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Melvin L. Tobias 

ABSTRACT 

This paper is intended to clarify the use of terminology and notation used in the 

analysis of aerosol particle sizing on the basis of the log-normal distribution. The 

connection between the log-noma1 distribution and the normal distribution is shown; the 

mathematical basis for the various diameters used in the literature is developed, and the 

reasoning behind the graphical presentation on so-called “log-normal” graph paper is 

presented. 



1. INTRODUCTION 

The purpose of this note is to clarify certain terminology used in the analysis and 

discussion of fitting aerosol size data into the customarily used log-normal distribution. 

Specifically, we shall first briefly indicate the relation of the log-normal distribution to the 

normal distribution. Next, the method of graphical correlation will be described. Finally, 

we shall discuss and derive the quantities listed on pp. 113-114 of the Handbook On 
Aerosols (Ref.1) and give them a precise definition. These quantities are the various 

diameters discussed in aerosol technology that are generated from the mathematics of the 

log-normal distribution. We shall attempt to give them precise and understandable 

definitions. The important fact that, in contrast to the normal distribution, the moments of a 
log-normal distribution remain in a log-normal distribution will be explained. The great 

simplification which results will be used to obtain the desired size definitions quickly and 

without tedious manipulation. 

The derivations and information presented here are not claimed to be original and 

mathematical rigor has been sacrificed for the sake of brevity. (It is hoped that the 

presentation is not too flawed by this shortcut.) The justification for this presentation is 

that, in this writer's opinion, expositions in the literature are scattered, mathematical 

notations can be obscure, some matters are glossed over, and, worst of all, the 

nomenclature is often ambiguous. The result is that many readers are confused or misled, 

myself among them. I t  is hoped that a consistent and brief presentation will be worth 

while. 
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2. THE LOG-NORMAL DISTRIBUTION 
AND THE NORMAL DISTRIBUTION 

It is customary to treat the size distribution of aerosols on the basis of the so-called 

log-normal distribution function. “Log-normal” is a shorthand term for taking a normal 

distribution in the m r i t h m  of the particle radius rather than the radius itself. The 

formulation is: 

-(b r-c, 1’ 
N(ln r> d (In r ) = e  ct d (In r) . 

Here “r” is the radius of a particle, “ln” refers to the natural logarithm, C1 and C2 

are constants (which will be discussed later) and N(1n r)d(ln r) is the number of particles 

which lie between In r and In r + d(ln r). N(ln r) and the corresponding term on the right- 

hand side denote the distribution or probability density function. We repeat that this is a 

distribution in the 

Now this distribution is clearly based upon the concept of the normal dlsmbut ion of 

error law. If values of x are “nonnally distributed,” we say that the probability that a 

quantity x lies between x and x + dx is P(x)dx ,  where: 

of r, not r itself. 
. .  . 

This is the “normal density function with mean ~1 and standard deviation CF (Ref. 2). 

To explain this further, first integrate formula (2) from - to +-: 

. . ,  .. -- 
2d dx. 1 

I = 1- P(x)dx = - - o& k 
Make the substitution w = (x-p)/(42 0). Then 

(3) 
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The integral 

as can be seen from any table of definite integrals such as Ref. 3. The value of the integral 

I is 1, which is what we expect of a probability density function integrated over all possible 

values. 

Next we show that p is indeed the mean value of x over the normal distribution 

function. The mean value of a quantity weighted by a distribution function f ( x )  of a range 
from x1 to x2 is defined as 

The denominator is the normalizinp; factor. 

Taking f(x) as the P(x) of Eq. (2) and assuming we can extend the range of 

integration from -00 to +-, the mean value of x for the noma1 distribution is: 

Setting w = (x - p)/(d2 a )  as before, we have 

x,, = - I- (saw + p) e-wzafi  dw 
O G  -- 

The first of the two integrals is obviously zero because of its odd-function 
argument. As shown in Eqs. (3)-(5), the second integral is &. We see then that 
xav = g, so that p is equal to the mean value of x. 
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Next, we show that 0 is ,the standard deviation by obtaining the mean value of x2, 

(x2Iav: , 

Again making the substitution w = (x - p)/(d2 cr) leads to 

= -[ 1 J m  (2w202 + 2 J z  wcrp + p2)e-wzdw]. 
6 -* 

Since the middle tern of the argument of the integral is an odd function, we have 

and since (Ref. 3, formula 494), 

(XZ),, = cr2 + p2 = cr2 + (x.v)2 . (13) 

This is the same relationship as that which exists between the "mean of the squares" 
(X2)a,, the square of the mean, (Xav)2, and the square of the standard deviation for a finite 

collection of N numbers xi. There, we &fie  

N U N 

Expanding the square tern in the definition for cr2, 
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3. GRAPHICAL REPRESENTATION 

If a population distribution is normal or log-normal, it is possible to represent it as a 

straight line on paper that is specially designed for the purpose. This technique was 

invented by Hatch (Ref. 4). As most textbooks either gloss over this method, or explain it 

in an abstruse way, the following simple exposition is offered. 

Suppose the distribution is of the form: 

where M(x) is the fraction of the population number that have values ranging from -00 to x. 
As before, the integration variable on the right hand side is changed by the substitution 

Then, dt = (0 &") dw, and the upper integration limit becomes (x - xav)/(o a), We then 

have: 

Now x is either greater, equal to, or less than xav. We then have, for x < xav 

Ol- 
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where the "erf' function is defined as 

erf(y) = ~ l o y e - t 2 d t .  2 

[This function is tabulated in Ref. (3) and also obtainable from packaged computer 

subroutines.] Note that erf(-y) = - erf(y). 

To further the discussion we propose inventing an inverse function erf-I(w). It is 

to be defined as 

In words, erf-l(w) is that number whose erf is w. (This is analogous to the inverse 

trigonmetric functions, where tan-lw is the number value of an angle in radius whose 

tangent is W.) 

Rearranging Eq. (1 8) as 

which can be changed to 

erfl(x - x a v > / ( ~ J z ) J  = 2 M(x) - 1 , 

we can write 

or 

x = x, + cra {erf-'[2M(x) - l]} . (21) 

The quantity x is therefore linear in the function erf l[2 M(x) - 13. Now if x < xav, 

M(x), the cumulative fraction of quantities that have values up to x, will range between 0 
and 0.5. If M(x) is 0 then erfl[ 2 M(x) - 13 = --, and as x increases up to xav, M(x) will 
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increase to 0.5, for which e f l [ - l  + 2 * (1/2)] = 0. We can lay off distances on a piece of 

paper along a straight line to the left of an origin that are in proportion to the value of x that 
would give a value of [2 M(x) -13. That is, two distances d l ,  d2 on the paper that 

correspond to a pair of values XI, x2 are in the ratio dl/d2 = (e f1[2  M(x1) - lj}/(efi1[2 

M(x2) - 13 1 .  Note that if M(x) = 0.5, the distance would be zero, and if M(x) were 0.0, 

the distance would be -00. 

Suppose now that x > xav. We now have 

and 

x-x, 

e-w2dw + l o a f i  e-"'dw .(.,-$:- - 1  
or 

1 1  
2 2  

M(x)=-+-erf 

or 

x = x,, + o f i  erf-' [2M(x) - 11 (23) 

which is just what we had before when x < xav. The distances proportional to e r f l  

[2 M(x) -11 will be 0 for M(x) = 1/2 (or x = Xav) and i- OQ when M(x) = 1. The line will 

have a slope of o f i  and an intercept of Xav- Now the slope itself is awkward to 

determine since the scaling of the paper would have to be known. To avoid this difficulty, 
the value of o is estimated by considering the line at the points x = xav k o. Then 

x,, k CT = x,, -t o f i  erf-' [2M(xay k CT) - 11 
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&- 1 = erf-' [2M(x," f 0)- 13 
@ 

and 

The value of erf(rtl/d2) is about M.68269, so that M(xav + 0 )  = 0.8413 and 

M(xav - 0) = 0.15865. This, then, is the reason for the rule for obtaining the standard 

deviation of particle sizes by checking off the values of x at the 84% and 16% cumulative 

mass fractions. 
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4. THE LOG-NORMAL DISTRIBUTION AND THE 
VARIOUS AEROSOL DIAMETERS 

If the normal distribution were used to correlate particle sizes, an inherent difficulty 

would be encountered, for the size distribution is unsymmetrical. Particle sizes can be 

arbitrarily large, but they can never be less than zero. If, instead of using the particle 

radius, we use the logarithm of the radius, particle sizes ranging from zero to “infinity” are 
transformed to logarithms which range from -00 to soo. What advantage is obtained by this 

is significantly offset by the masking of the variability that is incurred. The percentage 

change in a quantity that increases from 100 to 200 is [(200 - 100)/100] x 100% or 100%. 

The percentage change in the natural logarithms is however only 15%. The problem of 

testing whether log-normal correlations are in fact valid is a large and complex matter. We 

shall not go into it further here beyond observing that it is possible to get what appears to 

be correlations on matters that probably have nothing to do with log-normality. 

We turn now to the various average radii discussed in connection with the log- 

normal distribution, such as those listed in Ref. 3. (We use radii here rather than diameters 

to avoid the typographical confusion with the “d” of the differential. The conversion from 

radius to diameter in the formulas will be an obvious matter. We also adopt the notations 
rg and og of Ref. 3 to facilitate comparisons.) The first thing to note is the fact that the 

momenu of a log-normal distribution a~ themselves in a log-normal distribution. That is, 

if we say that the cumulative fraction of particles that have logarithms from -00 to In rl is in 

a log-normal distribution: 

(In r-In r .y 

then functions of the form 

which we call the moments are also in a log-normal distribution. This, as will be seen, 

leads to great simplification in evaluating integrals like those of J2q (26). 

Equation (25) is seen to be the same formula as Eq. (16) for the ordinary normal 
distribution. Also, the constants C1 and C2 of Eq. (1) have been identified as ln(rg) and 
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2 In 2 (ag), respectively. The  quantity r is called the geom e t ic  mean radius. The 

geometric mean ag of a number, In, of quantities ai is defined by the relation: 
g 

1 - 
ag = (ala ,...a,)" . 

Taking the logarithm of both sides gives 

Thus, just as the quantity p of Eq. (2) originates out of the idea of an arithmetic 
mean of a finite number of quantities, In rg is related to the arithmetic mean of the 

logarithms of a number of quantities. Furthermore, ln og now takes the role of the 
standard deviation of values of In r about the mean value In rg 

Returning to Eq. (26), we note that 

Now the exponent can be rearranged as follows: 

2 ln'r-2 h r(ln r ,+k ln2a , )+ ln2r ,  
(h r-tn rg )  

-kln r =  
2 h2a, 2 h 2 0 ,  

This, by the "completing the squm" operation of elementary algebra, is: 

. 11" rg-(ln r ,+kln2a, ) ]  

2 ' l n 2 a g  
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Our distribution in Eq. (29) is then transformed thus: 

(In r-ln rJ2 [In r - ( h  r,+kln’a,)]’ 

In rl - 2 In’a, 2 h ’ r s  d(ln r). (32) rke 
In r ,  - 1 

This is still a log-normal distribution with the same standard deviation term but with 

a “displaced” value of the mean value of ln(r), denoted by In <, where < is a new 

geometric mean radius 

In ?,=In r , + k  In 2 os. (33) 

Letting ln(r1) go to +oo, Eq. (32) becomes: 

(In r-In TJ -ln’a,+kln k’ I, (In r-ln .t), 
d(ln r) (34) - 2 Ln’a, e 1 2 h’0, 

and, just as was done for Eq. (2) we make the substitution 

In r-ln 
Jz In 0, * 

W =  

The right-hand side of Eq. (34) is then 

dlt ’-=. 

Since Eq. ( 5 )  

12 



we have finally: 

k2 
(~n r - ~ n  r,)’) 

--In2Uc+k In T, 

d(ln r) = e  1 2 h2u, (35) 

We can now readily generate all of the radii (diameters) of p. 113 of Ref. (1): 

1. “The radius (diameter) of the particle rm (h) having a volume equal to the average 

volume or mass.” 

and the average volume is (4/3)a(2),,. Multiplying by a particle density gives an average 

mass. As was shown in the discussion of Eqs. (2)-(5)y the denominator is 1, and the 

numerator is obtained by Eq. (35): 

3 4.5 h’u,+3 In I, 
(r = e  

We define rm as rm3 = (r3)av so that In rm3 = ln(r3)av = 4.5 l n k g  + 3 In rg and finally 

In rm = 1.5 1n20g + In rg. (37) 

(We note that since rm = 0.5 h, rg = 0.5 dgy then In(%) = 1.5 In 2 og + In dg.) 

2. “The radius (diameter) of the particle, ray having a surface area equal to the average 

S L U f a c e  area” 
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Here, ra is defined by the relation 

ra2 (r2)av 

so that 

In ra = 1.0 In*og + In rg 

and In da = 1.0 ln2 og +. In dg. 

3. “The mean radius, (rm)av, of the mass or volume distribution.” 

Applying Eq. (35)? we can obtain 

[(k+;)h2ag+h 

1 
= e  

and finally, with k=3 

(C) = e3.5 h’%+h I t  

and In (r,) = 3.5 In2 os + In rg 

or Ind, =3.51nZog+lndg. 

4. “The mean radius, (<), of the m a  distribution.” 

For this, we can use Eq. (41), but with k=2 instead of 3: 

4.5 ln2 a,+3 In I, e - 
(4 = 2 In’0‘+2 In I‘ e 

(39) 

(43) 
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and 

ln (<) = 2.5 In2 0, +In rg 

or ln& =2.51nZog+1ndg . 

5. “The mass median radius, fm.” 

This is the “geometric mean radius” for the volume or mass distribution, obtainable 

immediately from E ~ J .  (33): 

In irn = In rg + 3 
In dm = In dg + 3.0 ln2 og . 

6. “The area median radius, ia.*’ 

This is the “geometric mean radius” for the area distribution, k = 2 in Eq. (33): 

In fa = ~n rg + 2 ln2ag 

ln d’a = In dg + 2.0 ln2 og . 

(45) 

Finally, there is the quantity d*, called the “diameter of the count mode.” This is the 

diameter itself, the logarithm of the diameter, for which the count rate reaches a peak. 

The frequency distribution for In (r), the number of particles for which the logarithm of the 

radius lies between in (r) and In (r) + d[ln (r)] is [see Eq. (25)j: 

(In P i n  r*)’l 

d(ln r). 1 2 Inaa, 

7 G e  

This has its maximum at In (r) = In (r& The frequency distribution for the radius itself, 

however, is: 
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This has its maximum, as Fig. 5.14 of Ref. (1)  shows, at a different place, r*, which is 

obtainable by finding the maximum of 

(~n r-h  r,)* 

1 - 2 h’a, y(r)=- e 
r 

Differentiating with respect to r and setting the right-hand side equal to zero gives 

ln(r * ) = ln(rg) - In 2 (ag) . 
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SUMMARY 

In this paper, the connection between the log-normal distribution and the normal 

dismbution is shown; the mathematical basis for the various diameters used in the aerosol 

literature was developed, and the reasoning behind the graphical presentation on so-called 

"log-nmal" graph paper has been presented. While none of this discussion is an original 

development, the purpose has been to clarify the often confusing terminology and to gather 

together in one place a consistent, unambiguous explanation of these matters. 
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