

Depending on the shape of, and the relationship between, two curves a = a'(b) and b = b'(a) 

of the ESS-like values, there may be alternative patterns, and two cases of particular interest here are 

a stable or unstable CSS-like state (a-,bJ such as that illustrated in Fig. 4. In the case of a stable 

CSS-like state (Fig. 4a), an initial state (a&,) on the curve a = a'(b) is stable (ESS-like situation) 

with respect to parameter a of the producer, but it is not stable with respect to parameter b of the 

decomposer, which, with the stable parameter a unchanged, would seek a new value b ,  = b'(a,,), the 

ESS-like value of b given a = a,. This new state (a&), however, is no longer stable with respect to 

parameter a, thus it is now the producer's turn to seek a change in the value of parameter a to a, = 
a'(b,), while the stabilized parameter b remains unchanged. Repeating the same process again and 

again will finally lead to a CSS-like state (a-,b.), as illustrated in figure 4a. 

THE ROLE OF INDIRECT EFFECIX IN THE COEVOLUTIONARY PROCESS 

PROPAGATION OF EFFECTS FROM B TO A' 
Given a value of N ,  the solution sets of Eqs. (6) and (12) provide an alternative one- 

parameter expression with N the parameter for the five-dimensional curve discussed above (Fig. 2); 
combining the two alternative one-parameter expressions allows us to derive the following 

relationship: 
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Figure 4. Illustration of a (a) stable and (b) unstable CSS-like state (a,b,). 
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ab 

where each derivative is the derivative of a function that represents a projection of the curve in terms 

of either of these two one-parameter expressions. Further, from the relationship "(b) = N,(a'(b),b), 
we have 

Eqs. (20) and (21) yield the following relationship: 

Figure 5a illustrates an interpretation of this relationship from the viewpoint of direct and 
indirect influence propagation. Note that given N, the ESS-like value a' for parameter u (a trait of 
the primary producer) is determined completely from two equations: 

The derivative da/dN represents the direct influence of a change in available nutrient level N upon 

the ESS-like value a' for parameter a. iN,/& and Wl/&, as already mentioned, represent the total 

(direct plus indirect) influence of a change in the b and a values, respectively, propagated upon the 

available nutrient level N' through all available paths in the functional network. Therefore, Eq. (22) 
indicates the following: A change in the parameter b value will cause some change in nutrient 

PROPAGATION OF EFFEcJrs FROM A To ESS B 
In a similar way as we derived Eq. (22), for the dual case we have the following: 
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Figure 5b explicitly indicates the causal chains (or paths) connecting a cause (a change in the 

parameter a value) to its effects on the ESS-like value b*.level N,  which will in turn directly cause a 

change in the ESS-like value a'. But this change may cause a further change in the N value, which 
will again change the a' value. This process will repeat again and again until the influence dissipates 

completely. The effect du'ldb caused by a unit change in parameter b upon the ESS-like value a* is 
thus the sum of these indirect influences propagated through all available paths. 

NElwORK COEVOLUTION AS A MECHANISM 
FOR SELF-ORGANIZATION OF THE ECOSYSTEM 

If we look at the producer-decomposer matching represented as a matching race between the 

two parameters u and b, in the scope of the whole ecosystem it may appear as the ecosystem 

organizing itself. 

As the two parameters evolve in such an interactive fashion so that one parameter's change 

triggers the other's and this interaction repeats with alternate directions, the biomasses of the 
producer and decomposer may both grow up under certain conditions, but because of indirect effects 

that a change in parameter a (or b)  causes upon the value of PI((@) (or B,(u,b)), an increase in the 

value of the parameter does not imply an unconditional increase in biomass of the producer P (or 
decomposer 0). Also, the stocks of the non-living compartments as well as all the flows in the 

ecosystem would change accordingly, constituting a "network coevolution" of the whole ecosystem. 
If we imagine an ecosystem that starts with a very low level of biomasses and parameter values of 

biota, this network coevolutionary process would appear as a process of building up the system toward 

a biologically richer regime. Since the process does not require any external force to cause changes, 

but instead is proceeded through an internal mechanism built in the system in terms of its biotic 
components' evolution of interaction, it may be viewed as a self-organizational process. To generalize, 

therefore, a coevolutionary process at the system components' level, exemplified here by the network 
coevolution of a simple ecosystem model, may provide a mechanism for the self-organization of a 

system. 
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Figure 5. Diagram to illustrate an interpretation of (a) relationship (22) and (b) relationship (24) from the viewpoint of direct and indirect 
influence propagation. 
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APPLICATIONS OF THE IDEA 
TO SPECIFIC THEORETICAL PROBLEMS ON ECOSYSTEMS 

The approach based on the notion of network coevolution as described above is in principle 
applicable to a general class of ecological networks that are defined in terms of a set of differential 

equations of n variables with nt parameters, though involving a larger number of variables and 

parameters elevates the difficulty in carrying out the analysis. It may therefore provide a unified 

framework for dealing with the following theoretical issues in ecosystems study: 

(1) The issue of tropical versus temperate ecosystems in terms of their characteristic structure. The 
case in which the producer-decomposer matching takes place to grow the biota of the system, thus 
reducing the level of the nutrient pool, may correspond to the well known fact that the tropical 
rainforest is, while rich in standing stock of its biota, very poor in soil nutrients. Further, high 
productivity of the tropical forest may not be solely the producr of the rich physical conditions such 
as high solar input and temperature, but may be achieved in part as the result of coevolution with the 
decomposer. For, should the decomposer not be able to change its parameter b in response to an 
increase in value of the producer’s parameter a, the producer would not be able to further increase 
its parameter a. By the same token, the decomposer is expected to have a higher decomposition rate 
or a decomposing system with a higher decomposition rate tends to be favored than the level 
estimated solely from a curve that represents the physiological response to primary physical condition 
factors such as temperature. 

( 2 )  The issue of food web structure, in particular grazing versus detrital food chains, regarding their 
relative state of growth (in terms of their length, richness in biomass, species diversity, and so on) in 
aquatic versus terrestrial ecosystems. 

(3) Among terrestrial systems, the issue of forest versus grassland ecosystems, in particular the cause 
for their bifurcation, Le., what makes a forest a forest and not a grassland, and vice versa. The case 
with an unstable CSS may sewe as a model for explaining this bifurcation such that a system should 
either lead to a forest or a grassland depending on its initial condition (uo,bo); with values too low for 
a, bo the system should be reduced to a grassland, while with large enough values for a, bo it should 
build up a forest. 

The exploration of each of these issues requires further elaboration and extension of the 
simple model and its analysis than we have presented. 
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CELLLJLOSE DYNAMICS AND TERlMITE ECOLOGY AS KEY FACTORS 
TO STRU-G TERRESTRIAL COMMUNTTIES 

Takuya Abe, Department of Zoology, Kyoto University, Sakyo-ku, Kyoto 606, Japan 

and 

Masahiko Higashi, Faculty of Science and Technology, Ryukoku University, Otsu, Shiga 520-21, Japan 

INTRODUCTION 
How can the earth, which teems with plant-eating animals ranging in size from aphids to 

elephants, be so green? Plant-eating animals kill more plants than drought or logging does, yet they 
do not wipe out all the plants (Howe and Westley 1988). Why is it so? Approximately half of the 

ca. 800,000 species of insects are phytophagous, and they account for one-quarter of all living species 
excluding algae and microorganisms (Strong et al. 1984). As for the evolution of plants in relation 

to phytophagous animals, especially insects, much attention has been paid to the chemical defenses 
that plants exert by use of their secondary compounds (Ehrlich and Raven 1964; Whittaker and Feeny 

1971; Feeny 1975; Rosenthal and Janzen 1979; Strong et al. 1984; Howe and Westley 1988). In 
contrast, very little attention has been paid to another important aspect of plant-animal interactions 

that is no less relevant to the green coverage of the earth; most animals lack the ability to produce 
the enzymes necessary for decomposing cellulose, the primary cell-wall component of higher plants 

and the most abundant organic compound on earth, whereas various kinds of microorganisms are able 

to produce these enzymes (Nielsen 1962; Janzen 1981; Begon et al. 1986). For the earth to be so 
green, it is "ideal" that a plant should not be consumed by heterotrophs when it is alive, but that it 
should be consumed promptly when it is dead, to return nutrients back to the living portion of plants. 
Thus, the spatial distribution pattern of the organisms that can digest cellulose plays a crucial role 

here; in terrestrial communities, microorganisms, which can produce cellulase, the cellulose- 

decomposing enzymes, are to large extent confined in the soil, to decompose the cellulose not in living 

plants but in fallen dead plants. 

Cellulose, long viewed as the master construction material of plants, was probably 
evolutionarily selected for the same reason that we choose concrete to construct houses in areas of 
high termite activity (Janzen 1985). The distribution of cellulose is directly related to the morphology 
of plants, thus that of forests and grasslands. But, cellulose is also a major energy resource, 

potentially available and explicitly so when this hard substance encounters cellulose-digesting 
organisms such as microorganisms in the soil. In view of its super-abundance and dominance in 

quantity, its physical robustness and the restricted distribution of its consumers despite its potential 
as an energy resource, cellulose may be a "key substance" for understanding community structure. 
Furthermore, differences in the distribution pattern of cellulose and its digesting organisms may 
explain differences in community structure between forests and grasslands, such as those in the relative 
significance of grazing and detritus chains (Odum 1953; Begon et al. 1986). 

One of the primary consumers of cellulose and the most abundant animals in tropical 

terrestrial communities, termites are conspicuous in that they can produce cellulase partly by 
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themselves (Yokoe 1964; Mishra 1980; O'Brien and Slayror 1982) and have a symbiotic association 
with the other organisms that produce enzymes to decompose cellulose and sometimes lignin, an even 

harder substance (Grasse and Noirot 1959), and they may play a significant role, especially in tropical 

regions a deterministic role, in structuring the community in which they reside. 

In the present essay, we examine the relationship of cellulose to animals, especially insects, 
to provide a new perspective for understanding terrestrial communities based on cellulose dynamics, 

and highlight for tropical ecosystems the role that termites play in determining community structure. 

CELLULOSE AND COMMUNlTY STRUClUW 

TWO TYPES OF FOOD: CELL WALL, AND CYTOPLASM 
One of the  most significant differences between plant and animal cells is the presence of a 

cell wall. Although the cell wall and cytoplasm of plant cells are both potential food sources for 
heterotrophs (consumers), they are quite different in their chemical compositions. 

The cell wall of higher plants, containing little protein and lipid, consists mainly of cellulose, 
hemicellulose (complex polysaccharides) and lignin (complex phenolic polymer), which are inversely 

located almost exclusively in the cell wall. These three cell-wall substances in weight compose about 
47%, 22% and 22%, respectively, of deciduous wood, 16%, 13% and 21% of deciduous leaf, and 30%- 

33%, 18%-24% and 11%-14% of grass (Swift et al. 1979). Therefore, cell wall is the primary 
component of trees (ca. 90%) and grasses (60%-70%) in biomass. Because most plant material (98%) 

on earth is terrestrial, and 75%-90% of it is located in forests (Whittaker 1975), cell-wall components, 

especially cellulose, are the most abundant organic matter on earth. Further, noting that cellulose 

is degraded into glucose, we may state that cell wall provides the most abundant food resource, if only 

potentially, on this planet. Except for some types of molluscs, silverfish and a few earthworms, 

animals cannot directly utilize this abundant food resource, because they cannot produce a complete 

set of cellulases (Nielsen 1962; Begon et al. 1986; Martin 1987). Therefore, animals must have direct 
o r  indirect associations with microorganisms to make it available. 

On the other hand, cytoplasm, which is abundant in pollens, seeds and new leaves, is rich in 

proteins, lipids and starches, thus potential high quality food for animals. Higher plants produce, 
however, various kinds of toxic secondary substances such as alkaloids, terpenoids and hydrogen 

cyanides, and keep them in cytoplasm (Howe and Westley 1988). Therefore, animals that feed on 
plant cytoplasm must solve the problem of the chemical defences plants devise using these secondary 

compounds. 

CELLWALL CONSUMERS AND CYTOPLASM CONSUMERS 
On the basis of the foregoing observations, we propose a new categorization for the 

heterotrophs or consumers of plants: cell-wall consumers and cytoplasm consumers. The former 
category of consumers, having acquired a means to manage the hard construction materials of cell 
wall, utilize a food of low quality but of high quantity, whereas the latter, having acquired a means 
to manage toxic secondary substances in the cytoplasm of plant cells, utilize a food of low quantity 

but of high quality. 
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How effective is this categorization of heterotrophs when applied to insects? As stated above, 

phytophagous insects make up approximately half of all insect species, including nine of 29 orders: 

Coleoptera (Scarabaeidae, Languridae, Coccinellidae, Tenebrionidae, Mordellidae, Chrysomelidae, 
Cerambicidae, Curcultonidae and Apionidae), Collembola, Diptera (Cecidomyidae, Dolichopodidae, 

Drosophilidae, Ephydridae, Anthomyiidae, Agromysidae, Chloropidae and Tephritidae), Hemiptera, 
Hymenoptera (Xyelidae, Cephidae, Blasticotomidae, Diprionidae, Tenthredinidae), Lepidoptera, 
Orthoptera (Tettigoniidae, Acrididae and Eumastacidae), Phasmida and Thysanoptera. Hemiptera, 

Lepidoptera, Orthoptera and Phasmida are almost entirely phytophagous, but only about one-third 

of Coleoptera and one-tenth of Hymenoptera feed on the living tissues of higher plants (Strong et al. 

On the other hand, as Martin (1987) reviewed, cellulose-digesting insects have associations 
with microorganisms to obtain acquired enzymes: Thysanura, Isoptera, Plecoptera, Trichoptera, 

Blattaria, Orthoptera (Gryllidae: Acheta domesticus), Diptera (Tipulidae: Tipula abdominalis), 

Hymenoptera (Siricidae: Sirex spp.), Coleoptera (many species of Buprestidae, Coccinellidae, 

Anobiidae, Scarabaeidae, Cerambicidae and Curculionidae). Although there is insufficient 
information on cellulose-digesting insects, the comparison of phytophagous and cellulose-digesting 
insects at the family level shows that no cellulose-digesting insects are phytophagous except for some 
Coleopterans and probably Orthopterans. Therefore, we may summarize that most insects that 

consume plant materials have succeeded in solving either but not both of two problems: (i) the 
detoxification of secondary substances in cytoplasm, and (ii) the degradation of cell-wall components 

with the aid of microorganisms. 

From the point of view based on this fundamental classification of heterotrophs into cell-wall 

consumers and cytoplasm consumers, an insect that utilizes the seeds of two plant species is more 
specialized than an insect that feeds on stem and seed of a single species of plant. This idea can be 

extended to all animals. Cell-wall consumers include dead plant feeders of great variety besides 
termites (LaFage and Nutting 1978), while cytoplasm consumers include most animals feeding on 
plants, especially human beings, ants, and bees. Herbivorous ruminant mammals, which can utilize 
both cell wall and cytoplasm (Dobson and Dobson 198S), are called "generalists". It is notable that 
eusociality has evolved in both classes of consumers; termites have developed their eusociality based 
on quite different food resources from those for ants, bees, and wasps. 

1984). 

A NEW PERSPECTIVE? ON COMMLTNITY STRUCTURE A N D  
EUCARYOTES MACROEVOLUTION 

The new categorization of heterotrophs leads to an alternative view of community structure. 

A division of a plant cell, representing the primary producer space (or the resource space), into cell 
wall and cytoplasm, is projected into the classification of consumers into two corresponding categories, 

cell-wall consumers and cytoplasm consumers (Fig. la). The overlap of cell-wall consumers and 
cytoplasm consumers corresponds to generalist consumers such as herbivorous mammals with rumens, 
which transmit into grazing food chains some portion of cell-wall components. The rest of the cell- 

wall components flow into detrital food chains, because it is consumed as dead organic materials by 

proper cell-wall consumers which are not cytoplasm consumers, such as bacteria in the soil, fungi, and 
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Figure la. An alternative view of  the community structure that is derived from a new categorization of (primary) heterotrophs that classifies 
them into cell-wall consumers and cytoplasm consumers. 

Figure lb. Flows from the cell-wall and cytoplasm components of  plants into grazing and detrital food chains. 
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insects with symbiotic microorganisms. Most of the consumed cytoplasm flows into grazing food 

chains through cytoplasm consumers (Fig. lb). 
This new view on community structure suggests the following clear-cut perspective on the 

macroevolution of eucaryotes. After the emergence of eucaryotic life, three kingdoms of plants, 
animals and fungi evolved from protists, the most primitive form of eucaryotes supposed to have 
evolved through intracellular symbiosis of prokaryotes (Margulis 1970). The emergence of animals, 

super-active and effective consumers, might have selected plants, the emerging eucaryotic autotrophs, 

to devise a harder structure of cell wall, by using not only cellulose but also other hard substances 

combined with it to produce a harder new material. The enzymes for decomposing the hard cell-wall 
substances including lignin are mainly produced by fungi. Therefore, it may be said that plants have 
evolved as the producer of two distinct types of food resources, cell wall and cytoplasm, and that 
animals have evolved as cytoplasm consumers, while fungi evolved as cell-wall consumers (Fig. 2a). 

The macroevolution of eucaryotes is thus a process of specialization or "speciation" into three 
directions based on the trophic interactions among the three groups of organisms, each of which has 

come to occupy a unique trophic niche (Fig. 2b). 

VARIATIONS IN COMMUNlTY STRUCIWRE 
The community structure of forests and grasslands are different in the relative significance 

of detrital and grazing chains. The quantitative significance of detrital chains relative to grazing chains 
is greater in forests than in grasslands (Odum 1953; Begon et al. 19%). 

Comparing grass and trees, the major plant components of grasslands and forests, respectively, 
the former contains more cell-walI components and less nitrogen contents than the latter (Swift et al. 

1979; Martin and Martin 1978). Nitrogen contents of grasses and wood (in parenthesis, tree and 
shrub foliage) are 1.2%-4.5% and 0.04%-0.3% (0.6%-6.6%), respectively. Thus, in the context of the 
basic structure that Fig. l b  depicts, the relative availability of cell-wall components is higher in forests 

than in grasslands. In terrestrial ecosystems, microorganisms, the major cellulose decomposers, are 
located on the ground surface and in the soil, thus cell-wall components are mainly decomposed after 

they are dead and have fallen down on the ground, to  flow into detrital food chains (Fig. lb). These 

two facts alone would suggest that the quantitative significance of detrital food chains relative to 
grazing food chains is greater in forests than in grasslands. 

This basic scheme can, however, be modified by the animals, in particular various kinds of 
insects and mammals, that depend on plants. In forests, the insects which can decompose cellulose 

with the aid of microorganisms usually do not attack living plant tissues, while most phytophagous 
insects, having no association with microorganisms for cellulase, are restricted to consume only 

nutritious portions of plants such as fruits, seeds, pollens and young leaves, and do not destroy major 
parts of trees, such as old leaves, branches and stems. Herbivorous mammals, which harbor 

microorganisms in their guts and decompose cell-wall substances, and other generalist consumers 
(Fig. lb) are scarce in forests (Fittkau and Klinge 1973). On  the contrary, in grasslands herbivorous 
mammals represented by ungulates are abundant, and sometimes consume much of living grasses, to 

increase the flow into grazing chains. But, herbivorous mammals with rumens can not digest cellulose 

completely but only in the range of 43%-73%, mainly due to the presence of lignin and silica, and 
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Figure 2a. Evolutionary structures of five kingdoms: Monera, Protista, Plantae, Fungi, Animalia. 
The macroevolution of eucaryotes as the process of specialization into three categories of life. 
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Figure 2b. The trophic interactions among the five kingdoms of organisms, each of which occupies 
a unique trophic role niche. 
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further the inclusion of cellulose, lignin and silica in grass places a utilization limit on herbivores 
below the availability level of this potential food, because their feeding ecology can be explained to 

large extent by the behavioral adaptation to maximize protein consumption and minimize consumption 
of tough lignified or silicated fiber (Howe and Westley 1988). The scarcity of generalist consumers 
in forests and the contrasting abundance in grassland only increases the difference between forests and 
grasslands in the relative significance of detrital and grazing food chains, because generalists redirect 

some portion of cell-wall components flow toward grazing food chain (Fig. lb). 

Another structural comparison can be made between communities in tropical regions and 

those in temperate regions. A key for this comparison lies in the interaction of cell-wall substances 
with the termite, one of the most abundant animals with the greatest consumption of plant products 

in tropical terrestrial communities. Therefore, we will start with a summary of termite ecology 

focusing on the role of termites in the community in which they reside. 

TERMITES AND COMMUNITY STRUCTURE 
ABUNDANCE OF TERMITES AND THEIR LITER CONSUMPTION 

Termites (Isoptera containing 2200 living species) are widely distributed in tropical and 
subtropical regions, and their number of species and biomass are especially large in the tropical zone, 
where they play a major role in the decomposition of dead plant materials rich in cellulose, 
hemicellulose and lignin (Lee and Wood 1971; Wood and Sands 1978; Josens 1985; Wood and 

Johnson 1986). Termites are largely classified into two groups: lower termites (Families 
Mastotermitidae, Kalotermitidae, Termopsidae, Hodotermitidae and Rhinotermitidae) and higher 

termites (Termitidae). Major differences between the two groups are in the symbiotic organisms they 

are associated with; the former’s symbionts are protozoa, and the latter’s are bacteria. 

The maximum density and biomass of termites are roughly the same in the tropical rain forest 

and wet savanna: 4,000 to 5,O00/ni2 and ca. 10 g.w.w./nz2 (Table 1). The relative abundance of humus 
feeders increases with an increase in precipitation, whereas that of fungus growing termites (in Africa 

and Asia) is higher in savannas and dry forests. 
Termites are predominant among all animals in the tropical terrestrial ecosystems. In a 

Brasilian rain forest, about SO% of total biomass of animals (21 g.w.w/m2) was due to soil 
invertebrates, 30% of which were termites (Fittkau and Klinge 1973). In a Malaysian forest, the 

density and biomass of all soil macrofauna and termites (in parentheses) are as follows: 5387/m2 

(3485/m’) and 12.5 g.w.w./m* (9.4 g.w.w./m2), respectively (Abe 1979;). In East Africa savannas, the 

biomass of termites roughly equals that of wild ungulates. 

If we take 10 g.w.w/m2 as a criterion for an abundant animal, only four groups pass this 
criterion: herbivorous mammals in African savanna termites in tropical regions, human beings 
(250/km2 and 40 kuperson) and earthworms in the temperate regions (Edwards and Lofty 1972). Ants 

seem everywhere abundant, yet rarely exceed this criterion. 
Some attempts have been made to measure the role of termites in energy flow and material 

cycling in tropical forests (Matsumoto and Abe 1979; Abe 1980, 1982; Collins 1983, and savannas 
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Table 1. Density (number/nz2) and biomass (s wet weighthd), indicated in parentheses, of termites 

in tropical ecosystems. 

ecosys tems Tropical rain forests Savannas 

Locality Mulu Pasoh Lamto Mokwa Fete-Ole 

Country Malaysia Malaysia Ivory Coast Nigeria Senegal 

Latitude 4N 3N 6N 9N 16N 

Rainfall (mm) 5 107 2000 1290 1175 37s 

Authors* (1) (2) (3) (4) (5) 

Humus feeder 621 (1.02) 1505(2.52) lOO(0.16) 163(0.66) 0 
Fungus growers 5(0.03) gtiO(6.12) 554(0.64) 2193(6.39) 93(0.72) 

0 t hers 909( 1.35) 102O( 0.78) 2 13( 0.93) 1652(3.54) 138(0.24) 

Total 1526(2.4) 3485(9.41) 867( 1.75) 4OO1( 10.59) 231(0.96) 

*(1) Collins (1983), (2) Abe (1979), (3) Josens (1972), (4) Wood and Sands (1978), (5) Lepage (1974). 

(Josens 1972; Lepage 1974; Ohiagu 1979; Ohiagu and Wood 1979; Collins 1981, 1983; Bwton 1981; 

Gentry and Whitford 1982), as reviewed by Wood and Sands (1978) and Josens (1985). Estimates of 

litter consumption by termite populations are shown in Table 2. Ecological impacts of termites in 
savannas seem to be greater than those in tropical forests. In Southern Guinea Savanna of Nigeria, 

termites consume 63% of annual grass litter supply, consuming 36% of all litter supply. 

INTERACT?ON OF TERMITES WITH OTHER ORGANISMS 
In the lower termites, cellulose is digested by enzymes secreted by termites themselves and 

their gut protozoa, while in the higher termites (about 75% of all species), cellulose digestion is 
mediated by cellulase secreted by termites, their gut bacteria and the fungi in their nests (Grasse and 

Noirot 1959). The fungus growing termites among the higher termites (Macrotermitinae), which are 
dominant in tropical Asia and Africa, cultivate fungi of Termitomyces placing their faeces on fungus 

gardens in their nests, and obtain cellulase mainly from the fungi (Abo-Khatwa 1978; Martin and 

Martin 1978). Furthermore, the fungi of Termitomyces also produce lignin-degrading enzymes 

(Rohrman and Rossrnan 1980), and the repetition of the cyclic process formed by the cultivation of 
fungi by faeces and the reingestion of old portions of fungus gardens, which contain plant materials 

partially degraded by fungi, results in a complete decomposition of plant litter. 
In the tropical forests, termites consume mainly dead plant materials such as fallen trunks, 

branches, leaves and humus, and they rarely attack living parts of trees (Abe 1979). The process of 
wood decomposition by termite activity is an interesting one. Termites transfer into wood a lot of 
soil that contains microorganisms with cellulases and probably lignin-decomposing enzyme. The part 

of 



Table 2. Estimates of consumption by termite populations derived by combining field measurements 
and calculation from mean weight-specific rate of consumption, based on Josens (1972), Lepage 
(1974), Wood and Sands (1978), Wood and Sands (1978), Matsumoto and Abe (1978) and Collins 
(1981, 1983). 

Annual Total Litter consumed bv termites 
rain fall litter Field measurements Calculated 

WtY 
(Subregion) 
Sources of litre? (mm) (p/m2) (g/m'> ( % o f  (urn2) ( % o f  

total litter) total litter) 

Sahel savanna, 
Senegal 

S. Guinea savanna, 
Nigeria 

Wood 
Leaves 
Grass 

Derived savanna, 

Rain forest, 
West Malaysia 

Leaves 
Wood 

Ivory Coast 

Rain forest 
East Malaysia 
(Kerangas) 
(Alluvial) 
(Dipterocarp) 

375 125 

1115 533 

139 
239 
155 

1290 480 

2000 1276 

703 
573 

5698 1050 
5087 1280 
5107 960 

12.5 10.0 18.4 14.7 

189 35.3 179 33.5 

84 60.1 
6.8 2.8 

98 63.2 

135 28.1 24.2 5.0 

155-173 12.2-13.6 

150-200 24-32 

35 3.4 
11 0.9 
20 2.1 

wood in contact with the soil becomes soft enough to be easily removed by termites. Most of fallen 

trunks and branches seem to be decomposed rapidly by a termite-microorganism complex (Abe 1980). 

In temperate forests and grasslands, plant litter is decomposed in several stages (Burges 1967; 

Dickinson and Pugh 1974; Collins 1981). After development of phylloplane microflora, the litter i s  
colonized by saprophytic microorganisms and the degradation of plant polysaccharides by them is 
essential for soil invertebrates to begin to feed. The litter is then comminuted and ingested by soil 

invertebrates, and litter fragments and invertebrate faeces are incorporated into the soil, where further 
microbial actions result in the formation of humus. In other words, the litter decompositions by 
microorganisms and soil animals proceed "sequentially" in temperate regions. In contrast, the ability 
of many termites to feed on fresh litter opens up a completely new pathway in the tropical 

decomposition process (Wood 1976; Collins 1981). Litter decomposition by microorganisms and soil 
animals proceeds "concurrently" in the tropical regions where fresh litter feeding termites are 
abundant and this may enhance the rate of litter decomposition, although the accelerating effect of 
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high temperature on microorganisms' activity in these regions must also be taken into account 
(Anderson and Swift 1983). 

In spite of their ability to consume cell-wall components, few termites attack living trees in 
the forest, although in the savanna, a significant proportion of termites consume living grasses (Lee 

and Wood 1971; Abe 1979;). In this context, it is noteworthy that some species of termites are serious 

pests of agricultural plants (Harris 1961). For example, in Malaysia termites are pests of rubber trees 

and tea bushes (Dhanarajan 1969; Tho 1974), and in Zambia they are pests of Eucalyptus trees 
(Nkunika 1980). Interestingly, those agricultural plants attacked by termites are all introduced species. 

Although little is known about whether the same plant species are attacked by termites in their native 

habitats, an observation by the first author of this essay suggests that Eucalyptus trees in Australia, 
their native lands, are not attacked so severely as in Africa and India. Abe and Watanabe (1983) 

showed that two species of termites which consume only dead wood and/or fallen leaves in a 

subtropical rain forest began to attack cassava (an introduced plant) in cultivated areas adjacent to 
the forest. Although chemical information is lacking, one possible explanation to this phenomenon 

is that a native tree species which coexists with a species of termites has developed a chemical defence 

against that species of termites. 

NESTED SYMBIOSIS: THE ROLE OF "HE TERMITE IN COMMuNlTy STRUCI'URING 
The trophic interactions {Le., interactions of nurturing) surrounding termites, as have been 

discussed, constitute two cycles of different scales: the larger one is the nutrient (mineral) cycling of 

the entire ecosystem scale formed by the primary producer (autotrophs, plants), the litter, the 
decomposer, including termites, and nutrient pool, whereas the smaller one is the cycle formed by the 
termite and its symbionts (protozoa o r  bacteria and fungi) in their exchange of cell-wall materials 
gradually decomposed in the transfer (Fig. 3). The larger cycle might be developed, to increase flows 
and build up the standing stocks of its living components, the primary producer and decomposer, 
through the coadaptation or coevolutionary process between these two components (for more details 

on this point, see Higashi et al. in this report). The smaller cycle may be also developed through an 
analogous process of coevolution between the termite (host) and its symbionts (guest), to enhance 

their symbiotic (mutualistic) interaction. Then, the termite would play the conjunctive point through 
which the development of these two cycles are interrelated. 

As an example of this linked development of the two cycles, we might consider the following 
situation: An increase of the symbiotic reward from the termite's guest (symbiont) to the host 

(termite) induces (or evolutionarily favors or selects) an increase of the litter processing effort by the 

termite, which in turn enhances the primary producer's production effort (or evolutionarily selects a 

producer with a higher production rate). This would further enhance the decomposer (termite)'s litter 
processing effort, which would in turn induce an increase of the symbiotic reward from the termite's 
guest to the host termite. In this example, tracing the temporal development along an evolutionary 

causal chain, we find ourselves in the smaller cycle at first, then switch into the larger cycle, and later 
comes back to the smaller cycle again. It illustrates a typical manner in which the coevolutionary 
development of the two cycles are interconnected. 



Noting the scale and magnitude of the impact that the termite has in terrestrial communities, 
particularly in tropical regions, these two interconnected cycles, "nested symbiosis", appear to 

constitute the infrastructure on which an entire terrestrial community is built up in the tropics. A 
central feature of the infrastructure of a community is represented by the larger cycle formed by the 

primary producer, the litter, the decomposer, and nutrient pool. In comparison between temperate 
and tropical regions, we have pointed out that the internal structure of the decomposer subsystem in 

this cycle serves for a clear distinction; it has a "sequential" structure in decomposition of dead plant 

materials by microorganisms and soil animals in the former, whereas a "concurrent" structure in the 

latter, due to the smaller cycle of decomposition made by the soil animals, mainly termites, associated 
with symbiotic microorganisms, beside other decomposers, resulting in higher total decomposing 

efficiency of the decomposer subsystem, which might in turn lead, through the coevolutionary 
mechanism between the primary producer and the decomposer, to a greater primary production than 
would be expected solely from physiological response of the plant to a higher temperature and solar 
radiation. 
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Figure 3. The two cycles of trophic interactions involving termites. The larger cycle represents the 
nutrient cycling of the entire ecosystem scale formed by the primary producer, the litter, the 
decomposer, including termites, and nutrient pool, whereas the smaller one is the cycle formed by the 
termite and its symbionts in their exchange of cell-wall materials gradually decomposed in the transfer. 
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NON-NEWTONIAN CAUSALITIES IN ECOSYSTEM DEVELOPMENT 

Robert E. Ulanowicz, University of Maryland, Chesapeake Biological Laboratory, Solomons, MI) 
20688-0038 USA 

Ecodynamics differ from the more familiar Newtonian dynamics in that they result in part 

from causes that are not wholly mechanical o r  material in nature. 

In the aftermath of Newton there followed a concerted effort by natural philosophers to limit 
consideration of the causes of phenomena to only mechanical (efficient) and material agents. The 

neo-Darwinian view of evolution and development remains within these Newtonian confines, but only 
at the expense of assuming that the developing system is cybernetically decoupled from its 

environment. As ecology is concerned specifically with the interaction between the biological system 
and its environment, one might ask whether causes of ecological events are strictly newtonian in 
nature and, if not, whether one can describe ecodynamics in a rational and quantitative fashion? 

Prior to Newton one of the most influential Western thinkers to write about causality was 

Aristotle, who suggested that causes in nature are usually not simple. A single event may have several 

simultaneous causes, and Aristotle taught that any cause could be assigned to one of four categories: 

(1) material, (2) efficient, (3) formal, and (4) final. For example, in building a house the material 

cause resides in the bricks, lumber and other tangible elements that go into its structure. The efficient 
cause is provided by the laborers who actually assemble these materials. The design o r  blueprints are 
usually taken as the formal cause, and the need for shelter on the part of those who contracted for 

the construction is considered to be the final agent. 

By 
autocatalysis is meant a cyclical configuration of two or more processes or entities wherein the activity 
of each member positively catalyzes the activity of the next element in one direction around the loop. 
At first glance it might appear that autocatalysis can be readily decomposed into its material and 

efficient components, but further reflection reveals otherwise. Autocatalysis (AC) possesses at least 

six properties that reveal its stature as a formal agency. (1) As the prefE "auto" suggests, AC is to 
at  least some degree autonomous of its composite parts. Whenever the network of causal influences 

can be mapped, it becomes feasible to identify and enumerate all the circular causal routes. 
Furthermore, if the individual links can be somehow quantified, it is then possible to separate 

abstractly the autocatalytic nexus from the supporting tree of causal events upon which it remains 
contingent (Ulanowicz 1983). (2) If one observes only a subset of the elements in an autocatalytic 

cycle, these components form a distinctly nonautonomous chain. However, if one increases the scale 
of observation to include all the members of the cycle, AC is seen to emerge as a phenomenon. (3) By 
its very nature AC serves to accelerate the activities of its constituents, i.e., it is growth-enhancing. 

(4) Chance perturbations in any element of a loop that enhance AC are themselves enhanced, and 

vice-versa. That is, AC exerts selection pressure upon deviations in the loop to foster only those 
characteristics which contribute to the ensemble behavior. It is a short step from selection for 

character traits to selection among possible replacement components. Once one recognizes that the 
ensemble exerts selection upon its replacement parts, it becomes clear that the characteristic lifetime 

Autocatalytic feedback is an example of formal cause at work in iiving systems. 
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of the configuration exceeds that of any of its parts, and selection becomes a key element of the 
autonomy mentioned in (1) above. In particular, changes in any element that result in its drawing 
increased resources into the loop will be rewarded, giving rise to a central tendency, or, as Denbigh 
put it, a form of "chemical imperialism". (5 )  Both selection and central tendency result inevitably in 

competition for resources among multiple AC loops. The result is an ever-more streamlined, or 
articulated topology of interactions. (6) Finally, AC is manifestly the result of a dynamical structure, 

thereby making it formal in nature. The six properties of AC constitute a strong case that it be 

considered a formal agent. In the absence of major, destructive perturbation AC serves to increase 

the level of activity of the system (an extensive effect), whiie at the same time it prunes the less 
effective causal pathways from the network (an intensive result). It remains to quantify the dual 

effects of this unitary agency. Towards this end it is useful henceforth to confine discussion to 
networks of material or energy transfers as they occur in ecological communities or in other systems 

of interest. Thus, the activity level of the system becomes synonymous with the magnitude of the 
aggregate transfers occurring in the network. This latter sum is known in economic theory as the total 

system throughput (TST), a term which has carried over into ecology (Hannon 1973). 

Quantifying the tendency towards an ever more articulated network topology is a slightly more 

difficult proposition. Suffice it here to note that in more articulated, or  highly defined networks there 
is less uncertainty as to which medium at any given mode will flow next. Less uncertainty implies 

more information, and Rutledge et al. (1976) show how the average mutual information (AMI), as 
estimated from the relative magnitudes of the flows, captures the degree of articulation inherent in 

the flow topology. 

However, the AMI, being an intensive attribute, lacks physical dimensions. It is, nonetheless, 
multiplied by a scalar constant which can be used to give dimensions to the measure (Tribus and 

McIrvine 1971). Thus, scaling the AMI by the total system throughput gives rise to a quantity known 

as the network "ascendency"--a surrogate for the "efficiency" with which the system processes the 
medium in question. Because any increase in the level of activity can be characterized as growth (e.g., 
the increase in the gross national product of a country's economy), and because the augmented 

definition of its topology may be termed development, an increase in the product of the TST by the 
AMI (the ascendency) serves to measure the unitary process of growth and development (Ulanowicz 

1986). 

Of course, growth and development can never continue unabated, and the limits to a system's 

rise in ascendency can be quantified using similar quantities from information theory. The AMI, for 

example, is bounded from above by the Shannon-Wiener index of uncertainty. Scaling this latter 

measure by the TST yields a quantity called the development capacity-a measure of the size and 

complexity of the network. The limits to rising development capacity (and also to ascendency) are 
recognizable from the mathematical form of the development capacity. One constraint is the finitude 
of external sources available to the system. A second limitation exists on the number of compartments. 
Disaggregation cannot continue beyond a point where the finite resources become spread over too 
large a number of categories. Otherwise, some compartments would come to possess so little resources 
that they would be highly vulnerable to  chance extinction by the inevitable perturbations to  which any 

real system is always subjected. 
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Even if the development capacity has leveled off, the ascendency may continue to increase by 
diminishing the amount by which it falls short of the capacity, a difference called the "overhead". The 

overhead in turn can be traced to four sources: (1) the multiplicity of external inputs, (2) the exports 
of usable medium from the system, (3) the dissipations inherent in the activities at each node and 

(4) the redundancy among various pathways joining any two arbitrary compartments. Rather than 
being an unmitigated encumbrance upon the system's performance, the overhead is seen at  times to 

be essential for system persistence. That is, diminishing any term in the overhead beyond some 

unspecified point will eventually place the given system at risk. For example, relying completely upon 

a single external source of medium makes the system highly vulnerable to chance disruptions in that 
source. Similarly, it would be counterproductive to cut back on exports which might be coupled 

autocatalytically to the system's inputs at the next higher hierarchical level. Furthermore, the 
resources that are dissipated a t  each node often underwrite strucrural maintenance at  a lower level 

of the hierarchy. It would be detrimental to decrease such support to very low levels, even if such 
arbitrary cutbacks were thermodynamically feasible (which they are not). Finally, a channel of flow 

between two nodes or species having no redundant backup is susceptible to disruption by perturbation 
in the same way as discussed above for the external sources. 

The quantitative description of growth and development is far from complete, and there are 
numerous opportunities for US-Japanese collaboration in extending the theory. For example, the 

AMI is estimated using only direct interactions, and investigators such as Patten argue that indirect 
influences are cardinal to any description of ecodynamics. To incorporate indirect influences into the 

ascendency measure Magahiko Higaski (personal communication) has suggested using information 
theory as applied to fuzzy sets. Other expansions upon the ascendency narrative include how to define 

the measure for a sysiem in which more than one medium is circulating (as is inevitably the case), or 
how best to implement the principle of increasing ascendency as a problem in operations research 

(Cheung 1985). 
Finally, i t  should be acknowledged that ascendency theory stands upon a very sparse inventory 

of data. A comparative study of selected Japanese and American ecosystems would be a very desirable 
objective for a cooperative research program and should further test the suitability of this still 

unconventional way to describe living phenomena. 
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SENSlTIVlTY AND STABILITY OF nx>W NETWORKS 

Hisao Nakajima, Department of Physics, Ritsumeikan University, Kita-ku, Kyoto 603, Japan 

ABSTRACX 
The input sensitivity is defined by the ratio of the steady state change to the amount of an 

extra input added to the system. This sensitivity gives us information relating to dynamical properties 

about steady states, because the input sensitivity matrix has a simple relation with the coefficient 
matrix obtained by linearization of the dynamical system. The interactive structures of the system are 

reflected in the input sensitivity of steady state introduced here, thus the analysis of this sensitivity 

offers a key to understanding other sensitivities; for example, parameter sensitivity, inter-flow 
sensitivity, etc. Indirect effects among elements can also be estimated in the context of input 
sensitivity as the accumulation of effects along all possible paths of interactive links From one 
compartment to another. The relationship between two concepts of stability, resilience and resistance, 

is discussed in terms of input sensitivity. For donor-dependent systems, it is found that these stability 

properties are closely related to each other. 

INTRODUCTION 
Dynamical system approaches have attained great success in the analysis of systems consisting 

of small numbers of elements. For example, the population dynamics approaches have had fruitful 
results (e.g., on periodic phenomena, catastrophic change, and stability of steady state) for simple 
ecological systems (e.g. May (1973)). However, dynamical system approaches are not the most 
suitable for complex systems, because we cannot get enough information about interactions among 
elements of a system to describe its precise dynamical behavior. 

Cohen (1978,1989) discussed the structure of food webs in terms of feeding relations without 

requiring knowledge of flow amounts from prey to predators. He  used a topological rule in the 
structure of prey-predator relations and derived from a simple model scale invariant laws which many 

food webs satisfy. His work gives us an idea about underlying laws relating to predator-prey 

connections in food webs. On the other hand, flow analysis of ecological systems was developed by 
Patten et al. (1976) and Finn (1976) to estimate how elements of the system control each other 

through flows. An extension of the analysis given by Patten and Higashi (1984) and Higashi (1986a) 
took into account storage as well as flow to get information on the interaction between storage and 

flow. Results associated with residence time (Higashi 1986b) and degree of cycling (Finn 1976, 
Patten and Higashi 1984) were obtained from these analyses, though the analyses were concerned only 
with steady states. However, these analyses contain no information about dynamic aspects such as 
dynamic control and dynamic stability. 

Knowledge of dynamical properties of a system is useful for understanding the interactive 
structure of the system, beyond that gained through the study of steady states. Element controls and 
stability are important characteristics of an ecological system in steady state, since these factors affect 
the formation of interactive structure in the succession or evolutionary process of the system 
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(Nakajima 1985). Puccia and Levins (1985) developed loop analysis which provides the bridge 
between networks and their representations as dynamical. systems. 

As an extension of their work, we here introduce the input sensitivity analysis of steady states, 

which measures the change of a steady state due to an extra input added to one element of the system. 

From this sensitivity, knowledge can be obtained on dynamical properties about the steady state of 
the system. This analysis may give us insight into dynamical properties for complex systems. 

INPUT SENSITIVITY ANALYSIS 

We consider a flow network consisting of n compartments, and the interflows, inputs, and 

outputs associated with each of them. Let xi denote storage of compartment i. We denote interflow 

from compartment i to j by 4p It is assumed that each flow depends on storage x l ,  ...,x,, and 

parameters p,, ....pnl. We have the following dynamical equation for each storage, 

where Lo and fu are input and output of the id’ compartment, respectively (Le. compartment 0 

represents the environment of the system). At a steady state, total inflow equals total outflow for 
each compartment; that is, 

n n 

E&j = (r=I,..*,n). 
j=O j = O  

Now, we add a small amount of input Azj to compartment j .  When this extra input is added to the 

system, the steady state storage for each compartment changes to xi+Axi (i= 1, ...,n), according to the 

following steady state condition, 

n n 

CJj(xl + Ax 19...,xn + Ax,,) + Azi = E J i ( x l  -+  AX,,...;^, + Ax,,), 
j -0  j=O 

We call the ratio Axi/Azj the sensitivity ofx, with respect to the change of input zj. Let si denote this 

sensitivity; that is, 
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AXi  
s.. = lim -, ( i j  = 1 ,..., n), 

'I a p  AZj 
(4) 

and let S be the matrix whose (ij) element is si; Le., S = (st). 

the system, which is treated simply as a negative extra input; Le., Azj < 0. 

following continuity of aXi/Azj: 

We can also add an extra output to 

We assume here the 

Ax.  
lim 2 = lim 

Azj-+O AZj Azj--O 

Let matrix A be the coefficient matrix deduced from the linearization of dynamical system 

(1) about the steady state; Le., elements of this matrix, ab, satisfy the following equation: 

where partial derivatives are evaluated at  the steady state. 
community matrix in community ecolopy. 
(3) are satisfied, thus we have 

This matrix A is usually called the 

When an extra input is added, steady state conditions 

d - = -d*; (i = 1, ..., n). 
[k=O k=O 

From the Taylor expansion of the left-hand side of Eq. (7), we get 

n 

(7) 

Thus, we have the following simple relationship between the input sensitivity matrix S and the 

community matrix A: 

The influence of an extra input spreads throughout the whole system until the system reaches 
a new steady state. Thus, sensitivity is the accumulation of influences made by the extra input at  every 
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moment on each compartment. Therefore, Eq. (9) can be interpreted in the following way: If an 

extra input Azj is added during the small time interval Af, its influence on storager, is equal to 

after time interval t .  The change of storage xi due to an extra input Azj can be expressed as the 
integral of Eq. (10) from the infinite past to the present, thus we have 

0 

Axi = = (-A-l)v Azj .  
-B 

This relationship means that sensitivity equals the total effect of an extra input added to the system 

throughout the infinite time interval. From Eq. (ll), Eq. (9) follows. 

According to Eq. (9), the community matrix can be obtained from the sensitivity matrix. The 

sensitivity si can be obtained from the measurement of change in storage xi, when a constant input 
to compartment j is introduced for a long period compared to relaxation time. The change in xi is 
measured after the influence of this injection spreads over the system. These measurements are 

easier than the measurements of the elements of community matrix, because in the latter case, 
measurements should be made before the influence of injection spreads to other compartments of the 

system; i.e., before compartments other than i get no influence from compartment j .  

When a system has more than one extra input, we have 

d r = S d Z ,  

where 

When one of the system parameters is changed by a small amount, the steady state is also 

altered. We get the following relationship between the change of parameter p ,  and the steady state 

change, 

where 
dx = Sdd, (14) 
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This equation means that the storage changes due to a parameter change are expressed by the 

products of the sensitivities of storage with respect to the extra input and the flow changes due to the 

parameter change. The sensitivity matrix S reflects the structure of connections among elements, and 

has nothing to do with the sensitivities of flows with respect to parameters. Flow changes d , f a r e  
caused by parameter change dp!, and have no influence from any storage changes. Equation (15) 

implies that effects of the flow changes due to parameter change dp, spread into the system, and that 
this propagation is described by the sensitivity matrix S, so that the storage changes are equal to the 

product of S and d /f. 
When a parameter p ,  has an influence on only interflow f, j ,  we obtain the sensitivity with 

respect to interflow from Eq. (15): 

dr, = (sfi - S&))af", (k = 1 ).... n). ( 16) 
ap, 

Interflowf-{ij} has direction f romj  to i, thus compartment i has a positive effect from this interflow 
and compartment J has a negative one. 

DIRECTAND INDIRECTEFFECIS 
Input sensitivity gives us a better understanding of mutual effects among elements, especially 

in systems which have cycles of effects, because this sensitivity consists of total effects among 
compartments including direct and indirect effects. Here, we define the direct effects in the sense 
of steady state, 
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When an extra input is added to compartment j ,  storage of this compartment changes, and other 
compartments receive the effects of this storage change. The suitable extra inputs (positive or 
negative) are added to compartments other than i and j ,  to keep storage levels of those compartments 

constant. These extra inputs absorb the effects of compartment j on compartments other than i and 

J, thus compartment i has no effect from other compartments except j .  If no extra input is added to 

compartment i, then compartment i has the effect only from compartment j .  We consider Eq. (17) 

as the direct effect f romj  to i, in the sense of the steady state. 

We say that 

dii = 0, ( i  = 1 ,..., n). (18) 

Every compartment has the temporal direct effect on itself, which corresponds to the diagonal 

elements of the community matrix, ai. However, every compartment has no direct effect on itself in 

the steady state, because storage of a compartment does not change without the effect of an extra 

input to this compartment and the effects of all other compartments. From Eqs. (7) and (18) for 
compartment i with conditions &,=O (k t. ij), we have 

d..  = -2 a.. + de, (ij = 1 ,..., n). 
11 

aii 

If every compartment has self regulation, that is, a,<O for all i, then each steady state direct effect has 

the same sign as the corresponding temporal direct effect. In this case, the structure of the steady 
state direct effects preserves the sign relationship of interactions in general dynamical system. Direct 

effect matrix D consists of elements dip 

The direct effects from the environment of a system can be estimated in the same way as 
direct effects among compartments. We define d as 

From Eq. (7) for compartment j with conditions dr,=O (k+j), we have 

The matrix of environmental direct effects d is a diagonal matrix whose elements are We have 
a relationship among community matrix A ,  direct effect matrix D, and the environmental direct effect 

matrix D, 

D = @-'A + I .  (22) 
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Matrix d represents the direct effects of extra inputs added to the system on the 
compartments having the extra input. Matrix product D fi represents the effects of extra inputs on 

each compartment through a link from the compartment having an extra input to the compartment 
under consideration. Matrix D2d represents the sum of the effects from an extra input along all 
paths having two links, say j - k - i, where compartment j has an extra input, i is the compartment 
under consideration, and compartment k has a link from j and a link to i. Thus, the total effects of 

the extra input is the sum of the power series, 

From Eqs. (22) and (23),  we get 

In the previous section, the input sensitivities are interpreted as total effects with respect to time [cf. 
Eq. (11)) Another interpretation of the input sensitivities can be given here; namely, the total effects 
along all possible paths from one compartment to another. 

We have direct effects from extra input itself and from other compartments due to extra 

inputs, as follows 

From Eqs. (24) and (25), we get indirect effects due to extra inputs 

Applying the operator 6-' to the right-hand side of Eq. (26) from the right, we have indirect effects 

Equation (27) can be also interpreted as the indirect effects between one compartment and another, 

which can easily be compared with direct effects defined by Eq. (17). 

INPUT SENSITIvrry OF DONOR-DEPENDENT SYSTEMS 
In donor-dependent systems, all flows depend only on the storage of donors; that is, 

f .  = &,(A$ (i = 071, ..., n; j = 1 ,..., n). 
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Inputs depend on the state of environment, but this state is assumed constant so that all inputs are 
assumed constant. We also assume that the amount of each flow increases when storage of the donor 

increases; i.e. the flows Lj(xj) are increasing functions of xi. Therefore, we have 

(29) 

where equalities hold when the flows are identically equal to zero. From Eqs. (6) and (29), we obtain 
the community matrix, as follows: 

A =  

Diagonal elements of this community matrix are negative, and its off diagonal elements are 

nonnegathe This community matrix is diagonal dominant, because the sum of all elements in each 
column is negative. Thus, -A is the so called M-matrix (cf. Chapters 6 and 9 of Berman and 
Plemmons (1979)). According to a theorem on M-matrices, matrix S = -A-' is nonnegative and the 

following relations hold: 

s.. 2 sii ( i j  = 1 ,..., n). (31) u 

From the above nonnegativity of sensitivity matrices and Eq. (31), we have the following results: 
"There is no negative sensitivity in donor-dependent systems"; "The compartment having an extra input 

receives the greatest influence of this extra input among all compartments in the system, so that 

influences decrease along the paths of interaction links". 
Now, we analyze the effects of interflow changes on each storage. Let pii be the parameter 

in a function of interflow from j to i, namely&. From Eq. (16), we have 

The storage change of compartment i has the same sign as the interflow change (vv 
because s, - s4 is positive according to inequality (31). On the other hand, the storage change of 

compartment j has the opposite sign to the interflow change, because s4. - si is negative according to 

) dp", 
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inequality (31). When the interflow is increased by the parameter change, the direct effect of this 
interflow change on compartment j decreases the storage of compartment j ,  since compartment j is 

a donor of this interflow, and the outflow of compartmentj increases. The compartmentj as indirect 
effects through other compartments. However, the total effects o n j  decreases storage of compartment 

J, even if indirect effects on compartment j increase storage of compartment j .  The storage change 
of other compartments depends on the difference of the sensitivity from i and] to each compartment 

under consideration. 
In donor-dependent systems, the input sensitivity matrix agrees with matrix -(A")-' in the 

environ analysis proposed by Matis and Patten (1981). The storage of every compartment is divided 

by the portion originally coming from each input, in the following way: 

x = -(A'Q-'z, where x = (x ,,... JJ', z = (fro ,... fd'. (33) 

RESILIENCE A N D  RESISTANCE 
There has been much discussion on the relationship between the complexity and stability of 

ecosystems, since MacAthur (1955) and Elton (1958) and especially May (1973) came to a conclusion 
conflicting with earlier studies. However, confusion arose through use of the same word in different 
senses. Pimm (1984) listed several concepts on stability and complexity to clear away this confusion. 
Here, we focus on two stability concepts, resilience, and resistance. 

The resilience of a system refers to how fast the system returns to an original steady state 
following a perturbation. This stability concept is a characteristic of the system, and can be defined 

as the reciprocal of the time taken for the system to damp the deviation from the steady state by lle. 
Resistance is defined as the degree to which a state variable is changed following a perturbation. 

This stability is concerned with each state variable in the system and not with the whole system. It 
also depends on what parameter or component of the system is perturbed. We now derive 

mathematical expressions for these stability concepts. Let A,,, be the eigenvalue having the maximum 

real part in all eigenvalues of community matrix A.  Let the left and right eigenvectors of A,,, be 

denoted by u' and v, respectively. These eigenvectors satisfj, the following equations: 

u'A = Amur, AV = X,V. (34) 

Let T, denote return time of the system. We have the following relationship between 1, and T,, 

Equation (35) represents resilience, since resilience can be estimated by the return time, T,, of the 

system. Another type of stability, resistance, can be interpreted as the reciprocal of the input 
sensitivity; i.e., Usi represents the resistance of compartment i to the input change of compartment 

j .  From Eqs. (14) and (15), the resistance of compartment i to the change of parameter pl can be 
defined as 
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1 

Resilience and resistance express the degree of stability, and the changes of these degrees of 

stability are calculated from the above results. Taking the derivative of the first equation of Eq. (34) 

and multiplying vector v to both sides of the equation from the right, we have 

( d ~ ? A v  + u ' ( d A ) ~  = (dA,)u'v + A,(du?v. 

From the second equation of Eq. (34) and simple algebra, we get 

u'dA v 
u 'v 

dAm = -. 

(37) 

From Eq. (9), it is clear that if A, u', and v are an eigenvalue of the community matrix, and left and 
right eigenvectors of this eigenvalue, respectively, then -l /h is an eigenvalue of the corresponding 
sensitivity matrix, and U' and Y are also left and right eigenvectors, respectively, of the sensitivity matrix 

for eigenvalue -Ilk.  From Kellogg's (1972) 
theorem, A,, is real, and T,,, (= -l/l.,,J is the maximal eigenvalue of sensitivity matrix S. We have the 

following equation, corresponding to Eq. (38), 

In donor-dependent systems, -A is the M-matrix. 

u'dS v 

u 'v 
dT, = -. (39) 

From the Perron-Frobenius theorem of nonnegative matrices (see e.g. chapter 2 of Berman and 
Plemmons (1979)), all elements of eigenvectors u' and v are positive. Therefore, in donor-dependent 

systems, if one o r  more elements of the sensitivity matrix decrease, then the return time of the system 
also decreases. This means that a more resistant system is more resilient, in donor dependent systems. 
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THERMODYNAMICAL ENTROPY IN ECOLOGICAL SYSTEMS 

Ichiro Aoki, Department of Physics, Osaka Medical School, 2-41 Sawaragi-cho, Takatsuki-shi, Osaka 
569, Japan 

ABSTRACT 
The thermodynamical entropy concept is applied to ecological systems. 

(1) Although entropy contenf of living systems has not been measured so far, entropy flow 

and entropy production - process variables - can be estimated from corresponding energetic data by 

use of some physical methods. Examples of entropy flow and entropy production in nature (white- 

tailed deer, plant leaf, lake, and the earth) are presented. 

(2) Ecological systems can be considered to be composed of a number of compartments; 
flows among compartments constitute networks. The entropy concept is applied to the input-output 
flow analysis of ecological networks at steady state, and entropy laws in ecological systems are 

presented; these laws are stated in terms of network theory, that is, throughflow, total system 

throughflow, path length, and cycling index. 

(3) The study of large and complex systems, such as lakes, may be approached in two 
different ways: holological (holos = whole) and merological (meros = part). As a holological study 

of lakes, monthly entropy productions of Lake Mendota (eutrophic) and the northern basin of Lake 
Biwa (oligo-mesotrophic) are investigated, and holological and entropic indices which characterize the 

lakes are determined. A comparative study of the two lakes suggests that processes of eutrophication 
or succession of lakes are accompanied by an increase in magnitude of these entropic indices. A 
hypothesis for the whole span of ecological succession is proposed. 

INTRODUCI'ION 
The energy concept, originated in physics, has been intensively employed in natural (and wen  

social) science. In biological sciences, we can speak of bioenergetics, ecological energetics, or more 

specifically energy-flow analysis in ecosystems, as examples of the use of the energy concept. However, 

little has been known about implications of entropy in nature, although entropy is as important as 

energy from a thermodynamical viewpoint: the First Law of Thermodynamics is concerned with the 

concept of energy and the Second Law with entropy. Hence, the importance of the study from an 
entropy viewpoint should be emphasized. 

The Second Law of Thermodynamics is the law of the entropy concept. It states for an 
isolated system that the change of entropy content of the system in irreversible processes (AS (irrev)) 

is always larger than that in reversible processes ( A S  (rev)), and the latter is zero: 

A S  (irrev) > AS (rev) = 0. (1) 

Since biological objects are not isolated systems, Eq. (1) can not be applied to biology. Biological 
systems are open systems which exchange energy and matter with their surroundings. For open 

systems, the change of entropy content of a system (AS) is the sum of two terms: entropy flow (A$) 
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and entropy production (Ais) .  The entropy flow is the entropy that is brought into or out of the 
system associated with flows of energy and matter, and the entropy production is the entropy that i s  
produced by irreversible processes occurring within the system. The Second Law for open systems 
asserts that the entropy production in irreversible processes (A,S (irrev)) is always larger than that in 

reversible processes ( A S  (rev)), and the latter is zero: 

A S  (am) > A$ (rev) = 0. (2) 

Thus, the Second Law for open systems is formulated in terms of entropy production. 
Entropy is produced anywhere at any time when processes are irreversible. The higher the 

irreversibility of a process, the more entropy produced. Hence, entropy production is a measure of 

the extent of irreversibility of processes. Since all motions and reactions actually occurring in nature 

are irreversible, entropy production is also a measure of the extent of activity of natural processes, 
which consists of physical activity (the strength of processes of heat flow and transportation of 

matter), chemical activity (the strength of chemical reaction) and biological activity (the strength of 
biological interaction). 

Thermodynamical variables are divided into two classes: state variables and process variables. 
With regard to the entropy concept, the state variable is entropy content and the process variables 

are entropy flow and entropy production. As for the state variable, entropy content, i t  should be 

noted that no one has yet been able to measure it in living systems. It is questionable whether or not 

it will be measured in the near future. Hence, at present i t  is impossible to develop thermodynamical 

discussions based on measured entropy content of biological systems. However, entropy flow and 
entropy production - process variables - can be quantitatively estimated by use of some physical 
methods from observed energetic data of biological objects. Thus, we can develop entropy 
considerations based on values of entropy flow and entropy production obtained by calculations. 
Some examples of entropy flow and entropy production in nature are given in the next section. 

EXAMPLES OF ENTROPY FLOW AND ENTROPY PRODUCTION 

Figure 1 shows the entropy flows and the entropy production for a 50 [kg] white-tailed deer 

on  a maintenance diet during a winter night (Aoki 1987a). The values are in units of [J s-'K-']. 
The infrared radiation from the sky and from the ground is incident upon and absorbed by a white- 

tailed deer. The entropy inflow into the deer due to this infrared radiation is 1.66 units. The entropy 

of 0.46 units i s  produced by irreversible processes within the body of the white-tailed deer. The 
entropy outflow from the deer is 2.12 units, which consists of 1.82 units by emission of infrared 

radiation from the deer, 0.21 units by convection to the surrounding air, 0.07 units by evaporation of 
water from the skin and the lungs of the deer, and 0.02 units by heat conduction to ingested food. 

The entropy flows and entropy production for a deciduous plant leaf under sunlight (the 
energy flux of solar radiation is 1.20 [cal cm-' min-'1) are shown in Fig. 2 (Aoki 1987b). Units are 
10"' [J cm-' s-' K-'1. The entropy inflows into a leaf due to absorption of solar radiation and 
absorption of infrared radiation are 0.30 units and 2.87 units, respectively. The entropy production 

in a leaf is 1.79 units. The entropy outflow from a leaf is 4.96 units, which consists of 3.88 units by 
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deer 

(50 kg, female, in winter night) 

Figure 1. Entropy flow and entropy production for a white-tailed deer during a winter night. 
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units : 10-4CJcm -2 s -I K”1 

leaf (in sunlight) 

Figure 2. Entropy flow and entropy production for a deciduous plant leaf under sunlight. 



emission of infrared radiation, 0.47 units by heat conduction and 0.61 units by evaporation of water. 
On the other hand, the entropy production in a leaf is nearly zero at night (Aoki 1987b, 1987~).  It 
is shown that the entropy production in leaves is proportional to the solar radiation energy absorbed 
by leaves, which oscillates with a period of one day. Hence, the entropy production in leaves also 

oscillates, keeping pace with solar radiation. Since entropy production is a measure of activity as 

stated in the introduction, the activity of leaves is high during the day and almost zero at  night. That 

is, a large portion of the activity in plant leaves is "on" during the day and "off" at  night (except 
perhaps for CAM plants). Most of the activity in leaves may be triggered by solar radiation. 

The annual values of entropy flow and entropy production per unit surface area of Lake Biwa 
(Japan), as an example of an ecosystem, are shown in Fig. 3 (Aoki 19874). Units are [MJ 

m-*year-*K-']. This work is intended to treat a lake-ecosystem as a whole (holistic approach) from 
an entropy viewpoint. More detailed entropic studies of lakes are given in a later section. Figure 4 
shows results of the entropy study of the whole earth (Aoki 1988a). Units are [I ~m-~year-'K-']. 

The earth is considered here to consist of two compartments: the atmosphere and the earth's surface. 

The entropy inflow to each compartment is due to incident solar radiation, and the entropy outflow 

from each compartment is due to reflected solar radiation and infrared radiation emitted by each 
compartment. There is an extensive circulation of entropy between the two compartments. The ratio 

of the incoming entropy into the earth to the outgoing entropy from the earth is l:l& the earth 

amplifies incoming entropy by 18 times. 

In the above four cases, the net entropy flows into a white-tailed deer, a plant leaf, the lake, 
the atmosphere, and the earth's surface are all negative. That is, they absorb "negative entropy" 
(SchrCldinger 1944) from the surroundings. This fact is the physical basis for organized structures and 
functions of organisms, ecosystems, or the earth to be maintained, as Schrbdinger (194.4) asserted. 

Also, the entropy productions in the above cases are all positive. This shows that the Second 
Law of Thermodynamics holds in the above four cases, as is evident from Eq. (2). This is contrary 

to the erroneous arguments made earlier that the Second Law can not be applied to living systems. 

ENTROPY LAWS IN ECOLOGICAL NETWORKS AT STEADY STATE 

In considering a large and complex system like an ecosystem, the system-theoretical approach 

has been frequently adopted as a useful tool for investigating such a system. The system-theoretical 
approach treats a large and complex system as being composed of numbers of subsystems or 

compartments; each compartment is dealt with as a whole and details of structures and processes 
within compartments are not scrutinized, that is, each compartment is regarded as a black-box The 

main concern in this approach is patterns of networks of flows into and out of each compartment. 
Thus far, only flows of conservative quantities, energy and matter, have been considered. However, 
the non-conservative quantity, entropy, also flows in networks associated with flows of energy and 

matter, and is produced within each compartment of a system. 

In this section, the thermodynamical entropy concept is applied to the input-output flow 
analysis of ecological networks at steady state, and entropy laws in ecological systems are presented 

(Aoki 198Sb). 
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Figure 3. Entropy flow and entropy production for the northern basin of Lake Biwa. 
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atmosphere earth 4348 surface 4225 infrared 
123 diffuse sky rad. 

Figure 4. Entropy flow and entropy production for the earth's surface and the atmosphere. 



DEEINITlON OF TERMS (FIG. 5 )  

Let a system H be composed of n compartments H, , k=1,2, ...p. The compartment Hk has 

a state variable x, associated with it, which is in the present case the entropy content of the 

compartment H ,  . The compartment H, may receive entropy inflow z, from the environment (the 
outside of the system H), and donate entropy outflow y, to the environment. Within the system H,  

entropy flows J j  pass from Hj to Hi . Entropy is produced within H,; the entropy production s, 
(notation is different from Eq. 2) is non-negative according to the Second Law of Thermodynamics 

for open systems (Eq. 2). (It is assumed that entropy is kept constant in flowing between 
compartments; if entropy is increased at some place between compartments, that place should be 

included as part of the compartment.) 

ORNL DWG 93-13733 

H 
Figure 5. Illustration of definition of terms in the input-output flow analysis from an entropy 
viewpoint. 

The derivative of xk with respect to time is equal to the incaming entropy into H,  plus the 

entropy production within H, minus the outgoing entropy from H,: 

n n 
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Now we only consider entropy under steady state conditions, in which x, is kept constant with time: 

x, = 0, hence 

n n 

from Eq. (3). Each side of the above equation defines entropy throughflow (Tk) at the compartment 

Hk 

n n 

The first equation of Eq. (4) is the sum of all entropy inflows into Hk plus the entropy production 

within Hk The second equation of Eq. (4) is the sum of all entropy outflows from H,. Either 

expression of entropy throughflow Tk represents the rate at which entropy is moving through Hk 
Total system throughflow 

Entropy structure matrix 

in the entropy version (ET) is defined as 

n 
TST = Tk . 

k=l 

Starting from Q. (4) and following the ordinary procedures in the input-output flow analysis 

(e.g., Hannon 1973; Finn 1976; Patten et al. 1976), we obtain the following expressions for Tk : 

j - 1  j -  1 

where njk* is an element of the matrix 

n{* is an element of the matrix 

All njL and nL;* are non-negative. 
Also, TST is expressed as 

TST = TSICZ' -I- TSF'), 
where 



190 

The matrix If = [njkT or N* = [n,j"] is the entropy version of the structure matrix (Hannon 
1973), or  the fundamental matrix (Kemeny and Snell 1976), or the transitive closure matrix (Patten 

et al. 1976). 

ENTROPY THROUGHFLOW 

As already shown, the Second Law of Thermodynamics claims that entropy production is non- 
negative; it is positive when processes are irreversible and is zero when processes are reversible 

(Eq. 2). I f  processes occurring in all the compartments are reversible, then sj = 0 for a l l j  and Tk 

becomes T, (rev) = &'ntz,, which is smaller than Tk when processes are irreversible (si # 0) : 

Tk (irrev) = 

That is, 

Tk (irrev) r Tk (rev) . 

Thus, when processes occurring in Compartments are irreversible, the entropy throughflow is always 
larger than if a11 the compartments are in reversible processes. 

Also for TST, we obtain 

where 

TST (irrev) = Tk (irrev) = ?'Spa .t ?'Spa , 
L 

TST (rev) = Tk (rev) = TSF. 
k 

ENTROPY PATH LENGTH 

Entropy path length (PL) is defined as the average number of compartments through which 
will pass an average entropy outflow to the environment, or the average number of compartments 
through which will pass an average entropy inflow from the environment plus an average entropy 
production within the system. It is shown similarly to the case of energy and matter (Patten et al. 
1976) that 
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where Y = yk is the total entropy outflow from the system H; 2 = 2 zk is  the total entropy 

inflow into H, S = z s k  is the total entropy production in H; and Y = Z i- S at  steady state as 

is easily shown. When processes in all the compartments are reversible, S = 0 and TST" = 0 and 
the entropy path length becomes PL (rev) = TSFz'/Z. On the other hand, when processes are 

irreversible, the entropy path length PL (irrev) is expressed by Eq. (10). 

Let us introduce two more path lengths: those due to entropy production within the system 
and those due to entropy inflow from the environment. Path length due to entropy production in the 

system is defined as 

which represents the average number of compartments through which will pass an average entropy 

production in the system. Path length due to entropy inflow from the environment is defined as 

which represents the average number of compartments through which will pass an average entropy 

inflow from the environment. 

It is shown that relations 

> 
PL (zrrev) = PL (rev) 

c 

hold paralleling relations 

> 
PL(9 = PLQ. 

< 

That is, PL(irrev) is equal to (or larger or smaller than) PL(rev) when PLfs) is equal to (or larger or 

smaller than) PL". 
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ENTROPY CYCLING INDEX 

Entropy cycling efficiency at the compartment Hk is defined as the fraction of entropy 

throughflow Tk that returns to Hk and given by (as the case of energy and matter; Finn 1978) 

(14) 
1 RE k = 1 - - .  

n;' 

The cycled portion of TST is expressed as 

where iTT$' = xk REk G' and TSG' = xk RE, * G'. The entropy cycling index (Cl) is the 

fraction of TST that is cycled and given by (Finn 1978) 

When processes in all the compartments are reversible, TST, = 0, TSTCS' = 0 and the entropy 
cycling index becomes CZ(rev) = TST, On the other hand, when processes are 
irreversible, the entropy cycling index CZ(irrev) is expressed by Eq. (16). 

Let us introduce two more cycling indices: those due to entropy production within the system 
and those due to entropy inflow from the environment. The cycling index due to  entropy production 

within the system is defined as 

/TSpz). 

which represents the entropy cycling index if there is no entropy inflow from the environment. The 
cycling index due to entropy inflow from the environment is defined as 

which represents the entropy cycling index if there is no entropy production within the system. 
It can be shown that relations 

> 
CI (irrev) = CZ (rev) 

< 

hold paralleling relations 
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That is, Cl(irrev) is equal to (or larger or smaller than) Cl(rev) when CIcs) is equal to (or larger or 

smaller than) CI(”. 

SuMUARYAM>REMARKs 
Up until now only two entropy laws were known, Eq. (l), for an isolated system: 

AS (irrev) > AS (rev) = 0, 

and Eq. (2) for an open system: 

A S  (hev) > A S  (rev) = 0. 

I have presented here four more entropy laws applied to networks at steady state, that is, 
Eq. (8) : 

T, (irr@v) ’ Tk (rev), 

Eq. (9) : 
TST(irrev) > TST(rev), 

Eq. (13) : 

Eq. (19) : 

These four entropy laws are expressed in the terms of network theory: throughflow, total 
system throughflow, path length, and the cycling index They are derived from Eq. (2) by use of the 

procedures in the input-output flow analysis of ecological networks at  steady state. They are exact 

laws without any approximation. They can be applied to any nerworks (not only ecological) at  steady 
state, if entropy flow and entropy production can be estimated. 

ENTROPY PRINCIPLE FOR ECOLOGICAL SUCCESSION 
As pointed out by Hutchinson (1964), the study of large and complex ecosystems, such as 

lakes, consists of two different approaches: holological (holos = whole) and merological (meros = 
part). In the holological approach, an ecosystem is treated as a black-box without scrutinizing internal 
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structures and processes of a system, and the attention is focussed on input and output to and from 
an ecosystem. On the other hand, in the merological approach, components or parts of a system are 
studied in detail. 

Let us focus our attention on hololoSica1 approaches to lakes. Holological studies of lakes 

were first made by Birge (1915) and later by Hutchinson (1957) and many others from an energy 
viewpoint. Jgrgensen and Mejer (1979, 1981) applied the thermodynamical energy concept to the 

analysis of lake ecosystems; the energy is a measure of the distance of a system from thermodynamic 
equilibrium and is closely related to the entropy concept. Aoki (19874) estimated annual values of 

entropy flow and entropy production in Lake Biwa and thus characterized it from holological and 
entropic standpoints. 

In the present section, monthly values of entropy flow and entropy production in Lake 
Mendota (eutrophic) and in Lake Biwa (oligo-mesotrophic) are investigated, and a comparison is 

made between the two lakes. Then, an entropy principle for ecological succession is presented (Aoki 
1989). 

LAKE MENDOTA 

Lake Mendota in Wisconsin is the most thoroughly studied lake in the world (Brock 1985). 

Dutton and Bryson (1962) estimated monthly variation of each term of the heat balance equation for 

Lake Mendota. Terms in the heat balance equation consist of: energy flows due to direct, diffuse and 
reflected solar radiation; energy flows due to infrared radiation incident upon the lake, and due to 

infrared radiation emitted by the lake; energy flows due to evaporation, and due to sensible heat; and 
changes of heat storage in the lake. They are expressed per unit area of the lake surface. From 

monthly values of the terms of energy flow, we can calculate corresponding entropy fluxes into and 
out of the lake using some physical methods described in Aoki (1987d, 1989). Then, the net entropy 

flow into the lake ( A S )  can be estimated. The change of entropy content of the lake (AS) is 
computed from the change of heat strange in the lake and form the mean temperature of the lake 

water (Stewart 1973). Thus, the entropy production (AJ) per unit area of the lake surface is obtained 

as A$ = AS - AJ. Dividing by the mean depth of the lake, we obtain the entropy production 

(Spmd) per unit volume of lake water. 

The net entropy flows into the lake (AJ) become negative in all months. That is, the lake 
absorbs "negative entropy" (Schrbdinger 1944) from its surroundings. SchrUdinger (1944) asserted 
that biological organisms absorb "negative entropy" from their surroundings and that this is the 
physical basis for ordered structures and functions of organisms to be maintained. Thus, in this 
respect (absorption of "negative entropy"), the lake as a whole can be regarded as something like a 
"superorganism" (Clements and Shelford 1939) which has ordered structures and functions in it similar 

to  a biological organism. 
The entropy production in each month is shown in Fig. 6. It is larger in summer and smaller 

in winter. The monthly entropy production in the lake (Spd) becomes a linear function of the 

monthly solar radiation energy absorbed by the lake (Esh,); that is, Spmd = n + bE,*, a = 0.006 [MJ 

n r 3  month-' K-' ] and b = 2.29 10"' [nz-' K"] . The values (a,b) are holological indices which 
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Figure 6. Annual march of entropy production in Lake Mendota. 
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characterize the lake from an entropyviewpoint: n is the entropy production independent of absorbed 
solar radiation, and b is a sensitivity of entropy production to absorbed solar radiation energy. Or 

as another index similar to b ,  we may introduce the entropy production per unit volume of lake water 
per year divided by the absorbed solar radiation energy per unit area of lake surface per year. This 

quantity (say, b') may be called "normalized entropy production" in the sense that it represents entropy 
production divided (normalized) by an environmental factor of the lake: the solar radiation. The 

value b' for Lake Mendota is 2.44 x lom4 [nt-' K-'1. 

LAKE BIWA AND A COMPARATIVE STUDY 

Similar calculations are carried out for the northern basin of Lake Biwa, the most studied lake 
in Japan, and the corresponding values of holological indices (a,b,b') are obtained (Aoki, in 

preparation). Comparison of these indices in Lake Mendota and in Lake Biwa is made and shown 
in Table 1. As shown, these values (cr,b,b') in Lake Mendota (eutrophic) are larger than those in the 

northern basin of Lake Biwa (oligo-mesotrophic), Thus, the eutrophication process is accompanied 
by an increase in magnitude of these entropy production indices. This is a trend in processes of 

eutrophication in lakes specified from an entropy point of view. Ecological succession in lakes 

proceeds from oligotrophic to eutrophic. Hence, the increase of entropy production will be an 
entropy principle of ecological succession in lakes, and also in other ecological systems. 

TABLE 1 

Comparison of indices a,b,b' in Lake Mendota and the northern basin of Lake Biwa. Q is  in units of 
[MJ nt" month-' K-'1 and 6,b' in units of [nu' K"]. Total-P in units of [mg f-'1. 

Lake Total-P a b b' 
~ ~ 

Biwa (northern) - 0.01 oligo-mesotrophic 0.002 0.6 0.6 

Mendota -0.14 eutrophic 0.006 2.3 2 4  

The above statement, which may be called "the increasing entropy production principle" can 

be compared with Lotka and Odum's maximum power principle (Odum 1971), which asserts that 

power (= flow x force) is maximized in processes of succession. Entropy production is also expressed 

as flow x force (the same expression as power), although definitions of force are of course different 
between power and entropy production. Thus, since power and entropy production are expressed in 
similar forms, "the increasing entropy production principle" can be considered to be similar to  Lotka 
and Odum's maximum power principle. However, "the increasing entropy production principle" is 

opposite to Prigogine's minimum entropy production principle (Nicolis and Prigogine 1977), which 
states that entropy production decreases with time and reaches a minimum. Prigogine's principle 

holds only near the thermal equilibrium; on the other hand, ecosystems will be far from equilibrium. 

Hence, it is not surprising nor strange that Prigogine's principle does not hold in ecological systems. 
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THE OVERALL TREND IN ECOLOGICAL, SUCCESSION 
In the above, we proposed that entropy production increases with time in some stage of 

succession. Does this trend continue over the whole period of ecological succession? The description 
of how living systems develop with time is one of the most important problems in biological sciences. 

In this connection, I present here one probable hypothesis: entropy production increases with time 
in a developmental srage (early stage) of succession, and is kept constant in a stationary stage 
(intermediate stage) and decreases with time in a senescent stage (later stage) of succession, as shown 

in Fig. 7. Thus, processes of succession will not be uni-directional, but consist of three different 

phases (increasing, constant, and decreasing). I think that this trend will be applied to the time-course 
of h t k a  and Odurn's power, and also Hirata and Ulanowicz's ascendancy that is an information 

theoretical index describing growth and development of organisms and ecosystems (Hirata and 
Ulanowicz 19844; Ulanowicz 1986). This trend will be of universal nature in biological or ecological 

processes which have two opposing phases: growth and senescence. 
The non-unidirectionality of processes discussed above means that maximum-minimum 

principles, which assert that actual processes in nature proceed so as to maximize or minimize some 
fundamental quantities, do not necessarily hold in some aspects of biological and environmental 
sciences. Maximum-minimum principles may be used in a restricted period of time (e.g., only in a 

developmental srage), but they can not be used for the whole span of processes, The origins of 
maximum-minimum principles are in physics; hence the above discussions present the case in which 

physical principles can not necessarily be applied to biological and ecological objects. 

Discussion 
Hirata and Ulanowicz (1986) made the following comment on ecological succession: "Even 

though ecological succession is clearly in the domain of non-equilibrium thermodynamics, there is still 
no consensus on a formal method for treating these phenomena." The present section has presented 
one methodology to treat ecological succession from a thermodynamical, or more specifically, from 
an entropic point of view. Also, we have proposed an entropy principle for ecological succession. 
Of course, in order to get a solid conclusion on succession from an entropy standpoint, it is necessary 

to obtain more data on entropy production in many ecological systems at different stages. 

The methods for calculating entropy production in lakes described in Aoki (1987d, 1989 ) can 

be applied to any ecosystems if their energy budgets are completely known. Ulanowicz and Hannon 

(1987) proposed a hypothesis that living systems create more entropy than their non-living 

complements and suggested that one compare entropy productions in forests with those in deserts 
in order to substantiate this hypothesis. Computation of entropy production in forests will be made 

soon by use of the methods described in Aoki (1987d, 19S9). Thus, this line of research on entropy 
production in ecosystems will make it possible to answer quantitatively the key question posed by 

Ulanowicz and Hannon (1987): "Do living systems serve to increase the entropy production rate over 

what it would be in the absence of life?" 
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INFORMATION IN ECOLOGICAL COMMUNITLES 

Hironori Hirata, Department of Electrical Engineering, Chiba University, 1-33 Yayoi-cho, Chiba-shi 
260, Japan 

ABSTRACT 
Here we define a new index of information contained in the structure of ecological 

communities. We call it the "H2-information index." Using p-information, we lend theoretical 

support to several ecological insights, especially those concerned with stability; e.g., those concerned 

with the relation between the structure of a foodweb and its environment, or the relation between 

stability and average turnover rate. We also show on the basis of #-information that mineral systems 
are generally more highly organized than carbon and energy systems. 

INTRODUCI'ION 
An ecological community may be defined as an information based system which has the ability 

to store the information necessary for its own persistence or adaptation to the environment through 

succession (or evolution). 
An ecological community may be regarded as a system transmitting various media such as 

energy, carbon, or nitrogen from input to output. Each medium has its inherent routes between the 
entrance and exit. The structure of the ecological community may be characterized by coding the 

routes using sequences of the names of elements. 
GatIin (1972) discussed the genetic code using information theory. Although the actual 

meanings of information indices for the genetic code and those for the ecological community are not 
completely congruent, we use the same symbols as Gatlin used, so that researchers who are familiar 
with his work will understand it easily. 

From the view point of information theory, we newly define the H?-information index R of 
the ecological community, which is a measure of how much the entropy has been lowered from its 
maximum value and also a measure of all the ordering, constraints, rules, etc., that have been imposed 

upon the ecological system. R is a direct measure of the structure of the ecological community; i.e., 
the size of the elements and the direct or indirect relations among elements, such as predation, 

competition, or symbiosis. 

The #-information index R consists of two parts, RD1 and RD2. RD1 represents the 
divergence from equiprobability with respect to the distribution of elements; Le., in some sense the 
distribution of storage. RD2 represents the divergence from independence with respect to the relation 

between elements; Le., the distribution of flows. RD1 depends on the distribution of storage (or the 
population). Thus if we use a species as an element of the system, RD1 relates to species diversity. 

On the other hand, RD2 depends on the distribution of both storage and flow; Le., community 

structure. If the system is at steady state, RD2 relates to mutual information of network structure 

which we have already defined (Hirata and Ulanowicz 1984, 1985; Hirata 1990). Therefore, the p- 
information index represents the information contained in both the entity (or storage) distribution 
and the flow structure. 
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In Sect. 2, we explain how we can represent the structure of ecological communities as a 
coding problem. 

In Sect. 3, we develop theoretical definitions of the divergence from equiprobability and the 

divergence from independence. Finally we define @-information of ecological communities. We also 
define several related indices. 

In Sect. 4, we try to find the role of H’4nformation for stability. We find out the relation 

between @-information and the stability of ecological communities using Shannon’s second theorem 

(e.g., Shannon and Weaver 1949): ecological communities should keep H2-information high in order 

to adapt to severe environments; Le., to be stable. This coincides with Johnson’s statement (1989) 
that in harsh environments increased redundancy is necessary for a species to withstand the greater 
natural fluctuation and the greater prevailing variability, and Ulanowicz’s (1980) statement that 
perturbations probably act to increase the amount of redundancy. This result also gives theoretical 

support to the following two experimental results. 

1. The structure of a foodweb under fluctuation is simpler than i t  would otherwise be under a 
constant environment (Briand 1983). 

2. Arctic aquatic ecosystems are relatively simple in their structure (Johnson 1989). 

These results coincide with Briand (1983)’s insight that environmental constraints will impose a far 
greater rigidity of web shapes and a much smaller choice of trophic patterns than previously assumed. 

The proposed information index has some relation to May’s stability condition (1972). We also study 
the relation between average turnover rate and stability through information theoretical discussion: 

ecological communities should keep average turnover rate small in order to adapt to severe 
environments; Le., to be stable. This result lends theoretical support to the following insights. 

1. The Producrion/Biomass ratio in lakes tends to decrease with increasing latitude (Mann and 
Brylinsky 1975). 

2. Tropical forest systems have a much more rapid turnover rate than temperate forest systems 
(Whittaker 1966; Golly 1972; Burger 1981). 

3. Arctic lakes support a high biomass relative to the very low primary productivity (Johnson 
1989). 

It also coincides with Leigh’s theoretical result (1968) on Volterra’s equations: the higher the 

turnover rate, the less stable the community. 
In Sect. 5, we discuss some properties of p-information. Eutrophic versus oligotrophic 

conditions are discussed using fP-information. By computationally comparing p-information of a 
eutrophic ecological community with that of an oligotrophic one, we get the result that H2- 
information of the oligotrophic lake is larger than that of the eutrophic lake. We use data from four 
lakes (Richey et al. 1978). Marion Lake (British Columbia), Findlay Lake (New Hampshire) and 

Mirror lake (New Hampshire) are oligotrophic, and Lake Wingra (Wisconsin) is eutrophic. These 
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lakes are similar in size, climate, and altitude, except Findlay Lake, which is at  a higher elevation. 
If we suppose that ecological systems succeed in reaching a more stable state, this result coincides with 
the following insights since larger p-information means higher stability. 

1. Oligotrophy should succeed eutrophy, not precede it. A decisive experiment to test this would 
be to reduce the input of nutrients to a eutrophic lake and follow its evolution. We are 
positive it would change in the direction of oligotrophy (Margalef 1968). 

2. Eutrophication of a lake results when nutrients are imported to the lake from the outside. 
This is equivalent to adding nutrients to a laboratory microecosystem o r  fertilizing a field: 
the system is pushed back, in successional terms, to a younger state (Odum 1971). 

3. Lakes can and do progress to a more oligotrophic condition when the nutrient input from 
the watershed slows or ceases (Mackereth 1965; Cowgill and Hutchinson 1964; Harrison 
1962). 

Furthermore, we show that each kind of medium (carbon, energy, nitrogen, etc.) has its special 

characteristic relation between RD1 and RD2. 

CODING OF ECOLOGICAL PATHS 
As in Fig. 1, an ecological community may be regarded as a system transmitting various media 

such as energy, carbon, or nitrogen, from input to output. Each medium has its inherent routes 
between the entrance and exit. The structure of ecological communities may be defined by coding the 

routes using sequences of the symbolic names of elements. 

Let us define the sample description space X,, which is referred to below as the community 

alphabet, of the random phenomenon of choosing an element along a route: 

where xi, which is referred to below as a community letter, gives the symbolic name of the i* element 

(i = l , . , . ~ )  and xn+, implies the outside of the community. &xi) is defined as the probability of xi's 
occurrence. 

Let us define the space of doublets of community letters,X,, which is necessary for discussing 

a sequence of community letters: 

Here the conditional probability P(xjl x i )  is defined. 
Let us define the set of paths, PATH, from input to output: 

where 
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Figure 1. Paths of media in an ecological community. 
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k k  k 
1, = Y1Y2 -..Y,, (4) 

( 5 )  
k 

yj E XI, m, = I Z k l  (the Zength of ZJ. 

Here y t h  is x,+,, which works as the stopping code. Although q may be theoretically infinite if there 

exists a cycling loop, P(1,) of such a long sequence tends to zero. This sequence of symbols is ordered 

along a set of constraints which constitutes an ecological community. 

@-INFORMATION 
Let us discuss the properties of a set of paths, PATH, which represents characteristics of an 

ecological community. We can define information of the set PATH to evaluate two kinds of entropy 
with different meanings. Evaluating the entropy of X, gives the divergence from equiprobability and 

that of X, yields the divergence from independence. Let P, be P(xJ and P,, be P(x, I XJ below. 

TflE DIVERGENCE FROM EQUIPROBABILITY: D, 

The entropy of X, is 

n+l  

H ,  has the maximum value 

Hi- = log(n+l) = ~ ( n )  

when Pi has a uniform distribution; i.e., 

(7) 

Pi = l/(n+l) (i = 1, ..., n + l )  (8)  

which is the equiprobable state. We will substitute ~ ( n )  for H;- = log(n+l) below. 

equiprobable state, H,"", and that of the actual state, HI: 
The divergence from the equiprobable state is the difference between the entropy of the 

D, = H Y  - H, 
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D, can be defined on the storage (or population) distribution. If we use species as elements, HI means 
species diversity in some sense. Thus, D, is the difference between the capacity of an ecological 

system and its diversity. 

THE DIVERGENCE FROM INDEPENDENCE: D, 
The entropy of X, is 

n + l  n + l  

H," = -E P(X,xj)log P ( X , X j )  
i s 1  j -1  

H2 has the maximum value 

when xi and xj are independent. 

independent state, H?r,ld, and that of the dependent state, H,d: 

The divergence from the independent state is the difference between the entropy of the 

D2 is defined on the distribution of flow and storage, and is especially based on flow structure. 

We can easily show the following relations. 

H,'"d = 2HI (16) 

(19) 
d H,  = HI + HM 

where 
n + l  n + l  

From (15)-(17), D, is finally expressed as 

D, = H, - Hw 
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The sum of D, and D, measures exactly how much the entropy has been lowered from the 

maximum entropy state. Since the maximum entropy state means the random state (or unorganized 

state), the sum of D, and D? evaluates to what degree the ecological community is self-organized by 

storing information. Let us define stored information as follows. 

P-Stored Lnformation: Is 

entropy state: 

Let us define p-s tored information as the sum of the total divergence from the maximum 

The reason why we call it the @-information index is because two meanings of entropy are evaluated 
in this index. 

Substitution of (10) and (19) into (20) yields: 

H2-Information: R 

which is simply referred to below as @-information. 
Normalization of I, by the maximum value x ( n )  can define normalized stored information, 

Let us define Hz-information, R: 

Here, 

O s R s l  

and R is dimensionless because it is a fraction. M-information is the same quantity as Shannon’s 

redundancy in information theory. 

@-information, R, measures how much the entropy has been lowered from its maximum value 
and is a measure of all the ordering, constraints, and rules that have been imposed upon the system. 

R is a direct measure of the structure of an ecological community; Le., the size of the elements and 

the direct o r  indirect relations among elements, such as predation, competition, or symbiosis. 

STRUcJruRE INDICES OF P-INFORMATION: RD1 AND RD2 
Separation of R into two parts is useful in studying the structure of p-information, R. 

R = R 1 + %  
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where 

Ri = DJx(Tz) .  (i = 1,2) 

Let us define an index to characterize two parts: 

Here, 

and 

RDl + m2 = 1 

0 s mi s 1. (2 = 1,2) 

RD1 and RD2 are dimensionless because they are fractions. RD1 is the contribution of D, to R; Le., 
it shows the effect of storage distribution. RD2 is the contribution of D2 to R; i.e., it is the effect of 

structure. These indices are referred to below as structure indices of #-information. If we are given 

two identical values of #-information R, each with significantly different structure indices RD1 and 

RD2, we would have an ecological community with the same amount of H?-information but of 

different kinds. The H'-stored information I ,  or the H'-information R tells us how much divergence 

there has been from the maximum entropy state. And the structure indices RDl and RD2 tell us what 
kind of divergence it is; i.e., whether it is composed mostly of D, or D,. 

The three fundamental quantities which one calculates are H,, HM and x(n).  From these one 

can calculate all the useful values like D,, D,, I, or  R, RD1 and RD2. H ,  can be defined only on  the 

distribution of storage in some sense; i.e., i t  depends on the individuals of the ecological system, and 
it shows the population (storage) diversity (variety). On the other hand, HM is defined mainly on the 

transition rate corresponding to the distribution of flows; Le., it depends on the Structure of the 

ecological community, and it shows flow diversity. 

Whenever we calculate the entropy of a sequence of symbols, it represents the capacity to 

transmit. When we evaluate the entropy of a divergence from the maximum value, x ( n ) ,  this is a 
measure of the capacity to store information, Stored information is also a capacity to combat error 

(or to adapt to the environment). It is possible for the entropy to be so high that transmission error 
makes communication impossible. Reducing the entropy to the point where the stored information 
becomes maximal, we can make transmission highly reliable (or stable as concerns ecological 
communities); but the message variety is so low that we cannot hold successful variety in the message 

(or the ecological community). 
Generally we need an optimum blend of variety and stored information for successful or 

meaningful communication (or successful succession of ecological communities). 



The capacity to combat error (or the capacity to adapt to the environment) depends not on 
an entropy maximum or minimum but rather on a delicate optimization of the two opposing elements 

of variety and reliability. In an ecological community a delicate optimization of two opposing factors, 
variety and stability, is necessary to adapt to the environment. 

STABILITY OF ECOLOGICAL COMMUNlTIEs 

FUNDAMENTAL CONDITION OF STABILITY 
Let us discuss stability against perturbation of ecological communities. 

When a sequence of community symbols is ordered according to a set of constraints which 
constitutes an ecological community, the sequence of community symbols shows a route for moving 

media. It may be called the ecological message. We may regard an ecological community as an 
information source. The encoding of the ecological message occurs at the source. A channel is simply 

any medium over which the message is transmitted. In the discussion of ecological communities, a 
time tunnel with environmental perturbation such as climate change may be regarded as a channel. 

That is, there exists noise, which interferes with the transmission in the channel. Environmental 
perturbation like climate change may be regarded as noise for ecological communities. 

Let us describe Shannon’s second theorem. 

Shannon’s Second Theorem: If 

u < c  (30) 
where U is the rate of emission from the information source and C is channel 
capacity, there is a code such that transmission over the channel is possible with an 
arbitrarily small number of errors. 

The channel has a certain capacity; Le., an upper limit to the rate at which it can transmit a 

sequence of symbols without incurring gross error due to overloading the channel. The essential 
concept of Shannon’s second theorem is this: we cannot eliminate noise in the channel, but we can 

under certain conditions ( U c C )  transmit a message without error in spite of this noise if the message 

has been properly encoded at the source. The code is the crux of the matter. The more efficient the 

code becomes, the closer it approaches this error-free limit. A fundamental condition under which 
Shannon’s theorem is valid is that U c C, Le., the rate of emission from the source, which is measured 
by the source entropy, must not exceed the channel capacity. 

In studying ecological communities, U may be expressed as 

u = kHM 

where k is the average turnover rate in all transitions between elements. Therefore, an interpretation 

of Shannon’s second theorem for ecological communities is represented as follows. 

Proposition 1: Ecological communities can be stable against perturbation under the condition 

kHM < C; 
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i.e., ecological communities can be stable with respect to disturbance of the environment, if it has 

been properly organized or structured. Here, C is a decreasing function of the strength of the 
perturbation and 

C = x ( n )  (no perturbation) (33-a) 

C c x(n).  (perturbation) (33-b) 

Proposition 1 shows that ecological communities should keep U, or HM and k, small in order 
to adapt to severe perturbation; Le., to keep itself stable. 

THE RELATION BETWEEN STABILITY AND H*-IIWORMATION 

Because there is a relation between HA, and H‘4nformation R as 

H, = x ( n )  (I-R) 

we can rephrase Proposition 1 as follows: 

(34) 

Proposition 2: Ecological communities should keep H’-information R large in order to adapt to severe 
environments; i.e., to be stable. 

It may be said that H‘-information R of ecological communities in cold and severe regions 

should be larger to defend against perturbation than the R of those in warm and mild regions. 

Proposition 2 also means that smaller H‘-information i s  enough for tropical ecological communities 

but not for arctic communities. H‘-information, R, is a measure of all the constraints on an ecological 

community which make the ecological community stable. Proposition 2 coincides with Johnson’s 

statement (1989) that in harsh environments increased redundancy is necessary for a species to 

withstand the greater natural fluctuations and the greater prevailing variability and Ulanowisz’s 

statement (1980) that perturbations probably act to increase the amount of redundancy. 

Because larger R’s generally mean relatively simple structures of food webs, Proposition 2 

gives theoretical support to the following two experimental results. 

1. The structure of foodwebs undergoing fluctuation is simpler than those under constant 
environments (Briand 1983). 

2. Arctic aquatic ecosystems are relatively simple in their structure (Johnson 1989). 

Proposition 2 or the results derived from it coincide with Briand’s (1983) insight that 
environmental constraints will impose a far greater rigidity of web shapes and a much smaller choice 
of trophic patterns than previously assumed. 

Proposition 2 also lends some support to the results of the relation between the complexity 
and stability of ecological communities (May 1972; Pimm 1982, 1984 and 1987; and others). Actually, 
although the details have been omitted in this paper due to space limitation, we see both theoretically 
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and experimentally that H,,, has a strong correlation with May’s stability index (no)m (n is the number 

of species, and [I is connectance). 

THE REIATION BETWEEN STABILITY AND AVERAGE TURNOVER RATE 

As a relation between stability and the average turnover rate over all transitions, k, the 
following proposition can be derived from Proposition 1. 

Proposition 3: Ecological communities should keep average turnover rate k small in order to adapt 
to severe environments; Le., to be stable. 

It may be said that the average turnover rate k of ecological communities in cold and severe 
regions should be smaller than the k of those in warm and mild regions in order to defend against 

severe environments. Proposition 3 also means that tropical ecological communities can support 

larger turnover rates than arctic ecological communities. 

When we can assume that the average turnover rate is approximated by the 
Production/Biomass ratio, Proposition 3 gives some theoretical support to the following insighrs. 

1. The ProductionBiomass ratio in lakes tends to decrease with increasing latitude (Mann and 
Brylinsky 1975). 

2. Tropical forest systems have a much more rapid turnover rate than temperate forests 
(Whittaker 196G, and Golly 1972). 

3. Arctic lakes support a high biomass relative to the very low primary productivity (Johnson 
1989). 

Proposition 3 also coincides with Leigh’s (1968) theoretical result on Volterra’s equations: 

the higher the turnover rate, the less stable the community. 

SOME PROPERTIES OF Hz-INFORMATION 
EUTROPHIC VERSUS OLIGOTROPHIC 

Let us compare p-information R’s between eutrophic and oligotrophic ecological 
communities. We use data from four lakes (Richey et al. 1978). Marion Lake (British Columbia), 

Findlay Lake (New Hampshire) and Mirror Lake (New Hampshire) are oligotrophic, and Lake 

Wingra (Wisconsin) is eutrophic. These lakes are similar in size, climate, and altitude, except Findlay 

Lake, which is at a higher elevation. Because the data include only flow values, we calculated p- 
information using the approximation of probabilities {P(xJ)  shown by flows (e.g., Hirata 1990). 

The results are: 
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L a k e R  

Marion 0.943 
Findley 0.776 

Mirror 0.560 
Wingra 0.521 

H2-information R of oligotrophic lakes is larger than that of the eutrophic lake. If wesuppose 
that ecological systems succeed in reaching a more stable state, this result coincides with the following 

insights since larger H’-information means higher stability. 

1. Oligotrophy should succeed eutrophy, not precede it. A decisive experiment to test this 
would be to reduce the input of nutrients to a eutrophic lake and follow its evolution. We 
are positive it would change in the direction of oligotrophy (Margalef 1968). 

2. Eutrophication of a lake results when nutrients are imported to the lake from the outside. 
This is equivalent to adding nutrients to a laboratory microecosystem or fertilizing a field: 
the system is pushed back, in successional terms, to a younger state (Odum 1971). 

3. Lakes can and do progress to a more oligotrophic condition when the nutrient input from 
the watershed slows or ceases (Mackereth 1965; Cowgill and Hutchinson 1964; Harrison 
1962). 

RD1 VERSUS RD2 
I?-information, R, is a measure of all the constraints on an ecological community which make 

the ecological community stable, or persistent. 
In terms of entropy, the highly organized system does not necessarily have the lowest values 

of H,, but rather the lowest values of HA, relative to HI;  i.e., i t  has the highest values of D2. The 
larger RD2 becomes, the more highly organized the structure. 

Figure 2 shows there are some differences among media in the distribution of the ratio 

between RD1 and RD2. Carbon (C’ distributes in the whole part on the line; Energy (E) ,  more in 

the upper part than in the middle; Minerals (Potassium (K)  and Nitrogen (N)), in the upper quarter 

part on the line; with Nitrogen (4 in the part near the axis. Energy is an exception in the figure. 

Perhaps this is because its data is not real but estimated. Fig. 2 characterizes mineral systems (similar 
to the Nitrogen system) as more highly organized than energy and Carbon systems on the basis of an 
information theoretic measure. 

CONCLUSION 

We defined a new index of the information contained in the structure of ecological 
communities, namely “-information. We discussed several properties of the stability of ecological 

communities from the viewpoint of information. The proposed H’-information index will come to 

play an important role in discussions of ecological succession. 
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Other Papers 

The paper by GILPIN ("Community Collapse: Perspectives on Prediction") expanded to 
communities in the broad sense, comprising all of the species in a given place. Gilpin pointed to the 

four evils that will increasingly impact ecological systems: habitat loss, pollution, introduction of alien 

species, and the secondary effects of the first three. The first three of these may directly cause the 

extinction of species. The fourth, secondary effects, produces additional extinctions that will occur 

before the system reaches its final steady state. 

Gilpin inquired into the degree to which community ecologists will be able to predict the 
extinctions produced by these disturbances. Scientists in other fields are often able to predict the 

consequences of disturbances, shocks, and perturbations to their systems. In fact, this ability is often 
the strength of their science. 

The first problem faced by community ecologists is to identify what they intend by a 

"community" and to come up with a language by which scientific discourse is possible. It must 
nonetheless be understood that community ecologists do speak different languages, that these 
ianguages resolve different parts of the system, and that the character of the predictions made will be 
a function of the language spoken. 

At levels below and above the "community," the abstractions "population" and "ecosystem," 

while entailing problems of their own, have been easier to utilize in scientific discourse. The 
population is the fundamental unit of evolution, while the ecosystem is governed by physical 
constraints. These connections can allow the use of terminology from other disciplines, for example, 

population genetics and thermodynamics. 

Gilpin acknowledged that there is probably no such thing as the "real community;" at least 
it is nothing humans can know. By this term is meant the least abstracted, most exhaustively detailed 
description of the system that we can obtain. Such a description would include detail on single 
individuah and their inner workings. Clearly, this is not an appropriate level at  which to do 

community theory. 

The three levels of state identification listed above represent successively greater degrees of 

abstraction. Closest to "reality" is the species interaction model, in which all kinds of species 

interactions, including interference and mutualism, are incorporated. The resource competition model 

ignores species interactions other than direct consumption, while the feeding web model only 
considers the presence or absence of a consumption link between two species. 

The simplification from the first two levels of abstraction to the third is, from a practical 
standpoint, quite large. There are no instances where long-term data exist giving the densities of, and 

interaction strengths between, any set of species. Yet there are many complete descriptions of feeding 

webs. This means that, at  the level of food webs, one has the possibiiily of empirical patterns that 
are beyond dispute. For the two higher levels, however, different community ecologists have 
generalized from the systems with which they are familiar, producing alternative "theories," actually 
hypotheses, concerning the nature of species interactions: which interactions exist, how strong they 
are, whether they are constant or vary with time, whether they have coevolved, and so forth. Thus, 
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at levels 1 and 2 there are competing alternative theories. 
community construction and collapse may help to select the most realistic of these theories. 

I t  is possible that ecosystem and 

HASTINGS ("Stability of Food Webs") questioned the basic usefulness of the concept of 

stability as applied to natural systems. Stability has been extremely difficult to define for such cases. 
Local stability, or the tendency for a system to return towards a well-defined equilibrium point, seems 

particularly unsuitable for most real ecological systems. There are many examples of coexisting 
species in which population numbers do not settle down to stable levels. The less restrictive concept 

of persistence seems more appropriate in such cases. 

One important problem with respect to defining stability is the question of scale. What level 
of spatial scale does one mean? Systems may be unstable at the level of a patch but can be somewhat 
stabilized via dispersal that couples together many patches over large spatial areas. 

Many models used to describe such food web characteristics as stability do not take into 
account factors such as age and spatial structure, which can often be crucial. Hastings argued that 

the important common features of food webs (features that can be usefully compared) may not be the 

general descriptors such as stability, but instead the lower level mechanisms (interactions between 
subpopulations on small patches, age-, or size-specific behavior, etc.). The search for sets of 
commonalities at their lower levels and their incorporation into models is an important goal of 

theoretical ecologists. 

Food web assembly is another key topic in food web theory and YODZIS ("The Interface 
Among Dynamics. Energy, and Assembly") presented a unified perspective that encompassed the rival 

ideas that (1) either energy constraints or (2) dynamic stability considerations govern structure or  that 
(3) structure is generally "loose" and not strongly controlled by any factor. Yodzis noted that the 

build-up of communities through a process of assembly by a more or  less random sequence of 
colonizing species has been studied from several viewpoints; energetic constraints (Yodzis 1981, 

1984), mild specialists (Sugihara 1982, 1984), and dynamics (Post and Pimm 1983, Drake 1983). His 
talk explicated the relationship between the energetic and dynamic viewpoints, and proposed, very 

tentatively, a unified perspective on the structuring of assembled communities. 
The dynamic assembly models are based on Lotka-Volterra dynamics for a community of s 

species. In order for a potential invading species to succeed in joining such a community, three 
criteria must be met (if we assume only equilibrium dynamics): (1) the invader must be capable of 

increase when rare, (2) the new community must have a feasible equilibrium, and (3) this equilibrium 
must be stable. As communities are built up in this way, one finds that two things happen (Post and 

Pimm 1983, Drake 1983): the return time of the system equilibrium decreases, and i t  becomes more 
difficult to fulfill the "increase when rare" criterion. Eventually, the assembly process terminates with 
all further attempted invasions failing already at step 1: "invasion resistant" endstates are reached, 

with no potential invaders able to increase when rare. 
Yodzis showed that the condition (2) for increase when rare is an energetic consideration: 

it expresses that the invading species must have a positive population energy balance when rare in 
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order to invade. The invasion resistant endstates of the dynamic assembly process are constrained by 

energy flow. 
This view of the assembly process suggests that communities might fall into at least three 

different classes: 

(1) If the assembly process terminates, structure will be energetically constrained. This might be 
the case in relatively undisturbed habitats. 

(2) If small-scale disturbances are sufficient to destabilize the equilibrium before the energetically 
constrained endstate can be attained, structure will be constrained by dynamical stability 
(Pimm 1952). 

(3)  If assembly is disrupted by larger-scale disturbances, we will get something else - perhaps the 
"loosely structured" communities discussed in this symposium by Prof. Kawanabe. 

The search for universal principles was exemplified by COHEN's study, based on 

phenomenological rules of predator-prey allometry in food chains. He used an observed allometric 
relation between the weight of terrestrial vertebrate predators and the weight of their prey to predict 

an upper limit to the weight of a terrestrial vertebrate predator that is very close to the observed 
largest weight. 

If W,, denotes the weight (in kg) of a terrestrial vertebrate predator and W,, the weight (in 
kg) of its prey, then the two weights are related approximately by a power function 

where B = 0.58 and A = 8.6 approximately. According to (l), a terrestrial vertebrate predator that 

takes prey weighing 1 kg is predicted to weigh approximately 8.6 kg. A terrestrial vertebrate predator 

of prey weighing 1 mS is predicted to weigh approximately 3 g. 
Applying (1) to a food chain, Cohen determined that for sufficiently long food chains (Le.? the 

number of links approaches infinity), the weight of a terrestrial vertebrate top predator is predicted 

to be independent of both the number n of links up to that predator and of the weight Wm of the 
basal prey in the food chain. 

For example, the heaviest terrestrial vertebrate predator considered is the East African lion 

(Panthera Ieo) at 160 kg. With A = 8.6 and B = 0.58, (1) predicts a maximum predator weight of 
168 kg. However, the number of trophic links in real food chains is not infinite. In 113 community 
food webs (Cohen et al. 1986), the longest reported chain (from a tropical Pacific plankton 

community) has 10 links. Using n = 10 gives a predicted top predator weight of 155 kg for basal prey 
weight of 1 g. For chains of length 10, the predicted weight of the top terrestrial vertebrate predator 

increases by less than 3 percent when the weight of the basal prey increases by a factor of 1OOO. 

That predator-prey allometry can be used to predict approximately the absolute individual size of 
the largest predator (at least among contemporary terrestrial vertebrate predators) appears not to 

have been noticed previously. This finding leaves open the problem of explaining the origin of 
predator-prey allometry. 
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DeAngclis ("Some Stability Relations in Nutrient-Limited Systems") explored some 

relationships between system resilience and nutrient availability (through nutrient input and recycling) 
in nutrient-limited ecological food chains. The results point to the existence of a broad generalization 

on the level of the total system, but also to great complexities when the internal structure of the food 

chain has to be taken into account. 
At the level of the whole system, when nutrient input is limiting in the system, the ratio of 

the steady state flux of nutrient to standing stock of nutrient in the system appears to be an accurate 
measure of resilience, as had been previously noted in computer simulations by Jordan et al. (1972), 

Dudzik et al. (1975), DeAngelis (1980), and Harwell et al. (1981). The present work adds analytic 

corroboration to this generalization. 

Thc relationships involving resilience of the system become more complex and interesting 
when perturbations act on only part of the system and/or the post-perturbation behavior of only part 

of the system is of interest. Several examples involving perturbations to either the autotroph alone 

o r  to the whole system were considered. It was shown that it made a great deal of difference to 

resilience whether, in steady state, the autotroph exerted control over the level of available nutrient 
in the system or whether the autotroph was itself controlled by the herbivore trophic level. In the 

latter case, the ratio of nutrient flux through the ecosystem to its standing stock of nutrients was 
generally higher, so that resilience was greater than in the former case. Since the autotroph is 

generally controlled from above when the number of trophic levels above it is odd, autotroph- 
herbivore and autotroph-herbivore-carnivore-supercarnivore food chains are likely to be more resilient 
than are autotroph and autotroph-herbivore-carnivore chains. 

It was shown that the relative sizes of components of the ecological system also make a 

difference to resilience when only part of the system is perturbed. A detritus compartment, for 
example, can act as a buffer to perturbations affecting other parts of the system, if the detritus 

compartment is large in comparison. The large standing stock of nutrients in the detritus is ready to 
go back into the pool of available nutrients faster than this pool can be filled by external inputs of 
nutrient. 

The study by DeAngelis was meant only to suggest the variety of behaviors that can occur in 

nutrient-limited food chains with nutrient cycling. The models examined special functional forms and 

special sets of parameters. A more thorough study would doubtless reveal more complex patterns of 
behavior that were beyond the scope of the present work. 
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CONCLUSIONS IS THERE A UNIFIED APPROACH 
IN THEORETICAL ECOLOGY? 

Rather than attempting to synthesize all ideas into one summary, it may be better to present 

verbatim the thoughts of a few different participants, and then make some concluding remarks. 

Thomas Bum: 
"Unified perspective" clearly means "one view," but this immediately raises the questions 

"What is being viewed?" and "At what scale or resolution is it being viewed?". At a gross scale or low 

resolution, the majority of participants at the US-Japan Seminar in the Environmental Sciences shared 

an underlying interest in ecological theory as it pertains to ecosystems and how they are organized. 
So from this level a unified perspective has already been achieved. This does not deny that there are 

ecologists who are primarily concerned with the dynamics of populations, even if they recognize that 
the "environment" or ecosystem partially determines those dynamics. At a finer scale or resolution, 

at  the level of particular approaches to the problem of how ecosystems are organized, there is no 
single view. Some are concerned with whether a single population will go to extinction or not under 

a perturbation to ecosystem organization, some with the "horizontal" organization of guilds, some with 

the "vertical" organization of feeding webs, and others with the interactive (causal) structure and 

phenomenology of ecosystems. This diversity is entirely acceptable, perhaps desirable, especially if 
the different "schools" recognize the existence and validity of alternatives. 

At least three pairs of alternative approaches to the problem of ecosystem organization were 
manifested at the meetings: Applied vs. Basic, Empirical vs. Theoretical, and Population Dynamical 

(Food Web) vs. Ecosystem Phenomenological (Energy-flow Network). Gilpin, in the morning session 
of Day 1, made an almost impassioned plea for applied ecological theory, especially towards the 

protection of species from extinction. Tamaki, in the morning of Day 1, and Kawano and Hara, in 

the afternoon, were the first of several Japanese researchers to present their empirical field studies. 

Although not explicitly addressing the problem of ecosystem organization, they demonstrated the need 

for ecosystem theory to help focus and interpret empirical studies of populations and guilds, and they 

reminded the theoreticians that it is real ecosystems we are attempting to understand. These 
presentations also strongly suggested that non-reductionistic approaches were necessary to understand 

real systems. Ecology cannot be reduced to physiology and demography, because interactions of all 

types are significant. The first two pairs of alternatives will not be discussed further because it is 
evident to most ecologists that both are necessary for science to progress. 

More than any other, the "unified perspective" sought was that between "food web" and 

"ecosystem" approaches to ecological theory. While these two will and probably should continue as 
distinct approaches to distinct problems, common ground was uncovered: a concern with whole 

ecosystems and not merely the local relationships between populations or guilds, a focus on trophic 

interactions, and an awareness that their indirect effects influence ecosystem organization, including 
the species-abundance relations within guilds. This was exemplified by Shigesada et al.'s paper, on 
the morning of Day 1, where they considered the effect of a predator on a set of competing species 

and by the work on food web assembly presented on Day 2, as well as the "ecosystem" papers on Days 
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3 and 5 .  Teramoto's presentation on the first afternoon also tied in nicely with this theme. He 
discussed how, from its very beginning with Motomura in 1932, ecology's concern with empirically 

observed species-abundance relations has been modeled by assuming interspecific competition within 

guilds. However, he then presented work of Nakajima demonstrating that the geometric series 

distribution can be generated by null models (with respect to competitive interactions); Le., a 
probabilistic invasion process. Assuming that the world is not truly random, these results suggest that 

the usual level of explanation (interspecific competition within guilds) is perhaps inappropriate or 
insufficient for understanding (modeling) what determines species-abundance relations. Many at the 

meeting would agree that trophic interactions at least must be included in such models. 

Whereas explicitly considering how both predators and resources determine the dynamics of 
populations may be a "revolutionary" advance for ecological theory (Fretwell 1987), approaches that 
account for energy and nutrient flows from all resources to all consumers, no matter how small the 

direct interactions, are equally important to understanding the trophic structure and hence the 
organi7~tion of ecosystems. The trophic structure of ecosystems cannot be reduced, however, to a 

simple chain of feeding interactions (e.g., Lindeman 1942) without significant loss of information 
(Burns ms.). It is hubris to make claims that any approach is more important or "central" to 

ecological theory, and doing so only further divides ecology. A unified perspective may simply be an 
open-minded recognition that many approaches are needed to understand organisms and their 

environments; that is, ecosystems. 

Peter Abrams: 

There are probably few areas of science today that are more lacking in a unified perspective 

than ecology. Scientists who call themselves ecologists may read totally nonoverlapping subsets of the 
scientific literature, use totally different approaches, and fervently believe that many of the other 

approaches are not only less productive areas of inquiry, but do not even qualify as science. Given 

this state of affairs, the title of the Joint U.S-Japan Seminar was perhaps overly optimistic. 

Nevertheless, the fact that most of the participants were theorists, and the fact that they represented 

a selected subset of theorists, might have been expected to produce a more unified view than exists 

for the field as a whole. To determine whether this expectation was met, one must first address the 
problem of how to define a "unified perspective," and related issues. 

By definition, if an area of science is active, there will be differences of opinion on some 
significant problems, and the perspectives of different workers will not be identical. Thus, if a truly 

unified perspective existed in ecology, it would imply that we should seek employment in other fields. 
The question is really whether the field has a sufficiently narrow range of perspectives with gaps that 

are sufficiently few and narrow, that problem solving is not inhibited by differences in approaches. 
The papers and discussions at the U.S.-Japan Seminar suggested both that existing differences may 

have inhibited problem solving, but also that such differences need not do so. The major dichotomy 
in approaches among the US. participants was that between the populationkommunity ecologists and 
the ecosystem ecologists. O'Neill et ai. (1986) have recently discussed the dichotomy in a book on 
hierarchy theory, and I can add little to that discussion here. The major difference between these two 

factions is the set of variables that each group usually examines. Ecosystem ecologists typically follow 
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a variety of aggregated variables such as carbon flow or biomass per trophic level, and 

population/community ecologists focus on the population densities of species. Many ecologists 
(especially ecosystem ecologists in the United States) have, I think, wrongly equated this with the 
distinction between holism and reductionism. There has been considerable antagonism between the 

two camps as a result. There is an equally large difference between the variables of interest to 
population geneticisls/evolutionary ecologists and population ecologists, but there has never been the 

illusion of a holist/reductionist dichotomy. Because of this lack of philosophical baggage, the 

differences have been seen as an intellectual gap to be bridged rather than as a barrier separating 

more and less worthy approaches. Several of the papers presented by the Japanese participants and 
that of DeAngelis were attempts to span the gap between population and ecosystem approaches. 
These provide some rays of hope for filling in holes that exist in ecology's theoretical framework, 

which I see as the closest we can come to a unified perspective on theoretical approaches to ecology. 
Filling the holes in "theory space" has the potential benerit that patterns observed in one set 

of variables can be related to mechanisms operating on another set of variables, with a resultant 

increase both in explanatory and predictive power. As Michael Gilpin pointed out, an increase in 
predictive power is necessary if ecological theory is to make significant contributions to solving 

ecological problems. The major gaps that I see in present ecological theory are (i) the lack of 
attempts to provide population dynamical mechanisms to explain phenomena observed in the 

aggregated variables typically monitored in ecosystem studies, and (ii) the lack of behavioral 
mechanisms in models of interactions within and between populations. The fact that there were 
several papers presented that addressed each of these areas suggests that the lacunae are being 
eliminated. The work of DeAngelis and Sugihara seems to be related to the first gap, and that of 
Matsuda, Yamamura and colleagues, as well as my own i s  related to the second. Needless to say, it 

would not be desirable for all ecologists to have the filling of these gaps as their first priority. If this 

were to happen, the resultant decline in diversity would more than offset any advantage in 
connectedness. The diversity of views presented at the meeting suggests that we do not have to worry 

about this yet. 

Michael Gilpin: 
A variety of views at population, community, and ecosystem levels have been expressed in this 

joint meeting with Japanese and United States ecological scientists. A "unified approach" is sought. 
As a paradigm of unification, DeAngelis offered the great thermodynamic reduction, What was that? 

R o  sciences working at very different levels of resolution - 10 raised to the 3 r d  power apart - 
speaking very different languages. One language spoke of temperature and heat capacity. The second 

spoke of kinetic energy and statistical distributions. The problem was realiy one of aggregation. The 
likes of Gibbs, Maxwell, and Helmoltz produced a g( ) function that mapped variables a t  the lower 
level and totally explained all the experimental phenomena at the higher level with molecular 
processes at the lower level. Molar thermodynamics was reduced (yet it continues to be used!). 

Is the situation we face as grim in its separation or as potentially promising with the prospect 
of reduction? One encouraging sign is that we basically speak the same language. The basic problem 

is with aggregation. The population dynamicist lumps all species beyond those he wants to study into 
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the environment. The 
ecosystem person works with about the same range of variables, but many of these variables are 

aggregations of species. 
Are we trying to reduce ecosystems and community ecology to population dynamics? Yes and 

no. I have, for example, explained the molar properties of island biogeography with statistical 
distributions of species extinction and colonization rates -- successfully, I believe. The food web 

people have done a number of similar things. 
But this seems to strike terror into holists. Yet I think we have seen, and quite profitably 

so, that there is not this great chasm between the holists and reductionists. AI1 ecologists are holists. 

And i t  is exactly this that draws us from mathematics, physics, and other basic sciences. Patten 

believes that 1 have extracted my Drosophila system away from reality, from context, from, I think he 

would say, the Aristotelian purposes of the ecosystem. 

It seemed that so-called indirect effects were one expression of this. Whole ecosystems had 

them; abstractions did not. Yet this quickly proved to be false. Contrary to Patten, people at the 
meeting had demonstrated the consequences of indirect effects in many ways. And everyone seemed 
to agree, at least for certain phenomena, that they were of predominate importance. Indeed, indirect 

effects are found at all levels of population biology. Even in population genetics they are seen in 
epistasis, and in correlated responses. So, perhaps this is a red herring. What then is the axis over 
which we need to establish a unification. 

Information is one such axis. Population genetics is awash and floundering in too much 

information. Population dynamics has almost enough, though it is not as long-term as one would like. 
Community ecology has very little beyond two and three species interactions (e.g., agriculture, pest 
control). With ecosystems the situation is even worse, for there are almost no long term studies, and 
questions of aggregation boundaries are still vexing problems. I feel that a unification can only occur 
when the availability of system information is more uniform. 

There i s  another problem that is probably producing just as much discord. We rarely make 

clear what it is that we expect from our modeling exercises. Let me consider three works: 

The community ecologist keeps 3 to 30 species as his state variables. 

1. Shigesada, Kawasaki, and Teramoto on theory; 

2. Gilpin’s Drosophila work on laboratory species assembly; 

3. Food web links and dynamic stability by DeAngelis, Yodzis, Pimm, Cohen, and others in the 
real world. 

We shall consider them with regard to the role of interference competition. 
Shigesada assumed interference competition and proved theorems about it; except for my own 

laboratory Drosophila model these theories have no connection to reality. I worked with a possible 
world, as Haldane put it -- not the real world. The purpose of my experiments was to find alternative 

domains of attraction, as Case and I have predicted in 1974 and which were the basis for Diamond’s 
assembly rules. The generalized interference we found was not expected and was somewhat 
discouraging for our goal of alternative domains, Yet the domains existed for other reasons. 
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The food web people start solidly in reality. They work with data from real systems. Their 

goal is one of reduction. They want to explain a pattern they see based on a process they believe they 
understand - the persistence of systems based on resilience as indexed by eigenvalues. They fail 
altogether to recognize or to mention interference. Yet, given their goal, this might be justifiable - 
for generalized interference is neither universal nor dominating, and it is not obvious that it biases 
their results. Nonetheless, they have not fully justified this. 

What we need to do to integrate our ecological science more fully is to focus on mechanisms 

and to explicitly consider them as they run the gamut of aggregation. Interference is a place to start. 

George Sugihara: 
I agree with the comments made earlier by several participants (in order: N. Shigesada, 

P. Abrams, Y. Iwasa, and J. Cohen) that a diversity of approaches is healthy. I also agree with the 

somewhat paradoxical view that effort toward some kind of unification is also healthy. 

From a naive system dynamical point of view, maintaining diversity in a system appears 

opposite to forces tending towards unification. Indeed, the positive effect of a meeting such as this 
one, whose purpose is to find bridges or conduits for interactions among a diverse community of 
interests, is precisely to generate instability within the community. The dynamical analogy may not 
be entirely facetious. Such instability is caused by stronger interaction among players (unification). 
It may represent progress even though the outcome may involve the loss or absorption of one set of 
interests by another. This is a desirable dynamic as long as new ideas are continuously created, so that 

the process will not run out of steam. That is, the striving toward unification (especially cross 
checking for consistency) combined with the steady creation of new viewpoints seems to be a very 

desirable condition for progress. Therefore, insofar as this complexity-stability metaphor seems 

reasonable, progress viewed in terms of the dynamism of the field can best be fostered by encouraging 

efforts toward unification and encouraging the generation of new ideas. 
Mathematics can be described as the axiomatic study of objects and relations. Science, on  the 

other hand, is at best only semi-axiomatic. The art in science comes in choosing these objects and 

relations in meaningful and insightful ways so that nature becomes more comprehensible @e., so that 

we can create order out of complexity). 
This difficult question of the art in science is, I believe, a fundamental one that deserves more 

prominence in our thinking. In this regard, one of the dangers that we as theorists have to avoid is 
illustrated by the story of the man in a lighted room who is looking for something he knows was lost 

in the darkened room next door. When asked why he is not looking next door he replies, "the light 
is better here." There is a temptation in ecology to restrict our search to lighted rooms, using models, 

formalisms, and techniques that are familiar and tractable rather than necessarily informative about 

nature. 

Ecological systems are complex; consequently it may be difficult to succeed solely with a 

classical bottom-up approach involving theoretical investigations that begin with assumed microscale 
mechanisms and are extrapolated to predict large-scale behavior and patterns. It is possible that more 
rapid progress would be made if the flow of information from theory to field test were reversed. That 

is, it may be useful, at least as a complementary strategy, for the flow of information to proceed from 
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nature to theory. The idea is to exploit existing data and measurements to find large-scale or whole- 

system regularities (symmetries and invariances) that can be used to characterize real ecosystems. 

Modern physics has developed largely through the systematic use of such symmetry principles. This 

idea of creating a more empirically informed community-ecosystem theory based on the 

phenomenology of actual data has been made by May, Ulanowicz, Pimm, and Cohen, among others. 
Within the context of this meeting, and to complete this thought with an example, I was 

particularly intrigued by Hirata's empirical result that when an estuarine system is viewed in terms of 

nitrogen and phosphorus cycling, it appears to be more well-organized than when the classical 

quantities, energy or carbon, are used. This is interesting because it demonstrates how data for a real 
system can potentially inform us as IO how to construct ecosystem flow models. In terms of Hirata's 

mutual information criterion, characterizing systems by their nitrogen or phosphorus cycles may yield 

a more coherent picture (i.e., a system having greater predictability, and implicitly giving rise to a 
more successful model) than when the classical quantities carbon or energy are used. 

Joel Cohen: 

A concrete opportunity to unify different areas of ecological theory arose at the  meeting. For 
example, Ulanowicz spoke at length about the increase in his measure of ascendancy over time, 
without giving any empirical or theoretical foundation for his claim. Ascendancy is a product of two 

factors, one a measure of system size, the other an entropy-like measure of system complexity. During 
the meeting, Iwasa distributed a paper that demonstrates that entropy increases in time under the 

operation of a variety of linear systems, such as discrete-time or continuous-time Markov chains on 
discrete or continuous state species. Iwasa's paper provides a theoretical justification for a temporal 
increase in the entropy factor of Ulanowicz's ascendancy, provided one accepts a linear approximation 

to the dynamics of a system. As another example, the models of Aoki on entropy flow in ecological 

systems are closely related, it seems, to those of Patten. My image of a unified perspective in 
ecological theory is captured by the biological term "anastomosis." The way to encourage this 

anastomosis is by bringing together people with different perspectives at precisely the sorts of 

meetings as the present one. 

GENERAL CONCLUSIONS 

It is reasonable to conclude that most participants felt that a "unified perspective" is still somewhat 
ambitious for theoretical ecology. Major differences in approach still divide some aspects of theoiy - 
- particularly theory at the ecosystem level versus that at other levels. To attempt to get beyond the 
enormous complexity of ecosystems, theorists working at this level are looking for holistic concepts 
from thermodynamics and information theory. Still, the community/food web theorists, while often 
working in a reductionist manner, are also oriented towards a holistic perspective. Thus, while the 

gap between the ecosystem level and other levels seems wide and a diversity of approaches appears 
to be inevitable and probably desirable for some time, connections between the two views are being 

made. 
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At the lower levels -- food webs, communities, populations, and individual adaptations -- a 
unified perspective may be emerging, as the scientific programs in each of these areas seem to be 

converging rapidly. 
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Joel E. a h e n  Professor, The Rockefeller University, 1230 York Avenue, New York, 
New York 10021 USA 
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James A. Drake Assistant Professor, Department of Zoology, The University of Tennessee, 
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Michael E. Gilpin Professor, Department of Biology, University of California at San Diego, 
La Jolla, California 92093 USA 

Toshohiko Hara JSPS Fellow, Institute of Plant Ecology, Kyoto University, Sakyo-ku, Kyoto 
606, Japan 

Alan M. Hastings Professor, Department of Mathematics, University of California at Davis, 
Davis, California 95616 USA 

Masahiko Higashi JSPS Fellow, Department of Biophysics, Kyoto University, Kyoto University, 
Kyoto 606, Japan 

Hironori Hirata Associate Professor, Department of Electronics, Chiba University, 1-33 Yagi- 
cho, Chiba 2ci0, Japan 

Yoh Iwasa Instructor, Department of Biology, Kyushu University, Higashi-ku, Fukuoka 
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Hiroya Kawanabe Professor, Department of Zoology, Kyoto University, Sakyo-ku, Kyoto 606, 
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Shoichi Kawano Professor, Department of Botany, Kyoto University, Sakyo-ku, Kyoto 606, 
Japan 
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Robert E. Ulanowicz 

Norio Yamamura 

Peter A. Yodzis 
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University, Kita-ku, Kyoto 603, Japan 

Professor, Institute of Ecology, The University of Georgia, Athens, Georgia 
30602 USA 

Associate Professor, Department of Zoology, The University of Tennessee, 
Knoxville, Tennessee 37996 USA 

Instructor, Department of Biophysics, Kyoto University, Kyoto University, 
Kyoto 606, Japan 

Assistant Professor, Scripps Institution of Oceanography, La Jolla, California 
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Instructor, Department of Fishery, Nagasaki University, 1-14 Bunkyo-cho, 
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Professor, Department of Biophysics, Kyoto University, Sakyo-ku, Kyoto 606, 
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Department of Zoology, University of Guelph, Guelph, Ontario, Canada 
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APPENDIX €3 

Topics of Participants of US.-Japan Seminar 
in the Environmental Sciences 

Abe, Takuya - "Ecology of Termites: 
Structure?" 

Do Mutualistic Relationships Decide the Community 

Abrams, Peter A. - "Representing Biological Communities Containing Optimally Foraging Herbivores: 
Implications of Adaptive Behavior for Community Structure" 

Aoki, Ichiro - "Entropy Laws in Ecological Networks at Steady State" 

Cohen, Joel E. - "Why the Lion is not Larger: Predator-Prey Allometry and Food Chains" 

DeAngelis, Donald L. - "Some Stability Relations in Nutrient-Limited Systems" 

Drake, James A - "Towards a General Theory of Community Organization Using Assembly Rules" 
(presented by Pimm) 

Gilpin, Michael E. - "Community Collapse: Perspectives on Prediction" 

Hastings, Alan M. - "Stability of Food Webs" 

Hirata, Hironori - "Information in Ecological Communities" 

Iwasa, Yoh, and Simon A. Levin - "Perfect and Approximate Aggregation in Model Ecosystems" 

Kawanabe, Hiroya - "Facultative Mutualism in Fish Communities" 

Kawano, Shoichi, and Toshihiko Hara - "Spatio-Temporal Changes in Growth, Structure, and 
Fecundity of a Plant Population over the Environmental Gradients" 

Matsudo, Hiroyuki - "Coevolutionary Stable Community Structures in a Patchy Environment" 

Nakajima, Hisao - "Sensitivity and Stability of Flow Networks" 

Patten, Bernard C., Masahiko Higashi, and Thomas P. Burns - "Trophic Dynamics in Ecosystem 
Networks: Significance of Cycles and Storage (Network Theory)" 

Pimm, Stuart L. - "Food Web Structure and Temporal Variation" 

Shigesada, Nanako, Kohkichi Kawasaki, and Ei Teramoto - "Effects of Invasions in a Patchy 
Environment" 
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