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THE DESIGN OF A STANDARD MESSAGE PASSING INTERFACE FOR 

DISTRIBUTED MEMORY CONCURRENT COMPUTERS 

David W. Walker 

Abstract 

This paper presents an overview of MPI, a proposed standard message passing interface 
for MIMD distributed memory concurrent computers. The design of MPI has been a collec- 
tive effort involving researchers in the United States and Europe from many organizations 
and institutions. MPI includes point-to-point and collective communication routines, as 
well as support for process groups, communication contexts, and application topologies. 
While making use of new ideas where appropriate, the MPI standard is based largely on 
current practice. 
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1. Introduction 

This paper gives an overview of MPI, a proposed standard message passing interface for dis- 

tributed memory concurrent computers. The main advantages of establishing a message pass- 

ing interface for such machines are portability and ease-of-use, and a standard message passing 

interface is a key component in building a concurrent computing environment in which appli- 

cations, software libraries, and tools can be transparently ported between different machines. 

Furthermore, the definition of a message passing standard provides vendors with a clearly de- 

fined set of routines that they can implement efficiently, or in some cases provide hardware or 

low-level system support for, thereby enhancing scalability. 

The functionality thzt MPI is designed to provide is based on current common practice, 

and is similar to that provided by widely-used message passing systems such as Express [12], 

NX/2 [13], Vertex, [ll], PARMACS [8,9], and P4 [lo]. In addition, the flexibility and usefulness 

of MPI has been broadened by incorporating ideas from more recent and innovative message 

passing systems such as CHIMP [4,5], Zipcode [14,15], and the IBM External User lnterface 

[7]. The general design philosophy followed by MPI is that while it would be imprudent to  

include new and untested features in the standard, concepts that have been tested in a research 

environment should be considered for inclusion. Many of the features in MPI related to process 

groups and communication contexts have been investigated within research groups for several 

years, but not in commercial or production environments. However, their incorporation into 

MPI is justified by the expressive power they bring to the standard. 

The MPI standardization effort involves about 60 people from 40 organizations mainly from 

the United States and Europe. Most of the major vendors of concurrent computers are involved 

in MPI, along with researchers from universities, government laboratories, and industry. The 

standardization process began with the Workshop on Standards for Message Passing in a Dis- 

tributed Memory Environment, sponsored by the Center for Research on Parallel Computing, 

held April 29-30, 1992, in Williamsburg, Virginia [16]. At this workshop the basic features es- 

sential to  a standard message passing interface were discussed, and a working group established 

to continue the standardization process. 

A preliminary draft proposal, known as MPI1, was put forward by Dongarra, Hempel, Hey, 

and Walker in November 1992, and a revised version was completed in February 1993 [3]. 

MPIl embodies the main features that were identified at the Williamsburg workshop as being 

necessary in a message passing standard. This proposal was intended to initiate discussion of 

standardization issues within the distributed memory concurrent computing community, and 

has served as a basis for the subsequent MPI standardization process. Since MPI1 was primarily 

intended to promote discussion and “get the ball rolling,” it focuses mainly on point-to-point 

communications. MPIl does not include any collective communication routines. MPIl brought 
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to the forefront a number of important standardization issues, and has served as a catalyst for 

subsequent progress, however, its major deficiency is that the management of resources is not 

thread-safe. Although MPI1 and the MPI draft standard described in this paper have many 

features in common, they are distinct proposals, with MPIl now being largely superseded by 

the MPI draft standard. 

In November 1992, a meeting of the MPI working group was held in Minneapolis, at which 

it was decided to place the standardization process on a more formal footing, and to generally 

adopt the procedures and organization of the High Performance Fortran forum. Subcommittees 

were formed for the major component areas of the standard, and an email discussion service 

established for each, In addition, the goal of producing a draft MPI standard by the Fall of 

1993 was set. To achieve this goal the MPI working group has met every 6 weeks for two days 

throughout the first 9 months of 1993, and it is intended to present the draft MPI standard at 

the Supercomputing 93 conference in November 1993. These meetings and the email discussion 

together constitute the MPI forum, membership of which has been open to all members of the 

high performance computing community. 

This paper i s  being written at a time when MPI is still in the process of being defined, but 

when the main features have been agreed upon. The only major exception concerns communica- 

tion between processes in different groups. Some syntactical details, and the language bindings 

for Fortran-77 and C, have not yet been considered in depth, and so will not be discussed here. 

This paper is not intended to give a definitive, or even a complete, description of MPI. While 

the main design features of MPI will be described, limitations on space prevent detaiied justifi- 

cations for why these features were adopted. For these details the reader is referred to the MPI 

specification document] and the archived email discussions, which are available electronically 

as described in Section 4. 

2. An Overview of MPI 

MPI is intended to  be a standard message passing interface for applications running on MIMD 

distributed memory concurrent computers. We expect MPI also to be useful in building li- 

braries of mathematical software for such machines. MPI is not specifically designed for use 

by parallelizing compilers. MPI does not contain any support for fault tolerance] and assumes 

reliable communications. MPI is a message passing interface] not a complete parallel computing 

programming environment. Thus, issues such as parallel 1 /01  parallel program composition, 

and debugging are not addressed by MPI. In addition, MPI does not provide explicit support 

for active messages or virtual communication channels, although extensions for such features 

are not precluded] and may be made in the future. Finally, MPI provides no explicit sup- 

port for multithreading, although one of the design goals of MPI was to ensure that it can be 
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implemented efficiently in a multithreaded environment. 

The MPI standard does not mandate that an implementation should be interoperable with 

other MPI implementations. However, MPI does provide all the datatype information needed to 

allow a single MPI implementation to operate in a heterogeneous environment. 

A set of routines that support point-to-point communication between pairs of processes 

forms the core of MPI. Routines for sending and receiving blocking and nonblocking messages 

are provided. A blocking send does not return until it is safe for the application to alter the 

message buffer on the sending process without corrupting or changing the message sent. A 

nonblocking send may return while the message buffer on the sending process is still volatile, 

and it should not be changed until it  is guaranteed that this will not corrupt the message. This 

may be done by either calling a routine that blocks until the message buffer may be safely 

reused, or by calling a routine that performs a nonblocking check on the message status. A 

blocking receive suspends execution on the receiving process until the incoming message has 

been placed in the specified application buffer. A nonblocking receive may return before the 

message has been received into the specified application buffer, and a subsequent call must be 

made to ensure that this has occurred before the application uses the data in the message. 

In MPI a message may be sent in one of three communication modes. The communication 

mode specifies the conditions under which the sending of a message may be initiated, or when 

i t  completes. In ready mode a message may be sent only if a corresponding receive has been 

initiated. In standard mode a message may be sent regardless of whether a corresponding 

receive has been initiated. Finally, MPI includes a synchronous mode which is the same as the 

standard mode, except that the send operation will not complete until a corresponding receive 

has been initiated on the destination process. 

There are, therefore, 6 types of send operation and 2 types of receive, as shown in Figure 

1. In addition, routines are provided that send to one process while receiving from another. 

Different versions are provided for when the send and receive buffers are distinct, and for when 

they are the same. The send/receive operation is blocking, so does not return until the send 

buffer is ready for reuse, and the incoming message has been received. The two send/receive 

routines bring the total number of point-to-point message passing routines up to 10. 

3. Details of MPI 

In this section we discuss the MPI routines in more detail. Since the point-to-point and col- 

lective communication routines depend heavily on the approach taken to  groups and contexts, 

and to a lesser extent on process topologies, we shall discuss groups, contexts, and topologies 

first. These three related areas have generated much discussion within the MPI forum, and 

a consensus has emerged only in the last few weeks. To some extent this difficulty in arriv- 
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SEND 1 Blocking Nonblocking 

Standard j mpi-send 

Ready mp i.xs end 

Synchronous m p i s  s end 

mp i i  s end 

m p i i r s  end 

mpi i s s  end 

Figure 1: Classification and names of the point-to-point send and receive routines. 

RECEIVE 

Standard 

ing at a consensus arises because different commonly-used message passing interfaces generally 

handle groups, contexts, and topologies differently, and offer varying levels of suppoit. The 

differing requirements in these three areas within the parallel computing community have also 

contributed to the diversity of views. 

Blocking Nonblocking 

mp i -re c v mpi-irecv 

3.1. Groups, Contexts, and Communicators  

Although it is now agreed within the MPI forum that groups and contexts should be bound 

together into abstract communicator objects, as described in Section 3.1.3, the precise details 

have yet to be worked out, particularly in the case of communicators for communication between 

groups. Thus, in this subsection we will give an overview of groups, contexts, and communica- 

tors, without going into specific details that may subsequently change. In particular, we will 

not discuss communication between processes in different groups as at the time of writing the 

precise details are still under discussion. 

3.1.1. Process Groups 

The prevailing view within the MPI forum is that a process group is an ordered collection of 

processes, and each process is uniquely identified by its rank within the ordering. For a group 

of n processes the ranks run from 0 to n - 1. This definition of groups closely conforms to 

current practice. 

Process groups can be used in two important wa.ys. First, they can be used to specify 

which processes are involved in a collective communication operation, such as a broadcast. 

Second, they can be used to introduce task parallelism into an application, so that different 

groups perform different tasks. If this is done by loading different executable codes into each 

group, then we refer to this as MTMD task parallelism. Alternatively, if each group executes a 

different conditional branch within the same executable code, then we refer to this as SPMD 

task parallelism (also known as control parallelism). Although MPI does not provide mechanisms 

for loading executable codes onto processors, nor for creating processes and assigning them to 
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processors, each process may execute its own distinct code. However, it is expected that many 

initial MPI implementations will adopt a static process model, so that, as far as the application 

is concerned, a fixed number of processes exist from program initiation to completion, each 

running the same SPMD code. 

Although the MPI process model is static, process groups are dynamic in the sense that they 

can be created and destroyed, and each process can belong to several groups simultaneously. 

However, the membership of a group cannot be changed asynchronously. For one or more pro- 

cesses to  join or leave a group, a new group must be created which requires the synchronization 

of all processes in the group so formed. In MPI a group is an opaque object referenced by means 

of a handle. MPI provides routines for creating new groups by listing the ranks (within a spec- 

ified parent group) of the processes making up the new group, or by partitioning an existing 

group using a key. The group partitioning routine is also passed an index, the size of which 

determines the rank of the process in the new group. This also provides a way of permuting the 

ranks within a group, if all processes in the group use the same value for the key, and set the 

index equal to the desired new rank. Additional routines give the rank of the calling process 

within a given group, test whether the calling process is in a given group, perform a barrier 

synchronization with a group, and inquire about the size and membership of a group. Other 

routines concerned with groups may be included in the final MPI draft. 

3.1.2. Communication Contexts 

Communication contexts, first used in the Zipcode communication system [14,15] , promote 

software modularity by allowing the construction of independent communication streams be- 

tween processes, thereby ensuring that messages sent in one phase of an application are not 

incorrectly intercepted by another phase. Communication contexts are particularly important 

in allowing libraries that make message passing calls to be used safely within an application. 

The point here is that the application developer has no way of knowing if the tag, group, and 

rank completely disambiguate the message traffic of different libraries and the rest of the appli- 

cation. Context provides an additional criterion for message selection, and hence permits the 

construction of independent tag spaces. 

If communication contexts are not used there are two ways in which a call to a library 

routine can lead to unintended behavior. In the first case the processes enter a library routine 

synchronously when a send has been initiated for which the matching receive is not posted until 

after the library call. In this case the message may be incorrectly received in the library routine. 

The second possibility arises when different processes enter a library routine asynchronously, 

as shown in the example in  Figure 2, resulting in nondeterministic behavior. If the program 

behaves correctly processes 0 and 1 each receive a message from process 2, using a wildcarded 
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Process 0 

............................................ .:.>: ........................ g_r...(l)p ..................... 

...................... ......................... Ez!!%-- ......................... 

Process 1 Process 2 
[recv(any)l - I send(1) I 

Figure 2: Use of contexts. Time increases down the page. Numbers in parentheses indicate the 
process to which data are being sent or received. The gray shaded area represents the library 
routine call. In this case the program behaves as intended. Note that the second message sent 
by process 2 is received by process 0, and that the message sent by process 0 is received by 
process 2. 

Process 0 Process 1 Process 2 
/recv(any)I I send(1) 1 

- 

........... 
recv(0) 

..-.-... 1.1 

Figure 3: Unintended behavior of program. In this case the message from process 2 to process 
0 is never received, and deadlock results. 

selection criterion to  indicate that they are prepared to receive a message from any process. The 

three processes then pass data around in a ring within the library routine. If communication 

contexts are not used this program may intermittently fail. Suppose we delay the sending of 

the second message sent by process 2, for example, by inserting some computation, as shown 

in Figure 3. In this case the wildcarded receive in process 0 is satisfied by a message sent 

from process 1, rather than from process 2, and deadlock results. By supplying a different 

communication context to the library routine we can ensure that the program is executed 

correctly, regardless of when the processes enter the library routine. 
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3.1.3. Communicator Objects 

The “scope” of a communication operation is specified by the communication context used, 

and the group, or groups, involved. In a collective communication, or in a point-to-point 

communication between members of the same group, only one group needs to be specified, and 

the source and destination processes are given by their rank within this group. In a point-to- 

point communication between processes in different groups, two groups must be specified to 

define the scope. In this case the source and destination processes are given by their ranks 

within their respective groups. In MPI abstract opaque objects called ”communicators” are 

used to define the scope of a communication operation. In intragroup communication involving 

members of the same group a communicator can be regarded as binding together a context and 

a group. The creation of intergroup communicators for communicating between processes in 

different groups is still under discussion within the MPI Forum, and so will not be discussed 

here. 

3.2. Application Topologies 

In many applications the processes are arranged with a particular topology, such as a t w e  

or three-dimensional grid. MPI provides support for general application topologies that are 

specified by a graph in which processes that communicate a significant amount are connected 

by an arc. If the application topology is an n-dimensional Cartesian grid then this generality 

is not needed, so as a convenience MPI provides explicit support for such topologies. For a 

Cartesian grid periodic or nonperiodic boundary conditions may apply in any specified grid 

dimension. In MPI a group either has a Cartesian or graph topology, or no topology. 

In MPI, application topologies are supported by an initialization routine, MPI-GRAPH or 

MPI-CART, that specifies the topology of a given group, a function MPIJNQRANK that de- 

termines the rank given a location in the topology associated with a group, and the inverse 

function MPI-INQLOC that determines where a process is in the topology. In addition, the rou- 

tine MPIJNQMAP returns the topology associated with a given group, and for a group with a 

Cartesian topology, the routine MPIJNQCART gives the size and periodicity of the topology. 

In addition to  removing from the user the burden of having to  write code to translate 

between process identifier, as specified by group and rank, and location in the topology, MPI 

also: 

1. allows knowledge of the application topology to be exploited in order to efficiently assign 

processes to physical processors, 

2. provides a routine MPI-PARTC for partitioning a Cartesian grid into hyperplane groups 

by removing a specified set of dimensions, 
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3. provides support for shifting data along a specified dimension of a Cartesian grid, and 

By dividing a Cartesian grid into hyperplane groups it is possible to perform collective commu- 

nication operations within these groups. In particular, if all but one dimension is removed a set 

of one-dimensional subgroups is formed: and it is possible, for example, to perform a multicast 

in the corresponding direction. 

Support for shift operations is provided by a routine, MPISHIFTJD, that returns the ranks 

of the processes that a process must send data to, and receive data from, when participating 

in the shift. Once the source and destination process are known for each process, the shift 

is performed by calling the routine M P I S E N D R E C V  that allows each process to send to one 

process while receiving from another. In a circular shift each process sends data to the process 

whose location in the given dimension is obtained by adding a specified integer (which may be 

negative) to its own location, modulo the number of processes in that dimension. In an end-off 

shift each process determines the rank of its destination process by adding a specified integer 

to its own rank, but if this exceeds the number of processes in the given dimension, or is less 

than zero, then no data are sent. If the Cartesian grid is periodic in the dimension in which 

the shift is done, then M P I S H I F T J D  returns source and destination processes appropriate for 

a circular shift. Otherwise M P I S H I F T J D  returns source and destination processes appropriate 

for an end-off shift. 

3.3. Point-to-Point Communication 

3.3.1. Message Selectivity 

In MPI  a process involved in a communication operation is identified by group and rank with 

that group. Thus, 

Process ID (group, rank) 

In point-to-point communication, messages may be considered labeled by communication con- 

text and message tag within that context. Thus, 

Message ID E (context, tag) 

When sending or receiving a message the process and message identifiers must be specified. The 

group and context, which define the scope of the communication operation, are specified by 

means of a communicator object in the argument list of the send and receive routines. The rank 

and tag also appear in the argument list. A message sent in one scope can only be received 

in a different scope, so the communicator objects specified by the send and receive routines 

must match. The group and context components of a communicator may not be wildcarded. 

Within a given scope, message selectivity is by rank and tag. Either, or both, of these may be 

wildcarded by a receiving process to indicate that the corresponding selection criterion is to be 
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M P I S E N D  ( 
I N  start-of-buffer 
I N  numbersf -items 

I U  destinationrank 
I N  tag 
I N  communicator) 

IM datatype-of -items I 

I 

H P I R E C V  ( 
OUT startaf -buf f er 
IW maxnumber-of-items 
I N  datatype-of-items 
II sourceiank 
II tag 
IN communicator 
OUT returnstatus-ob ject) 

Figure 4: Argument lists for the blocking send and receive routines 

ignored. The argument lists for the block send and receive routines are shown in Figure 4. 
In Figure 4, the last argument to  MPIRECV is a handle to a return status object. This object 

may passed to an inquiry routine to determine the length of the message, or the actual source 

rank and/or message tag if wildcards have been used. The argument lists for the nonblocking 

send and receives are very similar, except that each returns a handle to an object that identifies 

the communication operation. This object is used subsequently to check for completion of the 

operation. In addition, the nonblocking receive does not return a return status object. Instead 

the return status object is returned by the routine ihat confirms completion of the receive 

operat ion. 

3.3.2. General Datatypes 

All point-to-point message passing routines in MPI take as an argument the datatype of the 

data communicated. In the simplest case this will be a primitive datatype, such as an integer 

or floating point number. Howeverl MPI also supports more general datatypes, and thereby 

supports the communication of array sections and structures involvingcombinations of primitive 

datatypes. 

A general datatype is a sequence of pairs of primitive datatypes and integer byte displace- 

ments. Thus, 
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Together with a base address, a datatype specifies a communication buffer. General datatypes 

are built up hierarchically from simpler components. There are four basic constructors for 

datatypes, namely the contiguous, vector, indexed, and structure constructors. We will now 

discuss each of these in turn. 

The contiguous constructor creates a new datatype from repetitions of a specified old 

datatype. This requires us to specify the old datatype and the number of repetitions, n. 

For example, if the old datatype is oldtype = { (double, 0), (char, 8) } and R = 3, then the 

new datatype would be, 

{ (double, 0), (char, 8), (double, IS), (char, 24), (double, 32), (char, 40) } 

It should be noted how each repeated unit in the new datatype is aligned with a double word 

boundary. This alignment is dictated by the appearance of a double in the old datatype, so 

that the extent of the old datatype is taken as 16 bytes, rather than 9 bytes. 

The vector constructor builds a new datatype by replicating an old datatype in blocks at 

fixed offsets. The new datatype consists of count blocks, each of which is a repetition of 

blocklen items of some specified old datatype. The starts of successive blocks are offset by 

stride items of the old datatype. Thus, if count = 2, blocklen = 3, and stride = 4 then 

the new datatype would be, 

{ (double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40), 

(double, 64), (char, 72), (double, SO), (char, 88), (double, 96), (char, 104)} 

Here the offset between the two blocks is 64 bytes, which is the stride multiplied by the extent 

of the old datatype. 

The indexed constructor i s  a generalization of the vector constructor in which each block has 

a different size and offset. The sizes and offsets are given by the entries in two integer arrays, 

B and I. The new datatype consists of count blocks, and the ith block is of length B Cil items 

of the specified old datatype. The offset of the start of the ith block is ICil items of the old 

datatype. Thus, if count = 2, B = (3, l}, and I = {64,0}, then the new datatype would be, 

{ (double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104), 

(double, O ) ,  (char, 8) } 

The structure constructor is the most general of the datatype constructors. This constructor 

generalizes the indexed constructor by allowing each block to be of a different datatype. Thus, 
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left right 
edge edge 

Figure 5: Particle migration in a one-dimensional code. The left and right edges of a process 
domain are shown. We shall consider just the migration of particles across the righthand 
boundary. 

in addition to  specifying the number of blocks, count, and the block length and offset arrays, B 

and I, we must also give the datatype of the replicated unit in each block. Let us assume this is 

specified in an array T. The length of the ith block is B Cil items of type T Cil , and the offset of 

the start of the ith block is ICil bytes. Thus, if count=3, T = {HPI-FLOAT, oldtype, MPI-CHAR}, 

I = {0,16,26}, and B = {2,1,3}, then the new datatype would be, 

In addition to  the constructors described above, there is a variant of the vector constructor 

in which the stride is given in bytes instead of the number of items. There is also a variant of 

the indexed constructor in which the block offsets are given in bytes. 

To better understand the use of general data structures consider the example of an appli- 

cation in which particles move on a one-dimensional domain. We assume that each process is 

responsible for a different section of this domain. In each time step particles may move from 

the subdomain of one process to that of another, and so the data for such particles must be 

communicated between processes. We shall just consider here the task of migrating particles 

across the righthand boundary of a process, as shown in Figure 5. The particle data are stored 

in an array of structures, with each entry in this structure consisting of the particle position, 

x, velocity, v, and type, k: 

stract Pstrnct { double x;  double v; int k; }; 

The C code for migrating particles across the righthand boundary is shown in Figure 6. 

In Figure 6 the code in the first box creates a datatype, Ptype, that represents the Pstruct 

structure for a single particle. This datatype is, 

Ptype = ((double,O), (double,8), (int,l6)} 

In the second code box the particles that have crossed the righthand boundary are identified, 
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struct Pstruct particleClOOO1: 
WLdatatype Ptype, Ztype; 
MPLdatatype Stype [31={MPI_double, MPI-double, HPI-int} : 
int  Sblock[3]=(1, 1,  1 ) ;  
i n t  Sindex [3] ; 
int  PindexClOOl : 
int  PblockClOO] : 

~ 

SindexCO] = 0; 
Sindex[l] = sizeof  (double) ; 
SindexC21 = 2*sizeof (double) ; 
€PI-typestruct (3 ,  Stype. Sindex, Sblock, &Ptype): 

j = O  ; 
for (i=O;i<lOOO;i++) 

i f  (xci] > right-edge) { 
PindexCjl = i ;  
PblockCjl = 1; 
j++; } 

MPI-type-indexed (j , Ptype, Pindex, Pblock, BZtype) ; 

WI-type-commit (Ztype) : 
MPIsend (particle  1 ,  Ztype, dest , tag,  coma) ; 

Figure 6 :  Fragment of C code for migrating particles across the righthand process boundary 

and their index in the p a r t i c l e  array is stored in Pindex. It is assumed that no more than 

100 particles cross the boundary. The call to MPI-typeindexed uses an indexed constructor 

t o  create a new datatype, Ztype, that references all the migrating particles. Before sending the 

data, the Ztype datatype must be committed. This is done to allow the system to use a different 

internal representation for Ztype, and to optimize the communication operation. Committing 

a datatype is most likely to  be advantageous when reusing a datatype many times, which is not 

the case in this example. Finally, the migrating particles are sent to their destination process, 

d e s t ,  by a call to HPI-send. The offsets in the Ztype datatype are interpreted relative to the 

address of the start of the p a r t i c l e  array. 

3.3.3. Communication Completion 

Following a call t o  a nonblocking send or receive routine there are a number of ways in which the 

handle returned by the call can be used to check the completion status of the communication 

operation, or to suspend further execution until the operation is complete. MPILWAIT does not 

return until the communication operation referred to by the input handle is complete. MPLTEST 

does not wait until the operation identified by the input handle is complete, but instead returns 

a logical variable that is TRUE if the operation is complete, and FALSE otherwise. If the input 

handle refers to a receive operation, then MPI-WAIT and MPI-TEST both return a handle to a 
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return status object. This handle can subsequently be passed to a query routine to determine 

the actual source, tag, and length of the message received. 

An additional two routines exist for waiting for the completion of any or all of the handles 

in a list of handles. Similarly] there are variants of the test routine that check if all, or at least 

one, of the communication operations identified by a list of handles is complete. 

3.3.4. Persistent Communication Objects 

MPI also provides a set of routines for creating communication objects that completely describe 

a send or receive operation by binding together all the parameters of the operation. A handle 

to  the communication object so formed is returned, and may subsequently be passed to  the 

routine MPISTART to actually initiate the communication. The MPI-WAIT routine, or a similar 

completion routine, must be called to  ensure completion of the operation, as discussed in Section 

3.3.3. 

Persistent communication objects may be used to  optimize communication performance, 

particularly when the same communication pattern is repeated many times in an application. 

For example, if a send routine is called within a loop, performance may be improved by creating 

a communication object that describes the parameters of the send prior to entering the loop, 

and then calling MPISTART inside the loop to send the data on each pass through the loop. 

There are four routines for creating communication objects: three for send operations, 

corresponding to the standard, ready, and synchronous modes, and one for receive operations. 

A persistent communication object must be deallocated when no longer needed. 

3.4. Collective Communication 

Collective communication routines provide for coordinated communication among a group of 

processes [1,2]. The process group is given by the communicator object that is input to the 

routine. The MPI collective communication routines have been designed so that their syntax 

and semantics are consistent with those of the point-to-point routines. The collective com- 

munication routines may, but do not have to be, implemented using the MPI point-to-point 

routines. Collective communication routines do not have message tag arguments, though an 

implementation in terms of the point-tepoint routines may need to make use of tags. A col- 

lective communication routine must be called by all members of the group with consistent 

arguments. As soon as a process has completed its role in the collective communication it 

may continue with other tasks. Thus, a collective communication is not necessarily a barrier 

synchronization for the group. MPI does not include iionblocking forms of the collective com- 

munication routines. MPI collective communication routines are divided into two broad classes: 

data movement routines, and global computation routines. 
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3.4.1. Collective Data Movement Routines 

There are 3 basic types of collective data movement routine: broadcast, scatter, and gather. 

There are two versions of each of these three routines: in the one-all case data are communicated 

between one process and all others; in the all-all case data are communicated between each 

process and all others. Figure 7 shows the one-all and all-all versions of the broadcast, scatter, 

and gather routines for a group of six processors. 

The all-all broadcast, and both varieties of the scatter and gather routines, involve each 

process sending distinct data to each process, and/or receiving distinct data from each process. 

In these routines each process may send to and/or receive from each other process a different 

number of data items, but the send and receive datatypes must be consistent. To illustrate this 

point consider the following example in which process 0 gathers data from processes 1 and 2. 

Suppose the receive datatype in process 0, and the send datatypes in processes 1 and 2 are as 

follows, 

In process 0: recvtype={(int,O), (float,4)} 

In process 1: sendtype={(int,o), (float,4), (int,96), (float, loo), (ist,32), (floaL,36)} 

In process 2: sendtype={(int, 16), (float,20), (int,48), (float,52)} 

Such a situation could arise in a C program in which an indexed datatype constructor has been 

applied to  an array of structures, each element of which consists of an integer and a floating- 

point number. Although the datatypes are different in each process, they are t y p e  conszstent, 

since each consists of repetitions of an integer followed by a float. 

The one-all broadcast routine broadcasts data from one process to all other processes in the 

group. The all-all broadcast broadcasts data from each process to all others, and on completion 

each has received the same data. Thus, for the all-all broadcast each process ends up with the 

same output data, which is the concatenation of the input data of all processes, in rank order. 

The one-all scatter routine sends distinct data from one process to all processes in the group. 

This is also known as “one-to-all personalized communication”. In the all-all scatter routine 

each process scatters distinct data to all processes in the group, so the processes receive different 

data from each process. This is also known as “all-to-all personalized communication”. 

The communication patterns in the gather routines are the same as in the scatter routines, 

except that the direction of flow of data is reversed. In the one-all gather routine one process 

(the root) receives data from every process in the group, In the root process receives the 

concatenation of the input buffers of all processes, in rank order. There is no separate all-all 

gather routine since this would just be identical to the all-all scatter routine, so there are 5 

basic data movement routines. 
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data - 
one-all broadcast a 

all-all broadcast 

one-all scatter 

I 

c-=r, 
one-all gather 

all-all scatter e 
Figure 7: One-all and all-all versions of the broadcast, scatter, and gather routines for a group 
of six processes. In each case, each row of boxes represents data locations in one process. 
Thus, in the one-all broadcast, initially just the first process contains the data .40, but after 
the broadcast all processes contain it. 
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In addition, MPI provides versions of all these 5 routines, except the one-all broadcast, in 

which the send and receive datatypes are type consistent as discussed above, but in which each 

process is allocated a f ized size portion of the communication buffer. These bring the total 

number of data movement routines to 9. 

3.4.2. Global Computation Routines 

There are two basic global computation routines in MFI: reduce and scan. The reduce and scan 

routines both require the specification of an input function. One version is provided in which 

the user selects the function from a predefined list; in the second version the user supplies (a 

pointer to) a function that is associative and commutative; in the third version the user supplies 

(a pointer to) a function that is associative, but not necessarily commutative. In addition, there 

are three variants of the reduction routines. In one variant the reduced results are returned to 

a single specified process; in the second variant the reduced results are returned to all processes 

involved; and, in the third variant the reduced results are scattered across the processes involved. 

This latter variant is a generalization of the f o l d  routine described in Chapter 21  of [6]. Thus, 

there are 12 global computation routines, and a total of 21 collective communication routines 

(or 22 if we include the routine for performing a barrier synchronization over a process group). 

The reduce routines combine the values provided in the input buffer of each process using 

a specified function. Thus, if Di is the data in the process with rank i in the group, and @I is 

the combining function, then the following quantity is evaluated, 

where n is the size of the group. Common reduction operations are the evaluation of the 

maximum, minimum, or sum of a set of values distributed across a group of processes. 

The scan routines perform a parallel prefix with respect to an associative reduction operation 

on data distributed across a specified group. On completion the output buffer of the process 

with rank i contains the result of combining the values from the processes with rank 0 , 1 , .  . . , i, 

It should be noted that segmented scans can be performed by first creating distinct sub- 

groups for each segment. 

4. Summary 

This paper has given an overview of the main features of M P I ,  but has not described the 

detailed syntax of the MPI routines, or discussed language binding issues. These will be fully 
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discussed in the MPI specification document, a draft of which is expected to be available by the 

Supercomputing 93 conference in November 1993. 

The design of MPI has been a cooperative effort involving about 60 people. Much of the 

discussion has been by electronic mail, and has been archived, along with copies of the MPI 

draft and other key documents. Copies of the archives and documents may be obtained by 

netlib. For details of what is available, and how to get it, please send the message %end index 

from mpi” to netlibQom1. gov. 
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