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This report deals with certain general properties of partial differential 
equations of the form S(c& + qz = Q(c), where t may be tt'rought of as time, z as 
distance, c as an intensive quantity (S.g.3 temperature), and Q its flux (e.g., heat 
flux), and where q depends on both c and c&. Six topics are studied, namely: 

maximum and minimum principles, 

f j  ofdering of solutions, 

9 invariance to stretching (&he) groups, 

§ stability of steady states, 

lllustratiie examples are given from the field of nonlinear d-ion, applied 
s- 'vity, and helium cryogenics. 
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1. Introduction 

Conservation equations are partiaf differential equations of the form 

ct+9z=o 

where f may be thought of as time, t distance, c as an intensive quantity (e.g. 
temperature) and q its flux (e.g., heat flux). These identifications are not 
essentiai to what follows, of course, but m e  the W o l d  purpose of 
estabiishing a useful namendatwe and suggesting an interpretation. 

To treat conservation equations, one must postulate some connection 
between Q and c. Lax1 has studied the hyperbolic equations that arise when Q is 
pwely a fumtiion of c. In this paper, we study the parabolic equations that arise 
when q also depends an the space derivative of c, namely c, Typical of the 
equations that we have in mind are 

(i) q = k, the ordinary diffusion equation (Q = +); 

(ii) q = (c,lB), the so-called Gorter-Melfink dfiusion equation, which 
describes heat transport in turbulent superfluid helium (9 = 4213); 

(iii) ct = (ma, wbich occurs in hydrology, plasma physics, and applied 
superconductivity and is often called the porous medium equation (Q = -@‘c,). 

The thrust in this paper is towards certain m m o n  properties of these 
equations that enable us to tell useful things about their solutions without 
actuatiy solving them explicitly. The properties we shall be discussing am 

(i) Maximum and minimum prlndples. A partial differential equation is 
said to obey a maximum (minimum) principle if ihe 1-t (smallest) value of its 
solutions in any region R of the (z,t)-glane lies on the boundary of R. In this 
paper, we shall include in the definition of maximum (minimum) principles the 
following addition: if we choose the region R to be a rectangle in the (z,t)-plane 
whose sides are paraifel to the axes, then the largest (smallest) value of c 
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cannot occur on the upper side parallel to the z-axis (side AB in Fig. 2). Thus 
the largest {smallest) value of c is either an initial value or a boundary value. 

As we shall see later, as a consequence of the second law of 
thermodynamics, equations of the form (1) that can be interpreted as 
representing real processes necessarily obey maximum and minimum principles 
in this extended sense. 

(ii) Ordering of solutions. By ordering I mean that the difference of two 
solutions also obeys a maximum and a minimum principte. Such ordering has 
the useful consequence that if two solutions ci(z,f) and c2(z,f) obey the same 
boundary conditions un an interval 0 s I s b , Le., if cl(a,f) = c2(a,t) and cl(b,t) 
= ~ ( b , f ) ,  but if c,(z,O) z ca(z,O), then ci(z,f) ;r c2(zIf) for all f > 0. We describe 
this latter situation by saying the solutions are ordered smraling to their inifial 
values. 

For linear equations, such as the ordinary diftrsion equation, ordering is a 
simple consequence of the existence of maximum and minimum principles 
because the difference of two solutions obeys the same equation as the 
solutims themselves. For nonlinear equations, a separate investigation is 
lWC8SSaQf. 

(iii) Group invariance. Some of the equations given as examples above 
are invariant to a one-parameter family of stretching (Mine) groups of the form 

t'= Aflt 

z'= h z  (2c) 

where X labels transformations of a group and the parameters O! and 8, which 
obey a linear constraint 

Iabei groups of the family. The coefficients Ad, N, and L are determined by the 
partial differential equations. 
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A transformation of the type (2), which leaves the partial differential 
equation unchangsd (invariant), in generai carries one solution into another. 
Among the sofutions, there may be some that are carried into themselves by all 
the transformations of one group of the family, say, that labeled by particular 
values of the parameters CY and 8. It can be s h m  that such sDIUtions must 
h a V 8  the fOlm 

where fix} is a M i o n  of x = z/fl@ stilt to be determined. Invariant solutims like 
that of Eq. (4) are called similarity solutions. The importance of similarity 
solutions stems from the fad that fix) is 8 function of one variable only. If we 
substitute Eq. (4) into the partial differential equation, we obtain an ordinary 
differential equation for flx). 

1 have &ow$ that this ordinary differential equation is invariant to the 
associated group 

Again, a trans;fwmation of the group (5) carries a solution fix) of the ordinary 
differential equation into another solution ~ 7 x 9 .  Among the solutions y(x) there 
may be some that are carried into themselves by the tnn&mtions of the 
group (5). Such solutions have the form y = Axmg where A is a constant 
determined by the partial diff8rential equation. If we substitute the values crf y 
and x from Eq. (4) into this last expression we find 

or in view of the consttaint (3) 

C = W W  
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Since QL and f l  no longer appear in Eq. (6b), this solution is invariant to all groups 
of the family. This can be proved directly using Eq. (2). The permissible values 
of A can be found by substituting Eq. (6) into the partial differential equation. 

7he importance of the totally invariant solufion (6b) is that under #dah? 
broad circumstances, it gives the asymptotic fonn of the solutions fur large z or 
small t. 

Certain generalizations of Eq. (1) occur in practice. For example, when 
Eq. (1) describes heat diffusion (so that c really is the temperature), the first term 
is multiplied by S(c), the heat capacrty per unit volume. Another conservation 
equation in which a fundion of c multiplies the term q is (iv) cq = c,, which 
figures in the theory of thermal expulsion of a compressible fluid from a long, 
slender tube. Equations of this generalized type often share some or all of the 
three properties discussed above. 

(iv) Stability of steady states. Another generalization of Eq. (1) arises 
when we add a source term Q(c) to the right-hand side. When a source tern is 
present, the partial differential equation sometimes has one or more steady 
states. Furthermore, as external parameters change, steady states may appear 
and disappear. Only steady states that are stable against perturbation can 
ocwr in the laboratory. Thus the stability of steady states becomes a fourth 
general property of interest. 

As we shall see later on, under very broad conditions, equations like Eq. 
(1) possess a functional whose value for any solution either decreases with time 
or remains stationary. Such a functionat plays a role much like that played by 
the gravitational potential of a ball rolling on a curved surface. b critical points 
correspond to steady states: minima correspond to stable steady states, and 
maxima and saddle points correspond to unstable steady states. By studying 
the topological properties of this functional, we shall be able to draw some 
general conclusions about the stability of steady states. 

(v) ComparaMJity of sofutions. It is possible to compare solutions of 
specimens of Eq.fl) [or its generalization Eq. (7)] that have different source 
terms Q(c). (Here we use the word compare in the Sense of Hardy, Littlewood, 
and Polyas: two functions are cumparable over a domain if one is greater than or 
equal to the other everywhere in the domain.) We shall show later that if cl(z,f) 
and c~(z,?) obey the same initiaf conditions and the same boundary conditions 
on an interval a s z 5 b , Le., if cl(z,O) = c2(z,O), q(a,t) = cz(8,f) and cl(b,f) = 
cz(b,Q and if Q(c) 2 Q ~ ( c ) ,  then c1(z,f) 1 c2(z,f) for all t > 0. Comparability of 
solutions is then a fifth general properly of interest. 
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(vi) Traveling wave solutions. Occasionally Eq. (1) is invariant to the 
trmslationgroupsz'=r+k a n d i = t + b  -00 c l t , g <  00. Solutionsc(z,f) 
invariant to both groups are simply constants, but we may #CK& for solutions 
invariant to the one-parameter subgroup z' = z - vh and i = t + A, --03 c h < 
00, where v is a fixed constant. Such solutions have the form c(z+vt) and are 
catled traveling wave solutians. The f m  c(z+vt) represents a wave traveling 
from right to left without change of shape when v is positive. The importance of 
traveling wave solutions is that they, like similarity sotutiwrs, may be calculated 
by solving an orrlinary differential equation. The existence and nature of such 
solutions is a sixth area of general interest. 

3. Maximum Princi~les 

If we introduce the auxiliary variable h = $ oC S(c') dd , we can deal 
directly with h e  first generalization of Eq. (1 1, whim now takes the f m  

ht 4 qt = 0 (7) 

8 the solution c has a maximum at a point P in the interior of R, P is surrounded 
by dosed level curves of c, that is, dosed awes on which c = constant. On any 
of these level curves C, c and h am ##rstant. Hence .the first integral on the 
extreme right-hand side of Eq. (8) is zero over C and 

Now since C is a level curve of c in the (z,t)-plane, the n m a l  vector to C, 
(c.&, points inward tawards P {see Fig. I). Thus c, dt 0 at every point of C 
(except at the top and bottom, where c, df = 0 momentarity). Therefore, if q and 
c, always have opposite algebraic signs, 

which contradicts Eq. (-1. Thus the assumption that c has a maximum at an 
interior point P in R cannot be true, and the Largest value of c in R must lie on 
the boundary 8. 

Comment 1 : In processes that obey the second law of thermodynamics, Q 
and c,aIways have opposite signs. 
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Comment 2: The conclusion is also true if q and c, always have the same 
sign. 

Comment 3: A similar proof shows that c obeys a minimum principie, that 
is, that the smallest value of c in R lies on the boundary 8. 

3. Maximum PrinciDles hart 21 

Pratter and Weinbergd have shown the following for the ordinary 
diffusion equation: If we choose the region R to be a rectangle OABC in the 
(z,f)-plane whose sides are parallel to the axes (see Fig. 2), then the largest 
value of c cannot occur on the interior of segment AB. In other words, the 
largest value of c is either an initial or a boundary value. The same is true of the 
consewation equations (1) and (7) if S(c) > 0. 

Suppose the largest value of c in R did occur at a point Q in the interior of 
AB. In e sflrcientty small neighborhood of Q, SJ, c is increasing on the 
segment SQ and decreasing on the segment QT. Let the value of c be the same 
at S and TI and let C' be the level cuwe in R around Q for which c has the 
common value cs = e. Now since c is greater on the segment SQT than it is on 
the curve C', 

where the integral is taken over the entire closed path C'-TQS. But then it 
follows from Eq. (8) that 

over the same closed path. Now if q and c, have opposite signs, it again 
follows as it did in Fig. 1 that 

over the path C'-TQS, which contradicts Eq. (lob). Thus the assumption that the 
largest value lay at Q in the interior of AB must be false. 

Comment 1 : This proof only holds if q and c, have opposite signs and if 
S(C) > 0. 

Comment 2: A similar proof shows that the smallest value of c cannot 
occur at a point Q in the interior of AB. 
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In all four of the examples given in the introduction, 9 and c, have 
oppsite algebraic signs. In the fourth example, the thermal expulsion equation 
cq = c,, the proofs given apply only when c > 0 since S(c) = c. 7’he same 
restridion can be applied to example (iii), where taking c > 0 is suffcient to 
ensure that q and c, have opposite algebraic signs. In ati of these cases, then, 
the fargest and smallest vatm of c are initial or boundary values. 

4. Orderinp of Solutions 

If we consider Eq. (7) written for two different solutions c1 and c2 we 
obtain 

Jf 

then the two t h e o m s  just proved hold for the difference hl - h2. Now if, for 
example, c, = e on OA and BC in Fig. 2 but c1 2 c;! on OC, then hl = h2 on OA 
and BC, but hl 2 h2 on OC. Then the smallest initial or boundary value of hl - 
h2 is zero so that hl - h2 z 0 everywhere in R. Then if S(c) > 0, cl 2 c;! 
everywhere in R. So if Eq. (12) is futfilled, tbe sotutions are ordered according 
to their initial vafues. 

In the case of the ordinary diffusion equation, S = 1, h = c, and q = -c, 
Therefore 

so that solutions of the ordinary diffusion equation are ordered according to their 
initial values. 

In the case of the Gorier-Metlink diffusion equation, S = 1, h = c, and Q = 
*2n sothat 

thl- h21r (QI - 92) = 4 4 1 ~  - 0i3)(q1 - ~ 2 )  
= -(41* + 4142 + 922)(q1 - cr2F 

e o  (1 4) 
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since both factors on the right-hand side are always positive. Therefore the 
solutions of the Gorter-Mellink diffusion equation are also ordered according to 
their initial values. 

In the case of example (iv), the thermal expulsion equation, S = c, h = 
C2/2,andq=c,sothat 

Now, unfortunately, the quadratic form on the right-hand side of Eq. (15) has a 
positive discriminant, namely, (c, - c#, so that it is not always of one sign for alt 
values of the ratio qi/qZ. The roots of the quadratic form are = 1 and q1/q2 
= wl. ktween  these roots, the right-hand side of Eq. (1 5) is positive; beyond 
them it is negative {we restrid our considerations to solutions c that are > 0). So 
if we are to prove the ordering of the solutions of the partial differential equation, 
we must refine our analysis. 

5, Orderim of Solutions barf 2) 

To show the ordering of two solutions, it is necessary only to consider the 
difference of two infinitesimally close solutions c end c + u, where u << c. (No 
generality is lost by this restridion-see the note at the end of part 3.) To first 
order, the equation cct = c, yields 

To show, for example, that the solutions c are ordered according to their initial 
conditions, we must show that u 2 0 in the rectangle OABC of Fig. 2 when u = 0 
on OA and 6C and u 2 0 on OC. We begin by excluding the possibility that u 
has a negative minimum at a point P in the interior of the redangfe. Then we 
would have u&P) 2 0, UAP) = 0, and u(P) 0. The idea is to show that these 
conditions am inconsistent With Eq. (16), but because we cannot be sure of the 
sign of ct, this argument is not condusive. 

There is a standard trick (see Ref. 4) for overcoming this difficulty. Set u 
= m-M. Then w, too, is zero on OA end BC and 2 0 on OC. Now v obeys the 
equation 
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if we restrict consideration to positive solutions c, we can choose X large enough 
to make q + )r c positive everywhere in OABC. Then the conditions v(P) 8 0, 
vdP) = 0, v&P) 2 0 for a negatrve minimum at P are inconsistent with Eq. (17). 

Similarly, v cannot have a negative minimum a! a point Q on the interior of 
segment AB. For Eat Q wt3 would have u(Q) < 0 and UAQ) 2 0, which w l d  
require udQ) > 0. But then there would be even smaller values of v in OABC just 
bslow Q, contrary to the hypothesis that its (negative) smallest value lay at Q. 

Clearly this state of affairs requires tbat the smallest vaiue of v in the 
rectangle OABC or on its boundary be zero, so that v 2 0 and therefore u 2 0 
in OABC. This means ther~ that positive solutions of cq = c, are ordered 
according to their initial conditions. 

The situation with resped to exampie (iii), the porous medium equation q 
= (c")=, is the same that as with respect to example (iv) just discussed: the 
quantity 

is w i n  a quadratic f m  with 8 positive discriminant and thus may change sign. 
But a straighffonHard repetition of the argument given earlier in this section 
shows that the positive sdutiuns of the porous medium equation are also 
&red according to their initial conditions. 

6. Orderr 'na of Solutions (oart 31 

The argument used in part 2 can be applied directly to Eq. (7) to find 
simple sufficient cordifions for the solutions to be ordered. We begin again by 
considering the difference u of two infinitesimally dose sotutions c and c + u. To 
first order then 



where S, q, and the derivatives of Q are evaluated at the solution c. We can now 
follow the argument given in part 2 without change. The value of the coefficient 
of u, does not matter, for u, = 0 at the points P and Q. The value of the 
coefficient of u also does not matter because it can be dominated by -hS as 
long as S(c) > 0. And finally, the argument only goes through if act/acz s 0. So 
if S(c) 3 0 and as/ac, s 0, the solutiorrs of Eq. (7) are ordered according to 
their boundary conditions or their initial conditions. This conclusion is 
unaffected by the presence of a sour= term Q(c), which merely adds a term 
(dQ/dc)u to the right-hand side of Eq. (19). 

Note: To see that ~ 1 0  generality is lost by considering the difference between 
infinitesimally close solutions, subtract Eq. (7) written for c from Eq. (7) written 
for c + u, where u is no longer treated as small. Using the taw of the mean, we 
find Eq. (19) for u, except that rtow S, Q, and their derivatives are evaluated at 
values intermediate between c and c + u. But this does not affect the foregoing 
proof of the conclusion given above in bold type. 

7. ComDarabilitv of Sotutions 

Now we show that if q(%f)  and c&f) obey the same initial conditions and 
the same boundary conditions on an interval a s P s b , i.e., if cl(z,O) = cz(z,O), 
q(a,t) = ~ ( a , f )  and c.r(b,f) = ~ ( h f ) ,  and if: Q#) 2 Q&9, then c&O 2 CZ(z,t) 

for all t > 0. Let c1 satisfy Eq. (7) with the source term Qi and let c2 = cl + u 
satisfy Eq. (7) with the source term 42: 

We subtract Eq. (20b) from Eq. (2Oa) and, using the law of the mean, we obtain 
Eq. (19) with the additional term Q(q) - Q&J) on the right-hand side. Now, 



Since Q&) - Qz(c1) z 0, the proof given above in part 2 !hat u z 0, i.e., that 
c1 2 c2, in the rectangle OABC and on its boundary goes through without 

f have used the foregoing comparability theorem to study the following 
problem of heat diffusion that arises in applied supefowtductivity. On the infinite 
intervai -00 < L < 00, let c obey the ordinary diffusion equation with the 
source tern qc) shown in Fig. 3: 

Let c initially be given by an instantaneous pulse occurring at time t = 0 at the 
origin z = 0, Le., let 

tf H, the pulse strength, is mtl, the solution of Eq. (23) will ultimately tend to 
zero. If M is large, the solution will ultimately grow without bound. What value of 
H divides these two regions of behavior? 

Equatim (23) with Q given by Fig. 3 is not ~0 f~8b l0  in simple terms. But if 
replace Q(c) by the upper limit given by ttre dashed line, namly (dc,JQt the 

resulting equation can easily be sotved to give 

The peak of c occurs at z = 0, and it reaches its smallest value at t = cpQP 
lh is  smallest value is 

Now if clmb = ct, then at the instant that q achieves its smallest peak value, the 
solution c, which is I q, will be 5 qeverywhere. But then Q(c) given in Fig. 3 
will be zero everywhere, and from that time on c will decay io zero. Clearly then 
if ~8 Set cf= Cq min in Eq. (261, WB get a 1-r b0uMll to H, t ~ ~ ~ e l y ,  
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Solutions belonging to values of H smaller than the right-hand side of Eq. (27) 
will surely tend to zero as t tends to infintty. 

8. AsvmDtotic Behavior of Solutions 

I have used the ordering property in a variety of ways, but none more 
important than determining the asymptotic behavior of certain solutions of 
conservation equations that are invariant to a family of stretching groups. We 
begin by considering the similarity solutions, whose fom is given in Eq. (4). At 
the origin they necessarily obey boundary conditions of the form 

We are interested here in soiutions that vanish at z = 00,  Le., solutions that obey 
the boundary condition 

Because the similarity solutions have the form (4), they must also obey the initial 
condition 

Finally, we begin by restriding ow attention to equations for which U M  and NIM 
are both 0 and A > 0. The Gorter-Melfink equation q = ( ~ ~ 1 " ) ~  and the thermal 
expulsion equation q = ca are of this type. 

When U M  c 0, the similarity solution (4) evaluated at z = 0, t > 0, i.e., on 
the open segment OA in fig. 2, is less than the totally invariant solution (6b), 
since the latter is infinite there. Both solutions obey conditions (28b) and (28c). 
Since the solutions are assumed to be ordered according to their boundary 
conditions at t = 0, t > 0, we see that 

which is equivalent to 

in light of Eqs. (3) and (4). The function fix) obeys the boundary conditions 
y(O)= 8 jEq. (28a)l and y@) = 0 [Eqs. (28b) and (28c)J. As noted earlier, when 
the function y(x) is transformed by the transformations of the group (5),  its 
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images are also sdutions of the ofdjnary differential equation for fix). Each 
image has y ' p )  = 0 and ~ ' ( 0 )  = puMB. Thus any solution and its om-pmmeter 
family of images under p u p  (5) bm tbe totality crf solutions of the ordinary 
differential equation having v(=) = 0 and y(0) = B, 8 positive mstant. 
Moreaver, owing to ttre ordering of the bMmdary V d U 0  c(0,f) = Bfals with respect 
to 5, the functions flx) are also ordered with resped to B. 

Since #e ordered functions fix) are bounded from above by the totally 
invariant solutian [see Eq. (29b)j, they must have a limit as B -. OQ. This limit, 
being arbitrarily dose to solutions of the farnity fix), must also be a solution. it 
is, furthermore, invariant to the associated group (5) since that group carries the 
family into itself. It must tfisrefore be the sojution y = A xUM- Thus 

Now consider a particutar integral curve belonging to a fixed value of B. 
Let us focus wr Wention on a set of images (xf,y3 of the points (x,y) on the 
curve just defined by setting = BIx, where a is some foced number. 
images are 

x'= a 

v'= (alx)uMY 

The point (x',y') lies on the integral a~nm y(x) belonging to the value 

Thus as x + 00, so does B'(remember that UM < 0). Finally, then, 
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for the similarity solutions c(z,f) obeying the boundary and initial conditions (28). 

Now all solutions obeying Eqs. (28b) and (2%) and having finite c(0,f) 
must obey Eq. (29a). Since the solutions are ordered according to their 
boundary condition c(O,t), Eqs. (33a) and (33b) thus hold for any solution for 
which c(0,t) can be bounded from below by an expression of the form (28a). 

9. Asvmototic Behavior: Example 

The asymptotic behavior (32) will fall out of any explicit representation of 
the function of y(x) obtained by solving the ordinary differential equation fix) 
obeys. But even wben no explicit representation can be obtained, the 
asymptotic behavior (32) can be deduced from a study of the ordinary differential 
equation for HX). The following example makes clear how this happens. 

The Gorter-Mellink diffusion equation = is invariant to the family 
of groups (2) when tbe coefficients in the linear constraint (3) are M = 2, N = -3, 
and L = 4. If we substitute the right-hand side of Eq. (4) for c, we find the 
following ordinary differential equation for fix): 

As expected, this ordinary differential equation-called the principal differential 
equation in reference 24s invariant to the group (5) (N.B.: now U M  = -2 and 
NJM = -3l2). 

The method of treating Eq. (34) outlined in reference 2 is based on a 
theorem of Lie's,s which tells us that if we choose as new variables an invariant 
u and a first differential invariant Y of the group (5), the differential equation 
relating v to u will be of first order. The invariants that we use are u = xy1B and 
v=xf1B. Then 

x(dvJdx) = v + xzd(y'l"ydx = v + (0JB)G - v3/p = G(u,v) (35a) 

so that 

Now the totally invariant solution (6b), being equivalent to y(x) =AxuM = 
Ax-2, corresponds to fixed values of u and w, namely u = i A I R  and v = (-2A)"/3. 
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These fixed values of u and Y thus represent solutions of the differential 
equation (35). For these solutions, du = dv = 0, which means that the points P,: 
(jA1nl(-2A)1n) are critfcal points of Eq. (35). Substitution of Eq. (6b) into the 
Gurter-Meltink diffusion equation yields 4&‘3)19 as the value of A, so that the 
coordinates of the critical points P, are (i2(3f’4)/3,-2v3)/3). 

We can verify these coordinates diredly from Eq. (35), for the critical 
points are those points at which the numerator and denominator of Eq. (35) 
vanish simultaneously. It follows at once that the only critical points are 0: (0,O) 
and (~21nSI(a+2)~3’4,-[2Pl(crt2)~1nt. Now from the linear constraint (3) it follows 
that /3/(a+2) = 2f3, 50 that the coordinates of the latter critical points are exactly 
those given above for the points P, . 

Now because the coordinates of the points P, do not depend on Q! and 
#, P* are critical points of Eq. (35) fw all a and 8- Thus the constant values of 
u = b4ln and Y = (-2A)‘n that are their coordinates represent solutions of Eq. 
(35) fix all a and @. But this mans that f i x )  = is a solution of Eq. (34) for 
all QI and 6 and thus cwresponds to a totally invariant solution of the Wet- 
Metiink diffusion equation. So by studying the critical points of the first-order 
dflerential equation (35)alled the assoCieted differential equation in reference 
2 w e  m i d  have been ted to #e totally invariant sotution. 

But how can we see fKmr Eq. (35) hat the tot8ily invariant solution gives 
the asymptotic behavior of the fundion y(x)? To answer this question, we must 
study the phasclb d i m  of Eq. (35). in fhe applications of the Gorter-Mellink 
diffusion equatiun, interest ftxxtses on solutions for which y > 0 and y’ < 0. 
Accordingly, vue shall need only the fourth quadrant of the phase diagram. It is 
sketched in Fig. 4 for the case 4t 0, 19 > 0. Shown are the loci of zero stope u 
==and C& 2 8 v - 2 ~ 3  +2ad = 0, and the bcusof infinite stope Cm: 2 9  + V;, = 
0. These loci, which intersect in ths two rritiCal points 0 and P+, divide the 
quadrant into regions in each of which the slope dddu has one sign. From the 
diagram we see that 0 is a IXKJB and P+ is a saddle point. 

For solutions f i x )  that have finite y(0) and HO), the value x = 0 
correspwxjs to u = v = 0, i.e., to the origin 0. So the sdution of Eq. (35c) that 
we want must pass through the origin. The separatrix S passes through the 
point P+, and r#)w we show that BS we pass from 0 to P, along S, x tends to a. 

If we approach the singular point P+ along an integrat curve S, then in the 
immediate vicinity of P+, Eq. (3%) c8n be written 

x(duldx) = (F,, + ~ F & u  - UP+) (36) 



where rn is the slope of the integral w e  S at P, and the partial derivatives Fu 
and f v  are evaluated at P+. Equation (36) means that near P+, 

Thus as u 3 up+, x approaches 0 or 00 according to whether Fu + rnFv is 
positive or negative. Now Fu + mFv is the directional derivative of F along the 
curve S in the direction of increasing u. Since S and C, (F = 0)  intersect at P+, 
F, + MF, is positive if as we move in the direction of increasing u, S crosses Coo 
in the direction of increasing F and negative if S crosses C, in the direction of 
decreasing f .  We summarize this result as follows: At a singular point P, if S 
crosses Coo in the direction of increasing u, and F increases (decreases), 
then x 3 0 (*too) as we approach P dong S. The same rule holds if we 
replace u by v, C, by Co, and f by G. Thus as we approach P+ along the 
separatrix S, x becomes infinite. Then, for large x, u * up+ and y r* up+2r2 = 
h - 2 ,  as we wished to show. 

For any fued values of and 0, the separatrix S corresponds to an entire 
family of solutions y(x) that are images of one another under the transformations 
of the associated group (5): for, two points (xly) and (X',f) related as in Eq. (5) 
correspond to #e same values of u and v. Every member of the family has the 
asymptotic form y - A r 2  but the shape of the curves y(x) for small x depends on 
the particular values of a and 8. The values of (I! and p in turn depend on the 
boundary condition (28a) imposed on c(z,t). For example, when QI = 1 and fl= 2, 
c(0,t) = = u(0)fln and c;(O,f)  = y(O), a constant. This boundary condition 
can be used to solve the problem of heat flow in a tong tube filled with superfluid 
helium initialty at a uniform temperature, which, beginning at f = 0, is subjected 
to a constant flux of heat + ~ ( O , f ) ] 1 a  through the surface z = 0. This problem, 
called the clamped-flux problem, has been dealt with in detail in reference 2. 

10. AsvmDtotic Behavior : Example toart 2) 

A similar analysis hoMs for the case in which CY 0 and 0 > 0 (/3 must be 
> 0 in order that the similarity solution (4) spread out with time rather than 
contract). But whereas the existence of the lenticular region between Co and 
C,  in Fig. 4 makes it easy to see that when Q > 0 one of the separatrices 
through P, also passes through 0, it is somewhat more difficult to see when < 
0. For the sake of completeness, the analysis of the phase diagram when CY 0 
is given here, but the reader not interested in the details may pass on now to the 
next section. 



Shown in Fig. 5 are the first and fourth quadrants of the phase diagram of 
Eq. (35) when a e 0 and B > 0; the second and third quadcants we mirror images 
of the first and fwrth, respedively, in the wecis. The curves CO and Coo are 
shown as heavy lines; typical integral curves are shown as light Jims. Note that 
the curve Co has two parts. 

The point P+ is a saddle point through which two separatrices pass. This 
is mure or less clear frum the diagram but can be proved indubitably by applying 
L'Hospitai's rule to the right-hand side of Eq. (35c) to find possible vafues of the 
dope m of the integral wwes at the point P+. We then obtain the quadratic 
equation 

or 

by nesting that 3vp+2 = 4. The discriminant of Eq. (38b), calculated with the help 
of Eq. (3), is 

which is atways positive. Thus Eq. (38b) aiways has two real mots; these are 
the sfoaes of the sepamtrices. When CY c 0, both must be negative, as shown in 
Fig. 5. 

Using the rule given at the end of the last section, we see that as we 
approach P, aiong the separatrix S in the direction of increasing u, f dec-eases 
so that x 4 00. So it would appear that S is the integral w e  of Eq. (35c) that 
we want. It remains to show that S also passes through the origin 0. 

Now in the neighbarbod of the origin, integral wnres exist for all values 
sf m that behave as v = mu does. This we can see by substituting v = mu into 
Eq. (35c) and keeping only the lowest order terms in the numerator and the 
denominator. Thus the origin is a node. But in addition to these integral curves, 
there is an exceptional integrat CUCVB, S': u = @, which also satisfies Eq. (35c) 
to lowerst order. The configuration of integral curves in the neighborhood of the 
origin is thus as shown in Fig. 5. Si- integral curves do not intersect, except 
possibly at critical points, integral curves that fie below S' must pass through 0 
as we wished to prove. 
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We can check these results in the case a = -1, for then Eq. (34) is 
explicitly solvablee; the solution for which y( 00) = 0 is 

y = (4(d3)/9)(x4 + &)-la (39) 

where a is a constant of integration. By direct calculation we find that the one- 
parameter family (39) corresponds to the curve v = -39/2 in the (u,v)-plane. 
This curve passes through both singularities 0 and P+ and is thus the separatrix 
S. As expected, all curves of the family (39) have the asymptotic behavior y - 
(4(d3)/9)r2 = k? 

The value a = -1 corresponds to the condition 

if we note that the solution (39) is even in x. The condition (40) says that the 
integral of c over all space is constant in tim. This means that there is global 
conservation of the quantity c. The fundion of z and t that Eq. (39) represents 
is more and more peaked around z = 0, the smaller t is. For this reason, the 
solution (39) r%presents the development of an instantaneous pulse of the 
quantity c in the plane z = 0 at the time t = 0. In reference 6, the problem a = -1 
is called the pu/sed-mum problem. Its importance, aside from its practical 
uses, is that it is analytically solvable for all equations af the form (1) with 9 = 
Cl(c,c,) that are invariant to the family of groups (2). 

Another problem analytically solvable for invariant differential equations 
is that for which LY = 0 when 9 = q(cr). In the case at hand, the solution when a = 
0 is 

where again ta is a constant of integration. As ewcted, y (4v3)/9)r2 = A d .  

t i .  AswnDtotic Behavior of Solutions (Dart 21 

The proof given in section 8 that the totally invariant solution N M t N I M  
gives the asymptotic behavior of solutions that obey the conditions (28b,c) 
depends on the explicit assumptions that U M  < 0, /VIM c 0, and A > 0. To 
explore what happens if these conditions are not met, we study the analytic 
solutions to the pulsed-source problem (a = -1) for the generalized diffusion 
equation* 



_ _ _ _ _ _  - . _ _ -  

*As it happens, Eq. (42) is the most genetat form of Eq. (1) with 9 = cr(ctcJ invariant to the family 
O f Q ~ P s  m. 

_ 

For €9. (42), M = m + n - 1, N = 1, and I = n + I. The similarity solutions {4), 
when substituted into Eq. (42), lead to the following principal Ordinary differential 
equation for Hx): 

where now @ =  Zn + m. Equation (43b) can be integrated once to yield 

Here we have set the constant of integration equal to zero since we are 
interested in even solutions, for which y'(0) = 0. Solutions for which v(0) is finite 
and v(0) = 0 can only uccurwtren n > 0. 

Now since we are interested in sotutions that are everywhere positive and 
since both x and fl are positive, it is dear that p must be negative when x > 0. 
This puts another restridion of the value uf n, namely, that it must be an odd 
integer, the reciprocal of an odd integer, of the ratio of two odd integers. When 
these nestridions are met, Eq. (43c) can be integrated to give 

tf m + n 1, the left-hand side of Eq. (44) is < 0, even when x = 0. 
Therefore, the constant in Eq. (44) is also < 0. We wn therefore write Eq. (44) 
as 

and knthermMe U M  = (n+l)/{m+n-l) 
the asymptotic behavior we found befixe. 

0 and NIM =l/(m+n-l) c 0. This is just 
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If rn + n > 1, the left-hand side of Eq. (44) is > 0, even when x = 0. 
Therefore, the constant in Eq. (44) is also > 0. We can tberefom write Eq. (44) 
as 

Furthermore, now UIW > 0 and NIM > 0. It is dear from the form of Eq. (47) that 
the solution y(x) crases the x-axis at x = a. if Eq. (47) is used when y > 0 and if 
y is set equal to zero beyond the first mot, a solution c(z,t) is thereby created 
that satisfies Eqs. (28b,c) by reaching zera at a finite value af z. Such solutions 
were first displayed by Pattle7. For the sake of a definite nomenclature, I call 
such solutions segmented. 

12, Asmatotic Behavior of Solutions (Dart 3) 

The question now arises whether when L/M > 0 and NAd 0 all similarity 
solutirxrs are segmented rather than just those for which LY = -9. To examine this 
question we study the direction field of the first-urder differential equation 
associated with Eq. (43a). For ease of calculation we choose as the invariant u 
and the first differential invariant w of the associated group (5) the following: 

After a short computation following the outline provided by Eqs. (35), we find 

dvldu = G( u, v)lF(u, u) (4%) 

When m+n-1 > 0 and n > 0, Eq. (49) has an integral curve S through the 
origin which behaves like v = -u@ for small u and w. For when v = -u/& the 
term (v/Um)l’n dominates the other terms in both f and G near the origin 0. 
Thus as we approach 0 along S, we have 

Now by integrating Eq.(49b) as (u,v) approaches 0 along S, we see that x can 
only approach some finite value; all it a. Then from Eq. (48b) we see that Ha) 



= 0. When x --+ 0, Y and v + 00;  thus the integral curve S represents a 
segmented solution with its foot at x = 8, where 

Eq. (5Ob) agrees with detailed calculations done in reference 2 for the cases m 
= 1, n = l8 CY = -4 and rn = 1, n = 1, CY = 1R. Eq. (5ob) can be integrated to give 
the following behavior of fix) in the neighborhood of the foot x = a: 

Eq. (5ocf agrees with the exact result (47) in the case CY = -1. In reference 2, 
Eq. (5Ob) was used to find initial conditions for numerical integration of Eq. (43a) 
from a to zero. Eq. (5Oc) can be used in the same way. Solutions for various 
values of a can be obtained from one another by transformation with the 
associated group (5). 

13. Recap itutation of Sections 8-1 2: AsymPtotic Sehavior 

In section 8, we showed that if U M  e 0, NIM c 0, and A > 0, then solutions 
of Eq. (1) obeying the boundary conditions (28b): c(m,f) = 0 (f > 0) and (28c): 
o(z,O) = 0 (z * 0) travr, #e asymptotic behavior c(z,t) - N M  for small t or 
large z. In section 8, we wed the question of the existence of solutions 
obeying Eqs. (28b,c}. 

In section 9, we demonstrated the existence of such solutions by direct 
calculation for the Gorter-Mellink equation q = (cz1'3>, when a > 0. In section 
10, we extended these CalCUl8tiOnS to the case a e 0. 

In section 11, we considered the pulsed-source problem (a = -1) for the 
generalized diffusion equation (42): q = ( P C ~ ~ ) ~  in d e r  to see M a t  would 
happen if UM > 0, NIM ; 0, or A < 0. The pulsed-source problem was chosen 
becsuse it is analytically solvable for Eq. (42). We found that similarity solutions 
could only exist when n > 0, (The exponent n must also be > 0 if we wish to 
apply the ordering theorem to Eq. (42}, for that theorem quires that as/ac, s 
0.) When UM = (ml )l(m+n-l) < 0, we found by d i m  calwlation the asymptotic 
behavior predicted in sedion 8, but when U M  = (n+l)/(m+n-l) > 0, we found that 
the similarity solutions uf the pufsed-source problem are segmented, Le., vanish 
at and beyond a finite value of z. 

In section 12, we found that when UM > 0, the simifarity solutions of Eq. 
(42) are segmented for all values of CY and /3 ( B  0). 
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14. $tea& States 

As mentioned in item (iv) of the introduction, when a source term Q(c) is 
added to the right-hand side of Eq. (I), the resulting partial differential equation 
may have more than one steady state. Only steady states that are stable 
against perturbation can occur in the laboratory (owing to the ubiquitous 
presence of thermal fluctuations). 

The key to determining the stability of steady states is the Lagrangean. 
Let us suppose that the steady-state version of Eq. (1) with a source term is the 
Eufer-tagrange equation of a Lagrangean L[z,clcJI' i.e., let us suppose we can 
write Eq. (1 ) with a source term as 

Mere we have generalized Eq. (1) by the insertion of a coefficient S(c) > 0 on 

"~oizaS shows that such a Lagrangean atways exists. 

the left-hand side. tf the steady states are defined by the boundary conditions c 
= caat z =  a and c = cb atx= b, then the action 

decreases monotonically with time for solutions of Eq. (51) that obey the 
boundary conditions c(a,f) = c, and c(b,t) = cb Proof: 

The integrated term vanished because Ma$) = cl(blf) = 0 as 8 consequence of 
the boundary conditions imposed on c. It follows at once from Eq. (53) that dAldt 
= 0 if and only if q = 0, Le., that the stationary values of A correspond to steady 
states and conversely. 

As mentioned in the introduction, ths action A plays a role much like that 
played by the gravitational potential of a ball rolling on a cuwed surface. 
Imagine the action plotted as an infinitedimensionat surface whose base 
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coordinates specrfy any function of t on the interval a s z s b. The base 
coordinates migM be, for example, the Fourier coefficients of the fundion. At 
any instant, the solution of Eq. (51) corresponds to a point on the action surface, 
and as time advances the point traces out a curve on the surface. Such ames 
always progress in the direediun of decreasing action. So, in a manner of 
speaking, the solution point rolls down the action surface. The stationary (or 
critical) points of the adion surface corresptxld to steady states, so the analogy 
with the potentiai energy of a ball rolling on a surface is complete. 

Local minima on the action surface correspond to states that are stable 
against small perturbations, while local maxima, saddle points, and points of 
inflection correspond to unstable states. H we imagine the adion surface to be 
8n indined rubber sheet and make 8 dimple in it downwards with a finger, we 
create a bcd minimum at the center and a saddte cm the rim. Thus we create 
two steady states, one stable and the other unstable. tf we make the dimple 
upwards, we create a local maximum and a saddle. lt wouM appear, hen, that 
new steady states may appear in pairs, at least one of which (the one with the 
larger adion) is aJways unstabte. The state with the smaller action may be 
either stable or wstabte. 

By imagining (or experimentally determining) the different shapes a 
rubber membrane can take, we can guess what different combinatiwts of stabte 
and unstable steady states are possible. The analogy between the infinite- 
dimensional adion surface and a rubber mrwnbfane is thus of great heuristic 
value, but, as it stands, it does not constitute a proof of any of the above 
statements. 

15. steadv St ates fmrt a 
It is possible to prove convincingly the following: If there are just two 

steady states, the one with the larger action is unstabte. Prod: Let el&) and 
~ ( z }  d8nOt8 the two steady states and let their respective actions be Al > A2. 
Consider now the oneparameter family of initiaf conditions 

O S A S ?  

Sketched in Fig. 6 as a function of X is the initial action A that comesponds to 
c(z,O). When X = 0, A = A2, a stationary value, and when A = 7 ,  A = AI, also a 
stationary value. Joining AI and A2 is a continuous cuwe, which intersects the 
intermediate value A* of the action at the point P. As time goes on, all the points 
on this curve move down (Wdf < 0)  except the fixed end points A1 and A2, 

which correspond to the steady states c1 and c2. The point P can therefore only 

23 



move to the right. Since P is bounded on the right by the line h = 1, it must 
approach a limiting value X I 1; call this limiting vaiue A*. 

tf X. 1, then the action of the descendant of the initial condition (54) 
having the A-value ha approaches A* in the limit of long times and the 
descendant itself therefore approaches a steady state different from either c1 or 
c2. This is contrary to hypothesis; therefore X+ = 1. Then eventually the point P 
will lie in any neighborhood of he = A ,  no matter how small. This means that 
there are initial conditions in every neighborhood of cl, no matter how small, 
whose descendants do not approach cl. Thus c1 is unstable, as was to be 
proved. 

I 

When there are more than two steady states, we can use the above proof 
to show that the one with the largest action (call it c1) is unstable by letting c2 
represent the steady state with the next largest action. But this method of proof 
fails for any other steady state, so that we cannot use it to draw conclusions 
about the stability of these other states. Figure 7 illustrates why the proof fails 
excepi for the steady state with the largest action. 

Figure 7 shows the adion of the initial conditions (54) plotted against X 
just as in Fig. 6, but in addition, Fig. 7 shows a horizontal line A = As marking the 
higher action of another steady state c3. It is possibie that the adion of some 
initial states (54) exceeds A3 and it is further possible that as least one of them, 
say that of pint R, approaches the steady state c3. Thus the point P is bounded 
on the right by h. It is then no longer possible to conclude that the state cl is 
unstable. There is no way to exclude this possibility except when no such state 
c3 can exist. Therefore, all we can conclude in general is that the state with the 
highest action is unstable. 

16. Steadv States (part 3) 

The discussion of the last section outlines what we can conclude from 
purely topological arguments. To say more, we must add more hypotheses, i.e., 
we must restrict our considerations to more specialized situations. One special 
case I have dealt with9 is that of the ordinary diffusion equation in the presence 
of a positive source Q(c), Le., the case in which q = -cz Then 

for which the Euler-Lagrange equation (51) becomes 

S(C)Ct = c= + Q(c) 
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Since Eq. (55b) is invariant to transiation in the z-coordinate, we may relocate 
the origin midway between the points z = a and z = 6; henceforth, themfore, we 
shall he considering solutions of Eq. (55b) on the interval -a s z I a for which 
C(323,t) = 0. 

The steady states of Eq. (5%) are defined by the ordinary differential 
equation and boundary conditions 

The steady states we m k  are even on the interval -a I z s a. It is perhaps 
worth pointing out that for the time being we are again begging the question of 
the existence of such soiutions. 

Let us suppose that exactly two steady states exist, c1 and e2 These 
states are ordered according to their maximum values, which occur at z = 0, i.e., 
if q(0) ~ $ 0 ) ~  then q(z) > ~ ( z )  for -a I z s a. To see this consider the 
sofutions that gtow from the initial conditions q(z,O) = q(O, ) ( j  - da) and *(z,O) = 
~ ( 0 ) ( 1  - z/a) with the following bwmfary conditions on the interval 0 5 z s a: 
q(0,t) = q(O), ~ ( 0 , t )  = ~ ( 0 ) ,  cl(a,t) = 0, ~ ( a , t )  = 0. The first solution matures 
into ule steady state c1(z), the second into the steady state ~ ( z ) .  Since c,(z,O) > 
c$z,O), cl(t,r) > c2(z,f) by the ordering theorwn of section 6 = 4 I ) .  Thus 
ietting f become infinite, we find q(z) > e#. 

If Q(c) is concave upwards, then A1 > A2. PruM Let us consider the 
8ctiun A(t,X) of the descendant c(z,f,X) of an initial condition of the family (54). 
Since c(z,t;X) is even 

Then, 

since c&t) = cx(a,t) = 0. When t = 0, ch = cl(z) - c ~ ( z ) .  Therefore, 



so that 

If Q(c) is concave upwards, (dAldh)t,o > 0 for 0 < h < 1, (dAfdh)eo c 0 for h < 0 
or h > 1 , and (dAldh)eo = 0 for X = 0 or X = 1. Thus A ( M )  must look like Fig. 8. 
Therefore, Al > A2, as was to be shown. Furthermore, it is obvious that cl is 
unstable since in any neighborhood of it, no matter how small, there are initial 
conditions with actions Ai. Because the action atways decreases, these initial 
conditions can never return to c1. 

Now we are in a position to show that c2 is stable. We argue by reductio 
ad sbsu~um.  Suppose Q were unstable. Then in every neighborhood of c2 

there is an initial condition d(z,O) that diverges from 02. Let us choose as the 
the neighborhood bounded by the initial conditions (54) with X = e and A = -e, 
e << 1. Now because A(-&) < A i  and A(€) < At, c(z,t,-&) and c(z,t;e) can only tend 
to c2,+ But by the ordering theorem, c(z,t,-e) < c'(z,t) c(z,t;e). Thus c'(z,t) must 
tend to c2, contrary to hypothesis. Therefore c2 is stable. 

A subtlety tuts been glossed over here, namely, that if c(z,t;-&) and c(z,t,&) cannot approach c, 
they must approach 9. The only way for C(z,t;-~) and c(;L;tx) to avoid this if for A(t,-e) and A(f,&) 
to decrease without bound, for the only stationary values the adion has are A, and A2. From 
Eq. (57) we see thal A > -2 j ,,' ,CQ(c') d a  dz, so the only way A(t,-c) and A(f,&) can decrease 
without bound is for c(l,f;-~) and c(z,f,~) to increase without bound (sin# Q(c) > 0). But since 
c(z,f;-~) and c(z,I;c) an? bounded from above by cl (ordering theorem), this is not possible. 

26 



17. Steadv. Stales: Example 

An example of the situation just discussed in which detailed calculation of 
the steady states is possible is the case Q(c) = B exp($). In strid point of fact, 
Eq. (56) can always be solved in t m s  of quadratures, but the functional 
dependence of c on I, while given explicitly in the form of integrals, is far from 
transparent. Only in rather special cases can it be clarified, and the case Q(c) = 
B e x p ( ~ )  is one of them. 

If we multiply Eq. (56) by dddz and integrate from 0 to z, we find 

since (dddz),o = 0. Since (dddz) dr = dc, Eq. (ma) can be written 

(dc/&)* = 2 $ qc') dc' W b )  

Here c, is the maximum value ufci.h8t occurs at z = 0. ff we set z = 8, in Eq. 
(mc), we find 

When Q(c) = B exp(rc), which is both positive and concave upwards, Eq. 
(6M) can be integrated to yield 

Figure 9 shows a s k t a  of y plotted vwws (~B/2)%. We see at once that 
depending on the value of (@2)"2a there can be I#) steady state, one steady 
state, or two steady states. 

When there are two steady states (small enough 0), dcdda < 0 for the 
one with the larger peak temperature c,, and dcdda > 0 for the one with the 
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smaller c,. Now Eq. (S) can Serve as a model for an uncooled, current- 
carrying wire heat sunk at its ends and having a resistivity that increases with 
temperature c? Presumably, steady states whose peak temperature decreases 
as the cooled length inceases do not occur in the laboratory. So we suspect 
that the upper steady state (the one with the larger cm) is the unstable one. But 
how to prove this conjecture? 

We begin by showing that for the steady solutions of Eq. (S), Wda < 
0. Proof: 

The integral in the first term of Eq. (62a) vanishes because c(a) = 0. The 
integral in Eq. (62b) vanishes because c satisfies Eq. (56). Now, finally, we note 
that c,(a) = <&I); see Fig. 10. Therefore, 

Furthemre, from Eq. (6Ob) we see that 

Thus A decreases with increasing a and does so faster on the upper branch than 
on the lower. I f  we go backwards from the single state of largest a, the action A 
increases on both branches but it increases faster on the upper branch than on 
the lower. Thus for a given a, A is larger on the upper branch than on the lower. 
From the results of sedions 14, 15, and 16, we see then that the upper state is 
unstable and the lower state stable. 

18. Steady States: Second Example 

A related example arises in the case 

Q(c)= 0, C C C S  

Again Eq. (6W) can be integrated and yields 
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For small values of w# (mughty less than 0.2), the curve of y versus 
($3/2)% looks like the sketch in Fig. 11. The most interesting region is that 
between the turning points P and Q, where there are four possible steady states 
(induding the state c = 0). Again Wda < 0, so that A3 > A2 and A, 3 A2. These 
relations encourage the conjecture that states 3 and 1 are unstable, while states 
0 and 2 are stable. 

To prove this conjecture, we take advantage of the ordering of the 
solutions with respect to their initial conditions. Consider, fur example, steady 
states 2 and 3 and the initial conditions 

ail of which lie between cz and c3. The difficulty aiiuded to in Fig. 7 cannot now 
arise. For, if the action of a point such as R were to approach a limit other than 
4, it would correspond to a steady state that, perforce, would have to lie 
between c2 and Q. There being no such steady state, we see at once that all of 
the states (65a) tend to c;l except that for which X = 1. Thus c3 is unstable. By a 
simi&ar argument regarding cl and c2, we see that cl is unstable, and all of the 
initial states 

tend to c2 except that for which h = 1. 

Now we can show that Q is stable by slightly extending the argument by 
mdmtib ad absurolurn of section 16: we merety choose one of the curves 
bounding the neighborhood of c2 from the family (6%) and the other from the 
family (65b). 

19. TravelinQ Wave Solutions 

If the Lagrangean has no explicit dependence on 2, then Eq. (51) is 
invariant to the translation groups t' = z + X and ;I = t + I(, - - < h, < 00. 

Solutions c(z,f) invariant to both groups are simply constants, but that is because 
of We very high algebraic symmetry we have imposed. Suppose we fook for 
solutions invariant to the one-prsrameter subgroup z' = z - vh and f = t + A, - Q) 

< X < 00, where v is a fixed constant. Such solutions must have the form 
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c(z+vt) and are called traveling wave solutions. The form c(r+vf) represents a 
wave traveiing from right to I& without change of shape when v is positive. 

In the field of apptied superoondudivrty, much time and effort have been 
spent calculating the traveling wave solutions of Eq. (5%). When we substitute 
the form ax) = c(z+vt) into Eq. (W), we find the ordinary differential equation 

c" - vS(c)c' + Q(c) = 0 (66) 

At least two different kinds of source terms Qc) are of interest: (1) those like that 
of Eq. (63) that are zero up to and positive beyond a certain threshold value of c, 
and (2) those of the form shown in Fig. 12. 

Suppose we seek solutions of Eq. (66) that took as shown in Fig. 13. The 
flat asymptotes of the solution at x = -00 and x = 00 must be roots of the 
function Q(c). In both cases of interest, Q(0) = 0, so the left-hand asymptote is 
admissible. In case ( I ) ,  Qc) does not have another mot, so it cannot admit 
traveling wave solutions of the form shown in Fig. 13. Case (2), however, can. 
So far it wwtd appear that either c(P) or c(Q) in Fig. 12 can serve as e,. 

In fad, onty c(Q) can m e  as c,,.,. For as we shall now see, the flat 
solution c = c(P) is unstable against mall perturbation, whereas the flat 
solutions c = 0 and c = c(Q) are stable. We take a direct approach: consider 
the difference u between c = c(P) or c = c(Q) and an infinitesimally close solution 
c +  u. If we subtract Eq. (55b) written for cfrom Eq. ( S b )  written for c + u, we 
find (q = O ! )  

Note now that since c is a flat solution, S(c) and Q(c) are constants. If we now 
consider a separable solution of Eq. (67a) of the form u = exp(ikx + d), we find 
the dispersion relation 

If Q(c) < 0, as it isforc= 0 and c =  c(Q), O <  Ofor all k, and thus the states c = 0 
and c = cfQ) are stable. If Q(c) > 0, o > 0 for some k, and thus the state c = 
c(P) is unstable. 

Finalty, if we muttipty Eq. (66) by c' and integrate frm -00 to 00, we find 
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Since the left-hand side of Eq. (67c) is 2 0, traveling wave solutions can only 
exist if the right-hand side of Eq. (67c) is also > 0, i.e., if the area of lobe 2 in 
Fig. 12 is greater than the area of lobe 110. 

20. Travelina Wave Solutions: Exam&! 

fn general, Eq. (66) has wlutbns of the type shclwn in Fig. 13 only for 
certain values of the vel- u, as the following example shows. Take Q(c) to 
have the particular form: 

which is of the type shown in Fig.12, and take S(c) = S, a constant. Now Eq. 
(66) is invariant to the transiatim group C' = C, x7 = x+ A, --oo < A < 00. We 
can use Lie's theorem5 to reduce its order by introducing as new dependent and 
independent variables a first differential invariant q = c' and an invariant c, 
respedivefy. Then since c" = &dx2 = d(ddbx)/dx = fd(dddx)ldcHdcfdx) = 
Q(dq/dc), we find 

and the boundary conditions 

The boundary conditions, being two in number, generally overdetermine the 
solutiol7 of Eq. (69a), a first-orber dffetcbntal equation, and that is the reason 
why sdutions exist only for particular values of v. 

d - vSm - h = 0 

Since we 81x3 looking for solutions iike that shown in Fig. 13 ftK which Q > 0, we 
take the positive toot. Thus 
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When c, < c < c,, q also varies linearly with c, now with the negative slope 
given by Eq. (70): 

9 = (c - cm)fvS - (y2s2 + 4h)1ny2, 

Equations (71 a) and (71 b) must give the same value of 9 at c = cs; equating their 
right-hand sides yields 

The difference of the areas of lobes 1 and 2 is (hcm(2)(cm - 2cs) so that the 
quantity c, - 2cs > 0 when the area of lobe 2 > the area of fobe 1. 

21. Traveling Wave Solutions (Dart 2 )  

The manner of solving Eq. (66) in tbe foregoing example can be applied 
to Eq. (66) in the generat c a s ~ - - w ~  therefore focus our attention on Eqs (69). 
Fig. 14 shows the diredion field of Eq. (69a) for a function Q(c) of the type 
sketched in fig. 12. The singularities at 0 and Q are both saddle points, and 
the integrai curve we want must coincide with the separatrix of positive stope at 
0 and that of negative slope at Q. From the foregoing example, we expect that 
the two separatrices will coincide only for particular values of v. 

it is clear from Fig. 14 that d = q > 0, Le., that c(x) is monotone 
increasing, so that the traveling wave propagating from right to left does in fact 
look like the curve sketched in Fig. 13. 

The form of Eq. (6%) suggests that if SI@) * 5+(c), then wl s v2 for the 
The special case in which S(c) is a constant conf~rms this same Q(c). 

supposition [d Eq. (71c)l. A proof for general S(c) > 0 is as follows: 

lf we subtract Eq. (72b) from Eq. (72a) and proceed as we did in M i o n  7, we 
find 
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Now if we take the initial condition c2(z,O) to be the traveling wave solution 
belonging to M c )  at f = 0, then c&t) is vte same traveling wave solution at any 
t. If we take q(r,Cr) = c$,O), then q(z,O) eventually matLfres into the traveling 
wave solution belonging to Sl(c). Now the last term in Eq. (73) is negative since 
SI(%) > s2(*) by hypothesis and @ > 0 (since for the traveling wave solution c' 
> 0). fhw, by reasoning now familiar, q(z,f) I c2(z,f), which means ul zs; w2. 

Note that the above proof applies no matter what the form of Q(c). 

These mparison theorems afe useful for boundiing the velocity Y by 
using results like that of Eq. (71) in caws where Eq. (Sa) is difficult to solve. 

When Q(c) is noMlegative (case (1) uf section 19), the traveling wave 
solutions cannat have the shape shown in Fig. 13, for in this figure the values c 
= 0 and c = c, am both mots of qc). What, them, is ttbs asymptotic behwior at 
large x of the traveling wave solution that progresses frcHn right to la? 

The best way to answer this questii is to start by studyfng the simple 
case in which S = #Mstant and Q = 0 force cs and Q = Gortsfanf for c > c, In 
this case, the solution Q = w S c  is the unique sotutim for which 4(0) = 0 when c < 
c,. The direction field of Eq. (693) for c > c, is sham in Fig. 15. 

Suppose um now consider traveling wave solutions that grow ftom a 
localized diSturb8nW (see Fig. 16). The left-hand halves of the @files in Fig. 
16 eventual& mature into a &meling wave moving to the M. When pW8d BS 
CUNBS af Q = c' versus c, these s9rofiIes look like the lower family of curves in 
Fig. 15, Le., the famity for which 9 = 0 at the maximum Value of c [cf. Fig. l$(ii)]. 
At time spoesm and the central value ofc increases, the q-cprofile appmacb 
thedottedcurveinFig. 15nearc=c,. Soeventualtyq=Q/vSetc=c, ffw 
join this solution to the solution Q = uSc that W i n s  for c < c, we find 

The separatrix Q = Q/vS mesponds to the asymptotic behavior c - 
QNS of tb traveling wave solution, which replaces the condition q(c,) = 0, 
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Such a separatrix exists in many cases, but it does not always exist as we show 
next. 

23. Travelina Wave Solution: Counteraamole 

Consider now the case S = constant, Q = Ofor c < c, and Q = Qcfor c >  
c, In this case the direction field of Eq. (ma) for c > c, is shown in Fig. 17. The 
line b: q = QdvS represents the lows of zero slope (dg/bc = 0). The lines L+ 
and L are the integral wrves of Eq. (69a) q = m+c and q = m,c, respectively, 
where m, are the roots of the quadratic equation 

It follows from Eq. (75) that m+ + m, = VS and m+m, = Q e ,  so that the slope mu = 
QJvS equals rn+m,l(m+ + rn-). Since both m+ and m, are positive, mg c m, K m,. 
Thus the representation given in Fig. 17 is m e c t .  It is clear, then, that the 
family of integral curves that resemble the c-profiles of Fig. 16(ii) is asymptotic to 
the integral curve L-. The velocity is then given by the condition 

vS = m, t 7 w  

which is the same as 

No solution for v exists for Eqs. (76b). 

The reasoning presented above is based on the assumption that Eq. (75) 
has real roots, Le., that the discriminant (USP - 4Q+ is Z 0. If it is not, the 
integral curves represented by the lines 4 do not exist. Then the transient 9-c- 
profiles continue to increase without any asymptotic limit so that no traveling 
wave solution exists. 

The conclusion that there is no b-aveling wave solution leaves moot the 
question of what realty happens. Now since the foregoing argument does not 
depend on e, having any special value, it holds as well when c, = 0. In this 
case, the timedependent Eq. (55b) can be can be solved just as we solved Eq. 
(23) in section 7: 

The locus of a constant vaiue of c in the (r,f)-plane is given by 
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so that 

Thus the locus aiways accelerates, but at an ever demasing rate so that for 
very large t, it is essientialty moving with a ''vdocity" v = 29J/2/s. 

24.Travelina Wave Solut ions: GeanetrI 'c Considerations 

From the anaiys+s presented 80 far it is dear that #e study of the 
diredim f i ld of Eq. (6%) sheds lqht on ths gucsstions of the existence and 
nature of the traveling wave s c d u t i .  lf the h s  of zero stope b: Q = 
Q(c)/vS(c) is asymptotically monotone decreasing (see Fig. 18, for example) 
then a separatrix S must exist that is the asymptotic iimit of the lower family of 
curv6s. In such a case, we may expect e traveling wave sotution to exist. 
F u m m ,  if b is munotow decreasing for dl c > c,, then 

so that 

The bound in Eq. (79b) resembles an estimate of Whetstme and Rood? 

If b is m o t o m  fncreasing fur c > c,, it appears difficult to decide the 
question of the existents of traveling wave sotuiions. For, in the cas8 of the 
caurrtar-example of gE4dion 23, it was not possible to rule out traveling wave 
solutions d e i y  with a geomtrk argument based on Fig. 17. Instead, a 
oontrsdidion had to be obtained by sulving Eq. (ma) eqdicitty. 
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dt 

Fig. I. A level cum af c sumunding ?he maximum at P in ?he (z,f)-piane. 
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Fig. 2. The rectangular region OABC in the (z,t)-plane whose sides are parallel 
to the axes. The largest value of c is assumed to occur at point Q. 
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Fig. 3. Tbe source term Q(c) in Eq. (23) is a step function. 
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b o  

F c O  

Fig. 4. The fourth quadrant of the phase diagram of Eq. (35) when 01 > 0, @ > 0. 
The heavy curves Co and C, divide the quadrant into regions in each of which 
the slope dddu has one sign only (shown encircled). 
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G > O  FcO 

Fig. 5. The first and fuurth quadrants of the phase diagram of Eq. (35) when -2 < 
P 0, #? > 0. The heavy curv8s Co and C, divide the quadrants into regions in 
each of which the dope dv/du has one sign only (shown encircled). 
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Fig. 6. A sketch of the action (52) for the family of initial conditions (54) when 
there are just two steady states. 
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Fig. 7. A sketch of possible behevior of the action (52) for the family of initial 
conditions (54) when there are more than two steady states. 
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Fig. 8. A sketch of the action for the family of initial conditions (54) when qc) is 
concave upwards. 
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Y =  

Fig. 9. A sketch of Eq. (61) showing y plotted as ordinate and (+3&?)"%3 as 
abscissa, 
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Fig. 10. Geometric retations near the foot of the solution cum. 
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Fig. 1 I. A sketch of Eq. (64) s)lOwmg y plotted as ordinate and (yB’2)lQa as 
sbscjssa wt.ren *& < 0.2. 
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Fig. 12. One kind of source term QC) of interest in applied superconductivity. 
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Fig. 14. A sketch of the diredion fieM of Eq. (6%) for a source term of the type 
shown in Fig. 12. 
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fig. 15. A sketch of the direction field of Eq- @Sa) for c > c i n the simple case in 
which s = constant and Q = 0 for c < c, and Q = Constant fort> c,. 
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Fig. 16. Part (i): sketches shawing the development of a localized distrubance. 
Part (ii): sketches showing the associated profiles of Q versus C. 
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Fig. 17'. A sketch of the diredim field for c > c, in the case in which S = constant 
and Q = Ofor c < c,and Q = Qlcfor c >  c, 
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Fig. 18. A sketch of the difedion field for e > e, when the IOCUS Lo af zero slope 
is monotone decreasing. 
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