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Abstract

This report deals with certain general properties of partial differential
equations of the form S(c)c; + g, = Q(c), where t may be thought of as time, z as

distance, ¢ as an intensive quantity (¢.g., temperaturs), and q its flux (e.g., heat
flux), and where g depends on both c and ¢;. Six topics are studied, namely:

§ maximum and minimum principles,

§ ordering of solutions,

§ invariance to stretching (affine) groups,
§ stability of steady states,

§ comparability of solutions, and

§ traveling wave solutions.

lllustrative examples are given from the field of nonlinear diffusion, applied
superconductivity, and helium cryogenics.

vii






1. Introduction

Conservation equations are partial differential equations of the form
Ct+q;=0 (1)

where { may be thought of as time, z distance, ¢ as an intensive quantity (e.g.
temperature) and ¢ its flux (e.g., heat flux). These identifications are not
essential to what follows, of course, but serve the twofold purpose of
establishing a useful nomenclature and suggesting an interpretation.

To treat conservation equations, one must postulate some connection
between q and ¢. Lax! has studied the hyperbolic equations that arise when q is
purely a function of ¢. In this paper, we study the parabolic equations that arise
when q also depends on the space derivative of ¢, namely ¢, Typical of the

equations that we have in mind are
(i) ¢¢= cp, the ordinary diffusion equation (g = -c;);

(ii) ¢ = (c;'R3),, the so-called Gorter-Mellink diffusion equation, which
describes heat transport in turbulent superfiuid helium (g = -c,1/3);

(ili) ¢ = (0", which occurs in hydrology, plasma physics, and applied
superconductivity and is often called the porous medium equation (g = -nc™1c,).

The thrust in this paper is fowards certain common properties of these
equations that enable us to tell useful things about their solutions without
actually solving them explicitly. The properties we shall be discussing are

(i) Maximum and minimum principles. A partial differential equation is
said to obey a maximum (minimum) principle if the largest (smallest) value of its
solutions in any region R of the (zf)-plane lies on the boundary of R. In this
paper, we shall include in the definition of maximum (minimum) principles the
following addition: if we choose the region R to be a rectangle in the (z,f)-plane
whose sides are parallel to the axes, then the largest (smallest) value of ¢



cannot occur on the upper side parallel to the z-axis (side AB in Fig. 2). Thus
the largest (smallest) value of ¢ is either an initial value or a boundary value.

As we shall see later, as a consequence of the second law of
thermodynamics, equations of the form (1) that can be interpreted as
representing real processes necessarily obey maximum and minimum principles
in this extended sense.

(ii) Ordering of solutions. By ordering | mean that the difference of two
solutions also obeys a maximum and a minimum principle. Such ordering has
the useful consequence that if two solutions ¢4(z,f) and co(z,f) obey the same
boundary conditions on aninterval 8 < z < b, i.e,, if ¢4(a,f) = cx(a,f) and c4(b,f)
= Co(b,1), but if 4(2,0) = c5(2,0), then c4(z,f) = c5(z,t) for all t > 0. We describe
this latter situation by saying the solutions are ordered according to their initial
values.

For linear equations, such as the ordinary diffusion equation, ordering is a
simple consequence of the existence of maximum and minimum principles
because the difference of two solutions cbeys the same equation as the
solutions themselves. For nonlinear equations, a separate investigation is
necessary.

(iii) Group invariance. Some of the equations given as examples above
are invariant to a one-parameter family of stretching (affine) groups of the form

¢'=Nag (2a)
t'= Nt O<A< o (2b)
Z’'= A2 (2c)

where A labels transformations of a group and the parameters o and 8, which
obey a linear constraint

Ma+ NS =L 3)

label groups of the family. The coefficients M, N, and L are determined by the
partial differential equations.



A transformation of the type (2), which leaves the partial differential
equation unchanged (invariant), in general carries one solution into another.
Among the solutions, there may be some that are carried into themselves by all
the transformations of one group of the family, say, that labeled by particular
values of the parameters o and 8. It can be shown that such solutions must
have the form

¢ = 18 y(zItV/6) 4

where y(x) is a function of x = Z/tV/8 still to be determined. Invariant solutions like
that of Eq. (4) are called similarity solutions. The importance of similarity
solutions stems from the fact that y(x) is a function of one variable only. I we
substitute Eq. (4) into the partial differential equation, we obtain an ordinary
differential equation for y(x).

I have shown? that this ordinary differential equation is invariant to the
associated group

y'=pMy (5a)

0<“<w

X'= px (5p)

Again, a transformation of the group (5) carries a solution y(x) of the ordinary
differential equation into another solution y{x’). Among the solutions y{x) there
may be some that are camried into themselves by the transformations of the
group (5). Such solutions have the form y = AxLM where A is a constant
determined by the partial differential equation. If we substitute the values of y
and x from Eq. (4) into this last expression we find

cltedB = A(z{t"ﬂ)w (6a)
or in view of the constraint (3)

¢ = AzL/M-NM (6b)



Since a and 8 no longer appear in Eq. (6b), this solution is invariant to al/ groups
of the family. This can be proved directly using Eq. (2). The permissible values
of A can be found by substituting Eq. (6) into the partial differential equation.

The importance of the totally invariant solution (6b) is that under certain
broad circumstances, it gives the asymptotic form of the solutions for large z or
small t.

Certain generalizations of Eq. (1) occur in practice. For exampie, when
Eq. (1) describes heat diffusion (so that ¢ really is the temperature), the first term
is multiplied by S(c), the heat capacity per unit volume. Another conservation
equation in which a function of ¢ multiplies the term ¢; is (iv) c¢; = ¢, which
figures in the theory of thermal expuision of a compressible fluid from a long,
slender tube. Equations of this generalized type often share some or all of the
three properties discussed above.

(iv) Stability of steady states. Another generalization of Eq. (1) arises
when we add a source term Q(c) to the right-hand side. When a source term is
present, the partial differential equation sometimes has one or more steady
states. Furthermore, as external parameters change, steady states may appear
and disappear. Only steady states that are stable against perturbation can
occur in the laboratory. Thus the stability of steady states becomes a fourth
general property of interest.

As we shall see later on, under very broad conditions, equations like Eq.
(1) possess a functional whose value for any solution either decreases with time
or remains stationary. Such a functional plays a role much like that played by
the gravitational potential of a ball rolling on a curved surface. Ilts critical points
correspond to steady states: minima correspond to stable steady states, and
maxima and saddle points correspond to unstable steady states. By studying
the topological properties of this functional, we shall be able to draw some
general conclusions about the stability of steady states.

{v) Comparability of solutions. It is possible to compare solutions of
specimens of Eq.(1) [or its generalization Eq. (7)] that have different source
terms Q(c). (Here we use the word compare in the sense of Hardy, Littlewood,
and Polya3: two functions are comparable over a domain if one is greater than or
equal to the other everywhere in the domain.) We shall show later that if c4(z,f)
and c5(z,f) obey the same initial conditions and the same boundary conditions
onanintervala < z < b, i.e., if 04(20) = c2(2,0), c4(a,f) = cx(a,f) and cy(bf) =
co(b,f), and if Qi(c) = Qx(c), then ¢4(z.f) = cy(z,f) for all t > 0. Comparability of
solutions is then a fifth general property of interest.



(vi) Traveling wave solutions. Occasionally Eq. (1) is invariant to the
translation groups Z =z + A andf =t+pu, —oo < A u < . Solutions ¢(z,f)
invariant to both groups are simply constants, but we may look for solutions
invariant to the one-parameter subgroup 2 =z-vh andf =t + ), —o < A <
oo, where v is a fixed constant. Such solutions have the form ¢(z+vf) and are
called traveling wave solutions. The form o(z+vf) represents a wave traveling
from right to left without change of shape when v is positive. The importance of
traveling wave solutions is that they, like similarity solutions, may be calculated
by solving an ordinary differential equation. The existence and nature of such
solutions is a sixth area of general interest.

2. Maximum _Principles

if we introduce the auxiliary variable h = § ¢ S(¢') d¢' , we can deal
directly with the first generalization of Eq. (1), which now takes the form

hi+q;=0 (7)

Let us now consider a region R of the (z.f)-plane bounded by a curve B and
apply Green's theorem: ‘

0= f fplhetqldzdt = g (-hdz+gqdi (8)

if the solution ¢ has a maximum at a point P in the interior of R, P is surrounded
by closed level curves of ¢, that is, closed curves on which ¢ = constant. On any
of these level curves C, ¢ and h are constant. Hence the first integral on the
extreme right-hand side of Eq. (8) is zero over C and

feqdt=0 (9a)

Now since C is a level curve of ¢ in the (z.f)-plane, the normal vector to C,
(cz cy), points inward towards P (see Fig. 1). Thus ¢, dt <0 at every point of C

(except at the top and bottom, where ¢, df = 0 momentarily). Therefore, if ¢ and
C, always have opposite algebraic signs,

fcqdt>0 (Sb)
which contradicts Eq. (9a). Thus the assumption that ¢ has a2 maximum at an
interior point P in R cannct be true, and the largest value of ¢ in R must lie on
the boundary B.

Comment 1. In processes that obey the second law of thermodynamics, g
and ¢, always have opposite signs. '



Comment 2: The conclusion is also true if g and ¢, always have the same
sign.

Comment 3: A similar proof shows that ¢ obeys a minimum principle, that
is, that the smallest value of c in R lies on the boundary B.

3. Maximum Principles (part 2)

Protter and Weinberger® have shown the following for the ordinary
diffusion equation: If we choose the region R to be a rectangle OABC in the
(z.f)-plane whose sides are parallel to the axes (see Fig. 2), then the largest
value of ¢ cannot occur on the interior of segment AB. In other words, the
largest value of ¢ is either an initial or a boundary value. The same is true of the
conservation equations (1) and (7) if S(c) > 0.

Suppose the largest value of ¢ in R did occur at a point Q in the interior of
AB. In a sufficiently small neighborhood of Q, ST, c¢ is increasing on the
segment SQ and decreasing on the segment QT. Let the value of c be the same
at S and T, and let C' be the level curve in R around Q for which ¢ has the
common value cg = c1. Now since ¢ is greater on the segment SQT than it is on

the curve C',
f hdz < 0 (10a)

where the integral is taken over the entire closed path C'-TQS. But then it
follows from Eq. (8) that

§fgdt <0 (10b)

over the same closed path. Now if ¢ and ¢, have opposite signs, it again
follows as it did in Fig. 1 that

§f gdt >0 (10c)

over the path C'-TQS, which contradicts Eq. (10b). Thus the assumption that the
largest value lay at Q in the interior of AB must be faise.

Comment 1: This proof only holds if ¢ and ¢, have opposite signs and if
S(c) > 0.

Comment 2: A similar proof shows that the smallest value of ¢ cannot
occur at a point Q in the interior of AB.



in all four of the examples given in the introduction, ¢ and ¢, have

opposite algebraic signs. In the fourth example, the thermal expulsion equation
CCt = C, the proofs given apply only when ¢ > 0 since S(¢) = ¢. The same
restriction can be applied to example (iii), where taking ¢ > 0 is sufficient to
ensure that g and ¢, have opposite algebraic signs. In all of these cases, then,
the largest and smallest values of ¢ are initial or boundary vaiues.

4 Ordering of Solution

If we consider Eq. (7) written for two different solutions ¢4 and ¢, we
obtain

(Py - ) + (G4 - G2); = 0 (1)

(h1-h3)z(q1-92) <0 (12)

then the two theorems just proved hold for the difference hy - h,. Now if, for
example, ¢y = ¢ on OA and BC in Fig. 2 but ¢y = ¢ on OC, then hy = h, on OA
and BC, but hy = hy on OC. Then the smallest initial or boundary value of hy -
hy is zero so that hy - hy > 0 everywhere in R. Then if §(c) > 0, ¢y 2 ¢,
everywhere in R. Soif Eq. (12) is futﬁued the solutions are ordered according
to their initial vaiues.

In the case of the ordinary diffusion equation, S=1, h=¢c, and ¢ = -c,
Therefore

(h1 - h2)z (91 - 2) = (1 - 22 < 0 (13)

s0 that solutions of the ordmary d:ffusnon equation are ordered according to their
initial values

In the case of the Gorter-Mellink diffusion equation, §=1, h=c, andg=
;1R so that

(hy - h2)z (@1 - 92) = 043 - 32°)qy - 92)

= (@12 + 9102 + G22(q1 - )2
P (14)



since both factors on the right-hand side are always positive. Therefore the
solutions of the Gorter-Mellink diffusion equation are also ordered according to
their initial values.

In the case of example (iv), the thermal expulsion equation, S = ¢, h =
¢22, and q = <, so that

(hq - h2)7(q1 - q2) = (€191 - C2G2)(q1 - G2)
= (01942 - (C1+C2)q1G2 + C2G22)  (15)

Now, unfortunately, the quadratic form on the right-hand side of Eq. (15) has a
positive discriminant, namely, (¢4 - ¢3)2, so that it is not always of one sign for all
values of the ratio g4/g,. The roots of the quadratic form are q4/g> = 1 and q4/q;
= cocq. Between these roots, the right-hand side of Eq. (15) is positive; beyond
them it is negative (we restrict our considerations to solutions c that are > 0). So
if we are to prove the ordering of the solutions of the partial differential equation,
we must refine our analysis.

5. Ordering of Solutions (part 2)

To show the ordering of two solutions, it is necessary only to consider the
difference of two infinitesimally close solutions ¢ and ¢ + u, where u << ¢. (No
generality is lost by this restriction—see the note at the end of part 3.) To first
order, the equation cc; = ¢, yields

UCt+ CUs = Ugy (16)

To show, for example, that the solutions ¢ are ordered according to their initial
conditions, we must show that v = 0 in the rectangie OABC of Fig. 2whenu =0
on OA and BC and v = 0 on OC. We begin by excluding the possibility that u
has a negative minimum at a point P in the interior of the rectangle. Then we
would have u_(P) = 0, u{P) =0, and u(P) < 0. The idea is to show that these
conditions are inconsistent with Eq. (16), but because we cannot be sure of the
sign of ¢, this argument is not conclusive.

There is a standard trick (see Ref. 4) for overcoming this difficulty. Set v
= ye'M. Then v, too, is zero on OA and BC and = 0 on OC. Now v obeys the
equation

VCt+ A ©)+ Ov = Vg (17)



If we restrict consideration to positive solutions ¢, we can choose A large enough
to make c;+ \ ¢ positive everywhere in OABC. Then the conditions v{P) <0,
v{P) =0, v(P) = O for a negative minimum at P are inconsistent with Eq. (17).

Similarly, v cannot have a negative minimum at a point Q on the interior of
segment AB. For at Q we would have v(Q) < 0 and v,(Q) = 0, which would

require v{Q) > 0. But then there would be even smaller values of v in OABC just
below Q, contrary to the hypothesis that its (negative) smallest vaiue lay at Q.

Clearly this state of affairs requires that the smallest value of v in the
rectangle OABC or on its boundary be zero, so that v = 0 and thereforeu = 0
in OABC. This means then that positive solutions of cc; = ¢, are ordered

according to their initial conditions.

The situation with respect to example (iii), the porous medium equation ¢,
= (oM, is the same that as with respect to example (iv) just discussed: the
quantity

(h - h2)z (@1 - G2) = - n[C1261™1 - (C4™1 + e 1)Cy5C0, + Co%C™1] (18)

is again a quadratic form with a positive discriminant and thus may change sign.
But a straightforward repetition of the argument given earlier in this section
shows that the positive solutions of the porous medium equation are also
ordered according to their initial conditions.

Finally, it should be clear now that the positive solutions in all four
examples are also ordered according to their boundary conditions, i.e., that if
€1(2.0) = c5(2,0), cq{a.f) = cx(a.l). and cy(b.f) = ca(b.l), then c4(z.f) = cx{z.f) in
rectangle OABC.

6. Ordering of Solutions (part 3)
The argument used in part 2 can be applied directly to Eq. (7) to find
simple sufficient conditions for the solutions to be ordered. We begin again by

considering the difference v of two infinitesimally close solutions candc + u. To
first order then

Suy = {3g/0cz)uy, - [8/32(3g/0c;) + 3g/dclu,

{(dS/dc)ey + alaz(aqlac)]u (19)



where S, g, and the derivatives of q are evaluated at the solution c. We can now
follow the argument given in part 2 without change. The value of the coefficient
of u, does not matter, for u, = 0 at the points P and Q. The value of the

coefficient of u also does not matter because it can be dominated by -AS as
long as S(c) > 0. And finally, the argument only goes through if 3g/dc, < 0. So

if S(c) > 0 and 3¢/3c, < 0, the solutions of Eq. (7) are ordered according to

their boundary conditions or their initial conditions. This conclusion is
unaffected by the presence of a source term Q(c), which merely adds a term
(dQ/dc)u to the right-hand side of Eq. (19).

Note: To see that no generality is lost by considering the difference between
infinitesimally close solutions, subtract Eq. (7) written for ¢ from Eq. (7) written
for ¢ + u, where v is no longer treated as small. Using the law of the mean, we
find Eq. (19) for u, except that now S, g, and their derivatives are evaluated at

values intermediate between c and ¢ + u. But this does not affect the foregoing
proof of the conclusion given above in bold type.

7. Comparability of Solutions

Now we show that if c4(z,f) and c,(2,{) obey the same initial conditions and
the same boundary conditions on anintervala < z < b, i.e., if ¢4(2,0) = c5(z,0),
ci(a,t) = cx(a,f) and c4(b,f) = ca(b,f), and if Q4(c) = Qx(c), then c4(z,f) = c(2f)
for all t > 0. Let ¢4 satisfy Eq. (7) with the source tem Qq and letcp = ¢y + v
satisfy Eq. (7) with the source term Qj:

hdcq) + qc4,612) = Qi(c4) (20a)
hKCz) + qz(cz,CZz) = Qz(Cz) (20b)

We subtract Eq. (20b) from Eq. (20a) and, using the law of the mean, we obtain
Eq. (19) with the additional term Q¢(cy) - Q2(c3) on the right-hand side. Now,

Qi(c4) - Qalea) = Q4(eq) - Qa{cq) + Qa(cy) - Q2(c2) (21a)
= Qqlcy) - Qalcq) +(dQfdC)u (21b)
so that now
Su; = - (3q/0C,)uy, - [0/02(8q/8C;) + dglaclu,
- [(dSrdc)e; + 8/az(aq/ac) - dQldclu + Qq{cy) - Qalcy) (22)

10



Since Qq(c4) - Qo{cq) = 0, the proof given above in part 2 that v 2 0, i.e., that
¢4 = ¢, in the rectangle OABC and on its boundary goes through without

change.

I have used the foregoing comparability theorem to study the following
problem of heat diffusion that arises in applied superconductivity. On the infinite
interval -o0 < z < oo, let ¢ obey the ordinary diffusion equation with the
source term Q(c) shown in Fig. 3:

Ct=Cpy + QC) (23)

Let ¢ initially be given by an instantaneous pulse occurring at time ¢ = 0 at the
originz=0, i.e, let

¢ = H exp(-22/4t) /(4xf)112 (24)

if H, the pulse strength, is small, the solution of Eq. (23) will ultimately tend to
zero. if H is large, the solution will ultimately grow without bound. What value of
H divides these two regions of behavior?

Equation (23) with Q given by Fig. 3 is not solvable in simple terms. But if
we replace Q{c) by the upper limit given by the dashed line, namely (dc,)Qf the
resulting equation can easily be solved to give

¢4 = H exp(Qgicy) exp(-22/4t) [(4xf)12 (25)

The peak of ¢ occurs at z = 0, and it reaches its smallest value at t = c/2Q,
This smallest value is

Cimin = H (2xcdeQp1/2 (26)

‘Now if cymin = €y, then at the instant that ¢4 achieves its smallest peak value, the
solution ¢, which is < ¢4, will be < creverywhere. But then Q(c) given in Fig. 3

will be zero everywhere, and from that time on ¢ will decay to zero. Clearly then
if we set ¢r= Cimin iN Eq. (26), we get a lower bound to H, namely,

H > (2xle)12 cpi2 Q112 (27)

1



Solutions belonging to values of H smaller than the right-hand side of Eq. (27)
will surely tend to zero as { tends to infinity.

8. Asymptotic Behavior of Solutions

| have used the ordering property in a variety of ways, but none more
important than determining the asymptotic behavior of certain solutions of
conservation equations that are invariant to a family of stretching groups. We
begin by considering the similarity solutions, whose form is given in Eq. (4). At
the origin they necessarily obey boundary conditions of the form

¢(0,1) = Bte’/8 (28a)

We are interested here in solutions that vanish at z = o0, i.e., solutions that obey
the boundary condition

c(o,f)=0 (t>0) (28b)

Because the similarity solutions have the form (4), they must also obey the initial
condition

oz,0)=0 (z>0) (28c)

Finally, we begin by restricting our attention to equations for which L/M and N/M
are both < 0 and A > 0. The Gorter-Mellink equation ¢; = (c,1/3), and the thermal

expulsion equation ccy = 5 are of this type.

When UM < 0, the similarity solution (4) evaluatedatz=0, >0, i.e,, on
the open segment OA in Fig. 2, is less than the totally invariant solution (6b),
since the latter is infinite there. Both solutions obey conditions (28b) and (28c).
Since the solutions are assumed to be ordered according to their boundary
conditions at z=0, t > 0, we see that

o(z,f) < AzLM +NIM (29a)
which is equivalent to

¥ix) < AxLIM (28b)
in light of Egs. (3) and (4). The function y(x) obeys the boundary conditions

y(0)= B [Eq. (28a)] and y(o0) = 0 [Eqgs. (28b) and (28c)]. As noted earlier, when
the function y(x) is transformed by the transformations of the group (5), its

12



images are also solutions of the ordinary differential equation for y{(x). Each
image has y{o) = 0 and y(0) = u/MB. Thus any solution and its one-parameter
family of images under group (5) form the totality of solutions of the ordinary
differential equation having y(o0) = 0 and y(0) = B, a positive constant.
Moreover, owing to the ordering of the boundary value ¢{(0.f) = Bf/8 with respect
to B, the functions y{x) are also ordered with respect to B.

Since the ordered functions y(x) are bounded from above by the totally
invariant solution [see Eq. (29b)], they must have a limit as B » o. This limit,
being arbitrarily close to solutions of the family y(x), must also be a solution. It
is, furthermore, invariant to the associated group (5) since that group carries the
family into itself. It must therefore be the solution y = A xUM. Thus

lim y(x)/xtUM = A (30)
Beco

Now consider a particular integral curve belonging to a fixed value of B.

Let us focus our attention on a set of images (x'y) of the points (x,y) on the
curve just defined by setting u = alx, where a is some fixed number. Then the
images are ‘

X'=a (31a)

y'= (alx)}/M y (31b)
The point (x',y") lies on the integrat curve y(x) belonging to the value

B’ = (alx)UMB : (31¢c)

Thus as x - o, s0 does B’ (remember that L/M < 0). Finally, then,

fm YoUM= im y ()X = A (32)
which means .

1',"; oz, fYAZLME-NIM = 4 (33a)
or

lim oz, YAZLMENM = (33b)

13



for the similarity solutions ¢(z,f) obeying the boundary and initial conditions (28).

Now all solutions obeying Egs. (28b) and (28¢) and having finite ¢(0,f)
must obey Eq. (29a). Since the solutions are ordered according to their
boundary condition ¢(0,t), Egs. (33a) and (33b) thus hold for any solution for
which ¢(0,f) can be bounded from below by an expression of the form (28a).

9. Asymptotic Behavior. Example

The asymptotic behavior (32) will fall out of any explicit representation of
the function of y(x) obtained by solving the ordinary differential equation y{x)
obeys. But even when no explicit representation can be obtained, the
asymptotic behavior (32) can be deduced from a study of the ordinary differential
equation for y{x). The following example makes clear how this happens.

The Gorter-Mellink diffusion equation ¢; = (¢,;13), is invariant to the family

of groups (2) when the coefficients in the linear constraint (3) are M =2, N = -3,
and L = 4. |f we substitute the right-hand side of Eq. (4) for ¢, we find the
following ordinary differential equation for y(x):

Biy1B) +xy' -ay =0 (34)
As expected, this ordinary differential equation—called the principal differential
equation in reference 2—is invariant to the group (5) (N.B.: now L/IM = -2 and
NIM = -312).

The method of treating Eq. (34) outlined in reference 2 is based on a
theorem of Lie's,5 which tells us that if we choose as new variables an invariant
u and a first differential invariant v of the group (5), the differential equation
relating v to u will be of first order. The invariants that we use are v = xy1/2 and
v=xy13. Then

x(dvidx) = v + x2d(y1B3)dx = v + (B} - V3IB = G(uv)  (35a)

x(duldx) = u + v3f2u = F(u,v) (35b)
so that

dvidu = u(28v - 2v3 + 201R)IB(2u2 + V3) (35¢)

Now the totally invariant solution (6b), being equivalent to y(x) =AxUM =
Ax2, corresponds to fixed values of v and v, namely v = £A12 and v = (-24)183,
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These fixed values of u and v thus represent solutions of the differential
equation (35). For these solutions, du = dv = 0, which means that the points Py:
(£A12,(-2A)13) are critical points of Eq. (35). Substitution of Eq. (6b) into the
Gorter-Mellink diffusion equation yields 4(v3)/9 as the value of A, so that the
coordinates of the critical points P, are (+2(31/4)/3,-2(/3)/3).

We can verify these coordinates directly from Eq. (35), for the critical
points are those points at which the numerator and denominator of Eq. (35)
vanish simultaneously. It follows at once that the only critical points are O: {(0,0)
and ({21738/(+2)]34 128 «+2)]172). Now from the linear constraint (3) it follows
that B/(er+2) = 2/3, so that the coordinates of the iatter critical points are exactly
those given above for the points P, .

Now because the coordinates of the points P, do not depend on « and
8, P, are critical points of Eq. (35) for all « and 8. Thus the constant values of
u = 2AY2 and v = (-24)172 that are their coordinates represent solutions of Eq.
(35) for all @ and 8. But this means that y(x) = Ax2is a solution of Eq. (34) for
all o and B and thus corresponds to a totally invariant solution of the Gorter-
Mellink diffusion equation. So by studying the critical points of the first-order
differential equation (35)—called the associated differential equation in reference
2-we could have been led to the totally invariant solution.

But how can we see from Eq. (35) that the totally invariant solution gives
the asymptotic behavior of the function y(x)? To answer this question, we must
study the phase diagram of Eq. (35). In the applications of the Gorter-Mellink
diffusion equation, interest focuses on solutions for which y > 0 and y' < 0.
Accordingly, we shall need only the fourth quadrant of the phase diagram. It is
sketched in Fig. 4 for the case a > 0, §> 0. Shown are the loci of zero slope u

=0 and Cy: 28v - 2V3 + 2au2 = 0, and the locus of infinite siope Coy: 212 + V3 =
0. These loci, which intersect in the two critical points O and P,, divide the

quadrant into regions in each of which the slope dv/du has one sagn From the
diagram we see that O is a node and P, is a saddle point.

For solutions y(x) that have finite y(0) and y{0), the value x = 0
corresponds to v = v = 0, i.e,, to the origin O. So the solution of Eq. (35¢) that
we want must pass through the origin. The separatrix S passes through the
point P, and now we show that as we pass from O to P, along S, x tends to co.

If we approach the singular point P, along an iﬁtegra! curve S, then in the
immediate vicinity of P,,, Eq. (35b) can be written

x(dufdx) = (F, + mF U - Up.) (36)

16



where m is the slope of the integral curve S at P, and the partial derivatives F,,
and F, are evaluated at P,. Equation (36) means that near P,,

x = const (U - up,)1/(Fu+ mFv) (37)

Thus as u - up,, x approaches 0 or o according to whether F, + mF, is
positive or negative. Now F, + mF, is the directional derivative of F along the
curve S in the direction of increasing u. Since S and C, (F = 0) intersect at P,,,
F,+ mF, is positive if as we move in the direction of increasing u, S crosses C o,
in the direction of increasing F and negative if S crosses C o, in the direction of
decreasing F. We summarize this result as follows: At a singular point P, if S
crosses C,, in the direction of increasing u, and F increases (decreases),
then x -» 0 (xo0) as we approach P along S. The same rule holds if we
replace u by v, Co, by Cp, and F by G. Thus as we approach P, along the
separatrix S, x becomes infinite. Then, for large x, U = up, and y ~ Up,2x2 =
Ax-2, as we wished to show.

For any fixed values of « and 3, the separatrix S corresponds to an entire
family of solutions y(x) that are images of one another under the transformations
of the associated group (5): for, two points (x,y) and (X.,y') related as in Eq. (5)
correspond to the same values of v and v. Every member of the family has the
asymptotic form y ~ Ax2 but the shape of the curves y(x) for small x depends on
the particular values of o and 8. The values of a and 8 in turn depend on the
boundary condition (28a) imposed on ¢(z,f). For example, whena =1 and 8 = 2,
c(0,f) = BV2 = y(0)1/2 and ¢,(0,f) = y(0), a constant. This boundary condition
can be used to solve the problem of heat flow in a long tube filled with superfluid
helium initially at a uniform temperature, which, beginning at t = 0, is subjected
to a constant flux of heat -{c,(0,f)]/® through the surface z = 0. This probiem,
called the clamped-fiux problem, has been dealt with in detail in reference 2.

10. Asymptotic Behavior ;. Example (part 2)

A similar analysis holds for the case in which a <0 and 8 > 0 (8 must be
> 0 in order that the similarity solution (4) spread out with time rather than
contract). But whereas the existence of the lenticular region between Cy and

Cx in Fig. 4 makes it easy to see that when o > O one of the separatrices
through P, also passes through O, it is somewhat more difficult to see when o <

0. For the sake of completeness, the analysis of the phase diagram when o <0
is given here, but the reader not interested in the details may pass on now to the
next section.
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Shown in Fig. § are the first and fourth quadrants of the phase diagram of
Eq. (35) when a <0 and 8 > 0; the second and third quadrants are mirror images
of the first and fourth, respectively, in the v-axis. The curves Cp and C,, are

shown as heavy lines; typical integral curves are shown as light lines. Note that
the curve Cy has two parts.

The point P, is a saddle point through which two separatrices pass. This
is more or less clear from the diagram but can be proved indubitably by applying
L'Hospital's rule to the right-hand side of Eq. (35c¢) to find possible values of the
slope m of the integral curves at the point P,. We then obtain the quadratic

equation ,
m = Up(28m - 6vp,2m + daup,)B(4up,. + 3vp.2m) (38a)

or
4BmR + Up,(28 + 8)m - 4aup,2= 0 (38b)

by noting that 3vp,2 = 4. The discriminant of Eq. (38b), calculated with the help
of Eq. (3), is

Up.+2(10062 - 96 + 64) (38c)

which is always positive. Thus Eq. (38b) always has two real roots; these are
the slopes of the separatrices. When o < 0, both must be negative, as shown in
Fig. 5.

Using the rule given at the end of the last section, we see that as we
approach P, along the separatrix S in the direction of increasing v, F dec eases

so that x -» o0, So it would appear that S is the integral curve of Eq. (35¢) that
we want. It remains to show that S also passes through the origin O.

Now in the neighborhood of the origin, integral curves exist for all values
of m that behave as v = mu does. This we can see by substituting v = mu into
Eq. (35¢c) and keeping only the lowest order terms in the numerator and the
denominator. Thus the origin is a node. But in addition to these integral curves,
there is an exceptional integral curve, S": v = 1273, which also satisfies Eq. (35¢)
to lowest order. The configuration of integral curves in the neighborhood of the
origin is thus as shown in Fig. 5. Since integral curves do not intersect, except
possibly at critical points, integral curves that lie below S' must pass through O

as we wished to prove.
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We can check these results in the case o = -1, for then Eq. (34) is
explicitly solvable8; the solution for which y(e)=0is

y = (4/3)/8)(x* + g4y 112 (39)

where a is a constant of integration. By direct calculation we find that the one-
parameter family (39) corresponds to the curve v = -3u2/2 in the (u,v)-plane.
This curve passes through both singularities O and P, and is thus the separatrix
S. As expected, all curves of the family (39) have the asymptotic behavior y ~
(40/3)/9)x2 = Ax2,

The value a = -1 corresponds to the condition
f _e®cdz= | _oo® tVhy(zitVB)dz= § _ ™ yix)dx (40)

if we note that the solution (39) is even in x. The condition (40) says that the
integral of ¢ over all space is constant in time. This means that there is global
conservation of the quantity c. The function of z and f that Eq. (39) represents
is more and more peaked around z = 0, the smaller t is. For this reason, the
solution (39) represents the development of an instantaneous pulse of the
quantity ¢ in the plane z = 0 at the time { = 0. In reference 6, the problem o = -1
is called the pulsed-source problem. Its importance, aside from its practical
uses, is that it is analytically solvable for all equations of the form (1) with ¢ =
q(c,c,) that are invariant to the family of groups (2).

Another problem analytically solvable for invariant differential equations
is that for which a = 0 when g = qg(¢;). In the case at hand, the solution when o =

Ois
y = (86v/3)/922)[1 - xi(x2 + a2)1/2] (41)
where again a is a constant of integration. As expected, y ~ (4(vV3)/9)x2 = Ax2,

11. As totic Behavior of Solutions {(part 2

The proof given in section 8 that the totally invariant solution AzZUMt-N/M
gives the asymptotic behavior of solutions that obey the conditions (28b,c)
depends on the explicit assumptions that UM <0, N/iM <0, and A > 0. To
explore what happens if these conditions are not met, we study the analytic
solutions to the pulsed-source problem (a = -1) for the generalized diffusion
equation*

¢t = (0Tc,"), (42)
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*As it happens, Eq. (42) is the most general form of Eq. (1) with g = g{c,c,) invariant to the family
of groups (2).

For Eq. (42), M=m+n-1,N=1, and L = n + 1. The similarity solutions (4),
when substituted into Eq. (42), lead to the following principal ordinary differential
equation for y(x):

BTy +xy - ay=0 {43a)
When « = -1, Eq. (43a) becomes
Blymyny + (xy) =0 (43b)

where now 8 = 2n + m. Equation (43b) can be integrated once to yield

By™y" +xy =0 | (43c)

Here we have set the constant of integration egual to zero since we are
interested in even solutions, for which y'(0) = 0. Solutions for which (0) is finite
and y'(0) = O can only occur when n > 0.

Now since we are interested in solutions that are everywhere positive and
since both x and g8 are positive, it is clear that ¥ must be negative when x > 0.
This puts another restriction of the value of n, namely, that it must be an odd
integer, the reciprocal of an odd integer, or the ratio of two odd integers. When
these restrictions are met, Eq. (43c) can be integrated to give
51!:1[(,,...1 Y{m+n-1 )]y(mmd)ln = M 0n & constant (44)
Fm+ n <1, the left-hand side of Eq. (44) is < 0, even when x = 0.

Therefore, the constant in Eq. (44) is also < 0. We can therefore write Eq. (44)
as

y={(1 _m_,,)(a(nﬂ)ln + x(nﬂ)ln)/mln(nﬂ )]m(m+n-1) (45)

where we have written -a(™ W for the constant in Eq. (44). Because n > 0,
when x is large enough, x(™*1/n >> g(m1)in. Then for large enough x,

y ~ x(m)(men1) = xLIM (45)

and furthermore LIM = (n+1)/(m+n-1) < O and N/M =1/{m+n-1) < 0. This is just
the asymptotic behavior we found before.
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K m+ n> 1, the lefi-hand side of Eq. (44) is > 0, even when x = 0.
Therefore, the constant in Eq. (44) is also > 0. We can therefore write Eq. (44)
as

y = [(m+n-1)(@m1)in - (o )iny g1in( a1 ) Amn-1) (47)

Furthermore, now /M > 0 and N/M > 0. It is clear from the form of Eq. (47) that
the solution y(x) crosses the x-axis at x = a. If Eq. (47) is used when y > 0 and if
y is set equal to zero beyond the first root, a solution ¢(z,t) is thereby created
that satisfies Egs. (28b,¢) by reaching zero at a finite value of z. Such solutions
were first displayed by Pattle’. For the sake of a definite nomenclature, 1 call
such solutions segmented.

12. Asymptotic Behavior of Solutions (part 3)

The question now arises whether when L/M > 0 and N/M > 0 alf similarity
solutions are segmented rather than just those for which a = -1. To examine this
question we study the direction field of the first-order differential equation
associated with Eq. (43a). For ease of calculation we choose as the invariant u
and the first differential invariant v of the associated group (5) the following:

v = ymynx-(me2n)i(m+n-1) (48a)
u = yx- (- D)mn1) (48b)

After a short computation following the outline provided by Egs. (35), we find

x(dvidx) = {(m+2n)(m+n-1)}v + aulB - (vitm)\INig = G(u,v) (49a)
x(duldx) = {(n+ 1) (m+n-1)ju + (iem¥Vn = F(u,v) (49b)
dv/du = G(u,v)/F(u,v) (49c)

When m+n-1 > 0 and n > 0, Eq. (49) has an integral curve S through the
origin which behaves like v = -u/g for small v and v. For when v = -u/8, the
term (v/iuM)¥/n dominates the other terms in both £ and G near the origin O.
Thus as we approach O along S, we have

lim (¥™1yn/x) = lim (Viu) = -1/8 (50a)

Now by integrating Eq.(49b) as (u,v) approaches O along S, we see that x can
only approach some finite value; call it a. Then from Eq. (48b) we see that y{a)



=0 When x -» 0, v and v - oo; thus the integral curve S represents a
segmented solution with its foot at x = a, where

lim (y™1y") = -alg (50D)
x-»3

Eq. (50b) agrees with detailed calculations done in reference 2 for the cases m
=1, n=1,a=-1and m=1,n=1, «a =1/2. Eq. (50b) can be integrated to give
the following behavior of y(x) in the neighborhood of the foot x = &

y = (@IB)Vemn-Df(men-1)(a-x)injemen-1) (50c)

Eq. (50c) agrees with the exact result (47) in the case o = -1. In reference 2,
Eq. (50b) was used to find initial conditions for numerical integration of Eq. (43a)
from a to zero. Eq. (50c¢) can be used in the same way. Solutions for various
values of a can be obtained from one another by transformation with the
associated group (5).

13. itulation of Sections 8-12: Asymptotic Behavi

In section 8, we showed that if L/M < 0, N/IM < 0, and A > 0, then solutions
of Eq. (1) obeying the boundary conditions (28b): c(e0.f) = 0 (t > 0) and (28c):
¢(2,0) = 0 (z > 0) have the asymptotic behavior ¢(z,f) ~ AzLM t-N'M for small t or
large z. In section 8, we begged the guestion of the existence of solutions
obeying Eqgs. (28b,¢).

In section 9, we demonstrated the existence of such solutions by direct
calculation for the Gorter-Mellink equation ¢; = (c,13), when a > 0. In section

10, we extended these calculations to the case o < 0.

In section 11, we considered the pulsed-source problem (a = -1) for the
generalized diffusion equation (42). ¢; = (C'Mc,”), in order to see what would
happen if L/IM > 0, NIM > 0, or A < 0. The pulsed-source problem was chosen
because it is analytically solvable for Eq. (42). We found that similarity solutions
could only exist when n > 0. (The exponent n must also be > 0 if we wish to
apply the ordering theorem to Eq. (42), for that theorem requires that 3g/dc, <
0.) When LIM = (n+1)/(m+n-1) < 0, we found by direct calculation the asymptotic
behavior predicted in section 8, but when LIM = (n+1)/(m+n-1) > 0, we found that
the similarity solutions of the pulsed-source problem are segmented, i.e., vanish
at and beyond a finite value of z.

in section 12, we found that when L/M > 0, the similarity solutions of Eq.
(42) are segmented for all values of o and 8 (8 > 0).
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14  Stea tates

As mentioned in item (iv) of the introduction, when a source term Q(c) is
added to the right-hand side of Eq. (1), the resulting partial differential equation
may have more than one steady state. Only steady states that are stable
against perturbation can occur in the laboratory (owing to the ubiquitous
presence of thermal fluctuations).

The key to determining the stability of steady states is the Lagrangean.
Let us suppose that the steady-state version of Eq. (1) with a source term is the
Euler-Lagrange equation of a Lagrangean L{z,c,c,].* i.e., let us suppose we can

write Eq. (1) with a source term as
S(c)es = Q(c) - gc.c;) = d/az(allacy) - allac (51)

where we have generalized Eq. (1) by the insertion of a coefficient S(c) > O on

*Bolza® shows that such a Lagrangean always exists.

the left-hand side. If the steady states are defined by the boundary conditions ¢
= cgat Z= 8 and c = ¢ at z = b, then the action

A= s ab L[Z,C(Z,t), Cz(z»m dz (52)

decreases monotonically with time for solutions of Eq. (51) that obey the
boundary conditions ¢(a,f) = ¢, and c{(b,f) = ¢,. Proof:

dA/dt = | g [(3L/3cs)cy + (8Lac)c] dz (53a)
= cAdlldc) | o - &P cAdl9z(3Liacy) - altdc) dz  (53b)
=- § P S(c)cRdz <0 (53c)

The integrated term vanished because c{a.f) = c{b,f) = 0 as a consequence of

the boundary conditions imposed on ¢. It follows at once from Eq. (53) that dA/dt
= 0 if and only if ¢; = 0, i.e., that the stationary values of A correspond to steady

states and conversely.

As mentioned in the introduction, the action A plays a role much like that
played by the gravitational potential of a ball rolling on a curved surface.
Imagine the action plotted as an infinite-dimensional surface whose base
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coordinates specify any function of z on the interval @ < z < b. The base
coordinates might be, for example, the Fourier coefficients of the function. At
any instant, the solution of Eq. (51) corresponds to a point on the action surface,
and as time advances the point traces out a curve on the surface. Such curves
always progress in the direction of decreasing action. So, in a manner of
speaking, the solution point rolls down the action surface. The stationary (or
critical) points of the action surface correspond to steady states, so the analogy
with the potential energy of a ball rolling on a surface is complete.

Local minima on the action surface correspond to states that are stable
against small perturbations, while local maxima, saddle points, and points of
inflection correspond to unstable states. i we imagine the action surface to be
an inclined rubber sheet and make a dimple in it downwards with a finger, we
create a local minimum at the center and a saddle on the rim. Thus we create
two steady states, one stable and the other unstable. if we make the dimple
upwards, we create a iocal maximum and a saddle. It would appear, then, that
new steady states may appear in pairs, at least one of which (the one with the
larger action) is always unstable. The state with the smaller action may be
either stable or unstable. '

By imagining (or experimentally determining) the different shapes a
rubber membrane can take, we can guess what different combinations of stable
and unstable steady states are possible. The analogy between the infinite-
dimensional action surface and a rubber membrane is thus of great heuristic
value, but, as it stands, it does not constitute a proof of any of the above
statements. ;

15. Ste States rt

it is possible to prove convincingly the following: If there are just two
steady states, the one with the larger action is unstable. Proof: Let ¢4(2) and

C2(2) denote the two steady states and let their respective actions be 4; > A,.
Consider now the one-parameter family of initial conditions

o(2,0) = Acy(2) + (1-N)cxf2), O0=xsx1 (54)

Sketched in Fig. 6 as a function of A is the initial action A that corresponds to
¢(z,0). When A =0, A = A, a stationary value, andwhen A =1, A= A, also a
stationary value. Joining A4 and A, is a continuous curve, which intersects the
intermediate value A. of the action at the point P. As time goes on, all the points
on this curve move down (dA/df < 0) except the fixed end points Ay and A,
which correspond to the steady states ¢4 and ¢y, The point P can therefore only



move to the right. Since P is bounded on the right by the line A = 1, it must
approach a limiting value A < 1; call this limiting value A..

i A < 1, then the action of the descendant of the initial condition (54)
having the A-value A. approaches A. in the limit of long times and the
descendant itself therefore approaches a steady state different from either ¢4 or
C,. This is contrary to hypothesis; therefore A\« = 1. Then eventually the point P
will lie in any neighborhood of A~ = 1, no matter how small. This means that
there are initial conditions in every neighborhood of ¢4, no matter how small,
whose descendants do not approach ¢q. Thus ¢4 is unstable, as was to be
proved.

When there are more than two steady states, we can use the above proof
to show that the one with the largest action (call it ¢4) is unstable by letting ¢,

represent the steady state with the next largest action. But this method of proof
fails for any other steady state, so that we cannot use it to draw conclusions
about the stability of these other states. Figure 7 illustrates why the proof fans
except for the steady state with the largest action.

Figure 7 shows the action of the initial conditions (54) plotied against A\
just as in Fig. 6, but in addition, Fig. 7 shows a horizontal line A = A3 marking the

higher action of another steady state c3. It is possible that the action of some
initial states (54) exceeds A3 and it is further possible that as least one of them,
say that of point R, approaches the steady state c3. Thus the point P is bounded
on the right by Ag. It is then no longer possible to conclude that the state ¢4 is

unstable. There is no way to exclude this possibility except when no such state
c; can exist. Therefore, all we can conclude in general is that the state with the

highest action is unstable.
16. Steady States (part 3

The discussion of the last section outlines what we can conclude from
purely topological arguments. To say more, we must add more hypotheses, i.e.,
we must restrict our considerations to more specialized situations. One special
case | have dealt with® is that of the ordinary diffusion equation in the presence
of a positive source Q(c), i.e., the case in which g = -¢c,. Then

L=c22- §,°Q(c)dc (55a)
for which the Euler-Lagrange equation (51) becomes

S(e)et = 6z + Q(0) (55b)
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Since Eq. (55b) is invariant to transiation in the z-coordinate, we may relocate
the origin midway between the points z = a and z = b; henceforth, therefore, we
shall be considering solutions of Eq. (65b) on the interval -a < z < a for which
c{#at) = 0.

The steady states of Eq. (55b) are defined by the ordmary differential
equation and boundary conditions

d2c/dz? + Q(c) = 0, c{za)=0. (56)

The steady states we seek are even on the interval -a < z < a. It is perhaps
worth pointing out that for the time being we are again begging the question of
the existence of such soiutions.

Let us suppose that exactly two steady states exist, ¢4 and ¢;. These

states are ordered according to their maximum values, whichoccuratz=0, ie.,
if ¢4(0) > c5(0), then ¢4(2) > cx(z) for -a < z < a. To see this consider the

solutions that grow from the initial conditions ¢4(2,0) = ¢4(0)1 - 2/a) and c5(z,0) =
c2(0)(1 - 2/a) with the following boundary conditions on the interval 0 < z < a:
c1{0,1) = ¢4(0), c2(0.1) = €2(0), cq(a.t) = 0, cp(a,t) = 0. The first solution matures
into the steady state ¢4(2), the second into the steady state co(z). Since c4(z,0) >
cx2,0), c4(z,f) > c5(2,1) by the ordering theorem of section 6 (3g/ac, = -11). Thus
letting t become infinite, we find ¢4(2) > cy(2).

i Q(c) is concave upwards, then Ay > As. Proof: Let us consider the
action A(f,)\) of the descendant c(z,t;\) of an initial condition of the family (54).
Since ¢{z,tA) is even

AltN = § 2[c2-2§ £Q(¢) dc) dz (57)
Then,
dA/dN = § o 26,85, - 2Q(c)cy] dz (58a)
=26l #-2§ 2 C)cy + Qo) dz (58b)
= -2 § 8 S(cleedz (58c)

since ¢,{0,f) = c)(a.f) = 0. When t =0, ¢, = ¢4(2) - ¢2(2). Therefore,

(dA/dN)=g = -2 § ,2 [S(C)Cqe=0 (€1 - Cp) dz (58d)
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Now

[S(C)ei=o = C2(2,0) + Qic(z,0)] (59a)
= Mo1zz + (1-\)C2zz + QNG +H(1-N)C2] (59b)
= AQ(cy) - (1-N)Q(C) + QIACH+{1-Nca] (59c)

s0 that
(dA/d\)=g = 2 § o2 (c1 - 62) {AQ(cq) + (1-N)Q(C2) - QfAcy+(1-N)Col} dz (594)

if Q(c) is concave upwards, (dA/d\)=p > 0 for 0 < A <1, (dA/dA)g=g <O for A <0
or A > 1, and (dA/d\)g=g = 0 for A =0 or A = 1. Thus A(f=0) must look like Fig. 8.
Therefore, Ay > A,, as was to be shown. Furthermore, it is obvious that ¢ is

unstable since in any neighborhood of it, no matter how small, there are initial
conditions with actions < A4. Because the action always decreases, these initial

conditions can never retum to c4.

Now we are in a position to show that ¢, is stable. We argue by reductio
ad absurdum. Suppose ¢, were unstable. Then in every neighborhood of ¢,
there is an initial condition ¢/(z,0) that diverges from ¢,. Let us choose as the
the neighborhood bounded by the initial conditions (54) with A = g and A\ = -g,
e << 1. Now because A(-c) < A4 and A(e) < A4, ¢(2,t,-¢) and ¢(z.t,e) can only tend
to c,.* But by the ordering theorem, ¢(z,f;-g) < €'(2,f) < c(z,t.e). Thus c'(z,f) must
tend to c,, contrary to hypothesis. Therefore ¢ is stable.

* A subtlety has been glossed over here, namely, that if ¢(z,f.-¢) and ¢(z.t,¢) cannot approach ¢,
they must approach ¢,. The only way for ¢(2,t,-£) and &(z,£;¢) to avoid this if for A(f,-¢) and A(t,¢)
to decrease without bound, for the only stationary values the action has are A, and A,. From
Eq. (57)we see that A> -2 [ # [ €Q(c) dc] dz, so the only way A(f,-¢) and A(f,c) can decrease
without bound is for o(z.£-¢) and ¢{z.t.¢) to increase without bound (since Q(c} > 0). But since
c(z,t-¢) and o(z.t,¢) are bounded from above by ¢, (ordering theorem), this is not possible.




17, Steady States: Example

An example of the situation just discussed in which detailed calculation of
the steady states is possible is the case Q(c) = B exp{yc). In strict point of fact,
Eq. (56) can always be solved in terms of quadratures, but the functional
dependence of ¢ on z, while given explicitly in the form of integrals, is far from
transparent. Only in rather special cases can it be clarified, and the case Q(c) =

B exp(~yc) is one of them.
If we multiply Eq. (56) by dc/dz and integrate from O to z, we find

(defdz)? + 2 § # Q(c)dc/dz) dz =0 (60a)
since (dc/dz),-q = 0. Since (dc/dz) dz = dc, Eq. (60a) can be written

(de/dz)2 =2 § om Qc) dc' {60b)
so that

z= [ (2 § o Q(c") dc"y V2 dc’ (60c)
Here ¢, is the maximum value of ¢ that occurs at z = 0. If we set z = g, in Eq.

(60¢), we find

a= [ (2§ Qc)dey12dc (60d)

When Q(c) = B exp{yc), which is both positive and concave upwards, Eq.
(60d) can be integrated to yield |
(v8/2)12a = In[y + (2 - 1)'2)fy; y = exp(yCry/2) (61)

Figure 9 shows a sketch of y plotted versus (y8/2)12a. We see at once that
depending on the value of (y8/2)12a there can be no steady state, one steady
state, or two steady states.

When there are two steady states (small enough a), dc,/da < O for the
one with the larger peak temperature ¢, and dcmlda > 0O for the one with the
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smaller ¢,,, Now Eq. (56) can serve as a model for an uncooled, current-

carrying wire heat sunk at its ends and having a resistivity that increases with
temperature ¢®. Presumably, steady states whose peak temperature decreases
as the cooled length increases do not occur in the laboratory. So we suspect
that the upper steady state (the one with the larger c,,;) is the unstable one. But

how to prove this conjecture?

We begin by showing that for the steady solutions of Eq. (66), dA/da <
0. Proof:

dA/da = [c2-2 § LQC) dClmgq + 2 § o2 [C2C2a - QlC)C5] dz (62a)
=[c{a)l? + 2cAa)ca(a) - 2 § % [c + Qlo)lc, dz (62b)
= [c{a)]2 + 2¢c4{(a)c4(a) (62c)

The integral in the first term of Eq. (62a) vanishes because c(a) = 0. The
integral in Eq. (62b) vanishes because c satisfies Eq. (56). Now, finally, we note
that c,(a) = -c{(a); see Fig. 10. Therefore,

dA/da = Jca)k < 0 (62d)
Furthermore, from Eq. (60b) we see that
[cAa)?=2 § % Q(c)dc (62e)

Thus A decreases with increasing a and does so faster on the upper branch than
on the lower. If we go backwards from the single state of largest a, the action A
increases on both branches but it increases faster on the upper branch than on
the lower. Thus for a given a, A is larger on the upper branch than on the lower.
From the results of sections 14, 15, and 16, we see then that the upper state is
unstable and the lower state stable.

18. Steady States: Second Example

A related example arises in the case

Q(c) =0, C<Cg (63a)
Q(c) = B expy(c-cs)], C>Cs (63b)

Again Eq. (60d) can be integrated and yields
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(vB12)12a = Infy + (v - 1)12)ly + (yeo/2)(/2 - 1)12; y = exply(CpyC5)/2](64)

For small values of ycgJ/2 (roughly less than 0.2), the curve of y versus

(vyBr2)123 looks like the sketch in Fig. 11. The most interesting region is that
between the turning points P and Q, where there are four possible steady states
(including the state c = 0). Again dA/da <0, so that A; > A; and A > A;. These
relations encourage the conjecture that states 3 and 1 are unstable, while states
0 and 2 are stable.

To prove this conjecture, we: take advantage of the ordering of the
solutions with respect to their initial conditions. Consider, for example, steady
states 2 and 3 and the initial conditions

o(2,0) = Ac(2) + (1-N)eo(2), O<is1 (65a)

all of which lie between ¢, and 3. The difficulty aliuded to in Fig. 7 cannot now

arise. Fdr, if the action of a point such as R were to approach a fimit other than
Ao, it would correspond to a steady state that, perforce, would have to lie

between ¢, and c3. There being no such steady state, we see at once that all of
the states (65a) tend to ¢, except that for which A = 1. Thus c3 is unstable. By a
similar argument regarding ¢4 and Cp, we see that ¢4 is unstable, and all of the
initial states |

c(z,0) = Aey(2) + (1-A)cx(2), I 4D W | (65b)
tend to ¢, except that forwhichA=1.

Now we can show that ¢, is stable by slightly extending the argument by

reductio ad absurdum of section 16. we merely choose one of the curves
bounding the neighborhood of ¢, from the family (65a) and the other from the

family (65b).

19. Traveling Wave Solutions

If the Lagrangean has no explicit dependence on z, then Eq. (51) is
invariant to the transiation groups Z =z + A andf =t+py —o < A\, u < oo,
Solutions ¢(z.f) invariant to both groups are simply constants, but that is because
of the very high algebraic symmetry we have imposed. Suppose we iook for
solutions invariant to the one-parameter subgroup 2 =z-vA andf ={t+ )\, —
< N < o, where v is a fixed constant. Such solutions must have the form

29



c(z+vt) and are called traveling wave solutions. The form ¢(z+vf) represents a
wave traveling from right to left without change of shape when v is positive.

In the field of applied superconductivity, much time and effort have been
spent calculating the traveling wave solutions of Eq. (65b). When we substitute
the form o(x) = c(z+vf) into Eq. (55b), we find the ordinary differential equation

c'-vS(c)e' + Q(c)=0 (66)

At least two different kinds of source terms Q(c) are of interest: (1) those like that
of Eq. (63) that are zero up to and positive beyond a certain threshold value of c,
and (2) those of the form shown in Fig. 12.

Suppose we seek solutions of Eq. (66) that look as shown in Fig. 13. The
flat asymptotes of the solution at x = —occ and x = o must be roots of the
function Q(c). In both cases of interest, Q(0) = 0, so the left-hand asymptote is
admissible. In case (1), Q(c) does not have another root, so it cannot admit
traveling wave solutions of the form shown in Fig. 13. Case (2), however, can.
So far it would appear that either ¢(P) or c(Q) in Fig. 12 can serve as ¢,

In fact, only ¢(Q) can serve as ¢, For as we shall now see, the flat
solution ¢ = ¢(P) is unstable against small perturbation, whereas the flat
solutions ¢ = 0 and ¢ = ¢(Q) are stable. We take a direct approach: consider
the difference v between ¢ = ¢(P) or ¢ = ¢(Q) and an infinitesimally close solution
¢ + u. Iif we subtract Eq. (55b) written for ¢ from Eq. (55b) written for ¢ + u, we
find (c; = 0!)

S{chup= Uz + Q(clu (67a)
Note now that since c is a flat solution, S(¢) and Q'(c) are constants. If we now
consider a separable solution of Eq. (67a) of the form u = exp(ikx + wt), we find
the dispersion relation

Sw=-k2+Q (67b)
if @(c) <0, asitis for c =0 and ¢ = ¢(Q), « < O for all k, and thus the states ¢ = 0
and ¢ = ¢(Q) are stable. If Q(c) > 0, w > O for some X, and thus the state ¢ =
c(P) is unstable.

Finally, if we multiply Eq. (66) by ¢’ and integrate from -0 to o, we find

Vi _0o® S(c)c2de = § A Q(c) de (67¢)



Since the left-hand side of Eq. (€7c) is > 0, traveling wave solutions can only
exist if the right-hand side of Eq. (67¢c) is also > 0, i.e., if the area of iobe 2 in
Fig. 12 is greater than the area of lobe 110,

0. Traveling Wave Solutions: Exam

In general, Eq. (66) has solutions of the type shown in Fig. 13 only for
ceriain values of the velocity v, as the following example shows. Take Q(c) to
have the particular form:

Q(c) = -he, O<c<gg (68a)
Qc) =hlcp-c), cs<c<cy (68b)

which is of the type shown in Fig.12, and take S{(c) = S, a constant. Now Eq.
(66) is invariant to the translation group ¢l = ¢, xT = x+ A, —~0 < A < . We
can use Lie's theorem5 to reduce its order by introducing as new dependent and
independent variables a first differential invariant ¢ = ¢ and an invariant ¢,
respectively. Then since ¢" = d2c/dx? = d{ddldxVdx = [d(defdx)/dc}{dcidx) =
g{dqg/dc), we find

q(dg/dc) - vSq + Q) =0 {69a)
and the boundary conditions
q(0)=0, q(cy) =0 (69b)

The boundary conditions, being two in number, generally overdetermine the
solution of Eq. (69a), a first-order differential equation, and that ;s the reason
why solutions exist only for particular values of v.

When 0 < ¢ < ¢, Eq. (69a) has the solution ¢ = mc, where m is a root of
the quadratic equation

m2-vSm-h=0 (70)

Since we are looking for solutions like that shown in Fig. 13 for which ¢ > 0, we
take the positive root. Thus

q = c[vS + (V252 + 4n)12)2, O<c<cg (71a)

31



When ¢g < ¢ < ¢, q also varies linearly with ¢, now with the negative slope
given by Eq. (70):

g ={c-cp)lvS - (VS2 + 4n)1/2)2, Cs<C<Cp (71b)

Equations (71a) and (71b) must give the same value of g at ¢ = ¢, equating their
right-hand sides yields

v = (h12/S)(Cy - 26sMCs{Cm - C)]12 (71c)

The difference of the areas of lobes 1 and 2 is (hcy/2)(cy - 2¢) so that the
quantity c,, - 2cs > O when the area of lobe 2 > the area of lobe 1.

21. Traveling Wave Solutions {part 2)

The manner of solving Eq. (66) in the foregoing example can be applied
to Eq. (66) in the general case—we therefore focus our attention on Egs (69).
Fig. 14 shows the direction field of Eq. (69a) for a function Q(c) of the type
sketched in Fig. 12. The singularities at O and Q are both saddle points, and
the integral curve we want must coincide with the separatrix of positive slope at
O and that of negative slope at Q. From the foregoing example, we expect that
the two separatrices will coincide only for particular values of v.

It is clear from Fig. 14 that ¢ = g > 0, i.e, that c(x) is monotone
increasing, so that the traveling wave propagating from right to left does in fact
look like the curve sketched in Fig. 13.

The form of Eq. (69a) suggests that if Sy(c) > Sy(¢), then v4 < v, for the
same Q(c). The special case in which S(c) is a constant confirms this
supposition [cf. Eq. (71¢)]. A proof for general S(c) > O is as follows:

hides) + qcy.642) = Qlcy) (72a)
hadcz) + qAc2,.022) = Q(C2) (72b)

if we subtract Eq. (72b) from Eq. (72a) and proceed as we did in section 7, we
find

Sy = - (3g/0C,)uy, - [8102(3g/3c,) + dqiaciu,

- [(dSq/dc)cy + 8/3z(dglac) - dQ/dclu

32



- [S4(c2) - S{czllezy (73)

Now if we take the initial condition c5{z,0) to be the traveling wave solution
belonging to Sx{(c) at t = 0, then c5(z,f) is the same traveling wave solution at any
t. If we take ¢¢{z,0) = c»(2,0), then c4(z,0) eventually matures into the traveling
wave solution belonging to Sy(c). Now the last term in Eq. (73) is negative since
S¢(cp) > S;(cy) by hypothesis and co¢ > O (since for the traveling wave solution ¢'
> 0). Thus, by reasoning now familiar, cy(z,f) < cx(z,f), which means vy < vp.
Note that the above proof applies no matter what the form of Q{(c).

it also follows similarly from the comparison theorem of section 7, that if
Qq(c) < Qo{c), then vy < v, for the same S(c).

These comparison theorems are useful for bounding the velocity v by
using results like that of Eq. (71) in cases where Eq. {(69a) is difficult to solve.

22 Traveling Wave Solutions (part 3)

When Q(c) is non-hegative (case (1) of section 19), the traveling wave
solutions cannot have the shape shown in Fig. 13, for in this figure the values ¢
= 0 and ¢ = ¢, are both roots of Q{c). What, then, is the asymptotic behavior at

large x of the fraveling wave solution that progresses from right to left?

The best way to answer this question is to start by studying the simple
case in which S = constant and Q = 0 for ¢ < ¢; and Q = constant for ¢ > ¢, In
this case, the solution g = vSc is the unique solution for which g(0) = 0 when ¢ <
¢e. The direction field of Eq. (69a) for ¢ > ¢4 is shown in Fig. 15.

Suppose we now consider traveling wave solutions that grow from a
localized disturbance (see Fig. 16). The left-hand halves of the c-profiles in Fig.
16 eventually mature into a traveling wave moving to the left. When plotted as
curves of g = ¢’ versus ¢, these o-profiles look like the lower family of curves in
Fig. 15, i.e., the family for which g = 0 at the maximum value of ¢ [cf. Fig. 16(ii)].
Al time goes on and the central value of ¢ increases, the g-¢ profile approaches
the dotted curve in Fig. 15 near c = ¢, So eventually g= Q/vSatc=c, Hfwe

join this solution to the solution g = vSc that obtains for ¢ < ¢, we find
v=(Qicg)Vs (74)

The separatrix ¢ = Q/vS corresponds to the asymptotic behavior ¢ ~
QxA'S of the traveling wave solution, which replaces the condition g(c,,) = 0.
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Such a separatrix exists in many cases, but it does not always exist as we show
next.

23. Traveling Wave Solution: Counter-example

Consider now the case S = constant, Q=0forc <cgand Q= Q< forc>
¢s. In this case the direction field of Eq. (69a) for ¢ > ¢ is shown in Fig. 17. The
line Lg: ¢ = Q«c/vS represents the locus of zero slope (dg/dc = 0). The lines L,
and L_ are the integral curves of Eq. (69a) g = m,c and q = m_c, respectively,
where m, are the roots of the quadratic equation

m2 -vSm + Q.= 0 (75)

It follows from Eq. (75) that m, + m_= vS and m.m_= Q., so that the slope mp=
QJvS equals m,.m_/(m, + m_). Since both m, and m_are positive, mg < m_ < m,.

Thus the representation given in Fig. 17 is comrect. It is clear, then, that the
family of integral curves that resemble the c-profiles of Fig. 16(ii) is asymptotic to
the integral curve L-. The velocity is then given by the condition

vS=m, (763)
which is the same as

vS = {(vS)? - 4Q.112 (76b)
No solution for v exists for Egs. (76b).

The reasoning presented above is based on the assumption that Eq. (75)
has real roots, i.e., that the discriminant (vS)2 - 4Q.is = 0. If it is not, the
integral curves represented by the lines L, do not exist. Then the transient g-c-

profiles continue to increase without any asymptotic limit so that no traveling
wave solution exists.

The conclusion that there is no traveling wave solution leaves moot the
question of what really happens. Now since the foregoing argument does not
depend on ¢g having any special value, it holds as well when ¢; = 0. In this

case, the time-dependent Eq. (55b) can be can be solved just as we solved Eq.
(23) in section 7:

¢ = exp(-z28/4t +QUS)I(4xt/S)12 (77)
The locus of a constant value of ¢ in the (z,f)-plane is given by

M



2= [4Q2/S2 - (21/S)in(4xt/S) - (4¢/S)inc]1/2 (78a)
= 2Q-124S - (112Q2])in(4xt/S) - IncIQ-112 + - (78b)

so that
dz/dt = 2Q.172/8 - 12QA721) + ... (78c)

Thus the locus always accelerates, but at an ever decreasing rate so that for
very large t, it is essentially moving with a "velocity” v = 2Q.1/2/S,

24 Travsling Wav ions: ic Considerations

From the analysis presented so far it is clear that the study of the
direction field of Eq. (69a) sheds light on the questions of the existence and
nature of the traveling wave solutions. If the locus of zero slope Ly ¢ =
Q(c)/vS(c) is asymptotically monotone decreasing (see Fig. 18, for example)
then a separatrix S must exist that is the asymptotic limit of the lower family of
curves. In such a case, we may expect a traveling wave solution to exist.
Furthermore, if Ly is monotone decreasing for all ¢ > ¢, then

v § o S(c) dc < Q(cg+)/vS(cs) (79a)
so that
v <{Q(cs+)S(cs) § o> S(c) e} (79b)
The bound in Eq. (79b) resembles an estimate of Whetstone and Roos11.
if Lp is monotone increasing for ¢ > ¢;, it appears difficult to decide the
question of the existence of traveling wave solutions. For, in the case of the
counter-example of section 23, it was not possible to rule out traveling wave

solutions solely with a geometric argument based on Fig. 17. Instead, a
contradiction had to be obtained by solving Eq. (69a) explicitly. ‘
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Fig. 2. The rectangular region OABC in the (z.f)-plane whose sides are paraliel
to the axes. The largest value of ¢ is assumed to occur at point Q.
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Fig. 3. The source term Q(c) in Eq. (23) is a step function.
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Fig. 4. The fourth quadrant of the phase diagram of Eq. (35) whena > 0, 8 > 0.
The heavy curves Cg and C, divide the quadrant into regions in each of which

the slope dv/du has one sign only (shown encircled).
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Fig. 6. A sketch of the action (52) for the family of initial conditions (54) when
there are just two steady states.
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Fig. 7 A sketch of possible behavior of the action (52) for the family of initial
conditions (54) when there are more than two steady states.
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Fig. 8. A sketch of the action for the family of initial conditions (54) when Q(c) is
concave upwards.
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Fig. 9. A sketch of Eq. (61) showing y plotted as ordinate and (yB2)12a as
abscissa.
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Fig. 10. Geometric relations near the foot of the solution curve.
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Fig. 12. One kind of source term Q(c) of interest in applied superconductivity.
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Fig. 14. A sketch of the direction field of
shown in Fig. 12. Eq. (69a) for a source term of the type
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Fiq. 15. A sketch of the direction field of Eq. (69a) for ¢ > Csin the simple case in
which S = constant and Q = 0 for ¢ < ¢; and Q = constant for ¢ > Cs-
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Fig. 16. Part (i): sketches showing the development of a localized distrubance.
Part (ii): sketches showing the associated profiles of q versus c.
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Fig. 17. A sketch of the direction field for ¢ > ¢, in the case in which S = constant
and Q=0forc<ceand Q=Qcforc>¢,
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Fig. 18. A sketch of the direction field for ¢ > cs when the locus Ly of zero slope
is monotone decreasing.
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