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Preface

There were a number of goals that I had set out to accomplish with this work. The
overall goals were to learn something about cooperating robots and software
engineering, and to construct a simulator in the process of doing both. On the software
side specifically, I wanted to experiment with specification methods for designing a real
system. I also wanted to experiment with object-oriented design and see how this
meshed with the specification methods being explored. Finally, I wanted to work in C++
and X windows, to gain experience with both.

I chose the Trace Assertion Method as the specification method for this work for three
reasons. First, I was familiar with it following a seminar at the University of Tennessee
in the Spring of 1992. Second, it appeared to be a good candidate for object-oriented
specifications, because it grouped functions together in modules in a manner that seemed
to mesh well with object-oriented concepts. Third, Professor Poore and I were curious as
to how the trace method would apply to real systems.

The work began in the Fall of 1992, with an attempt to build a simulator for cooperating
mobile robots. I built a concept prototype of a simulator in January of 1992, but this ran
in Smalltalk on a Macintosh and was very slow. In the Summer of 1992, I started to
work on a prototype interface using X Windows and C++ under the SunOS environment.
This prototype was a good learning experience, and a number of lessons learned from
that are included in the requirements specification document for the simulator interface,
which was written as the next step (this document is included in Appendix B).

Once the requirements had been established, the hardest work was in trying to adapt the
specification method to the software being designed. The first increment is relatively
simple—three major objects with some supporting objects. It proved to be more difficult
to specify than anticipated, and extensions to the Trace Assertion Method were required
to allow true object-oriented designs to be specified. Specifically, notations for handling
module I/O and module interactions needed to be more fully developed. In addition, the

vii



method, which was created for module specification, had to be adapted to fit into a full

system design.

One of the most helpful ideas came in a brief conversation with Neil Erskine, a student
of David Pamas. I was struggling with module interactions, and Neil suggested a new
method that I had not considered. While the idea that he gave me required some
development to be useful, it nevertheless allowed me to progress significantly.

This thesis documents the work done to adapt the method for object-oriented/C++
design, and gives examples from the increments developed.
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Abstract

The Trace Assertion Method, originated by David Parnas, is a method for developing
specifications for software modules. The nature of the method allows verification of
consistency and completeness of the specification, and provides a rigid structure to the
designer. This method is extended to work with object-oriented designs for a C++
system involving a user interface. A number of object-oriented concepts which are not
present in the original Trace Assertion Method are incorporated into the method and
demonstrated on two completely specified increments of the system being developed. In
addition, the method is incorporated into a system wide view beyond the original
modular scope of the method. Advantages of the adapted method and its problems are
discussed.
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1 Introduction

This work discusses adaptations to the Trace Assertion Method (TAM) [Parnas89] to
handle the specification of C++ programs using object-oriented designs. The examples
given are specifications of C++ objects for a user interface being developed under the X
Window System, as part of WestWorld, a simulation system for experiments with

cooperating robots.

Simulators represent an important part of research in robotics, allowing robot navigation
and other tasks to be tested in an environment that is more forgiving of mistakes and
allows experiments not possible in the real world. A simulation is typically made up of a
number of components that manage both the display for the operator as well as the actual
pieces of the robots being simulated. Use of object-oriented systems for designing and
implementing simulators is common since the object model allows simulator
components and data representations to be more easily and naturally designed.

As a simulation becomes more complex, however, it presents a problem for the designer.
A large number of interacting components can be difficult to design and maintain. This
is where specification methods are useful. By using specifications for the various
components in the system, components can be designed in parallel, without knowledge
of the internals of other components, and in the confidence that the interfaces for each
component are complete.

The specification method chosen for this development effort was the Trace Assertion
Method, as defined by' David Parnas and Yabo Wang. Unfortunately, the TAM report
leaves many questions unanswered, and does not give very complex examples of the
application of the method. Given the method's orientation toward modular design, it was
chosen as the method for specifying the object-oriented design of the user interface. In
addition, some elements of the box structure design method [Mills88] are utilized as

well.



In Chapter 2, adaptations to TAM are discussed. TAM, like many other’specification
methods, works well for parameterized input and output, but deals poorly with classes
that manage user interface tasks, where the input and output are not easily
parameterized. In addition, TAM handles input and output as variables, but some forms
of input and output may be more in the form of events or functions, rather than variables.
This is crucial, since peer interaction between classes through functions is an important
part of object-oriented systems. Notational additions to TAM are presented that allow
the designer to deal with user interface input and output, and to handle peer interactions
between objects. In addition, other object-oriented elements such as class functions,
constructors/destructors, and inheritance are discussed and notation for using these
elements with TAM is presented.

In Chapter 3, a few example classes from the system being developed are discussed at
length, including the adaptations required to allow their specification. TAM was
intended for specification of individual modules, not an entire system. A process has
been developed to incorporate the TAM-specified classes into a larger, single unit, and
to handle inter-class operations. This is discussed in Chapter 4.

After development of a prototype for the interface, a requirements specification was
written to document the interface functions and responses. This document is contained in
Appendix B.

The first increment developed for the interface involves three classes: Map,
PopupMapSize, and WinMap. The Map class contains the core data structure for the
application, holding the map dimensions (width, length) and number of pixels per meter
(scale) for the map to be represented on the screen. It also controls the X paint window
created by WinMap. The PopupMapSize class creates a pop-up window for modifying
the Map fields of width, length, and scale. The WinMap class controls the main window
for the application, including an X paint window for displaying the map rectangle and
menus for controlling the program functions. It acts as the routing point for all menus in
the window, and calls functions from other classes based on user actions. This increment
was developed in C++ using XView, an X-windows library, and Devguide, an XView
graphical user interface (GUI) builder tool. The specification for this increment is

contained in Appendix C.



The second increment adds new classes to the first increment to allow the Map to load
and save objects in files, and to draw those objects on the screen. Therefore, the Map
object was significantly enhanced and objects were added to manage load/save popup
windows as well as the data structure for the items in the map. This specification is

contained in Appendix D.
1.1 An Introduction to the Trace Assertion Method

The Trace Assertion Method is a system for specification of software modules, as
defined in [Parnas89]. It was initially developed by David Parnas [Parnas72] and has
been further developed in [Bartussek78; Hoffman88; Hoffman89; McLean84]; note that
[Parnas72] and [Bartussek78] also appear in [Gehani86]. [Parnas89] was an attempt to
define the method for practical use. In addition, [Erskine92] contains some further

refinements.

For the purposes of trace specification, a module is a set of functions designed to work
together. Parnas uses the term access programs to refer to the set of functions that can be
accessed from outside the module. An event is typically an access program call (there
may be other types of events), and an event class is all the possible calls of a particular
access program given its set of parameters. A trace of the module is a sequence of input
events and their corresponding outputs. For deterministic objects, the trace is usually
written with the events only, since the outputs are uniquely determined from an event
sequence. A trace can be considered to be similar to a stimulus history for a black box, in
that through providing the history of access to the module or box, the outputs of the box
can be determined.

A trace can be reduced to contain only those elements which are necessary to produce
the required outputs from the module and to maintain the proper sequencing of events.
This reduced trace is called the canonical trace, and the reduction is accomplished
through equivalences.

An actual trace specification consists of the following parts, some of which may not
always be used for all module definitions. First, in the SYNTAX section, the external
interface to a module is defined. This consists of tables of input variables, output



variables, and access programs. Second is the CANONICAL TRACES section, which
defines the canonical traces for the module. In addition, a DICTIONARY subsection
may be included, which defines external types and auxiliary functions. The latter are
useful for simplifying trace parsing in the following sections.

The third and typically largest section is the EQUIVALENCES section, consisting of
tables of conditions and equivalences for each event class (there is one event class for
each access program; there may be multiple events for each class based on parameters to
the programs). The form of this section has the left-hand side of the equivalence with a
canonical trace T appended with the event class. On the right-hand side is the table of
conditions and equivalences. The set of conditions presented in the left-hand column of
the table must form a complete partition, and the equivalences in the right-hand column
must result in canonical traces, or errors if the event is not allowed under certain
conditions. Through the use of these equivalence tables, a trace of the module must be
reducible to a canonical trace. Therefore, the equivalences section must correspond with
the canonical traces defined.

The fourth section is the VALUES section, with two parts: QOUTPUT VALUES and
RETURN VALUES. The output values subsection consists of tables of conditions and
values. If traces are used in the conditions column, they must be canonical. This means
that for unique output values to result from a module, the information required for that
output must be present in a canonical trace. This is an important consideration when
selecting the canonical traces. The return values subsection details which output values
correspond to which access program arguments or return values as defined in the first
section.

Once the specification is complete, it must be verified. As Parnas notes, "a principal
advantage of this method is that systematic validation of the design is simplified."
[Parnas89]. The verification steps are contained in section XVIII of the TAM report,
"Assuring completeness and consistency”. This section is as follows:

A specification is complete if the values of the output vector are specified for every legal trace. To
check for completeness, one must verify that:
(1) There is one equivalence function for each event class.
(2) There is one output function that specifies each output value.
(3) The predicates in the left-hand column of each table partition the intended domain of the relation.
(4) The predicates in the right-hand column are defined whenever the corresponding predicate in the left-
hand column is ‘true’.



A specification is consistent if one cannot derive two contradictory statements about the output vector
values. Consistency is assured by verifying that:
(1) The canonical form fulfills the requirements of section XI.
(2) All traces specified in the right-hand column of the equivalence section are canonical.
(3) For function definitions, all right-hand sides specify a unique value.

These checks can be carried out systematically and, often, mechanically.

Section XI, mentioned above, notes that "the canonical form must have the property that
every legal trace is equivalent ... to exactly one trace in that form." The actual
specification verification steps, including canonical trace verification, are detailed in

Chapter 4 below.

An Example: The Savings Account Tracker

As an example, consider a simple system to track a savings account balance. This system
has three basic functions: DEPOSIT, WITHDRAW, and BALANCE. The DEPOSIT
function, given a parameter with the amount to deposit, deposits the money in the
account. The WITHDRAW function, given a parameter with the amount to withdraw,
withdraws the requested amount or gives an error if not enough money is available.
Finally, the BALANCE function reports the current balance, which is the net of the
deposits minus the withdrawals. The full specification is contained in Appendix A.

The first step is to specify the syntax for the module. For output variables, there is only
one—the balance variable which is returned by the BALANCE function. For access
programs, there are three, WITHDRAW, DEPOSIT, and BALANCE.

Second, specify the canonical trace for the system. Since the canonical trace determines
the state of the system, it is necessary to consider what functions will need to be
remembered in order to achieve the proper functionality. Since the BALANCE function
reports the state but does not change it, BALANCE will not be in the canonical trace.
WITHDRAW and DEPOSIT both modify the state, so they should be in the trace.
Therefore, the canonical trace will be:

canonical(T) <--> (T = [DEPosrr(xi)}?zo.[wnHDRAW(yj)]j’io)

This can be interpreted as meaning that T is canonical if and only if T is a string of
events with zero or more DEPOSIT events followed by zero or more WITHDRAW

5



events. The "." character is the concatenate operator for traces. Note that the ordering
that is imposed in the canonical trace does not necessarily represent the actual order of

events arriving at the module. This is addressed below.

As part of the canonical trace section, an auxiliary parse() function can be defined which
will simplify the equivalences to follow. The function

<boolean> parse(<trace> T, <trace> D, <trace> W)
is defined to return true if and only if T=D.W and D = [DEPOSIT(xi)]inzo and W =

[wrrHDRAW(yj)]j’f‘__O.

Third is the equivalences section. In this section, there must be one equivalence for each
input event to the module. The results of the equivalences must be canonical traces or
errors. For DEPOSIT, the equivalence is simple. A trace of T.DEPOSIT(x), where T is
canonical, is equivalent to a trace with DEPOSIT(x) added into the appropriate place in
T. For WITHDRAW, the equivalence is more complex—there are two cases, based on
whether there is enough money for the withdrawal or not. Given a trace of
T.WITHDRAW(y) and given that the sum of the deposits in T minus the withdrawals in
T is greater than or equal to y, this is equivalent to TWITHDRAW(y). Otherwise the
equivalence results in an error of %insufficient funds%. Finally, the equivalence for
BALANCE is the simplest. TBALANCE is equivalent to T, since it is not in the
canonical trace.

The final section is the values section. For output values, there is one item, the variable
balance. Given a canonical trace T, the value of this variable is the sum of the deposits in
the trace minus the withdrawals. If the trace is empty, the value is zero. For return
values, there is one, which is the value from the BALANCE access program, which is
mapped to the balance output variable.

At this point, the specification must be verified. For each table, a set of verification items
must be checked. In addition, the canonical trace must be verified against the rest of the
specification. These verification questions are documented in the example in Appendix
A.



1.2 An Introduction to Object-Oriented Design

There are three basic types of systems based on the object model: object-based, class-
based, and object-oriented [Wegner90]. Object-based systems are the simplest of the
three systems. The key element of object-based systems is the concept of collecting state
data and functions which operate on that data together into a single module. Ada is an
object-based language.

In class-based systems the data and function collection forms the definition of a class,
which can then have multiple instances or objects, which may differ in their state data.
This has great advantages when working with a system that may have many replicated
components which have common functions to handle their data—such as elements in a
linked list, transactions for a financial database, or objects in a robot world map. A
typical class-based programming language will eliminate the need to make special
references within object functions to act on object data, thus simplifying the
programming task.

Object-oriented systems are defined as those which add inheritance to the object model.
Inheritance allows objects with common functionality or data to be grouped together in a
hierarchy. For example, consider the objects in a robot world map. These objects may be
boxes, cylinders, or complex polygonal shapes. Nevertheless, they all share some
common functions, such as draw(), which directs the object to draw itself on the screen.
In addition, they may share some common variables, such as locationx and locationy.
Therefore, it is best to first define a superclass called MapObject which has all the
common functions, and then define the subclasses, such as MapBox and MapCylinder.

The hierarchy can be carried to multiple levels, for example, there could be special
versions of MapBox. In some cases, specialization is better handled through the object's
variables rather than creating a new class; this issue is discussed in numerous object-
oriented texts. C++ and Smalltalk are examples of object-oriented languages.

In C++, there is a special concept called an abstract base class, or an abstract superclass.
In this kind of class, there cannot be any instantiations because some functions are
undefined for that class. For example, in MapObject, load(), save(), and draw() are all



undefined for MapObject. Therefore, C++ will give a compile error if there is an attempt
in the code to create a MapObject. The purpose of this is to define some functions in this
superclass, and then force the subclasses to implement certain functions—if they do not,

a compile error will occur.

A few other terms should be presented to complete the description of object-oriented
systems. Constructors are used in C++ to initialize objects when they are first created. A
constructor is a special function which can be defined by the programmer that is
automatically called when the object is created. This allows default variable values, for
example, to be set automatically. A destructor is a separate function that also can be
defined that is called whenever the object is destroyed. This allows, for example, special
memory which was allocated by the object to be deallocated. A similar functionality can
be achieved in other object-oriented languages, such as Smalltalk, by specializing the
calls that create a new object.

Another important concept is the difference between class and instance functions and
variables. In some object-oriented languages, including C++, special functions and
variables can be defined at the class level. The functions are available to instances, but
do not have any special pointers to instance data as an instance would. Class functions
do, however, have access to class level variables. There is only one copy of these
variables for the entire class and instances. These variables are typically used for
maintaining data such as counting the number of instances which are active.

One feature available in C++ that was not used in this project is overloading. This means
having multiple definitions of a function which differ in the arguments they handle. For
example, in the MapObject hierarchy, there exists a public variable called next and a
function called set_next(). Another way to handle this would be to have a function called
next() which, when called with an argument, would set the next variable to that
argument. If called without an argument, it would simply return the current value of the
next variable. Overloading can in some ways clarify notation, but it can also be
confusing. It may introduce a burden on the verification of a system which is
undesirable, so it was decided that overloading would deliberately be avoided in C++
specifications.



While the concepts used in object-oriented languages are generally the same, some
differences may exist in notation. The notation presented above will be used throughout
this thesis. Note that while C++ is the target language for this work, there may be some
differences between notation used for C++ and that used here. For example, superclasses
and subclasses are called, respectively, base and derived classes in C++. For details on
features of particular object languages, see the Appendix in [Booch91].

1.3 An Introduction to the Box Structure Method

The Box Structure Method (BSM) [Mills86; Mills87b; Mills88] was developed by
Harlan Mills as part of the Cleanroom development process [Mills§7a]. The first step in
a box structure specification is a black box. The black box describes the possible stimuli
to the system, the possible responses, and the transition from stimulus histories to
responses. The transitions must use only current stimuli or the stimulus history; no state
information can be considered. The stimulus history is then used to develop a state box,
from which a procedural clear box is derived. From this point, blocks are identified in
the clear box which should be further refined as new black boxes, and the procedure is
repeated with these new boxes.

An important part of BSM is the verification steps. At each step, the current box is
verified against the box it was created from. Each state box is verified against the black
box, and each clear box is verified against the state box. In addition, there are a few
further concepts that are examined during verification and design. First, the boxes should
be referentially transparent, meaning that each box is independent and does not require
knowledge about the design of other boxes. State migration is the process of moving
state data into lower-level boxes when it is only used in the lower level box. Of course,
referential transparency must be maintained. Third, transaction closure should be
verified to show that the stimuli to a box are necessary and sufficient to produce the
required responses. Finally, common services should be identified where possible to
prevent duplication of code and simplify the design.

In [Hevner93], the BSM model is discussed with respect to object-oriented systems, and
object-oriented concepts are compared to box structured concepts. Notational difficulties
that are involved in developing object-oriented systems are not directly addressed in the



paper. In particular, only object-based systems, which do not include inheritance, are
addressed. In addition, the concept of class versus instance is not addressed.

The method presented here makes two modifications to using BSM to specify a system.
First, notational changes are made to the boxes to address object-oriented concepts, and
to match better with the trace specifications. Second, the trace specifications are used in
place of a state box. The process for combining the two is discussed further in Chapter 4.

1.4 Other Object-Oriented Specification Systems

A number of specification systems have already been developed for object-oriented
systems, many of which are extensions to existing specification systems, including
Object-Z [Duke91; Rose92], MooZ [Meira90; Meira92], Larch/C++ [Leavens92], and
others. Several Z-based object-oriented systems, including [Rose92], are presented in
[Stepney92]. A few languages were designed with structures which permit more format
specification, the most notable being Eiffel [Meyer90]. Using specifications with
Smalltalk is presented in [Cook92]. A good overview of a number of methods as well as
general concepts of formal methods for object-oriented systems and an extensive
bibliography is presented in [Casais93].

10



2 Adapting the Trace Assertion Method

The Trace Assertion Method, with its emphasis on specification of a group of access
programs in a module and on verification, appears to hold great promise for specifying
object-oriented designs, since the object method is also based on grouping related
functions together. In practice, however, there are a number of problems. First, it is not
clear how to handle the distinction between instance and class functions in TAM.
Second, module interactions and user interface input/output require notation that is not
defined by TAM. Finally, constructors, destructors, and inheritance require some

notational changes.

The specifications for two increments developed using the notational changes discussed
below are contained in Appendix C and Appendix D.

2.1 Specifying Object Inputs and Outputs

To understand the original TAM limitations with specifications, it is necessary to
examine exactly what are the types of input and output that a module/class/object would
have to accommodate, and how they would be handled (or not) under TAM.

The following types of output would be typical for a module: (a) publicly accessible
variables, (b) access program return values, (c) user interface/external world output, and
(d) calls to outside objects (state modifying). Note that (c¢) is basically a subset of (d).
The following types of input would be typical: (a) publicly accessible variables of other
objects, (b) access program parameter values, (¢) user interface/external world input, and
(d) return values from calls to outside objects.

Examining the TAM document reveals the following two items. First, in [Parmas89],
section XIV "The syntax section” (p.8), Parnas defines the following!:

1There is no discussion of input tables or event tables, and there are no cases of them in the examples

given in Pamas’ paper. Input tables and input variables events are, however, covered briefly in [Mills86].

11



The syntax section consists of an input table, an output table, an access-program table, and an
event table.

The input and output tables list the input and output variables and specify their types.

The event tables define parameterized classes of events as relations on values of the input
variables. Only events in these classes may appear in traces.

Second, in section VI "Communication with objects” (p.3), three modes of
communication between the object and the outside world are presented: input variables,
output variables, and access programs for sending and receiving information.

Given this information, for outputs, it is apparent that case (a), publicly accessible
variables, is handled via output variables and specified via the output table, and case (b),
access program return values, is handled by access programs and specified by the access
program table and output table. Cases (c) and (d) are more difficult.

For inputs, case (a), publicly accessible variables of other objects, is handled by input
variables and specified via the input table, and case (b), access program parameter
values, is handled via the access programs and specified via the access program table
(and perhaps the input value table, although this is not directly addressed in the TAM
report). Again, cases (c) and (d) are more difficult.

In general, directly accessible input and output variables from a module violates normal
black box specifications, which normally assume all access to a box is via some function
or stimulus. Under TAM, however, input and output variables in class definitions
without using access functions, such as public variables in C++, are allowed. This
simplifies the specification and design of classes by not requiring an access function for
each output variable. It is important, however, that when access functions are not used to
access variables, that there be a rigid set of criteria for these variables. These criteria
have been defined as follows:

e a variable must be initialized by a constructor or a one-time initialization function;

» following initialization, a variable value must always be defined;

* access to a variable from outside must be read-only, i.e. all state modifications of an

object must come from function calls.
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The more difficult cases can also be handled, through some adjustments to the TAM
notation. First, output case (c), user interface output, can be handled through the use of a
special output variable for the interface. External world output, such as writing to
devices, can also be handled with special variables. In the Map class, an output variable
"(output screen)" was added, and in the output values section, the value for the variable
was a description of what the output should look like based on the current trace. In
addition, drawings of the expected output can be included.

Case (c¢) for user input is handled differently. This is a problem because the user input
that an object is responsible for (i.e. data input to the fields of a dialog box, which then
must be processed by the object that created that dialog box) appears to be an integral
part of its state, and therefore must be included in some form as part of the event trace
for the object. For example, the class PopupMapSize is responsible for a dialog box that
has three input fields (width, length, scale) and a Change button. When the Change
button is pressed, the data from these fields (the result of user input) must be sent to a
different class, Map, which returns a value indicating if the values were acceptable or

not.

Access functions for PopupMapSize objects are needed to initialize the object (i.e.
creating the dialog via window manager calls), display the dialog, and take action when
the Change button has been pressed. The input fields are not handled directly by the
object. Instead, they are handled by the window manager and can be retrieved at any
time. Therefore, the reasonable logic is that when the Change button is pressed, the field
values are retrieved and passed onto the Map object. If the Map object accepts the
values, they should be redrawn on the screen to represent the new Map values.

In this case, however, the -user input is not really part of the object's state. It is part of the
window manager's state, and it should be considered an input variable to the program
which can be retrieved at will. The state maintained by the object is a pointer to the
window manager-maintained input field.

In another case, however, the input is again not directly handled by the object, but input
directly affects the state of the object. This happens when an XView Notice is displayed
by an object. There is some sequence of events that leads up to this notice being
displayed, and nothing else can occur until this notice is dismissed. Therefore, the
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program must wait on the user to press the Confirm button, making this an important
input to the system. However, since the notice box and input are handled by XView, the
notice output is instead treated as a user interface output from the object, and the confirm
input is treated as an input variable event which is part of the trace.

The final cases are input and output cases (d), which involve access calls to external
objects which may return values. These calls are the basis of peer interactions between
objects and are an integral part of object-oriented designs. In addition, this also includes
calls to "common services" where those services maintain some state for the object—i.ec.
XView, a file manager, etc. Calls to outside objects should be considered as important
for specification purposes only if they modify the state or report on the state of some
outside object. This excludes, therefore, many external utility calls such as string and

math functions.

As an example, consider the change() function in PopupMapSize. It takes the user input
values in the dialog box and passes those along to the Map object, via the change_size()
function. In addition, it must receive a variable back indicating the success of the
Map::change_size() function. In effect, the call to Map::change_size() is a form of
output. In addition, the return value of the function is an important input.

The first solution to this problem that was considered is as follows. First, the parameters
passed to Map may be considered as output variables. Therefore, those parameters
should be included in the output variable tables. The return values from such a function
should be included in the input variables table. To show when an output function call
would occur, appropriate sequencing information must be included in the canonical trace
to allow the outputs to occur at exactly the correct moment. This complicates the module
specification significantly.

The solution chosen instead involves adding new notation to the equivalence tables. The
solution, proposed in part by Neil Erskine [Erskine93], was expanded to allow objects to
call functions in other objects and receive return values by adding notation to the
equivalence section of a trace specification. For example, in the change()/change_size()
example given above, the equivalence for change() should include an ADD-TO-
TRACE(Tp, change_size()) , where change has some pointer p to the appropriate Map
object. In addition, in the left-hand column (conditions), where the value returned from
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change_size must be considered, the function is written there as well. Obviously, if the
change_size function is included in the conditions section, a corresponding ADD-TO-
TRACE must appear in the right-hand column. This method has also been adapted to
class/instance function interactions, discussed below.

2.2 Class Functions

Class functions are functions which do not require an instance to be run, and do not have
a set of instance variables associated with them. Instead, these are used to handle overall
class operations, such as counting the number of instances or maintaining common
variables for all instances. There may be a set of class variables for use by the class or
instance functions, but unlike instance variables, there is only one copy of class
variables. For XView programming, class functions are required for user interface
callbacks, and are therefore an important part of the development of the interface.

When developing a trace specification, the class and instance function specifications
should be included in the same module. The reason for this is that class functions and
variables are used for tasks directly related to the module and its instances. For example,
class variables can be used to store common variables which will be used by the class or
instance functions.

For the purposes of XView programming, callbacks must be made to functions in the
program to allow the user interface to pass information and actions to the program.
Callbacks cannot be made to instance functions. XView is, however, capable of storing a
pointer to an instance. When a callback is made, information passed with the parameters
allows the instance responsible for the interface component to be determined.

The best way to handle callbacks under C++ is as follows. When a graphical component
is being created, a pointer to the instance creating the component is passed to XView. In
addition, a class function is passed to XView as the callback function for the component.
When the callback occurs, XView passes this pointer back to the callback function. The
callback function is then able to call the proper instance function with this pointer, For
example, in PopupMapSize, the class function cfChange(), activated by the Change
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button on the popup window, gets a pointer to the instance of PopupMapSize to be
called, and calls the change() function for that instance.

To handle class level functionality within a module, the access programs for class
functions appear in a separate section called CLASS ACCESS PROGRAMS, and any
appropriate output variables in CLASS OUTPUT VARIABLES. A separate canonical
trace is shown for the class functions, if any are defined.

Within the access program equivalences for class or instance functions, if a class
function is required to interact with an instance function, or visa-versa, the following
notations developed for module interaction apply:

T; = trace for instance i of a module

T = trace for class functions/variables of the module being defined

ADD-TO-TRACE(Ty, function(parameters)) = add function() to the trace for Tx with
the given parameters, where x is determined through some pointer to the object
to be called, or where Tx denotes the class function trace for some class (such as

the Utils class, which only has class functions and no instances).

Note that ADD-TO-TRACE does not affect the equivalence for the calling function.
ADD-TO-TRACE is not, however, guaranteed io call a function in the canonical trace of
the called object; this would limit module interactions. Rather, it must call an access
function in the object being called, and it is up to the called object to handle the function.
This is important since the calling function therefore only needs to know the external
interface for the called object, and does not need to know the canonical trace of the
called object.

Also note that an instance can modify the T¢ trace without having any specific pointer to
the trace, since there is no concept of specific instance for a class. This even holds true

for functions outside the class calling public class functions. However, for a class
function to modify a specific instance trace Tj, it must have some means of determining

1.

As with module interactions, if a class-instance interaction requires that a return value
from the external function be considered, then these values should be considered in the
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left-hand column of the equivalence section where the ADD-TO-TRACE macro is 10 be
used.

One final comment on notation: if class/instance functions were to be translated into
Parnas' notation, it would seem that the instance functions are akin to the "named"
modules, i.e. have a pointer to a specific instance, while class functions do not have this
pointer. This is actually what C++ does, via providing a pointer called "this" which
points to the instance and its variables, but the passing of "this" to the instance function
is hidden from the programmer. Using Parnas' named notation for all the instance
function calls would be cumbersome, since they are far more common than the class
functions. Therefore, all functions are assumed to be instance functions unless noted
otherwise. In order to distinguish class functions from instance functions, class functions
begin with a lower-case "cf”, i.e. cfChange().

2.3 Constructors/Destructors

The Map class uses a constructor, which is a function that is run anytime an instance of
the class is created. This allows, for example, variables in the instance to be initialized to
some value. Therefore, for such a class, the constructor must be added as an access
function, and be shown in the canonical trace if necessary. If the constructor is present in
the canonical trace, then an empty canonical trace is not possible, since when a new
instance is created, the constructor function is run, and therefore the trace will, at
minimum, include this function.

Destructors are functions that, when defined, run automatically when an object is
destroyed or scoped out of existence. For example, given a class with a destructor, if an
instance is created with a 'new’ call and then destroyed with a 'delete’ call, at the moment
that 'delete’ is called, the destructor function will be called. When an object is scoped out
of existence, such as when an object declared as a local variable is destroyed when the
function returns, the destructor will also be called.

Destructors may or may not be part of the canonical trace for a class. This depends on
whether they affect the outputs from the class. Typically, it will not affect the canonical

trace since after the destructor has been called, the object has been scoped out of
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existence and its canonical trace no longer has any meaning. If, however, the destructor
results in a change in the user interface output, it should be part of the canonical trace. A
destructor function has no arguments or return values. A destructor was used in the
Map() class to eliminate objects created over the lifetime of the Map object, such as
MapObject subclasses.

Every class responds to a class access program called 'new' which returns a pointer to an
instance of the object that is created at run-time. The object can then be deleted via
'delete’. These functions are automatically handled by C++, although they can be
redesigned by the programmer if desired. Therefore, new will be specified for a class
only when it will be specially designed. Otherwise, it is assumed to be a part of the class
interface.

2.4 Inheritance

Inheritance allows classes to be defined as subclasses of some superclass, inheriting
functions and variables from the superclass. In specifying the subclass under TAM, a
balance must be maintained between repeating information and providing enough
information to properly specify the subclass.

In the external interface portion of a trace specification of a subclass, any functions that
are inherited must be shown but should also be noted as inherited. If any of these
functions are to be overridden, that should also be noted. In the equivalences and outputs
section of the trace specification, a function or output should only be included if its
behavior will be different in the subclass due to being overridden or interaction with
newly defined functions.

One problem with inheritance that can be seen in the MapObiject hierarchy is that the
trace equivalence specification for a function may change, even though the function is
inherited without change from the superclass. For example, the set_next() function has a
very simple trace equivalence in the MapObject class since the canonical trace is so
simple:

T.set_next(n) = set_next(n)
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In the subclasses, however, it must be redefined to show its interaction with the new

canonical trace:
T.set_next(n) = set_next(n).L.D where parse(T, I, L, D)

In this case, we can see that the equivalence must preserve the information in the
canonical trace, represented by L and D, which was not present in the canonical trace for
the superclass. Despite the difference in equivalences, the function itself does not have to
be retmplemented in these subclasses since the actual program code is the same.

2.5 Understanding Canonical Traces

The canonical trace section of a TAM specification contains a predicate that defines
which trace sequences are to be considered canonical. The information held in a
canonical trace represents the state data required by a module in order to function. The
form of the canonical trace is not unlike that of a piece of stimulus history used by a
black box.

Where the canonical trace is really used by a module is in the output variables section of
a TAM specification. The cases considered for an output value must be based on
canonical traces. Therefore, any values reported from a module must be represented in
some form in the canonical trace. Consideration of output requirements for modules
required for the WestWorld design led to the realization that the state represented in a
canonical trace is more complex than just simple variable state.

For example, several of the objects in the system use XView Notify boxes to put a
message on the screen until it is dismissed by the user by clicking on a Confirm button.
The display of this notice on the screen must be considered an output of the Utils module
which creates it. Therefore, it must be represented in the output values section for this
module, and something must be present in the canonical trace to show when this notice
should appear versus when it should not. In other words, the error condition that led to
the notice appearing must be in the canonical trace. In a black box specification, this
could be handled by a simple stimulus-response pairing, not requiring any state data.
Under TAM, the canonical trace is holding information related to the sequencing of the
functions, a more complex form of state than simple variables.
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Another case where state information beyond simple variables is required in the
canonical trace arises when dealing with functions that return a value. This is considered
an output from a module, but it is not necessarily representative of the simple state of the
module. For example, there is a load() function in the Map class which given a file
name, loads objects listed in that file into the Map. If there is a problem with the load
process, then the load function must return a FALSE value, otherwise it returns a TRUE
value. Since this is an output of the module, it must be calculable from the canonical
trace. However, this information is not important to the functioning of the Map module
following this function call. Nevertheless, this information remains in the trace, making

it more complicated to develop and maintain.

Under TAM, the canonical trace does represent the state of the module, but more than
just the values of stored variables. It represents the state of the program, state such as
that in a finite state machine. When discovering the canonical trace, it is important to
remember that this is true. Unfortunately, this also means that for an object with
complex outputs or sequencing requirements, the canonical trace may be quite complex,
and may require parsing functions to simplify the equivalence and output sections.
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3 The Specification Process

3.1 Background

TAM is a method for specification of individual modules or classes, not entire systems.
Therefore, a bridge is required between the specification of the system as a whole and
the specification of the classes which will make up the system. Initially, a traditional box
structure method process was considered for specifying and designing the top level
system, but this has a number of problems. First, it is desirable to avoid specifying the
state data for the system until it has been divided into classes. Then, once these modules
have been specified without consideration of state, the state discovery process could
proceed for each module. Going through a top level state box would require doing state
discovery, and then throwing this state out when the individual modules are specified
using TAM.

Another problem with going from a top level system to TAM descriptions of modules is
that it is hard to go directly into a TAM specification. While the black box approach is
not as complete as a TAM description, and lacks the concept of state that is present in
the canonical trace, it does allow a simple view of the responsibilities of a class.
Therefore, it would be best to perform a black box specification for each class, then a
TAM specification, and finally a clear box.

The final step is to connect the top level black box with the individual black boxes for
each class. The goal is to take the stimuli from the top level box, and split this stimuli
among a set of discovered classes for the system. In addition, class interactions should
be considered at this step. This process is in the realm of object-oriented design, and any
object-oriented design process will do, as long as it is focused on the responsibilities of
each individual object, rather than the state of the objects. An example of such an
approach is that proposed in [Wirfs-Brock90]. The output of this step must be black box
definitions for each class in the system, including the top level main() program.

In the interface system developed, main() and global variables were grouped into a
pseudo-class called Main, and utility functions were grouped into a class called Utils.
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Each X window had a class which was responsible for its creation, maintenance, and

callbacks. Finally, classes were defined for data representation—the Map and

MapObject hierarchy.

3.2 Design Process Steps

The process steps are as follows:

Create a black box for the entire increment, showing the stimuli to the system and
the appropriate responses.

Verify black box versus the requirements for the increment.

Identify possible classes/objects in the system (including main()), assign stimuli to
these classes, identify inter-class stimuli, and create black box descriptions for the
classes.

Verify that all top-level black box stimuli are assigned to classes and that the
lower-level black boxes perform all the top-level operations.

Verify that all inter-class stimuli used in black boxes match receiving boxes'
specifications.

Create TAM specifications for the classes

use black box header to create syntax section

create canonical trace(s) using access programs and input events

- create equivalences based on canonical trace and output requirements; create
auxiliary functions and dictionary entries as needed

create outputs based on canonical trace
verify specification using Parnas Verification Checklist (see below).

Verify TAM specification to black boxes for each class.

Write C++ header for each object using TAM specification and verify to
specification. '

Create C++ objects and main()

- write using C++ header and TAM specification

- verify versus TAM specification and C++ header

- verify cross-object access is correct.

Any lower-level C++ classes "discovered” should be developed by creating a black
box definition for the class and then designing as described above.
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3.3 Trace Assertion Method Verification Details

The method used for verification of trace specifications grew out of seminar discussions
over the TAM document [Parnas89]. The rules are divided into completeness and
consistency sections.

Completeness
(1) There is one equivalence for each event class.
[applies to EQUIVALENCES section]
(2) There is one output function/relation that specifies each output value.
[applies to OUTPUT VALUES section]
(3) The predicates in the left-hand column (LHC) of each table partition the intended
domain of the relation.
[applies to any table with conditions in the specification]
(4) The predicates in the right-hand column (RHC) are defined whenever the
corresponding predicate in the LHC is 'true’.
{applies to any table with conditions in the specification]

Consistency
(1) The canonical form fulfills the requirements of section XI in [Parnas89], namely
that (2) no two traces in the set are equivalent and (b) every legal trace is equivalent
to exactly one trace in the set.
{applies to canonical traces]
(2) All traces specified in the RHC of the equivalence section are canonical.
[applies to tables in the equivalence and output section]
(3) All RHC values are unique.
[applies to any table with conditions in the specification]

Canonical trace verification, embodied in consistency rule (1), is quite difficult. Proving
(a) requires simply showing that no traces in the set are further reducible via the
equivalences defined and that none of these traces are exactly equal. Proving (b) is not
really possible since it requires looking at every legal trace or type of trace. Instead, it is
up to the designer to bear in mind the requirements of (b) when developing the
equivalences and canonical trace. In addition, consistency rule (2) constrains the
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canonical trace and assists in its design and verification. In practice, the canonical trace
is developed based on an idea of what state will be required to gain the proper outputs
and sequencing for the system. If an error is made in the canonical trace, it will be
discovered when the equivalences and values sections are written. Once these sections
are complete, the canonical trace must be re-examined to verify that it is exactly what is
required to produce the appropriate equivalences and values.

3.4 C++ Verification Details

When writing the C++ code based on the trace specification, it is important to keep a few
rules in mind which are detailed below. In addition, there are a number of sources which
detail rules to bear in mind when designing C and C++ code which may also be
applicable to the C++ verification process [Henricson92; Koenig89; Trammell93]. The
following is a list of items that are specific to this implementation of TAM for C++ and
should be incorporated into the existing TAM and C verification methods:

Verification of C++ code versus the TAM specification:
¢ All C++ class headers match TAM tables
¢ Access functions implement inputs, outputs, and equivalences properly
* External function accesses match tables.

C++ Coding:
* Proper headers included in file—including project as well as system headers.
¢ All functions prototyped in class definition or separately in a header.
» All functions used in file match prototype.
* All functions defined in file match prototype.
* All copied/re-used code has variables that are declared.
* All non-obvious code blocks are commented.
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4 Case Studies: Classes from WestWorld

In this chapter, the process described above is applied to two class groups, the
PopupMapSize class and the MapObject hierarchy. The process steps are listed in italics,
with the action that was taken for those steps. It is assumed that at this point, the top
level black box has already been specified and the separate classes have been identified,
as well as their inter-class stimuli. The complete specification for these classes is

contained in Appendix D.
4.1 PopupMapSize

Identify possible classes/objects in the system (including main()), assign stimuli to these
classes, identify inter-class stimuli, and create black box descriptions for the classes.

This class was identified as necessary to manage the popup window which will allow a
user to input changes in the map size and scaling (see Figure 1). The stimuli for
PopupMapSize were identified from the top level black box as well as requirements for
interactions with other classes in the system. For the top level, this class must respond to
the XView callback for the Change button that is part of the popup window. For class
interactions, it must display the popup window when called by WinMap, which handles
the "Change Map Size" menu callback. In addition, when the Change button is pressed,
the user-entered data must be passed to the Map object for acceptance or rejection.
Finally, it must have some sort of initialization function which will create the popup so it
is ready to be displayed when the "Change Map Size" menu item is selected.

- Map Size
Width: <fl%.2f> Length: <fi%.2f>
Scale: __<int>__ A,
Change

Figure 1. PopupMapSize Popup Window
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The PopupMapSize class is relatively difficult to specify, because of its user interface
interaction and its interaction with another class. In the popup window it manages, the
user can type in fields, dismiss the window, or press the Change button to register the
changes made. Only the latter action, pressing the Change button, causes the program to
act. All other handling, such as the dismissing or basic keyboard events, are handled
internally by XView. When a change is made, it has to be handed off to another class,
Map, that handles the actual values. Therefore, it uses a pointer to an instance of this
class, and when the Change button is pressed, the entered values are passed along. In
addition, the Change button cannot call the instance that created the window directly.
Instead, it must call a class function which in turn will call the appropriate instance

function.

The next step is to define a black box for this class, with a header structure that is similar
to the header for the trace specification. The sections of the header include: access
programs, output variables, output, class access programs, class output variables, class
output, input variables, and external access programs. The construction of a black box,
and especially its header, is typically an iterative process, with some items not being
included until the transitions are being written and one can see that, for example, certain
external inputs or program accesses are required for the class. In addition, some of the
specific information required in program arguments, such as the format of the
cfChange() callback, requires some knowledge about XView programming. Such
knowledge is best obtained through implementing a previous system or through
performing experiments to better understand the package that will be used.

This is the header for the black box PopupMapSize:

access programs
void init(Xv_opaque owner_frame, Map* pMap)
void show()
void change(Panel_item)

output
popup window

class access programs
static void cfChange(Panel_item, Event)

input variables
Aur_attribute Main::INSTANCE;
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xv_get variables FRAME_CMD_PUSHPIN_IN, XV_KEY_DATA, entered_width,
entered_length, entered_scale ’

external access
int Map::change_size(Xv_opaque frame, double new_width,
double new_length, int new_scale)
double Map::width
double Map::length
double Map::scale

Note that any functions are specified using C++ notation, and that all data types are C++
types, although some may be defined by this program or by XView. For example,
Xv_opaque is a special type for XView which may contain any of a number of different
types of pointers to XView data. Another C++ notation uses the :: operator, as in
Map::width; this expression references the width member of the Map object.

After the header comes the transition section of the black box, which specifies how the
class responds, given a stimulus history and a current stimulus. The transition for this
black box is as follows:

S; = init(o, p) --> no response.

Si = show() >
display popup screen with owner o, with values in width/length/scale fields
from p->width, p->length, p->scale, where (35; [ (j < i) A (§j = init(o,p)) A
not(A8k | (j < k< i) A (Sk = init(o,p))))

Sj = change(item) -->
given pointer to popup input fields for width/length/scale and popup frame "f”
created by init (35j1 (j < 1) A (5; = init(o,p))), call p->change_size(f, entered
width, entered length, entered scale); if change_size returns 1 and xv_get
parameter FRAME_CMD_PUSHPIN_IN from f is 1, then call show(); if
change_size() returns 0, send an error to X View via item to hold the popup on
the screen.

Sj = cfChange(item, ev) >
call PopupMapSize* p->change(item) where p = xv_get(item,
XV_KEY_DATA, INSTANCE) [xv_get() is an XView function to get the
value of a variable maintained by XView]

Verify that all top-level black box stimuli are assigned to classes and that the lower-level
black boxes perform all the top-level operations.
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The only top-level stimulus assigned to this box is the Change button callback, which
was implemented in cfChange(). In addition, the box displays the PopupMapSize dialog,
which is required in the top-level box.

Verify that all inter-class stimuli used in black boxes match receiving boxes’

specifications.

This requires checking other classes to ensure they reference the class being specified
correctly, and that any external accesses from this class are done correctly. For external
accesses, the change_size call to Map as well as the direct variable accesses must be
verified to ensure that types match.

Create TAM specifications for the classes

- use black box header to create syntax section

This is perhaps the most time consuming step of the specification process. The first step
is to take the black box header above and create the syntax section of the trace
specification. This should be a direct mapping. In the process of developing a trace
specification, it is possible that some extra items might be needed in this section that
would not normally be part of the black box.

The tables for the syntax section are shown below. Note that some additional
information is added beyond that included in the black box. Specifically, an access
column has been added to input variable and output items to indicate how the variable is
accessed by this class or may be accessed by other classes. In addition, the
entered_width/entered_length/entered_scale variables, which were mentioned in the
black box but not really carefully defined are enumerated here. They probably should be
added into the black box header; it is up to the designer to make these backward
compatible steps. The rigor is more important at this step than in the black box.

Finally, a new variable change_error has been added. This variable is equivalent to the
result from the Map::change_size() function. This variable has an important effect on the
output from the class, so it has been specified specially as a separate item so it can be
included in the canonical trace.
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ACCESS PROGRAMS

Func Name Value Arg#l Arg#2
init <void> <Xv_opaque> <Map*> pMap
owner_frame
show <void>
change <void> <Panel_item> item
OUTPUT
Variable Name Type Access
| (popup window) (XView Popup window) | N/A
CILASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2
cfChange <void> <Panel_item> <Event>
INPUT VARIABLES
Variable Name Type Access
change_error <int> input pseudo-event
Map::width _<doubie> direct access
Map::length . <double> direct access
Map::scale <int> direct access
entered_width <char *> XView xv_get value
entered_length <char *> XView xv_get value
entered_scale <int> XView xv_get value
FRAME_CMD_PUSHPIN_IN <int> XView xv_get value
XV _KEY_DATA <Xv_opaque> XView xv_get value
INSTANCE <Attr_attribute> direct access
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#l Arp#d
Map:: <int> <Xv_opaque> <double> <double> <int>
change size change_error popup_frame new_width new_length new_scale

- create canonical trace using access programs and input events

The canonical trace is built by examining the stimuli to the class and determining what
events will be needed to produce the required outputs or meet any sequencing
requirements for the stimuli. Examining the use of stimulus history in the black box may
be useful for this step. For items that have both class functions as well as instance

functions, there are two canonical traces, one for each.

The instance canonical trace for PopupMapSize is:

29




canonical(Tj) <~> (Tj=_) v (T = init(o,p)) v (Tj = init(o,p).sbow()) v (Tj = init(o,p).show().change(it))
A\
(Tj = init(o,p).show().change(it).change_error)

This canonical trace has five basic forms representing five basic states for the class. It
can be empty; initialized; initialized and displayed; initialized, displayed, and have a
valid change; and initialized, displayed, and have an invalid change. The change_error
variable is a function result rather than a direct stimulus to the class, but it must be
included here to ensure that the output is correct.

The show() function is.included in the trace since it must be called before a change() call
can be made. While a change() call before show() would not have any ill program effects
as long as init() had been called, it is not really possible for this to occur since it can only
be called after the Change button has been pressed, and this button will not appear until
show() has been called at least once. The change() function will not be called if the user
dismisses the popup (something beyond the control of the program) without show()
being called again.

The class canonical trace is:
canonical(T¢) <—> (Te = )

The canonical trace is empty, which indicates that the class-level operations will not
require any state data.

- create equivalences based on canonical trace and output requirements; create

auxiliary functions and dictionary entries as needed

In the equivalences section, there is an equivalence for each access program and input
event. The equivalences are responsible for resolving any trace into a canonical trace,
and therefore are largely verified against the canonical trace. Since the canonical trace is
somewhat complicated, it can be more easily referenced in a parsed form, giving rise to
the need for a parse function to be defined. This is defined as an auxiliary function as

follows:
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parse(S,51,52,53,54) =

conditions equivalences

(§=51.82.83.84) A
(S1 = [init(o,p)l.) A
(S2 = [show(]}o) A

(83 = [change(i].,) A
(84 = [change_error]!_)
else

false

The following tables are the equivalences for this class:

T.init(o,p) =
conditions equivalences
T= init{o,p)
T+ Doalready_initialized%
T.show() = ‘
conditions equivalences
=_ %uninitialized%
else Lshow()
where parse(T. I, S, C, CE)
T.change(it) =
conditions equivalences
T= Puninitialized%
T = init(o,p) Joundisplayed%
parse(T, L, §, C, CE) A equivalence = 1.5.change(it);
S # _ A I=init(o,p) A ADD-TO-TRACE(Tp,

p->change_size() = TRUE

change_size(f, atof(entered_width), atof(entered__lengtﬁ), entered_scale))

where f is frame created by init()

equivalence = 1.S.change(it).change_error;

ADD-TO-TRACE(Tp,

change_size(f, atof(entered_width), atof(entered_length), entered_scale))
where parse(T, 1, §, C, CE) A I=init(o,p) A change_error = change_size()
A f is frame created by initQ) ‘

else

T.change_error =

conditions
T = init(o,p).show().change(it)
else

equivalences
T.change_error
Joundefined%

Te.cfChange(item,e) = Te; ADD-TO-TRACE(Tp, change(item))
where PopMapSize* p = xv_get(item, XV_KEY_DATA, INSTANCE);

- create outputs based on canonical trace

For each item listed as-an output or output variable for the class, there must be an output
table. Since the conditions side of an output table may only use canonical traces, the
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information required to derive an output must be contained in the canonical trace. At this -
stage, the process is checking that the canonical trace has this information.

The values section has two parts. The first part contains a table for each item in the
outputs. The second part maps those outputs to access function parameters or return
values. For this object, since no access function returns a value, there are no return
values listed.

Vipopup_frame](T) =

conditions values
T= Youndefined%
else frame created via init function
Vi(popup_window)|T) =
conditions values
T= Youndefined %
T = init(o,p) Youndisplayed%
T = init(o,p).show() popup window displayed on screen;

Width field = p->width formatted " %.2";
Length field = p->length formatted "%.2(";
Scale field = p->scale; values may be modified by

user
T = init(o,p).show().change(it) A popup fields set to values from p-> as given
xv_get(frame created by init(), above
FRAME_CMD_PUSHPIN_IN) = TRUE
T = T1.change(it) A popup window disappears from screen
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = FALSE
else popup forced to remain on screen,with values as
modified by user

In the table for V[(popup_window)](T), the else case represents the case where the
change_error function is in the canonical trace in order to indicate when an error has
been returned from Map::change_size() and therefore when the popup should be left on
the screen until corrected by the user or dismissed.

- verify specification using Parnas Verification Checklis:.
The verification for the trace specification is done in two ways. First, the canonical trace
is verified through the creation of the equivalences and outputs sections, which will

show if the canonical trace is insufficient to provide the required information for output
and sequencing. Unfortunately, there is not really a good method to verify whether a
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canonical trace contains too much information, except through careful examination and

use in the specification.

Second, for each table used in the specification, a series of questions regarding
completeness and consistency must be answered to ensure that the table is correct. These
questions and answers, mentioned in Chapter 3, are written in the specification directly
following each table. See Appendix D for the verification of PopupMapSize.

Verify TAM specification to black boxes for each class.

First, the trace syntax section should be compared to the header for the black box to
verify that all information is the same. Second, the output section of the trace
specification should be verified against the responses from the black box to ensure that
they are the same and are given under the same conditions.

Write C++ header for each object using TAM specification and verify to specification.

The C++ declaration of the PopupMapSize class looks like (note that // is a comment
marker in C++):

class PopupMapSize {

Xv_opaque frame; {1 holds XView pointer to main structure for popup
Xv_opaque controls; {1 holds XView pointer to controls area on popup
Xv_opaque map_width_field, /1 holds XView pointer to field for entered width
Xv_opaque map_length_field; /1 holds XView pointer to field for entered length
Xv_opaque map_scale_field; /! holds XView pointer 1o field for entered scale
Xv_opaque change_button; // holds XView pointer to Change button

Map* pMap; // holds pointer to Map object

void  update(); // update numbers in the window (private, for internal use only)

public:
void init(Xv_opaque owner, Map* pTheMap};
void  show(); /1 redisplay the box, and do an update
void  change(Panel_item); 1/ change bution pressed; send values to pMap

1/ class functions

static void cfChange(Panel_item item, Event *event);
// XView button callback for Change
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The first part of the class declaration defines the items private to the class, i.e. variables
and functions that are not available to functions outside the class. The section following
public: defines what is available to outside functions. The private variables are
discovered in the process of developing the C++ code. The public interface can be
verified easily against the trace syntax given above.

Create C++ objects and main()
- write using C++ header and TAM specification

The C++ code is not contained in this document, but it is available on request. The

functions perform the following tasks:

» init() creates the window but does not show it on the screen (should only happen
once in lifetime of instance).

» show() displays the window on the screen and displays the current values from the
Map object (Map::width, Map::length, Map::scale) in the input fields; show() is
called via a menu item which causes the window to "pop up”

» change() takes the values of input fields, converts them to numbers, and calls the
Map::change_size() function with the new values. If the change is successful and the
window is still displayed, the fields on the screen are updated to show the values
changed to, via show(). This is required to get rid of any spurious non-numeric
characters that might be entered but ignored by the numerical conversion routines. If
the change is not successful, the popup window is forced to remain on the screen.

e update() is a private function and therefore only available to functions for this class.
It updates the fields on the popup from the Map object values.

e cfChange() is a class function which looks up the instance that the button pressed
belongs to, and calls change() for that instance. The only output from this function is
via change(), but it does not return a value; rather, it calls another function and via
this method passes the information to the other object. This output is dependent on
user input, which is not shown in the class definition.

verify versus TAM specification and C++ header

verify cross-object access is correct.

Verification of the C++ code against the specification takes two forms. First, the code
must be examined to ensure that it has been written to implement the class as defined by
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its own header, i.e. check the syntax of the functions and type of the’ variables that are
contained in the class definition. Second, the code must implement the TAM
specification, in that sequencing and output conditions are met by the C++ code. Finally,
any external access made by the class being developed must be checked to ensure that
calls match external functions or classes accessed.

Any lower-level C++ classes "discovered” should be developed by creating a black box
definition for the class and then designing as described above.

None were discovered for this class.
4.2 MapObject Hierarchy

(From the Map class) Any lower-level C++ classes "discovered” should be developed by

creating a black box definition for the class and then designing as described above.

The interface requires the Map class to store information on the individual items in the
Map. These items may be of varying types, but they will have some common features.
For example, they will all have to have a draw() call through which they will draw
themselves on the screen. A case like this is best managed through inheritance, where a
single root class is defined that has common functions that will be the same for the
subclasses defined, and has stubs for functions that must be defined by the superclass. In
the second increment, there are only two types of items that can appear in the map—
boxes and cylinders. Therefore, the class hierarchy looks like:

MapObject

MapBox MapCylinder

Figure 2: MapObject Hierarchy
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The functions and data that will be necessary for both classes must be identified and
placed in MapObject. The functions that will be exactly the same for both should also be
fully defined by MapObject. Functions that are not defined in MapObject should have
some error associated with their response in MapObject.

Each object will require a draw function to draw itself on the screen, a load function to
set its internal values according to a string from a file, a save function to return such a
string for saving to a file, and a mechanism for allowing the objects to be placed in a
linked list. In addition to these instance functions, a class function is required for each
subclass to examine a string and indicate whether it is possibly a string that defines an
object of that type. At the MapObject level, a class function is also needed to handle the
process of selecting a subclass to define a new object being loaded.

The black box header for MapObject is as follows:

access programs
MapObiject()
MapObject* set_next(MapObject* nextobj)
virtual int load(Xv_opaque frame, int lineno, char* line)
virtual void save(char *buffer, int bufsize)
virtual void draw(Display *display, Window xid, int scale)

output variables
MapObject* next

class access programs
static MapObiject* cfSelectAndLoad(Xv_opaque frame, int lineno, char* line)

external access
int MapBox::cfIsMe(char* 1)
int MapCylinder::cflsMe(char* I)
void Utils::cfNotice_OK(char *message)
MapBox* MapBox::new()
MapCylinder* MapCylinder::new()
void MapBox::delete(MapBox¥*)
void MapCylinder::delete(MapCylinder*)

The transition section is as follows. Note that the load(), save(), and draw() functions are
not defined for MapObject. They will be specialized by each subclass.

Si = MapObiject() --> no response

Si = next --> returns value from last set_next(n) call, otherwise returns NULL
Si = set_next(p) --> p

Si = load(f,n,]) --> not implemented in this class
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S = save(b, bs) --> not impiemented in this class
Sj = draw(d,xw,s) --> not implemented in this class
S; = cfSelectAndLoad(f,n,1) A MapBox::cflsMe(l) = TRUE A

(p = new MapBox)->load(f,n,l) = TRUE -->p
Si = cfSelectAndLoad(f,n,l) A MapBox::cflsMe(l) = TRUE A

(p = new MapBox)->load(f,n,]) = FALSE --> NULL
Si = cfSelectAndLoad(f,n,1) A MapBox::cfIlsMe(l) = FALSE A
MapCylinder::cflsMe(l) = TRUE

(p = new MapCylinder)->load(f,n,)) = TRUE --> p
Si = cfSelectAndL.oad(f,n,}) A MapBox::cfIsMe(l) = FALSE A
MapCylinder::cfisMe(l) = TRUE ;

(p = new MapCylinder)->load(f,n,}) = FALSE --> NULL
S = cfSelectAndLoad(f,n,I) A MapBox::cflsMe(l) = FALSE A
MapCylinder::cfIsMe(l) = FALSE -->

Utils::cfNotice_OK(f, "Map file format error: unknown object @ line <n>");

For MapBox, the black box header is as follows (throughout this section, MapBox will
be used to show the subclass specification process; MapCylinder is nearly identical):

access programs
MapObject() <inherited>
MapObject* set_next(MapObject*) <inherited>
virtual int load(Xv_opaque frame, int lineno, char¥ line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) <inherited>, <overridden>
virtual void draw(Display *display, Window xid, int scale) <inberited>, <overridden>

output variables
MapObject* next <inherited>

class access programs
static void cfSelectAndLoad(Xv_opaque frame, int lineno, char* line) <inherited>
static int cfIsMe(char* line)

external access ‘
void Utils::cfNotice_OK(char *message)

Note that certain functions are inherited but not overridden. In this case, these functions
do not need to be redefined in the black box. The transition is as follows:

Si = load(f,n,1} A legal_box() --> TRUE
Si = load(f,n,}) A not(legal_box(l)) -->
Ulls::cfNotice_OK(f, "Map file format error: bad box definition @ line <n>")
return FALSE
Sj = save(b, bs) -->
copy information from load() into "box <locx> <locy> <width> <length>
<height>" with default height if none specified by load() and limited to Jength
of bs.
S = draw(d,xw,s) —>
draw rectangle at <locx>*s,<locy>*s+<length>*s of size
<width>¥s,«<length>*s
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Si = cfIsMe(l) A strncmp(l, "box", 3) =0 --> TRUE
Sj = cfIsMe(l) A stmemp(], "box", 3) # 0 --> FALSE

Verify that all top-level black box stimuli are assigned to classes and that the lower-level

black boxes perform all the top-level operations.

There is no top-level box for the MapObject classes, but they are constrained by the
requirements set by the Map class. Therefore, it must be verified that the required
functions have been included and that the syntax for these functions matches that used in

the Map class.

Verify that all inter-class stimuli used in black boxes match receiving boxes'

specifications.

This class hierarchy has no interactions with classes other than the creating class.

Create TAM specifications for the classes

- use black box header 1o create syntax section

The syntax tables for MapObject are as follows. Note that some input and output
variables listed were not present in the input or output sections of the black box above.
In the trace table, outputs which are returned from access program calls, or inputs that
result from external function calls must be documented in the input and output tables.
For example, buffer is listed in the output variables table, but maps to the buffer

parameter returned from the save() access program.

ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Other
MapObiject {constructor)
set_next <MapObject*> <MapObject*>
nextobj
load <int> load_ok <Xv_opaque> <int> lineno <char*> line virtual
frame
save <void> <char*> buffer <int> bufsize virtual
draw <void> <Display*> <Window> xid <int> scale virtual
display
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OUTPUT VARIABLES

Variable Name Type Access
next <MapObiject*> public
load_ok <int> fn return
buffer <char*> fn param return
CLASS ACCESS PROGRAMS
Func Name Value Argi#l Arg#2 Arg#3
cfSelectAndload | <MapObject*> | <Xv_opaque> frame <int> lineno <char*> line
created
CLASS OUTPUT VARIABLES
Variable Name Type Access
| created | <MapObject*> | fn return
INPUT VARIABLES
Variable Name Type Access
boxnew <MapBox*> ext fn return
cylnew <MapCylinder*> ext fn return
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arg#2
MapBox::cfIsMe <int> <char*> line
MapCylinder::cflsMe <int> <char*> line
Utils::cfNotice_OK <void> <Xv_opaque> frame <char*> message

MapBox::new

<MapBox*> boxnew

MapCylinder::new <MapCyiinder*> cylnew
MapBox::delete <void> <MapBox*>
MapCylinder::delete <void> <MapCylinder*>

For MapBox, the syntax tables are as follows (note that items marked with (i) are

inherited):
ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Other
) (constructor)
MapObiect
(i) set_next <MapObiject*> <MapQObject*>
nextobj
(i) load <int> load_ok <Xv_opaque> <int> lineno <char*> line virtual,
frame overridden
(i) save <void> <char*> buffer <int> bufsize virtual,
overridden
(i) draw <void> <Display*> <Window> xid <int> scale virual,
display overridden
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OUTPUT VARIABLES

Variable Name Type Access
(i) next <MapObiect*> public
(1) load_ok <int> fn return (overridden)
(i) buffer <char*> fn param return
(output _screen) (X display window) N/A
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3
(i) cfSelectAndlLoad | <MapObject*> | <Xv_opaque> frame <int> lineno <char*> line
created
cfisMe <int> isMe <char *> line
CLASS OUTPUT VARIABLES
Variable Name Type Access
| (i) created { <MapObject*> ] fn return |
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arg#?2
|  Utils::cfNotice OK | <void> | <Xv opaque> frame | <char*> message |

- create canonical trace using access programs and input events

For the MapObject class, the only real output is the next variable. Therefore, the only
information that needs to be included in the canonical trace is the information required to
give the value for this variable. For the class trace, the output needed is the pointer to a
new object created from the cfSelectAndL.oad() function. This value will actually come
from an external function call, so this information had to be included in the input
variables table for the class so it could be included in the class canonical trace. The
canonical traces for MapObject are:

canonical(T;) <--> (T = MapObiject()) v (Tj = set_next(n))

canonical(T¢) <> (T = ) v (T = boxnew) v (T¢ = cylnew)

The MapBox object adds the load(), save() and draw() functions. The save() function
does not affect the output of the class and does not have to be included in the canonical
trace. The load() function must be included since its parameters determine the details of
the item's form. The draw() function must be included to ensure that the screen output is
handled correctly. On the class side, there is a new output for the cfIsMe function, based



on its parameters, so it must be included in the class canonical trace. The canonical

traces for this class are:

canonical(T;) <--> (Tj = MapObject() v set_next(n)) v
(T = [MapObject() v set_next(n}].load(f,ln,1)) v
(Tj = [MapObject() v set_next(n)].load(f,In,]).draw(d,xw,s))

canonical(Tg) <--> (Te = ) v (Tg = boxnew) v (T¢ = cylnew) v (T = cfIsMe(l))

- create equivalences based on canonical trace and output requirements; create

auxiliary functions and dictionary entries as needed

The equivalences for MapObiject are relatively simple, with the exception of the
equivalence for cfSelectAndLoad(), which is complex because of its interaction with
functions of the subclasses. The equivalences are:

T.MapObject() = MapObject()
T.set_next(n) = set_next(n)

T.load(f, In, 1) = %undefined for this class%
T.save(b, bs) = %undefined for this class%

T.draw(d, xw, s) = %undefined for this class%
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Te.cfSelectAndLoad(f, In, 1) =
conditions

equivalences

MapBox::IsMe()=TRUE A
(boxnew = new MapBox)->load(f, In, D=TRUE

equiv = boxnew;

ADD-TO-TRACE(T b, IsMe(1));
ADD-TO-TRACE(Tcmb, new);
ADD-TO-TRACE(Tpoxnew. load(f, In, 1)),
where Temb is the class trace for MapBox

MapBox::IsMe(1)=TRUE A
(boxnew = new MapBox)->load(f, In, )=FALSE

equiv = _;

ADD-TO-TRACE(Tcmb, IsMe(l));
ADD-TO-TRACE(T¢mb, new);
ADD-TO-TRACE(Tpoxnew, load(f, In, 1));
ADD-TO-TRACE(T¢mb, delete),

where Tembp is the class trace for MapBox

MapBox::IsMe(1)=FALSE A
MapCyl::IsMe()=TRUE A
(cylnew = new MapBox)->load(f, In, 1)=TRUE

equiv = cylnew;

ADD-TO-TRACE(Tcmb, IsMe(D));
ADD-TO-TRACE(Temc, IsMe(D));
ADD-TO-TRACE(Tmc, RCW);
ADD-TO-TRACE(Tcylnew, load(f, In, 1)),
where Temp is the class trace for MapBox and
Tcmc is the class trace for MapCylinder

MapBox::IsMe(I)=FALSE A
MapCyl::IsMe()=TRUE A
{cylnew = new MapBox)->load(f, In, )=FALSE

equiv = _;

ADD-TO-TRACE(T¢emb, IsMe());
ADD-TO-TRACE(T¢mc, IsMe(l));
ADD-TO-TRACE(T ¢, new);
ADD-TO-TRACE(T¢yinew load(f, In, 1));
ADD-TO-TRACE(T ¢, delete(cylnew)),
where Temp is the class trace for MapBox and
Temc is the class trace for MapCylinder

else

equiv=_;

ADD-TO-TRACE(Tcmb, IsMe(D));
ADD-TO-TRACE(Teme, IsMe(D));
ADD-TO-TRACE(Ty, cfNotice_OK(f, "Map file
format error: unknown object @ line <n>"),
where Ty is the class trace for Utils, Temp is the
class trace for MapBox and T¢enyc is the class
trace for MapCyvlinder

Tc.boxnew = boxnew

Te.cylnew = cylnew

For MapBox, the equivalences are also relatively simple. Note that the equivalence for
set_next() is included although it is not being overridden. This is because the
equivalence in MapObject does not make sense for the subclasses, and it seemed to
make sense to include a new equivalence for it in this subclass to make clear its effect on

the canonical trace.

An auxiliary function is defined to assist in parsing the MapBox trace:
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parse(5,81,52,83) =

conditions equivalences
(§ =81.8253.54) A true
(81 = [MapObject() v set_next(n)]) A
(82 = [load(f,In,D].) A
(83 = [draw(d,xw,s)]-,)
else false
The equivalences for MapBox are as follows:
T.set_next(n) = set_next(n).L.D where parse(T, I, L, D)
T.load(f, In, 1) = ‘
conditions equivalences
iegal_box(l) Lload(f, In, 1) where parse(T, I, L, D)
else equiv = Lload(f, In, 1) where parse(T, I, L, D);
ADD-TO-TRACE(Ty, cfNotice_OK(f, "Map file
format error: bad box definition @ line <in>")
where T, is the class trace for Utils
T.save(b,bs) =T
T.draw(d, xw, 5) =
conditions equivalences

parse(T, 1, L, D) A L = load(f, In, I) A legal_box(l)

LL.draw(d, xw, s)

else

Jecannot draw without legal load() first%

Te.cfIsMe(l) = cflsMe(l)

- create outputs based on canonical trace

As mentioned above, for MapObject, the only current instance output is the next
variable, which is NULL or the value from the set_next() call in the canonical trace.
Other instance outputs, while mentioned in MapObject, are undefined in the superclass.

The class output from cfSelectAndLoad is set according to the canonical trace as shown.

OUTPUT VALUES
Vnext}(T) =
conditions values
parse(T, I. L, D) A I = set_next(n) n
else NULL
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V(load_ok](T) = %oundefined%

Vbuffer](T) = %undefined%

Vicreated(Te) =
conditions values
T¢ = boxnew value of boxnew
T = cylnew value of cylnew
else NULL
RETURN VALUES
Program Name Argument No Value
| cfSelectAndload | Value { created |

For MapBox, as noted, Vnext] and V[created] are unchanged from the superclass. Note
that while load_ok is a simple boolean result from a function to indicate its success or
failure, information must be contained in the canonical trace for this output to be valid.
This is true even if the information required in the canonical trace would have no

meaning beyond the scope of this function.

QUTPUT VALUES
Vload_ok])(T) =
conditions values
parse(T, I, L, D) A TRUE (1)
L=load(f,In,I) A
legal_box(l)
parse(T, L, D) A FALSE (0)
L=load(f,In,]) A
not(legal_box(1))
else Joundefined%
Vbuffer}(T) =
conditions values
parse(T, I, L, D) A "box <locx> <locy> <width>
L=load(f,In,1) A <length> <height>" from load()
legal_box(l) with default height if none
specified
else "
V[(output_screen)|(T) =
conditions values
parse(T, L, L, D) A draw rectangle parsed from 1 in
L=load(f,In,1) A legal_box(l) A window defined by d, xw with
D=draw(d,xw,s) scale s
else Zoundefined%




A" [iSMC] (T c) =

conditions values
T¢ = cflsMe(l) A TRUE (1)
stmcmp("box", 1, =0
T = cfisMe(]) A ‘ FALSE (0)
strnemp("box", 1, 3) # 0
else Joundefined %
RETURN VALUES
Program Name Argument No Value
(i) load Value load_ok (overridden)
(i) save Aro#] buffer (overridden)
(i) cfSelectAndLoad Value created
cflsMe Value isMe

- verify specification using Parnas Verification Checklist.
Verify TAM specification to black boxes for each class.

The verification is as mentioned for the example given in the previous section. The
verification information accompanies the specification contained in Appendix D.

Write C++ header for each object using TAM specification and verify to specification.

The C++ header is created first from the TAM specification. Private and protected items
for storage by the object may be added as the code is being developed. Protected means
that the items are visible to subclasses but not to external classes.

The C++ header for MapObject is as follows:

class MapObject {
protected: :
double locx, locy, beight;

public:
MapObject();
MapObject* set_next(MapObject* nextobj);
virtual int load(Xv_opaque frame, int lineno, char* line) = 0;
virtual void save(char* buffer, int bufsize) = 0;

virtual void draw(Display* display, Window xid, int scale) = 0;

// class functions
static MapObiject* cfSelectAndLoad(Xv_opaque frame, int lineno,
char* line);

b
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The load(), save(), and draw() are not implemented and are therefore written as 'pure
virtual functions', in C++ terminology, meaning that they are not implemented in the

abstract base class.

For MapBox, the C++ header is as follows:

class MapBox : public MapObject (
/! private
double width, length;

public:
// class functions

static int cfIsMe(char* line);
b

The 'public MapObject' line means that it is inheriting from MapObject and keeping the
public members of MapObject public in this subclass. MapBox is largely empty since
the public interface for the subclass was mostly defined by the superclass. The private
entries differ due to the information that must be stored to represent a box (length and
width). Note that the information common to both boxes and cylinders, namely location
and height, are contained in the MapQObject definition.

Create C++ objects and main()
- write using C++ header and TAM specification

The operation of the C++ functions is as mentioned in the original requirements for
MapObject.

- verify versus TAM specification and C++ header

- verify cross-object access is correct.
Verification is as mentioned in the previous example.

Any lower-level C++ classes "discovered"” should be developed by creating a black box

definition for the class and then designing as described above.
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One additional function was identified in developing the C++ code, talled nextfield(),
which assists in parsing the lines read in from a file. Its specification is not included
here.
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5 Conclusion

This project was undertaken to better understand the Trace Assertion Method and to see
if it was a useful specification method for working with object-oriented design.
Notational changes have been added to the method to handle specific elements of object-
oriented systems, including class versus instance, constructors/destructors, and
inheritance. In addition, the method, which is designed for module specification, has
been integrated into a larger process for complete system specification, development,
and verification.

The results are mixed. TAM provides some useful representations for dealing with
modular code, and adapting it for object-oriented design was not extremely difficult, but
our interpretation of it does produce a voluminous amount of specification material, and
can lead to convoluted specifications in order to meet the TAM requirements.

TAM provides a body of important information for the designer in a well organized
format, including a clear idea of the input and output variables and their types, access
programs and their syntax, events of interest—i.e. state—via the canonical trace, and
values and window of validity for outputs. The organization of this information into
tables and the use of a specific structure makes it easy for the designer to find the
appropriate information in a TAM specification. The information maps directly into a
C++ header definition for a class. In addition, there are specific steps for verification of
the tables which allow a designer to immediately check whether a table is complete and
consistent with other pieces of the specification.

On the other hand, while TAM gives a good idea of how the various functions of the
module/class interact—such as the equivalences and the canonical trace—it does not
give a clear view of what each access program actually does. A black box description
seems superior in that regard. The concern is whether the TAM description
communicates information to the implementor in a useful form. It seems more oriented
toward assisting the designer/specifier to ensure the specification is complete, and less
toward helping the programmer understand how the code must perform. Nevertheless, it
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is the responsibility of the programmer to learn to read these specifications in order to
make this process easier.

Another problem is that simple stimulus-response pairs for an object can result in a
tangled canonical trace in order to hold certain program state information. For example,
to display XView Notice outputs, a new event must be in the canonical trace to indicate
exactly when such a notice appears. In addition, to represent simple return values from
functions requires that information appear in the canonical trace which is otherwise
unnecessary. In effect, putting this information in the canonical trace makes it more
difficult to decipher and develop, and makes it more complicated than the clear box that
will follow. |

Finally, the method developed here produces large amounts of specification material for
a simple system. A good example of this is the equivalence for the save() function in
Map. The equivalence table for this is long, since it is completely non-procedural. The
code itself is much simpler since handling the cases is simpler when considered
procedurally. While some might argue that more is better, this creates problems in terms
of keeping a large body of material under proper revision control and insuring that
verification between various steps is completed properly.

The modified method and process presented here may be applicable for critical systems,
for those requiring more care and documentation, or for those involving a large number
of interacting objects. In these cases, the additional steps required under this method will
be worth the effort in order to better understand and document the system being
developed.
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SAVINGS TRACKER MODULE

TYPE IMPLEMENTED: <Savings>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
L balance | <float> ]
ACCESS PROGRAMS
Program Name Value Arg#l
DEPOSIT <floa>
WITHDRAW <float>
BALANCE <float>
(2) CANONICAL TRACES

canonical(T) <--> (T = [DEPOSIT(x;)},_ [WITHDRAW(y; )1].“;0)

Consitency (1): The canonical form fulfills the requirements of section XI.
e The traces in the set are not further reducible when passed through the equivalences
» The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS
Func Name Value Arg#] Argit2 Argi3
I parse | <boolean> | <trace> | <trace> | <«trace> |
parse(8,51,82) =
conditions eguivalences
$=851.82) A true

(1 = [DEPOSIT(x)_o) A
(52 = [WITHDRAW(;)IZ)

else false :

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

« [Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e Constants, therefore always defined.
Consitency (3): All RHC values are unique:

e True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence function for each event class.
e There is one each for DEPOSIT, WITHDRAW, and BALANCE.
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T.DEPOSIT(x) = D.DEPOSIT(x).W where parse(T, D, W)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e  no partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'rue”:

e Tdefined by LHS, D & W defined by T from parse().
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ D is string of deposits; D.DEPOSIT.W maintains canonical trace structure.
Consitency (3): All RHC values are unique:

*  One value, therefore unique.

T.WITHDRAW(y) =
conditions equivalences
n m T.WITHDRAW(y)
DRV L
i=0  j=0
where parse(T, D, W) A D = [DEPOSIT(x;)I;_ oA
W = [WITHDRAW(y)]
else %insufficient funds%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e T defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* T is canonical by definition.
Consitency (3): All RHC values are unique:

¢ One value, one emor.

T.BALANCE=T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* mno partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”

e Tdefined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Tis canonical by definition.
Consitency (3): All RHC values are unique:

*  One value.
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(4) VALUES

OUTPUT VALUES

n m
Vibalance](T) = zxi + z}]
=0 j=0
where parse(T, D, W) A D = [DEPOSIT(x)]_ A W = [WITHDRAW()]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is true’:

s T defined by LHS, rest are defined from T according to canonical trace.
Consistency {2): All traces specified in the RHC of the equivalence section are canonical:

» N/A
Consitency (3): All RHC values are unique:

* No partitioning, therefore unique.

RETURN VALUES
Program Name Argument No Value
{ BALANCE I Value | balance |

Completeness (2): There is one output function/relation that specifies each output value:
o There is one output value V{balance] defined above for the one value in the table.
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Appendix B: The Requirements Document
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I. Introduction and Overview

A. A SIMULATION OF COOPERATING MOBILE ROBOTS

The reasons for constructing a simulator for conducting experiments in cooperation are multi-fold. First, a
simulator will allow more agents to be simulated than would be practical in a laboratory environment; at
least 10-20 robots is desired. Currently in CESAR we have three robots, and may purchase more in the
near future, but having as many as 10 or more robots is not realistic. Second, it allows testing of some
elements of cooperation, such as communications protocols and task planning algorithms without dealing
with “real” robot problems. These problems include operating multiple sets of sonar sensors in the same
room, setup time for getting all software loaded on robots, locating robots at desired starting positions,
having operators on hand to monitor each robot, etc. While experimentation with real robots is essential, it
can be done in a later phase once the basic infrastructure and algorithms for cooperation have been

developed.

The basic architecture of the simulator is to be based on HELIX, HELIX is a system developed in CESAR
to provide a communications system for processes running on-a heterogeneous network of systems
[Jones92a; Jones92b}. This system allows both shared-memory and message-passing communications.
Since our current base of robot code runs under HELIX, it makes sense to base the simulator and the
experimental element of the work on HELIX since it will allow use of current code as well as make the
integration of our system easier,

The main process of the simulator will be a graphical user interface that will show the progress of the
various robots in the environment via animation, and will display related data (sensor sweeps, confidence
maps, communicated data, etc.). The simulation will be linked into the simulations of the various robots
via HELIX. Using HELIX will allow the use of both simulated and real robots during a simulation run.
This ability to display real robot status will make the interface useful as a console for a muitirobot

operation.

The simulation of each individual robot simulator could vary according to the complexity of the
simulation. The general design of a robot simulator using HELIX would use a separate process to handle
the cooperative aspects of control, while other processes wouid handle the other functions of robot control.
In a simple simulation, these processes could all be rolled into one process. For a more complex robot, a
large number of processes might be required.
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Fig.1: Interface and Simulation Components

Since each of these separate robots is represented by a cooperation process, the view of the whole system
as seen by each robot or the interface is basically a collection of cooperation processes. Figure 1 shows
one possible simulation setup. Note that also a component could be a real robot rather than a simulation.
The HELIX network inside each component is separate from the network between components. This will
be handled by a special version of HELIX called N-HELIX, to be developed.

Construction of the complete simulation system will involve not only building the user interface, but also
the simulated robots (including simulations for actuators and sensors), simulated “worlds”, and the
processes required for cooperation. This document focusses specifically on the requirements for the
interface portion of the simulation. The contents include a discussion of prototypes of the interface already
developed, the role of the interface in the system, a breakdown of requirements between the interface and
add-on components, and the requirements specification of the interface, and an incremental development
plan.

B. AN EXAMINATION OF OTHER SIMULATION SYSTEMS

Several other simulation systems bave been examined, both to determine if they were up to the task of
cooperating robot simulations as well as to note features for possible inclusion into the simulator being
developed.

First, a few simulations capable of working with multiple robots have been constructed. A simulator is
being developed at RIKEN specifically to support work there in multirobot cooperation [Habib92]. It
currently consists of a simple system capable of displaying an environment map and the robot movements.
The system runs on a Silicon Graphics machine and uses [PC to communicate between the display process
and the robot simulation processes. As of 7/92, a separate ultrasonic simulation bad been completed, but
was still to be integrated into the full simulation [Asama92].
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Another simulation capable of supporting multiple robots is one being used by Lynne Parker at MIT. This
simulator, originally developed by Yasuo Kagawa of Mazda while visiting MIT, runs in Common Lisp on
a Macintosh, and has been extended by Ms. Parker. Due to running on a Macintosh and under lisp, its
operation is slow [Parker92by; Parker92c].

Commercial simulation packages, such as IGRIP, are undesireable because of their cost and limitations
(such as the local limitation that it can only be run on one machine).

Several simulations that have been examined might be capable of multirobot work with some adaptation.
EDDIE, from CMU, is purported to be capable of multirobot simulation, but a workstation is required for
each robot to be simulated, thus limiting its ability to scale to large populations of robots [Gowdy91;
Parker92b).

Yutaka Watanabe has developed a sophisticated simulation system at ORNL which is specially designed
to work with an omnidirectional platform also developed at ORNL. He is planning to extend this simulator
to be capable of handling more than one robot at a ime. The simulation is feature-packed, with a large
number of display options available. These include the usual ability to monitor the position and orientation
of the robot as well as the wheel orientations on the platform; a map display with a grid; fuzzy rule
evaluation; vision, which shows a 3D perspective view of the robot based on the world model; sonar,
which shows the sonar beacons scanning on the map; and an option to display the simulation's "real”

position for the robot vs. the estimated position kept by the user program running on the robot. He also has
a tool that allows the map to be dumped out and edited by idraw for printing or inclusion into other
documents [Watanabe93]. -

Another simulator is the one that has been developed for use in the robotics lab at Tsukuba University with
their small robots called Yamabico. This simulator is for single robots only [Kimoto92a]. A large amount
of time was invested in developing the sonar simulation for this system, including two basic types of
reflection which can be chosen—a simple model and a more complex model using diffusion. A good
fearre of this simulator is that is was developed to run programs written for the robot without
maodification [Kimoto92b].

Finally, a simulation has been developed at the University of Michigan for experimenting with distributed
Al problems. This simulation is Common Lisp based [Mont90]. Havmg this Lisp-based makes it more
difficult to integrate with CESAR systems.

[Torrance92] provides a useful discussion of simulation problems and benefits.

C. MAPPER: A PROTOTYPE FOR THE INTERFACE

A very simple prototype of an interface was initially written in Smalltalk. While this prototype was not
very sophisticated, it did give some ideas on object-oriented programming and interface elements.

A second prototype called “mapper” was wriiten, using C++ and HELIX. It is a very simple program for
loading object maps and displaying robots moving in the map environment. The robots are controlled by
separate processes which give their position to the mapper program via HELIX shared memory, and send
and receive events from the mapper.

The GUI was built using a Sun tool called “GUIDE” which allows interactive building of an interface, and
dumps out XView graphics code and call-back stubs (C++ in this case) which can then be modified by the

programmer.

Some observations about the mapper interface:
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« mapper allows only one map to be loaded at a time. If a2 new map is loaded, it destroys all the robots
currently in the map, but does not ask the user if this is ok, nor does it send quit messages to the affected
robot simulators.

e mapper only allows one coordinate system, i.e. the current map, to be worked on; it does not handle
multiple spaces or multiple windows. This is probably sufficient for most simulations. If a large complex
space needs to be simulated, it can be done all in one map.

* mapper creates an event menu for each new robot to allow individual control of that robot. This is does
not scale well to many robots, however, since there is not enough menu-bar space. Therefore individual
robot actions will have to be handled both or either through a click-on-the-robot type interface to pop up a
menu, or through a command-line/dialog box interface where the robot number is specified. While the
current version has a menu to send messages to all robots, this is also probably not good for many robots.
Thus a grouping scheme for robots would be useful, and then use a dialog interface to send an event to all
members of a specific group.

 when a robot is created, the user locates and orients the robot with the mouse. This will have to be made
optional, to be selected by the simulator. For large numbers of robots in a simulation, manual placement
may be unwieldy.

» mapper adjusts the map to fit the window size; this should be improved to first adjust the map to the
window, then adjust the window to fit exactly to the map. This will look better.

» when a map is large enough that it scaling it will go beyond the minimum size for map magnification,
then the mapper window should be scalable to accommodate the larger size.

Some intemal/coding observations:

» XView objects as built by GUIDE are awkward and basically structs

» The mapper was not very object-oriented; a new object was added later, RobotX, which made the design
more object-oriented. Some effort was made to design this object with box structures.

D. OVERVIEW: INTERFACE REQUIREMENTS

The interface has two primary roles: display and control. For display, the user should be able to see the
locations of the robots and the objects in the simulated world. The user should also be able to focus on
specific items of a robot's status, including position, velocity, sensor status, and internal representation
information. For control, the user should be able to (a) create new simulated robots and place them the
environment, (b) delete robots from the environment, (¢) start and stop robots in the environment, (d) have
some teleoperation capabilities, i.e. directing a robot toward a new goal, etc.

In addition to manipulating robots, the user should be able (0 manipulate the virtual world in which the
robots exist. The user should be capable of creating, changing, moving, and deleting objects in the map as
well as changing the dimensions of the map. In addition, loading and saving map files (which are text files
using a special object description language), and allowing maps to be 1oaded on top of one another, as well
as allowing certain maps to be known a-priori by the robots, while other maps are not known are all
desired.

The interface will have two primary modes of interaction: with the user via the GUI, and with the
cooperating components. The GUI will be done in XView (an X windows toolkit), and the graphics code
should be as isolated as possible to permit porting to another window system (see Subappendix A for an
explanation of why XView was chosen). The system will use HELIX as its communications system for
cooperation, in order to allow connectivity to existing robot code.

In addition, the interface will probably need to be split into multipie processes o allow new simulation-
specific components (“add-ons™) to be added later without changing the interface internals. For example, if
we want to add a capability to the simulator to display a sensor map in a window, it makes the most sense
to put this into a separate process that maintains its own window and communicates directly with the
sensing process. Therefore, the interface will have to have yet another mode of communication, to add-on
elements. Communication between interface elements should be done via HELIX.
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Given this ability to extend the interface with add-ons, the primary interface element should include the
basics from above. This includes the basic control functions, i.e. create/delete/start/stop/relocate/restart,
and basic display functions, i.e. display map, robots, basic status info (position, velocity). Abilities beyond
this should be developed in add-ons. This includes displays such as internal and sensor information and
special control functions. Where possible, the interface should be designed to easily accomodate new
robots or simulators with little or no modifications to the core interface.

User

3

(- X-Windows )

Interface

Simulation
Components

Fig. 2: Connections to the Interface
Not all the functions desired of the interface have 10 be provided in the first increment. In fact, the add-ons

are perfect for later increments, as are some of the advanced map handling and event passing features
described above. An increment plan is presented at the end of this document.
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II. The Interface Requirements Specification

A. USER INTERACTION AND GUI SPECIFICATION

1. Program Invocation

On invocation, the user can optionally give a filename of an initial map to the program. Any errors on
loading this initial map are reported as below. Other than this, the program does not have any specific
command line options. It should, however, accept and pass to XView any X or XView options from the
command line. See the xview man page [Sun91] for a list of XView options.

2. Initial Program Actions

The initial screen presented by the program looks like this (see Subappendix A for an explanation of
XView graphical elements):

O WestWorld — <NONE>

File { Map 4 Robots |

[WinMap_Empty]
This screen should be sized so that the default map size, 12.8 x 12.8m, fits the canvas exactly using a pre-
selected scale (see below for information on map size and scale).

The <NONE> indicates that no map file has been loaded. If there is a problem setting up X, then an
appropriate error is written on the invoking terminal and the program terminates.

3. Program Menus and Actions

a. The File Menu

The File menu consists of the following options:
Load...
Save...
Quit  [default]

Selection of the Load... option presents the following pop-up box:



-0 WestWorld: Load Map

Filename: <string>

Load

[PopupLoadMap]
Filename is set to the last file loaded or the last file saved (whichever is most recent) or blank.

The sideways (unpinned) pin in the header means that the box will disappear when the Load button is
pressed, unless the pin is pressed, in which case it will stay on the screen. If the pin is pressed again, the
box will disappear, effectively canceling the Load... comimand.

If the file cannot be opened, then the following notice appears:

The file could not be opened.

Confirm

[NoticeOK_FileOpenErr]
Other filesystem errors that will be reported are "An error occurred reading the file”, " An error occurred
writing the file", and "An error occurred closing the file". If the file can be opened but there is an error the
data format of the file, this error is reported as verbosely as possible, to allow the user to correct the error
in the file.

Map file format error: <error>

Confirm

[NoticeDK_FileFormatErr]
See "Map Format" for details on the correct format for the map files. For either of these errors, the Load
box remains on the screen again to allow the user another try.

If the file is correctly loaded, the new map objects plus any previously loaded are drawn on the screen to
scale. Note that the map origin is its lower left-hand corner. The objects are scaled (to the integer part of a
fractional scale) based on a default scale which can be changed by the user (see below). Invisible objects
are drawn with dashed borders. The beader is updated to show the filename (last component of path only)
of the latest map file loaded. Finally, once the scale has been determined by the current screen size, the
screen is re-sized to fit the map outline exactly. This gives us a window as below.
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O WestWorld — filename

File { Map i Robots |

o O

[WinMap_WithObj]

Selection of Save... brings up a box as with the Load... command. Again, this box can be disposed of by
pressing on the pin. The filename is set to the last file saved or the last file accessed via load (whichever is
most recent) or blank.

-0 WestWorld: Save Map
Filename: _______ «string>
Save
[PopupSaveMap]

When the Save button is pressed, the file is checked to see if it already exists. If so, the notice box shown
is displayed.

File Exists. Overwrite it?
Yes No

[NoticeYN_FileOverwrite]
If Save is selected, the file is overwritten. If Cancel is selected, the Notice disappears and the Save Map
window remains on the screen for the user to enter a different file name. If an error occurs during save, a
notice appears detailing the error (either "File could not be opened for write.” or "Error writing file.");
when dismissed, the Save box is put back on the screen to try again.

Once Save has successfully been selected, a file is written out with a comment at the top with the filename,
current date and time, a note that it was automatically written by the named program, and

Selection of Quit terminates the program. If any map objects have been modified or added, then the
following notice appears:

The map has been modified. Quit anyway?

Yes No

[NoticeOK_MapModQuit]
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If No is selected, then the program continues operation. Otherwise, if Yes was selected or no map objects
were modified or added, then QUIT events are sent via HELIX 1o all simulation processes that are
registered with the program, and the program terminates.

b. The Map Menu
The Map menu consists of the following options:
Redraw [default]
<blank line>
Update HELIX Map
Clear Map
Change Map Size...
New Map Object...
Selection of Redraw causes all objects (robots or map objects) in the main window to be redrawn. This
also occurs if the window is resized via the window manager.

Selection of Updare HELIX Map causes the bitmap representation of the map in
HELIX memory to be cleared and then rescanned. Once this is complete, a MAP_UPDATED message is
sent to all registered clients.

If the user selects Clear Map and the map is currently empty, then nothing happens. If, however, the user
select Clear and there are objects in the map, then the following notice appears:

Are your sure you want to clear the map?

Yes No

{NotiéeYN_ClearMap]
If the user answers Yes, then the map is cleared of all objects but the map size remains the same; the
screen is-also redrawn to reflect the new blank map. If the user answers No, then there is no change.

The Change Map Size... selection causes the following window to appear:

-0 Map Size

Width: «f1%.2f> Length: <fl%.2f>

Scale: __«int>___ EISZ

Change

[PopupMapSize]
If Change is then selected, the values of the width and length fields are checked. If they are less than 1.0 or
not legal numbers, then a notice box appears with an OK button and one of the following messages:
"Widih and Length must be at least 1 m." or "Width and Length must be floating point numbers.”
Otherwise, the map size is changed, and the map is redrawn with objects and robots to scale.

The New Map Object... selection causes the following window to appear:
-0 New Map Object

Object: | Box Cylinder | Polyline

New

[PopupNewMapObj]
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The three top items are an exclusive choice list, with Box being the default choice when the box appears
for the first time. If the pin is pressed or the box ignored, then nothing happens. If the New bution is
pressed, the New Map Object box disappears and one of the following windows appears, depending on the
selection made:

@) Map Object: Box

Map File:  «string>
Position x: «fl %2f> y: <fl %.2>
Width: <fI%.2f> Length: <fi%.2f> Height: <fl%.2f>

dvisible Add Change Delete

[PopupMapObjBox]
O Map Object: Cylinder

Map File: <string>
Position x: <flI%.2f> y: <fl%.2f>
Radius: <«fl%.2f> Height: <fl%.2f>

dvisible Add Change Delete

[PopupMapObjCylinder]
O Map Object: Polyline

Map File: <string>
Position x: «fl%.2f> y: <fl%.2f>
Height: <fl%.2f>
Point List:

_<fI%.2f> <fl%.2f>,...

Mvisible Add Change | | Delete

[PopupMapObjPolyline]

For a new object, Map File: has "<new>" in it, and all other values are 0.0. If the user pushes the pin, the
new item is not created. If Change or Delete is pressed and Add has not yet been pressed, then the
following notice appears:

The object has not been added.

Confirm

[NoticeOK_ObjNotAdded]
If Add is pressed and any of the Length, Width, or Height parameters are zero or less, then a notice with
an OK button and the following message appears: "Length/Width/Height must be greater than zero". If the
object has been placed so all or part of it is outside the current map size, then the following notice appears:
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Object outside map boundaries.

Confirm

[NoticeOK_ObjOutside]
Otherwise, the item is added to the Map, and the map will be redrawn to show the object.

c. The Robots Menu ,
The Robots menu consists of the following options:
Summon... [default]
<blank line>
Start all
Stop all
Quit all

Selection of Summon... causes the following box to appear on the screen:
-  Robot Summon

Robot ID: __<int>__ ZSM]

Summon

[PopupRobotSummon}
The box can be dismissed via the Summon button or the pin. If the summon button is pressed and a valid
robot ID has been entered (range of 1...1000), then the Robot Control box (below) appears. If the ID is
invalid, then a notice appears with the following message: “Invalid 1.D.". The up/down arrows next to the
field allow the number to be incremented and decremented, but not below 1. The maximum is 1000. Note
that this box can be handy if the robot has driven off screen and the mouse actions below cannot be used.

Selection of Start All sends START events via HELIX to all simulation processes registered with the
program. Stop All sends STOP events similarly, and Quir All sends QUIT events similarly.

4. Mouse Actions
If the left mouse button is clicked while the pointer is inside a map object, a box from one of the three Map

Object boxes (above) appears, depending on the type of object. Changes can be made to the object. If no
changes are made, then pressing the Add or Change button gives the following message:

The object has not been moditied.

Confirm

{NoticeOK_ObjNotMaod]

Otherwise, the Add acts as given above, and replaces the Map File string with <added>. Change replaces
the current object with the given modifications, and replaces the Map File field with <changed>. If Delete
is pressed, then the object is removed from the map. If any of Add, Change, or Delcxe are successfully
done, then the Map is redrawn to show the object change.

If the middle mouse button is clicked inside an object, the Map Object box appears and then the object

tracks the mouse moving around the screen. When the mouse button is released, the equivalent of the
Change button is done, i.e. the map is updated and redisplayed.
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If the left mouse button is clicked while the pointer is inside a robot (or within some reasonable bounding
box, since robots may be round or rectangular but not oriented with the XY axes), the following window

appears:

O Robot Control

Robot ID: _<int>__ B Robot Type: <string/ro> <real/sim>
Position x: «fl %.2f> y: <fl %.2f> az: <fl %.2f> Speed: <l %.2/readonly>

Status: «string/read-only>

Single Update| Cont. Update: | Start | Stop Send Change

Events 4| | Add-Ons {

[PopupRobotControl]
This box provides not only basic status information on the robot retrieved from HELIX memory. It can be
dismissed as the with the map object box. This box also features two pull-down menus and a special row
of buttons, discussed below. If the middle button is pressed inside a robot, then the window also appears.
In this case, however, the interface sends a REQUEST_PLACEMENT message to the robot. If the robot
returns PLACE_OK, then the robot moves around the screen and follows the mouse for location and az (as
with initial placement); once the placement is finished, the new position is set in HELIX memory and
PLACE_SET is sent to the robot. If the robot returns PLACE_REFUSE, then the following notice

appears:

The robot has refused the update.

Confirm

[NoticeOK_UpdateRefused]

The Events menu has the following items:
Start
Stop
Ping [default]
Quit
Each of these send a corresponding HELIX event to the robot.

The Add-Ons menu is initially empty, but can be added to via events sent from add-on programs.

The Single Update button reads the latest data from the robot in the HELIX memory and displays that in
the box. If the Cont Update/Start button is selected, then the display is periodically updated from HELIX
memory, not necessarily as fast as other graphics updates on the screen. When the Cont Update/Stop
button is selected, the screen is not updated unless Single Update is chosen. If the Send Change button is
pressed, the interface sends a REQUEST_PLACEMENT message to the robot. If the robot returns
PLACE_OK, the new position is set in HELIX memory and PLACE_SET is sent to the robot. If the robot
returns PLACE_REFUSE, then the notice shown above appears.

If the Robot ID value is changed, then the screen is updated for that robot. If Cont Update/Start button is

selected, then continuous updates are displayed for the newly selected robot. If the Robot ID value is not
valid for a registered robot, then <invalid ID> is displayed in the Status field.
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5. ve indow Manager Actions

There are some events that have to be monitored by the program that are a result of user actions but come
from the window manager rather from the program's direct interactions. These can usually be monitored
via call-backs and could therefore be considered stimuli rather than conditions; this will depend on the
specifiers preference. See "System Interfaces” below for information on more system conditions.

These conditions {Heller92] and their cooresponding actions:
X:Destroy(status) where status =
DESTROY_CHECKING >
if map needs saving, ask if ok to quit; if not, veto destroy; otherwise send QUIT
messages to all registered simulation components and allow destroy.
DESTROY_SAVE_YOURSELF -->
ignore
DESTROY_CLEANUP -->
prepare for death; should clean up memory
DESTROY_PROCESS_DEATH -->
prepare for death; no need to clean up memory

X:Repaint -> redraw map and robot objects

B. HELIX INTERFACE AND INTERACTIONS

1. HELIX Events

Once the program has been invoked and the initial screen drawn, the program can respond to the basic set
of HELIX events. These are NULL_EVENT, QUIT, EPING, ACK, QUIET, START, and STOP. The
actions for these are the following:

NULL --> no response

QUIT --> terminate program; send QUIT to registered simulation processes

EPING --> return ACK event 1o sending process

QUIET --> no response

START --> no response

STOP --> no response

ACK --> no response

In addition, a set of events has been defined especially for interfacing with simulation components. These
are: ROBOT_STARTUP, ROBOT_SHUTDOWN, PLACE_REQUEST, PLACE_OK, PLACE_REFUSE,
PLACE_SET. ROBOT_STARTUP is sent by an initializing simulation component to register itself with
the interface. ROBOT_SHUTDOWN is sent by a robot when it is shutting down to let the interface know
that it should dispose of the robot. Robots send this when they have received a QUIT, usually from the
interface.

When ROBOT_STARTUP is received, the interface will have to register the robot that the message was
received from. If the robot wishes to place the robot in the environment, it also sends a PLACE_REQUST
message. With this message, the interface goes into a special mode for user interaction. The robot image is
drawn on the screen at the mouse position, and follows the mouse around. If the middle mouse button is
pressed, the robot rotates its az value counter-clockwise. If the right mouse button is pressed, the robot
rotates its az value clockwise. If the left mouse button is pressed, the robot is placed at that point, and a
PLACE_SET message is sent back to the robot simuiation component. Note that there is no way to abort
the robot placement sequence. HELIX events received during this sequence’ are queued. If the
PLACE_REQUEST message is not received, it is assumed that the robot simulator has selectec the
position of the robot before sending ROBOT_STARTUP, and the robot is drawn at the coordinates given
in the HELIX shared memory.
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The other HELIX interface is with Add-On components. At this time, this feature¢ will not be included.

The following table illustrates the HELIX communications that takes place under certain specific activities
of the simulations and the interface:

Activity Interface Simulation Component (Robot)
robot startup send <— ROBOT_STARTUP
register robot
draw on screen
robot placement send < PLACE_REQUEST

locate robot via mouse
put location in HELIX memory
send <-- PLACE_SET

interface shutdown send QUIT ->

finish simulation
send < ROBOT_SHUTDOWN

simulator shutdown send <-- ROBOT_SHUTDOWN
deregister robot, remove from screen

map update update map in shared memory, send
MAP_UPDATED —>

robot position send PLACE_REQUEST -->

adjust (via interface) send PLACE_OK if placement ok;

send PLACE_REFUSE if not
if PLACE_OK received,

locate robot via mouse

put location in HELIX memory

send PLACE_SET >
else if PLACE_REFUSE,

notify user of refusal
robot position read read robot position from HELIX
memory
robot position update write robot position to HELIX memory

2, HELIX Shared Memory

a. Robot/Simulator Interface

This section discusses the Postlts in shared memory which will be required. The interface will have to
determine the current robot status and position. Therefore the following Postlt will be needed for each
robot:

struct robot_comm {

float x; /* X in meters */

float y; /* vy in meters *x/

float az; /* az in radians */

float speed; /* speed in m/sec */

char status[80]; /* string holding robot status info */

int time; /* time stamp to indicate update */

short type; /* robot type */

short global_ID; /* ID of the robot vs. all others */

short intype_ID; /* number of this robot among those
with the same type */

short flags; /* flags

bit0 = 1 if real robot, 0 if sim */
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Also, the map of visible and invisible objects has to be placed in memory. The vis_objs_map contains
only the visible objects; all_objs_map contains both visible and invisible objects. The maps are
currently fixed size, and sized to fit into 32k, based on an OS-9 HELIX limitation. If a map is smaller than
12.8m x 12.8m, then the space beyond that size is considered empty and is cleared by the interface. If a
map is larger than 12.8m x 12.8m, it will be cropped at the 12.8m x 12.8m border for HELIX
representation. This may be fixed in a future version.

struct vis_objs_map {
char grid[128][128]([32];
}

struct all_objs_map (
char grid[128]([128]1([32];
}

b. Add-On Interface
A Postlt will be needed for the interface to communicate certain information with Add-Ons. For now, this

information is nil.

struct add_on_interface (

}

C. SUPPORTING SPECIFICATIONS

1. Map Format

The map file consists of lines of interpretable data. Each line is considered a separate entity. Each map line
can be nil (blank line), start with a # (comment), or have a map command, one of "map”, "cyl{inder}", or
"box". The <nws> (non-white space) after the command means that the rest of the command name is
ignored if the first three letters are matched, i.e. cylinder, cyl, or cylfoo are all legal for cylinder. The
<vis> parameter, which is optional, indicates whether an object is visible (i.e. a priori kmown to the robot)
or invisible (only can be found via sensors). The default condition is visible. The <height> parameter, if
not present, defaults to 2m.

Maps may be overlayed with one another, i.e. multiple map files may be loaded to make a single complex
map in the simulation memory. If, however, separate maps are loaded and have different map sizes, the
largest map size is assumed. The map size defaults to 12.8m x 12.8m and to a scale of 40; the defanlt is
vsed if no map command is encountered.

The following is a grammar for interpreting a map file.

Map := [<Line><CR>]"

Line :=
nill
"#"<anychar>*|
*map"<nws><ws><map-width><ws><map-length>|
"map”<nws><ws><map-width><ws><map-length><ws><map-scale>|
"cyl"<nws><ws><vis><locx><ws><locy><ws><radius>|
"cyl"<nws><ws><vis><locx><ws><locy><ws><radius><ws><height>|
"box"<nws><ws><vis><locx><ws><locy><ws><width><ws><length>|
"box"<nws><ws><vis><locx><ws><locy> <ws><width><ws><length><ws><height>
"poly”"<nws><ws><line-list>|
"poly”<nws><ws><height><ws><line-list>
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line-list := <locxp>,<ws><locyg><middle><locxg>,<ws><locyg>
middle := [<locxj>,<ws><locyj><ws>]" | <ws>
NOTE that the first coordinate must be repeated to close the polyline
ws ;= <tab>l<space>
nws := any character not <ws> or <CR> (including nil)
vis ;= "vis"<nws><ws>|"invis"<nws><ws>l<ws>
nil ;= empty string

. Syste terfaces

a. File System (FS)
The file system will present several conditions to the system which will have to be dealt with. These are
already dealt with in the requirements above. Errors include: FS:FileExists, FS:FileDoesNotExist,

FS:WriteError, FS:ReadError.,

b. Memory Management (MM)

This system is not dealt with in the requirements above. If a memory allocation (object constructor,
malloc, etc) returns an error, program should put up a notice that memory is low. A QUIT event is send to
all registered simulation components. The program then checks to see if a save is needed; if so, brings up
the save box to save the current map. After a save is complete, the program quits automatically. All menu
items except Quit and Save are disabled during this procedure. If a second memory error occurs during
this shutdown procedure, the program terminates immediately.
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D. SUMMARY OF GUI ELEMENTS

Windows/Popups/Notices
WinMap
Popupl.oadMap
PopupSaveMap
PopupMapSize
PopupNewMapObj
PopupMapObjBox
PopupMapObjCylinder
PopupMapObjPolyline
PopupRobotSummon
PopupRobotControl
NoticeOK
Notice YN
Menus
Window Menu Item
MapWin File Load...
Save...
Quit
Map Redraw [default]
Update HELIX Map
Clear Map
Change Map Size...
New Map Object...
Robots Summon... [default]
Start All
Stop All
Quit Alt
PopupRobotControl Events Start
Stop
Ping [defauit]
Quit
Add-Ons <none>
Misc. Stimuli
XV/Destroy
XV/Repaint
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II1. Incremental Development Plan

This section describes the incremental development plan. This plan roughly states which features will be
included into each increment as the software is developed. Each increment will be specified, coded,
verified, and tested individually. Each increment also must a functional, runnable program or group of

programs.

If functions have buttons or menus in an early increment but are not yet implemented, the following notice
appears if they are selected:

This function has not been implemented.

Confirm

[NoticeOK_FuncNotImp]

Increment 1
Initial window with menus and all menu items present. All menu items are stubs, except Redraw and

PopupMapSize will be available.

Increment 2
Map loading, saving, clearing, and drawing on screen available; only box and cylinder objects allowed
(NOTE: polylines not included until increment 7).

Increment 3
On-screen editing of map objects allowed via mouse clicks. New map objects may be created. Visible and
invisible objects, map size information in file.

Increment 4
Initial robot/HELIX interface. Basic event interface + robot_status interface as defined in this document.
Object map from interface not yet available.

Increment §
Addition of robot control via mouse clicks on screen. Robot control box and submenus added. Robot
Summon available.

Increment 6
HELIX shared memory object map supported by interface.

Increment 7
Polyline objects added.
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Subappendix A: The XView Toolkit

A Note on XView Interface Elements
Figure 3 shows some of the graphical elements used in the sample screen displays below [Sun89].
Control areas, as shown in Fig 3, are required for certain interface elements such as buttons, menus, slides,

text input, etc. Another type of area on a window is a Pane. This area is typically a text or graphics area
(the latter being called a Canvas).

Window menu button

‘ Header aka Title bar
i F Title/
Pull-down menu
Control | ; /
area File

| " Pane
OV Pin (on pinable pop-up windows)

__._6_/ Pin, in unpinned position

Figure 3: XView Interface Elements

Pins appear on certain windows which may be designed to stay on the window if the user chooses. If a
window comes up with the pin already stuck in, then the window will stay in place unless the user
explicitly dismisses it or pushes on the pin. If the pin comes up unpinned, then the window will disappear
after it is used unless the user pins it in place. If the window is made to disappear by unpinning it, this is
equivalent to cancelling any function the window was to perform. Note that actions using the pins do not
send a specific stimulus to the program. Thus, if a box is cancelled by pushing its pin, the program does
not note that the box has disappeared, but will never receive any other stimuli from the box.

Note that using pin-abie pop-up windows allows for non-modal operations, i.e. it is possible to bring up
these windows, but then continue working with other windows. There are also modal windows, that must
be acted upon before other work can be done with the program. In XView, these are called Notices, and
they are used for some functions in the program below.

Menus are implemented via buttons that, when clicked on via the right mouse button, present a pull-down
menu. If the left mouse button is pressed, a default selection (if set by the programmer) is highlighted
automatically.

Why XView?

The graphical user interface will be built using the XView toolkit. This toolkit has been chosen because (a)
we have an interface builder for this toolkit and (b) it is the basis for the window tools we use in our
laboratory (Sun's OpenWindows). Writing programs for basic X windows is more universal, but also much
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barder. Using a toolkit such as XView or Motif will save a considerable amount of tiine. XView was
selected over Motif because it is better supported in our laboratory, and I have been told that it is easier
and more logical to program than Motif. One final note: XView libraries are available free, which should
allow this to run on any X windows-based system.
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Subappendix B: Glossary

Add-ons—new interface elements added to provide information from a specific simulation.

Component-—a process or group of processes that represent a significant part of the simulation—i.e. a
robot or the interface.

Cooperation Process—the process in a component that is responsible for communicating with the other
components in the system, including other simulation components and the interface.

Element-—a part of a component, i.e. a process that is part of a single robot simulator, or a process that is
part of the interface.

GUIDE—A Sun-based too} for developing XView interfaces. GUIDE stands for Graphical User Interface
Development Tool.

}{ELIX-ea system for communications between processes, including message passing (events in HELIX
terminology) and shared memory (Postlts in HELIX terminology). N-HELIX is an extension to HELIX
that supports a hierarchy of HELIX networks.

Interface—refers to the component of the simulation that presents the graphical user interface to the user.
This component is also called the “Master Simulator” since it controls the actions of the other components

Registered Process/Robot/Simulator—a robot simulator is "registered” with the interface if it has sent a
ROBOT_STARTUP event to the interface, indicating that its position should be tracked.

Robot—a component of the simulation system, possibly consisting of multiple processes, and either
controlling a real robot or a simulated robot.

XView—a Sun-developed X-based graphical user interface library which is comparable to Motif. The
system will use this library as it is available on all our Suns.
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Appendix C: The First Increment Specification

83



WestWorld
Increment 1 Specification

L Top Level Black Box

define_BB void WestWorld
input

Invocation
XCB !:Menu/File/Load
XCB:MenwFile/Save
XCB:MenwFile/Quit
XCB:Menw/Map/Redraw
XCB:Menw/Map/UpdateHelix
XCB:MenwMap/Clear
XCB:MenwMap/ChangeSize
XCB:Menw/Map/NewObj
XCB:Menuw/Robots/Summon
XCB:MenwRobots/Start
XCB:Menw/Robots/Stop
XCB:MenwRobots/Quit
XCB:Button/MapSizeChange
XCB:XV/Destroy
XCB:XV/Repaint

output
window WinMap
popup PopupMapSize
notice NoticeOK

transition

Invocation —>

_WinMaplnit()
XCB:MenwFile/Load -->

_Unimplemented(WinMap frame created at Invocation);
XCB:MenwFile/Save -->

_Unimplemented(WinMap frame created at Invocation);
XCB:Menw/File/Quit -->

xv_destroy_safe(WinMap frame created at Invocation)
XCB:Menw/Map/Redraw -->

_Repaint()
XCB:Menu/Map/UpdateHelix —->

_Unimplemented(WinMap frame created at Invocation);
XCB:MenwMap/Clear -->

_Unimplemented(WinMap frame created at Invocation);
XCB:MenwMap/ChangeSize -->

_PopupMapSizeShow()
XCB:MenyMap/NewObj ~>

_Unimplemented(WinMap frame created at Invocation);
XCB:Menuw/Robots/Summon -->

_Unimplemented(WinMap frame created at Invocation),
XCB:Menw/Robots/Start -->

_Unimplemented(WinMap frame created at Invocation);

1XCB = X Call Back



XCB:Menuw/Robots/Stop -->
_Unimplemenied(WinMap frame created at Invocation);
XCB:Menw/Robots/Quit -->
_Unimplemented(WinMap frame created at Invocation);
XCB:Button/MapSizeChange -->
_PopupMapSizeChange()
XCB:XV/Destroy(client, status) -->
_Destroy(client, status)
XCB:XV/Repaint -->
-Repaint()
end_BB

Black Box Specification Functions:

[ _WinMaplnit() } =
[
display WinMap on screen, with canvas exactly encompassing default map size
with title "WestWorld -- <None>"
with menus as follows:
File: Load..., Save..., Quit v
Map: Redraw <default>, <blank>, Update HELIX Map,
Clear Map, Change Map Size..., New Map Object...
Robots: Summon... <defauit>, <blank>, Start All,
Stop All, Quit All
with border fitting map size (_Repaint)

O WestWorld — <NONE>

Fie | Map | Robots 1

]

[ _Destroy(Xv_opaque client, Destroy_status status) ] =
[ status = DESTROY_CHECKING --> NOTIFY_DONE
| status = DESTROY_SAVE_YOURSELF --> NOTIFY_DONE
i status = DESTROY_CLEANUP --> notify_next_destroy_func(client, status)
| status = DESTROY_PROCESS_DEATH --> NOTIFY_DONE

]

[ _PopupMapSizeShow() ] =
[ display PopupMapSize with map width (using %.2f format) of default of 12 m or last width
set by successful XCB:Button/MapSizeChange and length (using %.2f format) of 12m or last
beight set by XCB:Buiton/MapSizeChange and scale of default 40 or last scale set by
XCB:Bution/MapSizeChange

85



@) Map Size

Width: «fl%.2f> Length: <fi%.2f>

Scale: _ <int>___ B&

Change

]

[ _PopupMapSizeChange() ] =
[ (atof2(entered width) < 1| atof(entered length) < 1) -->
NoticeOK(PopupMapSize frame,
"Width and Length must be at least 1.0m.")
| (entered scale < 1) | (entered scale > 100)
NoticeOK(PopupMapSize frame,
"Scale must be in the range of 1 to 100.")
| (PopupMapSize pushpin is in) -->
redisplay values in PopupMapSize;
_Repaint()
| true -->
—Repaint()
]

[ _Repaint() ] =
[ clear WinMap paint window created at Invocation and
draw map border using X Display+Window params for paint window
given width, length, scale from
default or XCB:PopupMapSizeChange
]

[ _Unimplemented(Xv_opaque owner) ] =
[ _NoticeOK(owner, "This function has not been implemented.") ]

[ _NoticeOK(Xv_opaque owner, char *message) ] =
[ display notice for owner
with Confirm button and given message string:

<message>

Confirm

2atof() is a C function which converts a string to a floating point number, ignoring any alphanumeric
characters.
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1 ion an BB i

(1) Choose candidate objects

The first candidates for objects/classes are those that represent an interactive window under X, this is the
way the code is automatically generated by the Devguide tool. Therefore, there needs to be an object for
the main window and its menus (WinMap) as well as the "Change Map Size" popup (PopupMapSize).
There does not need to be one for the Notify boxes since they do not have any nolion of complex
interaction or permanence. In addition, there needs to be an object to hold the map data and associated
functions (Map). A class should be created to group all the miscellaneous functions, such as Notice_ OK
(Utils). The final object is that which controls all the others, or at least initiates their actions via the main()
function (Main).

(2) Assign top-level stimuli to objects

Main
Invocation

Map
<none>

PopupMapSize
XCB:Button/MapSizeChange

WinMap
XCB:MenwFile/Load
XCB:Menw/File/Save
XCB:Menw/File/Quit
XCB:MenwMap/Redraw
XCB:MenwMap/UpdateHelix
XCB:MenwMap/Clear
XCB:MenwMap/ChangeSize
XCB:Menw/Map/NewObj
XCB:Menuw/Robots/Summon
XCB:Menuw/Robots/Start
XCB:Menuw/Robots/Stop
XCB:MenwRobots/Quit
XCB:XV/Destroy
XCB:XV/Repaint

Utils
<none>

(3) Identify inter-class stimuli

Main, via the main() function, will have to initialize/create all the other objects, through either init calls or
constructors.

Map will draw the map info in the paint window of WinMap, based on window information passed from
WinMap. It will assume a default map size until a map size change is sent from another object. It should
have the basic map parameters publicly available.

PopupMapSize will draw the Change Map Size popup and handle the button callback for that popup. It

will have to be able to display the popup on command when the appropriate menu item is selected via
WinMap, and it will have to pass the change size parameters to Map when the Change button is pressed.
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WinMap will be responsible for drawing the main window. It will accept all menu callbacks, but will only
handle those directly related to what it controls. Since Map will handle the drawing of the map in a
subpane of WinMap, data referencing that subpane will have 1o be passed to Map, as will the actual draw
calls. The menu item that causes the Change Map Size popup to appear will have to be passed to
PopupMapSize.

Utils will handle the Notice_OK call.

Main

BB Format Notes:

(1) access programs includes any access to class via function calls; if a return or I/O parameter is
involved, this must be handled in the response section of the transition for this access program.

(2) output variables shows variables maintained by the box which are publicly accessible; access to these
variables is to be considered a stimuli for the purpose of determining the value of the output

(3) output contains output not handled by access program parameters or return values -- i.c. user interface
outputs

(4) class access, class output variables, and class output provide a similar interface as described above,
but for the class functions.
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(5) input variables lists external inputs required by this class.
(6) external access lists external function calls required by this class

define_BB Main
class access programs
<Invocation>
main()

output variables
Atir_attribute INSTANCE

input variables
WinMap::frame

external access
Map::Map()
void PopupMapSize::init(Xv_opaque owner_frame, Map* pMap)
void WinMap::init(Xv_opaque owner_frame, Map* pMap,
PopupMapSize *pPopupMapSize)

transition
Si = <Invocation> --> :
create Map [invokes Map()], PopupMapSize, WinMap
Si = main() ~> ;
call init for PopupMapSize + WinMap object created by Invocation
end_BB

define_BB Map
access programs
Map()
void init_draw(Display *display, Window xid)
int change_size(Xv_opaque frame, double new_width, double new_length,
int new_scale)

output variables
double width
double length
double scale

output
X display window

external access
void Utils::cfNotice_OK(Xv_opaque owner, char* message)

transition
Si =Map() —> No response.
Si = init_draw(display, xid) -->
draw map border (rectangie) of 12*40 x 12*40, using display + xid parameters.
(S8j = change_size(frame, w, L s) A ((w<l) v (1< 1)) -->
Utils::NoticeOK (frame, "Width and Length must be at least 1.0m.");
retum FALSE value from change_size
(Si = change_size(frame, w, |, s)) A {((s < 1) v (s > 100)) -->
Utils::NoticeOK(frame, "Scale must be in the range of 1 to 100.")
return FALSE value from change_size -
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end_BB

(Sj = change_size(frame, w, 1, 5)) A change_valid(w, 1, s) -->
draw map border (rectangle) of new_width*new_scalé x new_width*new_scale
using display + xid parameters from previous init_draw() call;
return TRUE value from change_size
Si = width A @S| ( <) A (Sj= change_size(f,w,1,5) ) A change_valid(w,Ls)) A
not(3Sk | (j < k < i) A (Sk = change_size(f,w',I's") ) A change_valid(w'l's)) --> w
Sj = width A not(BSj 1G<i)a (Sj = change_size(f,w,1,s) ) A change_valid(w,1,s)) --> 12
Si=length A (38 j 1<i)a (Sj = change_size(f,w,1,5) ) A change_valid(w,1,s)) A
not(ISk | (j < k < i) A (Sk = change_size(f',w',l's") ) A change_valid(w'Y',s")) --> |
Si=length A nol(EiSj IG<i)a (Sj = change_size(f,w,l,s) ) A change_valid(w,1,s)) --> 12
Si=scale A (35j 1§ <) A (Sj =change_size(f,w,1,8) ) A change_valid(w,L.s)) A
not(3ISk | j < k < i) A (Sk = change_size(f,w'l's") ) A change_valid(w',I'5") --> s
Sj = scale A not(3S;j 1 (j < i) A (Sj = change_size(f,w,1,s) ) A change_valid(w,1,s)) --> 40

Spec Function
[ change_valid(w,l,s) ] =

NOTES:

[((Q<s<10)A(w2)A(lZ21)]

(1) assumption is made that init_draw comes before any change_size; no error checking for this
(2) Map() must be first stimuli, by default, since it is a constructor

define_BB PopupMapSize

access programs
void init(Xv_opaque owner_frame, Map* pMap)
void show()
void change(Panel _item)

output
popup window

class access programs
static void cfChange(Panel_item, Event)

input variables
Atur_attribute INSTANCE;
xv_get variables FRAME_CMD_PUSHPIN_IN, XV_KEY_DATA, entered_width,
entered_length, entered_scale

external access
Map::change_size()
Map::width, Map::length, Map::scale

transition
Sj = init(o, p) --> no response.
Si = show() -->

display popup screen with owner o, with values in width/length/scale fields
from p->width, p->length, p->scale, where (3S; 1 (j < i) A (§j = init(o,p)) A
not(3Sk | (j < k< i) A (Sk = init(o,p))))

Si = change(item) -->
given pointer to popup input fields for width/length/scale and popup frame "f"
created by init (3551 § < i) A (§j = init(o,p))), call p->change_size(f, entered
width, entered length, entered scale); if change_size returns 1 and xv_get
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parameter FRAME_CMD_PUSHPIN_IN from f is 1, then call show(); if
change_size() retumns 0, send an error to X View via item to hold the popup on
the screen.

S; = cfChangef(item, ev) --> «
call PopupMapSize* p->change(item) where p = xv_get(item,
XV_KEY_DATA, INSTANCE)

end_BB

NOTES:
(1) assumption is made that init() comes before any other calls

.define_BB WinMap
access programs
init(X v_opaque owner, Map* pMap, PopupMapSize* pPopupMapSize)
void unimplemented()
void quit()

output variables
Xv_opaque frame

output
XView main window

class access programs
static Menu_item cfMenuFileQuit(Menu_item, Menu_generate)
static Menu_item cfMenuMapRedraw(Menu_item, Menu_generate)
static Menu_item cfMenuMapChangeSize(Menu_item, Menu_generate)
static Menu_item cfMenuUnimplemented(Menu_item, Menu_generate)
static void cfRepaint(Canvas, Xv_window, Display, Window, Xv_xrectlist)
static void cfDestroy(Xv_opaque, Destroy_status)

class output variables
Notify_value notify_value

input variables
Attr_attribute INSTANCE;
xv_get variable XV_KEY_DATA

external access
PopupMapSize::show()
Map::init_draw()
Utils::cfNotice_OK()

transition
Sj = inio, pl, p2) >
create WinMap window with owner o, call p1->init_draw with display and xid
Sj = unimplemented() -->
Utils::cfNotice_OK(f, "This function has not been implemented.™)
where f is frame created from S;, where (3551 (j < i) A (8 = init(o,p)))
Si = quitQ) --> ,
call xv_destroy_safe(frame created from Sj), where (BSJ' 1G<i) A (Sj =
init(o,p)))
S = ctMenuFileQuit(item, op) -->
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end_BB

NOTES:

call WinMap* p->quit() where p = xv_get(item, XV_KEY_DATA,
INSTANCE) '
Si = cftMenuMapRedraw(item, op) ~->
call Map* p->draw() where p = xv_get(item, XV_KEY_DATA, INSTANCE)
Sj = cfMenuMapChangeSize(item, op) —>
call PopupMapSize* p->show() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)
Si = citMenuUnimplemented(item, op) -->
call WinMap* p->unimplemented() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)
Sj = cfRepaint(c, pw, d, w, x) —>
call Map* p->draw() where p = xv_get(pw, XV_KEY_DATA, INSTANCE)
Si = cfDestroy(client, status) -->
_Destroy(client, status)

(1) assumption is made that init() comes before any other calls

define_BB Utils
class access programs

end_BB

static void cfNotice_OK(Xv_opaque owner, char *message)

transition

cfNotice_OK(o, m) -->
display XView notice with owner o, message, and Confirm button; wait until
Confirm is pressed.
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TAM ificati lasses

CLASS: MAIN
TYPE IMPLEMENTED: <Main>
(1) SYNTAX
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Arg#4
<Invocation>
main() <void> <int> argc <char ¥**> argv
CLASS OUTPUT VARIABLES
Variable Naine Type Access
{ INSTANCE | <Attr_attribue> ~ publicly accessible
INPUT VARIABLES
Variable Name Type Access
| WinMap::frame | <Xv_opaque> | direct
EXTERNAL ACCESS PROGRAMS
Func Name Value Argitl Argi#? Arg#3
Map::Map() {constructor)
PopupMapSize::init() <void> <Xv_opaque> <Map*>
WinMap::init() <void> <Xv_opaque> <Map*> <PopupMapSize*>
(2) CANONICAL TRACES

canonical(T¢) <--> (T¢ = <Invocation>) v (T = main())

Consitency (1): The canonical form fulfills the requirements of section X1.
e The traces in the set are not further reducible when passed through the equivalences
¢ The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
» There is one each for <Invocation> and main(). )

Te.<Invocation> = <Invocation>;
ADD-TO-TRACE(Tm, Map()) where Ty, is trace for Map object created by <Invocation>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
rejation:

e no partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true:

e defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« <lnvocation> is canonical.
Consitency (3): All RHC values are unigue:

e One value.
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Te.main() =
conditions equivalences

T = <Invocation> | main();

ADD-TO-TRACE(Twm, init(NULL, pm, Ppms));
ADD-TO-TRACE(Tpms. init(pwm->frame, pm));

where Ty is trace for WinMap object created by main() and pwn is
pointer to that object, Tpms is a trace for PopupMapSize object
created by main() and pprns is pointer to that object, and pyy is
pointer to Map object created by <Invocation>

else Jomain already called%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is "true”:

e event defined by LHC; traces and pointers used in RHC are specified by event in T¢

[<Invocation>] or the current event [main()}

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ main() is canonical.
Consitency (3): All RHC values are unique:

¢ One value, one error.

(4) VALUES
OUTPUT VALUES
V{INSTANCEXT) =
conditions values
T = <Invocation> %undefined%
T = main() xv_unique_kev()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ Since T is canonical, the conditions partition the canonical trace and therefore give a full

partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e N/A
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* N/A
Consitency (3): All RHC values are unique:

e  One value, one error.

RETURN VALUES

<none>
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TYPE IMPLEMENTED: <Map>

CLASS: MAP

{1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Argi#3 Arg#4
Ma93 (constructor) '
init_draw <void> <Display *> | <Window> xid
display
draw <void>
change_size <int> <Xv_opague> <double> <double> <int>
frame new_width new length new_scale
OUTPUT VARIABLES

Variable Name Type Access

width <double> public

length <double> public

scale <int> public

change_ok <int> function return
{output screen) (X display window) N/A
EXTERNAL ACCESS PROGRAMS
Func Name Value Argit] Arg#2 Argi#3 Arg#d
Utils: :NoticeOK <void> <Xv_opaque> <char *>
owner message
(2) CANONICAL TRACES

canonical(T) <-->
(T =Map()) v

(T = Map().init_draw(d,xw,wf).[change_size(f, w, 1, s)],-lgo.[change,size(f‘, w,L 1,8 A
bad_values(w',I's"1_)

Consistency (1): The canonical form fulfills the requirements of section XI.

®

The traces in the set are not further reducible when passed through the equivalences
The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS
Func Name Value Arg#l Arg#2 Arg#3 Arg#4 Arg#5
bad_ values <boolean> <double> <double> <int> :
new_width | new_length new_scale
parse <boolean> <trace> <trace> <trace> <trace>

3Map() is a constructor, and therefore will automatically be called anytime an instance of the class is
created. Map() defines default values for the values width, length, and scale until redefined by

change_size. Map() cannot be called explicidy.
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bad_values(w,l,s) =

conditions equivalences
(w<h)v(d>1)v true
(s<Dv(s>100)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true":

» (Constants, therefore always defined.
Consitency (3): All RHC values are unique:

¢ True.
parse(S,51,52,83) =
conditions equivalences
(§=S81.5283) A true

(S1 = Map.[init_draw(d,xw)]} ;) A

(82 = [change_size(f,w,L,s) A not(bad_values(w,L,s)]L,) A
(S3 = [change_size(f,w',I'S") A bad_values(w",l';s)].,)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

¢ Constants, therefore always defined.
Consitency (3): All RHC values are unique:

e True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
¢ There is one each for access programs Map, init_draw, draw, and change_size.

T.Map() = Map()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’: )

¢ No partiioning of domain, therefore complete
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Map() is a canonical trace
Consitency (3): All RHC values are unique:

e No partitioning, therefore unique.

T.init_draw(d,xw) = Map().init_draw(d,xw).C.CE, where parse(T, 1, C, CE)
Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
* No partitioning.
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Completeness (4): The predicates in the RHC are defined whenever the correspondmg predicate in

the LHC is 'true":
o The predicates in RHC are comprised of canonical trace elements from LHC or the
stimulus itself, and are therefore all defined.
Consistency (2): All traces specified in the RHC of the equivalence section are canomca]
e The trace given is canoncical.
Counsitency (3): All RHC values are vnigue:
e Only one value.

T.draw() = ~
conditions equivalences

T = Map() Souninitialized%

else T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true’:

o Tis defined by other side of equivalence.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

» Tis canonrical by definition. '
Consitency (3): All RHC values are unique:

¢ One value, one error.

T.change_size(f,w,l,5) =

conditions , equivalences
T =Map() Youninitialized%
w<Dv{<l) -equiv = LC.change_size(f,w,1,s);
ADD-TO-TRACE(T);, cfNotice_OK(f, "Width and Length must be at
least 1.0m.")
where parse(T, 1, C, CE) and Ty, is the class access trace for Utils
w2Dha(dzDaA equiv = 1.C.change_size(f,w,1,5); ,
(s <1 v(s>100) ADD-TO-TRACE(T), cfNotice_OK(f, "Scale must be in the range of 1 to
- 100.™)
where parse(T, 1, C, CE) and Ty, is the class access trace for Utils
else Lchange_size(f,w.Ls)
where parse(T, 1. C, CE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation: ,

= first case has only constructor, others assume init_draw() in trace; second and third

separated by w/l comparisons, else insures full partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true” '

» RHC items defined by call and parsed trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* The traces shown are all canonical.
Consitency (3): All RHC values are unigue:

* Second and third cases are different by the cfNotice OK calls; third replaces any error

present.
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(4) VALUES

QUTPUT VALUES
V{width}(T) =
conditions values
parse(T, [, C,CE) A C % _ w where
C = change_size(f,w,L,s)
else 12

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

¢ else insures partitioning.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is ‘true"

* first case is defined since change_size() must be defined if C #

constant.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* N/A

Consitency (3): All RHC values are unique:
¢ The first case value may be the same as the constant, but not always, requiring

partitioning.

V[length(T) =

—-—

V(scalel(T) =

V(change_ok](T) =

conditions values
parse(T,, C,CE)AC# __ 1 where
C = change_size(f w,l,s)
else 12
Consistency/Completeness: Same as above.
conditions values
parse(T, I, C,CE)AC#_ s where
C = change_size(f,w,l,s)
else 40
Consistency/Completeness: Same as above.
conditions values
parse(T, [, C, CE) A Yundefined%
C=_ACE=
parse(T, I, C, CE) A 1
Cz2_ ACE=
else 0

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

= cases one and two are distinguished by C test; else insures partitioning.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'rue’:
« all outputs are constant or error and therefore defined.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* NA
Consitency (3): All RHC values are unique:
* true.

; second case is




V{(output_screen)i(T) =

conditions values
T = Map) I%eno_output%
parse(T, I, C, CE, N) A rect of size 12*40 x 12*40 drawn
I = Map().init_draw(d,xw) A in window with Display *d,
C= Window xw
parse(T, I, C, CE, N) A rect of size w*s x 1¥s drawn in
I =Map().init_draw{d,xw) A window with Display *d,
C = change_size(f,w,Ls) Window xw

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

+ If trace does not have just Map(), then I will be equal to Map().init_draw combination,

and C comparision insures partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true” '

¢ values are either constant or defined from variables present in LHC, therefore defined.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* N/A
Consitency (3): All RHC values are unique:

* case 3 may be same as constant values in case two, but not always, requiring

partitioning.
RETURN VALUES
Program Name Argument No Value
| change size | Value I change ok |

Completeness (2): There is one output function/relation that specifies each output value:
¢ There is one output value Vichange_size] defined above for the one value in the table.
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CLASS: POPUPMAPSIZE

TYPE IMPLEMENTED: <PopupMapSize>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Argil Arg#2
init <void> <Xv_opaque> <Map*> pMap
owner_frame
show <void>
change <void> <Panel_item> item
OUTPUT VARIABLES
Variable Name Type Access
| (popup window) | (XView Popup window) | N/A ]
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Argi2
cfChange <void> <Panel_item> <Event>
INPUT VARIABLES
Variable Name Type Access
change _error <int> input pseudo-event
Map::width <double> direct access
Map::length <double> direct access
Map::scale <int> direct access
entered_width <char *> XView xv_get value
entered_length <char *> XView xv_get value
entered_scale <int> XView xv_get value
FRAME _CMD PUSHPIN IN <int> XView xv_get value
XV _KEY_DATA <Xv_opaque> XView xv_get value
INSTANCE <Attr_attribute> direct access

EXTERNAL ACCESS PROGRAMS

Func Name Value Arg#l Arp#2 Arg#3 Arg#4
Map:: <int> <Xv_opaque> <double> <double> <int>
change_size change_error popup_frame new_width new_length new_scale
(2) CANONICAL TRACES

canonical(Tj) <> (Tj =) v (Tj = init(o,p)) v (T} = init(o,p).show()) v (Tj = init(o,p).show().change(it))
v
(T; = init(0,p).show().change(it).change_error)

canonical(T¢) <> (Te =)

Consitency (1): The canonical form fulfills the requirements of section X1.
= The traces in the set are not further reducible when passed through the equivalences
» The traces contain exactly the information needed for the equivalences and outputs
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AUXILIARY FUNCTIONS

parse(§,51,82,83,84) =

conditions equivalences
(§=51.82.83.84) A true
(S1 = [init(o,p)Lo) A
(82 = [showQli) A
(83 = [change(i)li) A
(84 = [change_error]]_)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
_relation: :

» Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true:

« Constants, therefore always defined.
Consitency (3): All RHC values are unique:

¢ True. :

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class,
» There is one each for init, show, change, change_error, and cfChange

T.init(o,p) = ;
conditions equivalences

T= init{o,p)

T= ' Joalready initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation: '

« If one LHC condition is true, the other musi be false, and they therefore partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

* init(o,p) is defined by event itself, other RHC item is error message.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
¢ Only one is specified, init(), and it is canonical.

Consitency (3): All RHC values are unigue:
¢ One is value, one is error.

T.show() =
conditions equivalences
T= : Youninitialized %
else Lshow()
where parse(T, I. S, C, CE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» First case is empty trace, second has something in trace, third is else, insuring partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

»  First two cases are errors, in last ] must be defined since T is not empty.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

» Trace init().show() [I.show()] is in the canonical trace.
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Consitency (3): All RHC values are unique:

e Tre.
T.change(it) =
conditions equivalences
T= ouninitialized%
T = init{0,p) Youndisplayed%
parse(T, L, §, C, CE) A equivalence = L.S.change(it);
S # _ A I=init(o,p) A ADD-TO-TRACE(Tp,

p->change_size() = TRUE

where f is frame created by init()

else

equivalence = [.S.change(it).change_error;
ADD-TO-TRACE(Tp,

A f is frame created by init()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o First two are obviously different, third has show() in T, else separates third from fourth.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

e T and S defined for traces in 3rd/4th cases; p, change_error defined as given; entered*

values defined if popup has been created (since init must be in trace, that is true).
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* injt().show().change() and init().show().change().change_error are canonical
Consitency (3): All RHC values are unique:

¢ 3rd + 4th cases differ in equivalence

T.change_error =

conditions equivalences
T = init(o,p).show().change(it) T.change_error
else Joundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true™

¢ T defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T.change_error canonical if T is as defined by LHC
Consitency (3): All RHC values are unique:

e One value, one error.

T¢.cfChange(item,e) = Tc; ADD-TO-TRACE(Tp, change(item))

where PopMapSize* p = xv_get(item, XV_KEY_DATA, INSTANCE);

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

« No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true’:

¢ If change occurs, the PopupMapSize object must have already been created, and p will

be valid.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T, canonical by definition.
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Consitency (3): All RHC values are unique:

¢ Only one value.

{4) VALUES
OUTPUT VALUES
V{popup_frame](T) =
conditions values
T= Zoundefined%
else frame created via init function

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true”.

e frame is defined by init, which must be part of any non-empty trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

s No traces in RHC
Consitency (3): All RHC values are unique:

» Either frame or error.

V{(popup_window)(T) =

conditions values
T= %undefined %
T = init(o,p) %undisplayed%
T = init(o,p).show() popup window displayed on screen;

Width field = p->width formatted "%.2f";
Length field = p->length formatted "%.2f";

user

T = init(o,p).show().change(it) A popup fields set to values from p-> as given
xv_get(frame created by init(), above
FRAME_CMD, _PUSHPIN_IN) = TRUE

T = Tl.change(it) A popup window disappears from screen
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = FALSE

else popup forced to remain on screen,with values as
modified by user

-0 Map Size

Width: <fl%.2f> Length: <«fl%.2f>
Scale: _ «int>__ AN

Change

[PopupMapSize]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
¢ LHC partitions the entire canonical trace.
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Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true”: .
* window and fields are created by init, which is included in RHC trace
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
* No traces in RHC
Consitency (3): All RHC values are unique:
* Either has constant (default) appeance or one modified by user input.

RETURN VALUES

(none)
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CLASS: WINMAP

TYPE IMPLEMENTED: <WinMap>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3
init <void> <Xv_opaque> <Map*> <PopupMapSize*>
unimplemented <void>
quit <void>
OUTPUT VARIABLES
Variable Name Tvpe Access
frame <Xv_opaque> publicly accessible
{main window) . (XView window)
CLASS OUTPUT VARIABLES
Variable Name Tvpe Access
| notify_value | <Notify_value> func return
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3
cfMenuFileQuit <Menu_item> <Menu_item> <Menu_generate>
cfMenuMapRedraw <Menu_item> <Menu_item> <Menu_generate>
cfMenuMapChangeSize <Menu_item> | <Menu_item> <Menu_generate>
cfMenuUnimplemented <Menu_item> [ <Menu_item> <Menu_generate>
cfRepaint . <Canvas> - <Xv_window> <Display>
- #4 <Window> #5 <Xv_xrectlist>
cfDestroy <Notify value> ’ <Xv_opague> <Destroy_status>
INPUT VARIABLES
Variable Name Type Access
XV_KEY _DATA <Xv_opaque> XView xv_get value
INSTANCE <Altr_attribute> direct access
EXTERNAIL ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3
PopupMapSize::sbow <void>
Map::init_draw <void> <Display> <Window> xid
display
Utils::cfNotice_OK <void> <Xv_opaque> <char *>
owner message

(2) CANONICAL TRACES

canonical(Tj) <--> (Ti = ) v (Tj = init(o,p1,p2))

canonical(T¢) <--> (Te = ) v (T¢ = cfDestroy(c, s))
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Consistency (1): The canonical form fulfills the requirements of section XI.
» The traces in the set are not further reducible when passed through the equivalences
* The races contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
¢ There is one each for access functions init, unimplemented, quit, cfMenuFileQuit,
cfMenuMapRedraw, cfMenuMapChangeSize, cfRepaint, and cfDestroy

T.init(o,pl,p2) =
conditions equivalences
T=_ equivalence= init(o,pl,p2);
ADD-TO—TRACE(Tpl, init_draw(disp, xid))
where disp + xid are defined by XView calls to
create the window
else %already_initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

¢ init(o,p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ Only one is specified, init(), and it is canonical.
Consitency (3): All RHC values are unique:

e One value, one error.

T.unimplemented() =
conditions equivalences
T=_ Youninitialized %
else equivalence = T;
ADD-TO-TRACE(Ty,

cfNotice_OK(f, "This function
has not been implemented.")
where Ty, is the class access trace
for Utils

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true: i

¢ T defined by equivalence.
Coasistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T is canonical by definition.
Consitency (3): All RHC values are unique:

e One value, one error.

T.quit() =

conditions equivalences
T= Zeuninitialized %
else T

Completeness/Consistency same as above.
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Te.cfMenuFileQuit(item, op) =
conditions

equivalences

xv_get(item, XV_KEY_DATA, INSTANCE) =0

P%invalid item%

op = MENU_NOTIFY A
xv_get(item, XV_KEY_DATA, INSTANCE) #0

equivalence = T;

ADD-TO-TRACE(Tp, quit())

where WinMap* p=

xv_get(item, XV _KEY _DATA, INSTANCE);

else

Te

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

»  first two differentiated by =/#; else insure partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true":

* Tcdefined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T, is canonical by definition.
Consitency (3): All RHC values are unique:

e error + one has ADD-TO-TRACE, other does not.

Te.cfMenuMapRedraw(item, op) =
conditions

equivalences

xv_get(item, XV_KEY DATA, INSTANCE) =0

Toinvalid item%

op = MENU_NOTIFY A
xv_get(itern, XV_KEY_DATA, INSTANCE) # 0

equivalence = Tg;

ADD-TO-TRACE(Tp, draw())
where Map* p=
xv_get(item, XV_KEY DATA, INSTANCE);

else

T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* first two differentiated by =/%; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'rue: ~

e Tedefined by LHS: if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T, is canonical by definition.
Consitency (3): All RHC values are unique:

* ermor + one has ADD-TO-TRACE, other does not.

Tc.cfMenuMapChangeSize(item, op) =

conditions equivalences

xv_get(item, XV_KEY DATA, INSTANCE) =0

Pinvalid item%

op = MENU_NOTIFY A
xv_get(item, XV_KEY_DATA, INSTANCE) # 0

equivalence = T;
ADD-TO-TRACE(Tp, show())
where PopupMapSize*p=
xv_get(item, XV_KEY_DATA, INSTANCE);

else

Tc

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

e first two differentiated by =/A#; else insure partition
Compieleness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true’:

e T, defined by LHS; if fn called then item must be created and therefore p will be valid.
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Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
¢ T is canonical by definition. :
Consitency (3): All RHC values are unique:
e error + one has ADD-TO-TRACE, other does not.

Tc.cfMenuUnimplemented(item, op) =
conditions equivalences

xv_get(item, XV_KEY DATA, INSTANCE) =0 | %invalid item%

op = MENU_NOTIFY A equivalence = Tg;
xv_get(item, XV_KEY_DATA, INSTANCE) # 0 | ADD-TO-TRACE(T P unimplemented())
where WinMap* p =
xv_get(item, XV_KEY_DATA, INSTANCE);

else Tc

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true’:

® T defined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ Tis canonical by definition.
Consitency (3): All RHC values are unique:

* emor + one has ADD-TO-TRACE, other does not.

Tc.cfRepaint(canvas, pw, display, xid, rects) =

conditions equivalences
xv_get(pw, XV_KEY DATA, INSTANCE) =0 | %invalid item%
op = MENU_NOTIFY A equivalence = Tg;
xv_get(pw, XV_KEY_DATA, INSTANCE) # 0 ADD-TO-TRACE(TP, draw())
where Map* p =
xv_get(pw, XV_KEY_DATA, INSTANCE);
else Tc

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

* T defined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o T, is canonical by definition.
Consitency (3): All RHC values are unique:

¢ error + one has ADD-TO-TRACE, other does not.

Te.cfDestroy(client, status) = cfDestroy(client, status)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ no partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’

s defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

s cfDestroy() is canonical
Consitency (3): All RHC values are unique:

« one value only
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(4) VALUES

OUTPUT VALUES
Viframej(T) =
conditions values
T= 9oundefined %
T = init(o.p1,p2) frame id for (main window)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

= LHC paritions the canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

o frame is defined by init.
Consistency (2): All races specified in the RHC of the equivalence section are canonical:

* No traces in RHC.
Consitency (3): All RHC values are unique:

e Elther frame or error.

V{(main_window))(T) =

conditions values
T= %undefined%
T = init(o,p1,p2) display WinMap on screen, with canvas exactly

encompassing default map size, with title
"WestWorld -- <None>", with border fitting map
size (Map::init_draw), with menus as follows:

- File: Load..., Save..., Quit

- Map: Redraw <default>, <blank>, Update
HELIX Map, Clear Map, Change Map Size...,
New Map Object...

- Robots: Summon... <default>, <blank>, Start
All Stop All, Quit All

O WestWorld — <NONE>

File 1 Map | Robots 4

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e LHC paritions the canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

« window is defined by init. ’
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Consistency (2): All traces specified in the RHC of the equivalence section are canonical: *
¢ No traces in RHC. i
Consitency (3): All RHC values are unique:
¢ Elther window or error.

Vinotify_value)(T¢) =

conditions values
Te=_ Youndefined %
Te = cfDestroy(client, status) A notify_next_destroy_func(client, status)
status = DESTROY_CLEANUP
else NOTIFY_DONE

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* first two differ, else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

* constant, error, or client/status defined by LHC
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« N/A
Consitency (3): All RHC values are unique:

¢ Eiror, constant, or fn call return

RETURN VALUES

Program Name Argument No Value
l cfDestroy [ Value [ notify_value |

Completeness (2): There is one output function/relation that specifies each output value:
* There is one output value defined above for notify_value.
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CLASS: UTILS

TYPE IMPLEMENTED: <Utils>

(1) SYNTAX
CL.ASS ACCESS PROGRAMS
Func Name Value Arg#l Argi#? Arg#3 Arg#4
cfNotice_OK (notice) + <Xv_opaque> <char *>
<void> owner message
CLASS OUTPUT VARIABLES
Variable Name Type Access
| (notice) | (XView Notice) N/A
INPUT VARIABLES
Variable Name Type Access
l notice_confimm | notice Confirm button pseudo-event
(2) CANONICAL TRACES
canonical(T¢) <--> (T = _) v (T¢ = cfNotice_OK(o,m))
(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
o There is one each for ¢fNotice_OK and notice_confirm.

Te.cfNotice_OK(o,m) =

conditions equivalences
T¢ = cfNotice_OK(o,m) Fowaiting %
else cfNotice_ OK(o,m)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
e else insures partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true":
e event defined by LHC.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e cfNotice_OK is canonical.

Consitency (3): All RHC values are unique:
¢ One value, one error.

Tenotice_confirm =

conditions equivalences
Te = cfNotice_OK(o,m) -
else 9on0 notice%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
¢ else insures partition.
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Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is "true": :
e constants.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e _ is canonical.
Consitency (3): All RHC values are unique:
e One value, one eror.

(4) VALUES
OUTPUT VALUES
Vl(notice)(T) =

conditions values

T= 9ono_output%
T = c¢fNotice_OK(o, m) display XView notice with owner
o0, message m, and Confirm
button

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e Since T is canonical, the conditions partition the canonical trace and therefore give a full

partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true:

¢ defined by LHC
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

*« NA
Consitency (3): All RHC values are unique:

¢ One value, one error.

RETURN VALUES

<none>
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IV. Clear Boxes

The clear boxes consist of the following files, which are attached:
ww_ui.H — header file containing class, constant, and misc. definitions
Main.C — file with main() loop and global variables
Map.C — class implementation for Map
WinMap.C — class implementation for WinMap
PopupMapSize.C — class implementation for PopupMapSize
Utils.C — misc/utility routines

Increment 1 C++ Header Definitions

// ww_ui.H

//

// WestWorld

//

// Alex L. Bangs, 2/10/93

J e e e e —m e

// Modification History:
// 2/10/93 ALB Increment 1

#ifndef WW_UI_HEADER
#define WW_UI_HEADER

#include <math.h>
// Map constants

const double default_width = 12.0;
const double default_length = 12.0;
const int default_scale = 40;
const int min_scale = 1;
const int max_scale = 100;
const double min_width = 1.0;
const double min_length = 1.0;
const int panel_text_size = 80;
// simple #define functions

#define min(a,b) ((a) < (b) ? (a) : (b))
#define scalelt{coord) (irint ((coord) * scale))

// Main descriptor

// (note no real class for Main, but has function + globals
// class Main

/7 void main(int argc, char **argv);

extern Attr_attribute INSTANCE;

// Other class descriptors
class Map {
Display *display;
Window xid;
GC gc;

public:
double width, length;
int scale;

Map () ;
void init_draw(Display*, Window);
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void draw();
int change_size{Xv_opaque frame,
double new_width, double new_length, int new_scale)};
}s

class PopupMapSize {

Xv_opagque frame;

Xv_opague controls;

Xv_opaque map_width_field;

Xv_opaque map_length_field;

Xv_opaque map_scale_field;

Xv_opaque change_button;

Map* pMap;

void update(); // update numbers in the window
public:

void init (Xv_opague owner, Map* pTheMap) ;

void show () ; // redisplay the box, and do an update

void change(Panel_item); // change button pressed; send values to pMap

// class functions
static void cfChange(Panel_item item, Event *event);
// XView button callback for Change
}s

class WinMap (

Xv_opaque controls;
Xv_opaque file_menu_button;
Xv_opaque map_menu_button;
Xv_opague robots_menu_button;
Xv_opague canvas;
Xv_window canvas_paint;
Digplay* display:
Window xid;
Xv_opaque file_menu_create(caddr_t *, Xv_opague);
Xv_opaque map_menu_create{caddr_t *, Xv_opaque);
Xv_opaque robots_menu_create(caddr_t *, Xv_opaque);
Map* pMap;
PopupMapSize* pPopupMapSize;
public:
Xv_opague frame;

void init(Xv_opaque owner, Map*, PopupMapSize*);
void unimplemented();
void quit(};

static Menu_item cfMenuFileQuit (Menu_item item, Menu_generate op);
static Menu_item cfMenuMapRedraw(Menu_item item, Menu_generate op);
static Menu_item cfMenuMapChangeSize(Menu_item item, Menu_generate op);
static Menu_item cfMenuUnimplemented(Menu_item item, Menu_generate op);

// general XView callbacks
static Notify_value cfDestroy (Xv_opaque client, Destroy_status status);
static void c¢fRepaint(Canvas canvas, Xv_window paint_window,

Display *display, Window xid,

Xv_Xrectlist *rects);

114



}i
class Utils (
public:
static void cfNotice_OK (Xv_opague owner, char* message);
};

#endif
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Appendix D: The Second Increment Specification
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WestWorld .
Increment 2 Specification

vel Black Box

define_BB void WestWorld

input

output

Invocation
XCB:Menu/File/LLoad
XCB:MenwFile/Save
XCB:MenwFile/Quit
XCB:Menw/Map/Redraw
XCB:Menw/Map/UpdateHelix
XCB:MenwMap/Clear
XCB:Menu/Map/ChangeSize
XCB:Menw/Map/NewObj
XCB:Menuw/Robots/Summon
XCB:Menuw/Robots/Start
XCB:MenwRobots/Stop
XCB:Menuw/Robots/Quit
XCB:Button/MapLoad
XCB:Button/MapSave
XCB:Button/MapSizeChange
XCB:XV/Destroy
XCB:XV/Repaint

window WinMap
popup PopupLoadMap
popup PopupSaveMap

‘popup PopupMapSize

notice Notice, OK
notice Notice_YN

transition

Invocation —->

_WinMapInit()
XCB:MenuwFile/l.oad -->

_PopupLoadMapShow()
XCB:MenwFile/Save -->

_PopupSaveMapShow()
XCB:MenwFile/Quit >

xv_destroy_safe(WinMap frame created at Invocation)
XCB:MenwMap/Redraw -->

-Repaint()
XCB:Menw/Map/UpdateHelix -->

_Unimplemented(WinMap frame created at Invocation);
XCB:Menuw/Map/Clear -->

_Repaint();
XCB:Menw/Map/ChangeSize -->

_PopupMapSizeShow()
XCB:Menuw/Map/NewObj —>

_Unimplemented(WinMap frame created at Invocation);
XCB:MenwRobots/Summon -->
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_Unimplemented(WinMap frame created at Invocation);
XCB:Menu/Robots/Start -->

_Unimplemented(WinMap frame created at Invocation);
XCB:Menuw/Robots/Stop -->

_Unimplemented(WinMap frame created at Invocation);
XCB:MenwRobots/Quit -->

_Unimplemented(WinMap frame created at Invocation);
XCB:Button/MapSizeChange -->

_PopupMapSizeChange()
XCB:Button/MapLoad -->

_PopupLoadMapload()
XCB:Button/MapSave -->

_PopupSaveMapSave()
XCB:XV/Destroy(client, status) -->

_Destroy(client, status)
XCB:XV/Repaint -->

_Repaint()

end_BB

Black Box Specification Functions:
[ _WinMaplnit() ] =
[

display WinMap on screen, with canvas exactly encompassing default map size
with title "WestWorld -- <None>"
with menus as follows:
File: Load..., Save..., Quit
Map: Redraw <default>, <blank>, Update HELIX Map,
Clear Map, Change Map Size..., New Map Object...
Robots: Summon... <default>, <blank>, Start All,
Stop All, Quit All
with border fitting map size (_Repaint)

O WestWorld — <NONE>

File | Map | Robots 1

]

[ _Repaint() ] =
[ clear WinMap paint window created at Invocation and draw map border using X
Display+Window params for paint window given width, length, scale from default or
XCB:PopupMapSizeChange; draw map objects since last successful load, if not clear since
last load
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[ _Destroy(Xv_opaque client, Destroy_status status) | =
[ status = DESTROY_CHECKING --> NOTIFY_DONE
I status = DESTROY_SAVE_YOQURSELF --> NOTIFY_DONE
| status = DESTROY_CLEANUP --> notify_next_destroy_func(client, status)
I status = DESTROY_PROCESS_DEATH --> NOTIFY_DONE

]

[ _PopupLoadMapShow() ] =
[ display PopuploadMap with either last file loaded or saved (whichever was most recent) or

blank
e ®) WestWorld: Load Map
Filename: <string>

Load

]

[ _PopuploadMapl.oad(} ] =
[ if open file on filename from PopupLoadMap results in error
--> _Notice_OK(PopupLoadMap frame, “The file could not be opened.”)
| for each line in file
if in correct format, add object to map
else _Notice_OK(Popupl.oadMap frame, "Map file format error: <error> @ line

<line>")
where error is the form of the error (possible errors are "bad box definition",
“bad cylinder definition:, and "unknown object") and <line> is the line where it
occured

change tide on window created by _WinMaplInit() to include last component of filename

_Repaint

]

[ _PopupSaveMapShow(} ] =
[ display PopupSaveMap with either last file loaded or saved (whichever was most recent) or

blank
-0 WestWorld: Save Map
Filename: <string>

Save

]

[ _PopupSaveMapSave() ] =
[ ((file already exists A _Notice_YN(PopupSaveMap frame, "File exists. Overwrite it?")) v
file doesn't exist) A no file write/open emrors —>
write comment line to file with file name and date/time of write;
for each object in map from load process since clear, write line to file
I file open error -->
Notice_OK(PopupSaveMap frame, "File could not be opened for write.")
| file write error ~->
_Notice_OK(PopupSaveMap frame, "An error occurred writing the file.”)
)
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{ _PopupMapSizeShow() ] =
[ display PopupMapSize with map width (using %.2f format) of default of 12 m or last width
set by successful XCB:Button/MapSizeChange and length (using %.2f format) of 12m or last
height set by XCB:Button/MapSizeChange and scale of default 40 or last scale set by
XCB:Button/MapSizeChange

-0 Map Size

Width: <fl%.2f> Length: <fi%.2(>

Scale: ___<int>___ B&

Change

]

[ _PopupMapSizeChange() ] =
[ (atof(entered width) < 1 | atof(entered length) < 1) -->
Notice_OK(PopupMapSize frame,
"Width and Length must be at least 1.0m.")
| (entered scale < 1) | (entered scale > 100)
Notice_OK(PopupMapSize frame,
"Scale must be in the range of 1 to 100.")
| (PopupMapSize pushpin is in) ->
redisplay values in PopupMapSize;
_Repaint()
| true -->
_Repaint()
]

{ _Unimplemented(Xv_opaque owner) ] =
[ _Notice_OK(owner, "This function has not been implemented.") ]

[ _Notice_OK(Xv_opaque owner, char *message) ] =
[ display notice for owner
with Confirm button and given message string:

<message>
Confirm
]
[ _Notice_YN(Xv_opaque owner, char *message) | =
[ display notice for owner

with Yes/No buttons and given message string;
retun TRUE (1) if Yes pressed, FALSE (0) otherwise

<message>

Yes No
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lass Desi ngd Class BB ification
(1) Choose candidate objects

The WinMap, PopupMapSize, Map, Utils, and Main classes were already defined in increment 1.
Increment 2 adds two new popup windows, so Popupl.oadMap and PopupSaveMap classes need to be
defined. Consideration of an abstract base class called Popup to hold the common interface and data for all
the popup objects may be in order. Handling files could be pushed into a new class, but it is best at this
point to use basic functions from UNIX (fopen, etc) and have Map be responsible for the filename.

(2) Assign top-level stimuli to objects

Main
Invocation

Map
<none>

PopupLoadMap
XCB:Button/Mapload

PopupSaveMap
XCB:Button/MapSave

PopupMapSize
XCB:Button/MapSizeChange

WinMap
XCB:MenwTFile/Load
XCB:MenwFile/Save
XCB:MenwFile/Quit
XCB:Menw/Map/Redraw
XCB:MenwMap/UpdateHelix
XCB:MenwMap/Clear
XCB:Menw/Map/ChangeSize
XCB:MenwMap/NewObj
XCB:Menuw/Robots/Summon
XCB:MenwRobots/Start
XCB:Menw/Robots/Stop
XCB:Menw/Robots/Quit
XCB:XV/Destroy
XCB:XV/Repaint

Utils
<none>

(3) Identify inter-class stimuli

Main, via the main() function, will have to initialize/create all the other objects, through either init calls or
constructors (same as increment 1).

Map will draw the map info in the paint window of WinMap, based on window information passed from
WinMap. It will assume a default map size until a map size change is sent from another object. It should
have the basic map parameters publicly available. For increment 2, the filename must be avaiiable, and
functions called load(Xv_opaque frame, char *filename) and save(Xv_opaque frame, char *filename)
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which return TRUE if successful and 0 if not. If successful, they set the title bar of the WinMap window to
reflect the current filename loaded. clear() clears out the map. load() will réad in lines from the data file
and call itself via loadline() for each line in the Map. The loadline() function is responsible for intepreting
the file data as objects or comments or errors. Eventually, loadline will have to have some data structure
for storing this data for the Map, but this must be discovered at the clear-box level.

Popupl.oadMap will draw the Load Map popup and handle the button callback for that popup. It will
display the current value of the filename held by the Map when show() is called. It will call Map::load()
when the Load button is pressed. PopupSaveMap is basically the same.

PopupMapSize will draw the Change Map Size popup and handle the button callback for that popup. It
will have to be able to display the popup on command when the appropriate menu item is selected via
WinMap, and it will have to pass the change size parameters to Map when the Change button is pressed
(same as increment 1).

Since the popup objects all share some common traits, including functions for show()-and init(), an
abstract superclass called Popup might be considered to define the common interface and functions that
must be defined by the subclasses. However, the init() functions may be different for each, and the
composition of popup windows may be significantly different, so a superclass will not be considered at
this time.

WinMap will be responsible for drawing the main window. It will accept all menu callbacks, but will only
handle those directly related to what it controls. Since Map will handle the drawing of the map in a
subpane of WinMap, data referencing that subpane will have to be passed to Map, as will the actual draw
calls. The menu item that causes the Change Map Size popup to appear will have to be passed to
PopupMapSize. For incr 2, we have 1o pass show calls to PopuploadMap and PopupSaveMap, and pass
the clear function to Map(). In addition, when Map::init_draw() is called, a reference to the WinMap
window is required which will allow Map to change the title of the window to reflect the latest
loaded/saved filename.

Utils will handle the cfNotice_OK call. For increment 2, we add cfNotice_YN. It does not have any
instantiations.
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Figure X: Second Insrement Object Interaction Diagram

(4) Black Box Definitions

define-BB Main
class access programs
<Invocation>
main{)
<Exit>

class output variables
Autr_atribute INSTANCE

input variables
Xv_opaque WinMap::frame

external access

Map::Map()

Map::~Map()

void Popupl.oadMap::init(Xv_opaque owner—frame, Map* pMap)

void PopupSaveMap::init(Xv_opaque owner-frame, Map* pMap)

void PopupMapSize::init(Xv_opaque owner-frame, Map* pMap)

void WinMap::init(Xv_opaque owner-frame, Map* pMap,
Popupl.oadMap* pPopuplL.oadMap, PopupSaveMap* pPopupSaveMap,
PopupMapSize* pPopupMapSize)

transition
Si = «Invocation> -->
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end_BB

define_BB Map

create Map [invokes Map()), PopupL.oadMap, PopupSaveMap, PopupMapSize,
WinMap ’

Si = main() -->
call init for PopupLoadMap, PopupSaveMap, PopupMapSize + WinMap object
created by Invocation

Sj = <Exit> -->
destroy Map [invokes ~Map(}]

access programs

Map()
~Map()
void init_draw(Display *display, Window xid, WinMap* pWinMap)
void draw()
void ciear()
int change_size(Xv_opaque frame, double new_width,
double new_length, int new_scale)
int load(Xv_opaque frame, char *loadfile)
int save(Xv_opaque frame, char *savefile)
int loadline(Xv_opaque frame, int lineno, char *line)

output variables

output

doubie width
double length
double scale
char *filename

X display window
XView notice

external access

void Utils::cfNotice_OK(Xv_opaque frame, char* message)
int Utils::cfNotice_ YN(Xv_opaque frame, char* message)
void WinMap::set_title(char *)

fopen, fclose, fgets, fputs [stdio calls]

transition

Si{=Map() --> No response.

Sj = ~-Map(} --> No response.

S = init_draw(display, xid, pWinMap) -->
clear window and draw map border (rectangle) of 12*40 x 12*40 [call draw(}],
using given display + xid paramelters.

S = draw() ->
clear window and draw map border (rectangle) of w*s x 1*s where w,1,s are
default or from last legal change_size(), using display + xid parameters from
previous init_draw() call; for each object in a legal loadline() call since last
Map() or clear() or load(), draw appropriate object with from init_draw
display+xid parameters;

S = clear() --> call draw(} for self, set filename in title to <NONE>

(Sj = change_size(frame, w, I, s)) A ((w<1) v (1< 1)) ->
Uhils::cfNotice_OK({frame, "Width and Length must be at least 1.0m.");
retumm FALSE value from change_size

{8; = change_size(frame, w, 1, $)) A ((s < 1) v (3 > 100)) -->
Utils::cfNotice_OK(frame, "Scale must be in the range of 1 to 100.")
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return FALSE value from change_size
(Sj = change_size(frame, w, 1, s)) A change_valid(w, 1, s) -->
call draw() for self;
return TRUE value from change_size
(Sj = load(frame, f)) A error opening f -->
Utils::cfNotice_OK(frame, "The file could not be opened.™)
return FALSE from load()
(8 = load(frame, f)) A error reading f -->
Utils::cfNotice_OK(frame, "An error occurred reading the file.")
return FALSE from load()
(S = load(frame, f)) A error closing f -->
Utils::cfNotice_ OK(frame, "An error occurred closing the file.")
return FALSE from load()
(Sj = load(frame, f)) A
(this->loadline(frame, line #, line from f) = FALSE) -->
return FALSE from load()
(8 = load(frame, f)) A
(this->loadline(frame, line #, line from f) = TRUE) -->
call pWinMap->set_title(ff) where ff is the file component from the path f
for each line in file, call this->loadline(frame, line #, line)
retun TRUE from load(}
(S; = save(frame, f)) A f exists A
Utils::cfNotice_YN(frame, "File exists. Overwrite it?") = TRUE A file create error -->
Utils::cfNotice_OK(frame, "File could not be opened for write.")
return FALSE from save
(Sj = save(frame, f)) A f exists A
Utils::cfNotice_YN(frame, "File exists. Overwrite it?") = FALSE -->
return FALSE from save
(Si = save(frame, f)) A error opening f -->
Utils::cfNotice_OK(frame, "File could not be opened for write.")
return FALSE from save
(Si = save(frame, f)) A no errors opening f A error writing f -->
Utils::cfNotice_OK(frame, "An error occurred writing the file.")
return FALSE from save
(S = save(frame, f)) A no errors opening f A no error writing f -->
write file with heading of file name + date + time of save,
one line for each legal loadline() in stim. hist since last Map(), clear() or load();
call pWinMap->set_title(ff) where ff is the file component from the path {
return TRUE from save
Si = loadline(f,n,1) A ((1{0] = '#") v (1{0] = \0)) --> TRUE
Sj = loadline(f,n,1) A legal_box(l) --> TRUE
Si = loadline(f,n,1) A (strncmp(l, "box", 3) = 0) A not(legal_box(1)) -->
Utils::cfNotice _OK(f, "Map file format error: bad box deftnition @ line <n>")
return FALSE
S; = loadline(f,n,1) A legal_cylinder(l) --> TRUE
Sj = loadline(f,n,1) A (stmecmp(l, "cyl”, 3) = 0) A not(legal_cylinder(l)) -->
Utils::cfNotice_OK(f,
"Map file format error: bad cylinder definition @ line <n>")
return FALSE
Sj = loadline(f,n,]) A (stmemp(l, "box", 3) # 0) A (stmcmp(l, "cyl”, 3) = 0) A (1[0] = '#")
--> Utils::cfNotice_OK(f, "Map file format error: unknown object @ line
<n>");
retum FALSE
(8; = filename) A (no successful load) A (no successful save) --> "°
(Sj = filename) A @S5I <i) A
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(((§ = load(fr.N)) A (load ok)) v ((5j = save(fr,H) A (save ok))) A~
not(3Skx I <k <) A (((Sk = load(fr 1)) A (load ok)) v ((Sx = save(fr,f)) A (save ok))) -
>
f
Si= width A (35§ 1 ( < i) A (Sj = change_size(f,w,1,s) ) A change_valid(w,Ls)) A
not(3Sk 1§ < k < i) A (Sk = change_size(f,w'],s") ) A change_valid(w',I's)) --> w
Sj = width A not(38;1 (< i) A (Sj = change_size(f,w,1,s) ) A change_valid(w,1,s)) --> 12
Si=length A (35j1(j < i) A (§j = change_size(f,w,Ls) ) A change_valid(w,1,s)) A
not(3Sk | (§ <k < i) A (Sk = change_size(f,w']',s) ) A change_valid(w',l's)) --> 1
Sj=length A not(35j 1 (j < i) A (§j = change_size(f,w,1,s) ) A change_valid(w.1,s)) --> 12
Si=scale A (3Sj | (j < i) A (§j = change_size(f,w,1,s) ) A change_valid(w,Ls)) A
not(3Sk | ( < k < i) A (Sk = change_size(f,w',I'5") ) A change_valid(w'l',s") --> s
Si = scale A not(3S; | (j < i) A (§j = change_size(f,w,L,s) ) A change_valid(w,Ls)) --> 40
end_BB

Spec Function
[ change_valid(w,l,s) ] =
[(1<s<100) A (w21 A(121))]
[legal_box(l) ] =
[ iflisof form "box <locx> <locy> <width> <length> [<height>]" --> TRUE
else --> FALSE ]
[legal _cylinder(l) ] =
[ iflis of form "cyl[inder] <locx> <locy> <radius> [<height>]" --> TRUE
else --> FALSE ]

NOTES:
(1) assumption is made that init_draw comes before any change_size; no error checking for this
(2) Map() must be first stimuli, by default, since it is a constructor

define_BB PopupLoadMap
access programs
void init(Xv_opaque owner_frame, Map* pMap)
void show()
void load(Panel _item)

output
popup window

class access programs
static void cfLoad(Panel_item, Event)

input variables
char *Map::filename;
Attr_attribute Main::INSTANCE;
xv_get variables FRAME_CMD_PUSHPIN_IN, XV_KEY_DATA

external access
int Map::load(Xv_opaque frame, char *loadfile)
char *Map::filename

transition
Si = init(o, p) --> no response.
Si = show() -->
display popup screen with owner o, with values filename field from
p->filename, where (35; | j < i) » (§j = init(o,p)))
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end_BB

NOTES:

Si = load(item) --> :
given pointer to popup input field for filename and popup frame "f” created by
init GSj [G<i)a (Sj = init(o,p))), call p->load(f, entered filename); if p-
>load() returns 1 and xv_get parameter FRAME_CMD_PUSHPIN_IN from f is
1, then call show(); if p->load() returns 0, send an error to XView via item to
hold the popup on the screen.

Si = cfLoad(item, ev) -->
call PopupLoadMap* p->load(item) where p = xv_get(item, XV_KEY_DATA,
INSTANCE)

(1) assumption is made that init() comes before any other calls

define_BB PopupSaveMap

end_BB

access programs
void init(Xv_opaque owner_frame, Map* pMap)
void show()
void save(Panel_item)

output
popup window

class access programs
static void cfSave(Panel_item, Event)

input variables
char *Map::filename;
Attr_attribute Main::INSTANCE;
xv_get variables FRAME_CMD_PUSHPIN_IN, XV_KEY_DATA

external access
int Map::save(Xv_opaque frame, char *savefile)
char *Map::filename

transition
Si = init(o, p) --> no response.
S = show() ~->

display popup screen with owner o, with values filename field from
p->filename, where (3551 ( <i) A (Sj = init(o,p)))

Si = save(item) -->
given pointer to popup input field for filename and popup frame "f" created by
init (35 1 § <i) A (Sj = init(o,p))), call p->save(f, entered filename); if p-
>save() returns 1 and xv_get parameter FRAME_CMD_PUSHPIN_IN from {
is 1, then call show(}; if p->save() returns 0, send an error to XView via item to
hold the popup on the screen.

Sj = cfSave(item, ev) -->

call PopupSaveMap* p->save(item) where p = xv_get(ilem, XV_KEY_DATA,
INSTANCE)
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NOTES:
(1) assumption is made that init() comes before any other calls

define_BB PopupMapSize
access programs
void init(Xv_opaque owner_frame, Map¥ pMap)
void show()
void change(Panel_item)

output
popup window

class access programs
static void cfChange(Panel_item, Event)

input variables
Attr_attribute Main::INSTANCE;
xv_get variables FRAME_CMD_PUSHPIN_IN, XV_KEY_DATA, entered_width,
entered_length, entered_scale

external access
int Map::change_size(Xv_opaque frame, double new_width,
double new_length, int new_scale)
double Map::width
double Map::length
double Map::scale

transition
Sj = init(o, p) --> no response.
Si = show() -->
display popup screen with owner o, with values in width/length/scale fields
from p->width, p->length, p->scale, where (38 | (j < i) A (Sj = init(o,p)) A
not(dSk | ( < k< i) A (S = init(o,p))))

S = change(item) -->
given pointer to popup input fields for width/length/scale and popup frame "f"
created by init (38j 1 (j < i) A (§j = init(v,p))), call p->change_size(f, entered
width, entered length, entered scale); if change_size returns 1 and xv_get
parameter FRAME_CMD_PUSHPIN_IN from f is 1, then call show(); if
change_size() returns 0, send an error to XView via item to hold the popup on
the screen.

Si = cfChange(item, ev) ->
call PopupMapSize* p->change(item) where p = xv_get(item,
XV_KEY_DATA, INSTANCE)

end_BB

NOTES:
(1) assumption is made that init() comes before any other calls

define_BB WinMap
access programs
void init(Xv_opaque owner_frame, Map* pMap,
Popupl.oadMap* pPopupLoadMap, PopupSaveMap* pPopupSaveMap,
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PopupMapSize* pPopupMapSize)
void unimplemented()
void quit()
void set_title(char *new_tite)

output variables
Xv_opaque frame

output
XView main window
XView Notice

class access programs
static Menu_item cfMenuFileLoad(Menu_item, Menu_generate)
static Menu_item cfMenuFileSave(Menu_item, Menu_generate)
static Menu_item cfMenuFileQuit(Menu_item, Menu_generate)
static Menu_item cfMenuMapRedraw(Menu_item, Menu_generate)
static Menu_item cfMenuMapClear(Menu_item, Menu_generate)
static Menu_item cfMenuMapChangeSize(Menu_item, Menu_generate)
static Menu_item cfMenuUnimplemented(Menu_item, Menu_generate)
static void cfRepaint(Canvas, Xv_window, Display, Window, Xv_xrectlist)
static void cfDestroy(Xv_opaque, Destroy_status)

class output variables
Notify_value notify_value

input variables
Attr_attribute Main::INSTANCE;
xv_get variable XV_KEY_DATA

external access
void PopupMapload::show()
void PopupMapSave::show()
void PopupMapSize::show()
void Map::init_draw(Display *display, Window xid, WinMap* pWinMap)
void Map::clear()
void Utils::cfNotice_OK()

transition

$i =init(o, pl1, p2) -->
create WinMap window with owner o, call pl->init_draw(display,xid,this)

Si = unimplemented() -->
Utils::cfNotice_ OK(f, "This function has not been implemented.")
where f is frame created from Sj, where C-]Sj 1G<i) A (Sj = init(o,p)))

Si = quit() -->
call xv_destroy_safe(frame created from S;), where (3551 G <i) A (Sj =
init(o,p)))

Si = set_title(new_title) --> set window title to "WestWorld -- <new_title>"

$; = cfMenuFileLoad(item, op) -->
call PopupL.oadMap* p->show() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)

Si = cftMenuFileSave(item, op) -->
call PopupSaveMap* p->show() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)

Sj = cfMenuFileQuit(item, op) -->
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call WinMap* p->quit() where p = xv_get(item, XV_KEY_DATA,
INSTANCE) '
Si = cftMenuMapRedraw(item, op) -->
call Map* p->draw() where p = xv_get(item, XV_KEY_DATA, INSTANCE)
§i = ctMenuMapClear(item, op) -->
call Map* p->clear() where p = xv_get(item, XV_KEY_DATA, INSTANCE)
Sj = cftMenuMapChangeSize(item, op) -->
call PopupMapSize* p->show() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)
S = ctMenuUnimplemented(item, op) >
call WinMap* p->unimplemented() where p = xv_get(item, XV_KEY_DATA,
INSTANCE)
Si = cfRepaint(c, pw, d, w, x) —>
call Map* p->draw() where p = xv_get(pw, XV_KEY_DATA, INSTANCE)
Si = cfDestroy(client, status) -->
Destroy(client, status)
end_BB

NOTES:
(1) assumption is made that init() comes before any other calls

define_BB Utils
class access programs
static void cfNotice_OK(Xv_opaque owner, char *message)
static int cfNotice_ YN(Xv_opaque owner, char *message)

transition

cfNotice_OK(o, m) -->
display X View notice with owner o, message, and Confirm button; wait until
Confirn is pressed.

c¢fNotice_YN(o, m) -->
display X View notice with owner o, message, and Yes/No buttons; wait until
button is pressed, return TRUE (1) if Yes, FALSE (0) if No.

end_BB ;
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L TAM ifications for Classe

CLASS: MAIN
TYPE IMPLEMENTED: <Main>
(1) SYNTAX
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Arg#d
<Invocation>
main(} <void> <int> argc <char **> argv
<Exit>
CLASS OUTPUT VARIABLES
Variable Name Type Access
| INSTANCE { <Attr_attribute> | publicly accessible |
INPUT VARIABLES
Variable Name Type Access
[ WinMap::frame | <Xv_opague> | direct
EXTERNAL ACCESS PROGRAMS
Func Name Value Ars#1 Argit2 Arg#3
Map::Map() (construct.)
Map::~Map() (destruct.)
PopuploadMap::init() <void> <Xv_opaque> <Map*>
PopupSaveMap::init() <void> <Xv_opaque> <Map*>
PopupMapSize::init() <void> <Xv_opague> <Map*>
WinMap::init() <void> <Xv_opaque> <Map*> <Popupl.oadMap*>
#4 <PopupSaveMap*> | #5 <PopupMapSize*>
(2) CANONICAL TRACES

canonical(T¢) <--> (T¢ = <Invocation>) v (T¢ = <Invocation>.main(})
Consistency (1): The canonical form fulfills the requirements of section XI.

o The traces in the set are not further reducible when passed through the equivalences
e The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
e There is one each for <Invocation> and main().

Tc¢.<Invocation> = <Invocation>;
ADD-TO-TRACE(T, Map(}) where T, is trace for Map object created by <Invocation>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
* no partition.
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Compileteness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true”:

e defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ <Invocation> is canonical.
Counsistency (3): All RHC values are unique:
*  One value.

Temain() =

conditions equivalences
Te = <Invocation> | main();
ADD-TO-TRACE(Twm, init(NULL, Pm. pplm, ppsm, ppms));
ADD-TO-TRACE(Tplm, init(pwm->frame, pm));
ADD-TO-TRACE(Tpgm, init(pwm->frame, pm));
ADD-TO-TRACE(Tpms, init(pwm->frame, pm));
where Ty is trace for WinMap object created by main() and pywyy is
pointer to that object, Tp}m is a trace for PopupLoadMap object
created by main() and pplm is pointer to that object, Tpsm is a trace
for PopupSaveMap object created by main() and Ppsm is pointer to
that object, Tpms is a trace for PopupMapSize object created by
main() and ppms is pointer to that object, and ppy is pointer to Map
object created by <Invocation>
else Jomain already called%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true

» event defined by LHC:; traces and pointers used in RHC are specified by event in T¢

[<Invocation>] or the current event {main()]

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e main() is canonical.
Consistency (3): All RHC values are unique:

*  One value, one error.

Te<Exit>=Tg;
ADD-TO-TRACE(T, ~Map()) where Ty, is trace for Map object created by <Invocation>

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* no partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true’: -

e defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e T, is canonical by definition.
Consistency (3): All RHC values are unique:

e  One value.
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(4) VALUES

OUTPUT VALUES
VINSTANCEXT) =
conditions values
T = <Invocation> Youndefined%
T = main() xv_unique_key()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

« Since T is canonical, the conditions partition the canonical trace and therefore give a full

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

partition.
the LHC is 'true’:
¢« N/A

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« N/A

Consistency (3): All RHC values are unique:

e One value, one erTor.

RETURN VALUES

<nonc>
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TYPE IMPLEMENTED: <Map>

CLASS

: MAP

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Arg#d
Map (constructor)
~Map (destructor)
init_draw <void> <Display *> | <Window> xid | <WinMap*>
display pWinMap
draw <void>
clear <void>
change_size | <int> change_ok | <Xv_opaque> <double> <double> <int>
frame new_width pew_length new_scale
load <int> <Xv_opaque> | char* loadfile
loadsave ok frame
save <int> <Xv_opaque> | char* savefile
loadsave ok frame
loadline <int> <Xv_opaque> <int> lineno <char*> line
loadline_ok frame
OUTPUT VARIABLES
Variable Name Type Access
width <double> public
length <double> public
scale <int> public
filename <char*> public
change ok <int> function return
loadsave_ok <int> function return
Joadline_ok <int> function return
(output screen) (X display window)
INPUT VARIABLES
Variable Name Type Access
l file_status! | pseudo input pseudo-event |
EXTERNAL ACCESS PROGRAMS
Func Name Value Argi#tl Arg#2 Ars#3 Argitd
Utils::cfNotice_OK <void> <Xv_opaque> <char *>
owner message
Utils::cfNotice_ YN <int> <Xv_opaque> <char *>
yn_answer owner message
WinMap::set_title <void> <char*>
new title
fopen <FILE*> <char*> <char*> mode
stream filename

1This variable does not necessarily exist, rather it is a placemarker for the results from calls to the

filesystem.
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fclose <int> err <FILE*>
stream
fgets <int> err <char*> s <int>n <FILE*>
stream
fputs <int> err <char*> s <FILE*>
stream
(2) CANONICAL TRACES
canonical(T) <-->
(T =Map()) v

(T = Map(}.init_draw(d,xw,wf).
[change_size(f, w, 1, s)]\,[change_size(f, w', I', s")) A bad_values(w"]'s"].,.
[load(fr.fi) v save(fr,fi)]L.[file_status]. .
((oadline(f,i,]) A bad_line(l)) v [loadline(f,i,};) A not(bad_line(1;))1%,)

Consistency (1): The canonical form fulfills the requirements of section XI.
¢ The traces in the set are not further reducible when passed through the equivalences
*  The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS
Func Name Value Argit] Arg#?2 Arg#3 Argitd Arg#5
bad_values <boolean> <double> <double> <int>
new_width new_length new_scale
bad_line <boolean> <char*> line
parse <boolean> <trace> <irace> <trace> <trace>
bad_values(w,1,s) =
conditions equivalences
(w<l)v(@>1v true
<) v(s>100)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

¢ Constants, therefore always defined.
Consistency (3): All RHC values are unique:

¢ True.

bad_line(l) =

conditions equivalences
1 is of form "box <locx> <locy>
<width> <length> [<height] v
1is of form "cyl{inder] <locx>
<locy> <radius> [<height>] v
100] = #' v1[0] =0
else frue

faise

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
» Else insures partitioning.
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Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true”: .

e Constants, therefore always defined.
Consistency (3): All RHC values are unique:

e True.

parse(S,51,52,53,54,55,56) =
conditions equivalences

(S = §1.82.53.84) A true
(S1 = Map.[init_draw(d,xw,wf)]._,) A
(82 = [change_size(f,w,l,s) A not(bad__values(w,l,s)]LO) A

(83 = [change_size(f,w',l';s") A bad__valuc-:s(w',l',s')]i1 -0) A
(S4 = [load(fr.fi) v save(fr,f)l_g) A

(85 = [file_status] 11 o) A

(S6 = (loadline(f,i,]) A bad_line(l)) v

[loadline(f,i,};) A not(bad_line())],
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true”:

¢ Constants, therefore always defined.
Consistency (3): All RHC values are unique:

¢ True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
o There is one each for access programs Map, ~Map(), init_draw, draw, clear,
change_size, load, save, and loadline as well as input event file_status.

T.Map() = Map()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”:

¢ No partitioning of domain, therefore complete
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Map() is a canonical trace
Consistency (3): All RHC values are unique:

» No partitioning, therefore unique.

T.~Map() = T2

2The destructor ~Map() will probably result in state changes for the object, but since it is about to
disappear from scope, its effect on the trace does not matter since following ~Map(), the object is
undefined.
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Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation: :

* No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true™:

¢ No partitioning of domain, therefore complete
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Map() is a canonical trace
Consistency (3): All RHC values are unique:

* No partitioning, therefore unique.

T.init_draw(d,xw,wf) = Map().init_draw(d,xw,wf).C.CE.FN.FS L, where parse(T, [, C, CE, FN, FS, L)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true"

¢ The predicates in RHC are comprised of canonical trace elements from LHC or the

stimulus itself, and are therefore all defined.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

» The trace given is canoncical.
Consistency (3): All RHC values are unique:

*  Only one value.

T.draw() =

conditions equivalences
T = Map() Gouninitialized %
else T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

* Tis defined by other side of equivalence.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Tis canonical by definition.
Consistency (3): All RHC values are unigue:

¢ One value, one error.

T.clear() =
conditions eguivalences
T = Map() Jouninitialized%
else equiv=1.C;
: ADD-TO-TRACE(Twf, set_title("<NONE>"));
where parse(T, I, C, CE, FN, FS§, L) and
=init_draw(d, xw, wf)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e Tis defined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Map().init_draw() and Map().init_draw().change_size() are canonical
Consistency (3): All RHC values are unique:

*  One value, one error.
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T.change_size(f,w,1,5) =
conditions

equivalences

T = Map()

Y%ouninitialized%

(w<v(i<l)

equiv = 1.C.change_size(f,w,1,s).FN.FS.L;
ADD-TO-TRACE(Ty, cfNotice_OK(f, "Width and Length must be at
least 1.0m.")

I where parse(T, I, C, CE, FN, FS, L) and Ty is the class access trace for

Utils

(w2DAdzDA
(s<Dv(s>100)

equiv = 1.C.change_size(f,w,1,s).FN.FS.L;
ADD-TO-TRACE(Ty, cfNotice_OK({(f, "Scale must be in the range of 1 to

100.™)
where parse(T, I, C, CE, FN, FS, L) and Ty, is the class access trace for

Utils

else

1.change_size(f,w.l,s).FN.FS.L
where parse(T, I, C, CE, FN, F§, L)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

o first case has only constructor, others assume init_draw() in trace; second and third
separated by w/l comparisons, else insures full partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'rue”:

e RHC items defined by call and parsed trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e The traces shown are all canonical.
Consistency (3): All RHC values are unique:
¢ Second and third cases are different by the cfNotice_OK calls; third replaces any error

present.

T.Joad{fr,fi) =
conditions

equivalences

T =Map(Q)

%uninitialized%

fopen(fi, "r") = NULL

equiv = LC.(file_status = FILE_OPEN_ERR);
ADD-TO-TRACE(this, clear());

ADD-TO-TRACE(Tf, fopen(fi, "r"});

ADD-TO-TRACE(Ty;, cfNotice_OK(f, "The file could not be
opened.”));

where parse(T, 1, C, CE, FN, F8, L), Ty, is the class access trace for
Utils, and Ty is the trace for the file system

(fopen(fi, "r") # NULL) A
(loadline(fr, i, 5;) = FALSE) | ADD-TO-TRACE(this, clear());

equiv = L.C;

ADD-TO-TRACE(this, {loadline(fr, i, s)]L,);

ADD-TO-TRACE(Tf, F=fopen(fi, "1"), [fgets(F, N, s;)1iL,, fclose(F));
where parse(T, 1, C, CE, FN, FS, L) and Ty is the trace for the file
system

(not(feof(F)))

(F=fopen(fi, "r") « NULL) A | equiv=1C;
(loadline(fr, i, s;) = TRUE) A ADD-TO-TRACE(this, clear());
(fgets(FN.sj) = NULL) A

ADD-TO-TRACE(this, [loadline(fr, i, 5;)17_);

ADD-TO-TRACE(Tf, F=fopen(fi, "), {fgets(F, N, ;)1 fclose(P));
ADD-TO-TRACE(Ty, cfNotice_OK(f, "An error occurred reading
the file."));

where parse(T, I, C, CE, FN, FS, L) Ty, is the class access trace for
Utils, and Ty is the trace for the file system
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(F=fopen(fi, "r") # NULL) A

(fclose(F))= 0)

(loadline(fr, i, s;) = TRUE) A

equiv = L.C.(file_stats = FILE_CLOSE_ERR);
ADD-TO-TRACE(this, clear()); '
ADD-TO-TRACE(this, [loadline(fr, i, s;)}iy);

ADD-TO-TRACE(Tf, F=fopen(fi, "r"), [fgets(fi, N, s;)]L,,, fclose(F));
ADD-TO-TRACE(Ty, cfNotice_ OK(f, "An error occurred closing

the file."));
where parse(T, I, C, CE, FN, FS, L), Ty is the class access trace for
Utils, and T is the trace for the file system

else

equiv = L.C.load(fr, fi).[loadline(fr, i, s;)1%,

ADD-TO-TRACE(this, clear());

ADD-TO-TRACE(this, [loadline(fr, i, s;)]%);

ADD-TO-TRACE(Tg, F=fopen(fi, "r"), [fgets(fi, N, s;)]L,, fclose(F));
ADD-TO_TRACE(Twr, set_title(f));

where parse(T, I, C, CE, FN, FS, L), I=init_draw(d, xw, wi), and

Ty is the trace for the file system

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

* clse insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true”:

e Tis defined by LHS.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e LCfilestatus, I.C, I.C.load.loadline* are all canonical

Consistency (3): All RHC values are unique:
¢ Each different in either output tracc or modifications to other traces.

T.save(fr.fi) =

conditions

equivalences

T =Map()

Youninitialized%

fopen(fi, "r") # NULL A
cfNotice YN(fr, "File exists.
Overwrite it?") = FALSE

equiv = LC.(file_status = FILE_OPEN_ERR).L;
ADD-TO-TRACE(Tf, F=fopen(fi, "r").fclose(F));
ADD-TO-TRACE(Ty, cfNotice_YN(fr, "File exists. Overwrite it?"));
where parse(T, I, C, CE, FN, FS, L), Ty is the class access trace for
Utils, and Tg is the trace for the file system

(F=fopen(fi, "r") # NULL A
cfNotice YN(fr, "File exists.
Overwrite it?") = TRUE) A
(F2=fopen(fi, "w") = NULL)

equiv = LC.(file_status = FILE_OPEN_ERR).L;
ADD-TO-TRACE(this, clear(});

ADD-TO-TRACE(T¥, fopen(fi, “r"});

ADD-TQ-TRACE(T;, cfNotice_YN(fr, "File exists. Overwrite it?"),
cfNotice_OK(f, "The file could not be opened."));

where parse(T, I, C, CE, FN, F5, L), Ty, is the class access trace for
Utils, and Ty is the trace for the file system

(F=fopen(fi, "r") # NULL A
cfNotice YN(fr, "File exists.
Overwrite it?") = TRUE) A
(F2=fopen(fi, "w") # NULL)
A fputs(F2, s # 0

equiv = LC.(file_status = FILE_WRITE_ERR).L;
ADD-TO-TRACE(Tf, F=fopen(fi, "r"), fclose(F), F2=fopen(fi, "w")
[fputs(F2, s, fclose(F2));

ADD-TO-TRACE(Ty, cfNotice_YN(fr, "File exists. Overwrite it?"),
cfNotice_OK(f, "An error occurred writing the file."));

where parse(T, 1, C, CE, FN, FS§, L), Ty is the class access trace for
Utils, and T is the trace for the file system
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(F=fopen(fi, "r") # NULL A
cfNotice YN(fr, "File exists.
Overwrite it?") = TRUE). A
(F2=fopen(fi, "w") # NULL)
A fputs(F2, ;) 2 0 A
fclose(F2) 20

equiv = L.C.(file_status = FILE_CLOSE_ERR).L;
ADD-TO-TRACE(Ty, T, F=fopen(fi, "r"), fclose(F), F2=fopen(fi,
"w") {fputs(F2, sl fclose(F2));

ADD-TO-TRACE(T), cfNotice_YN(fr, "File exists. Overwrite it?"),
cfNotice_OK(f, "An error occurred closing the file."));

where parse(T, [, C, CE, FN, F§, L), Ty, is the class access trace for
Utils, and Tt is the trace for the file system

(F=fopen(fi, "r") # NULL A
cfNotice YN(fr, "File exists.
Overwrite it?") = TRUE) A
(F2=fopen(fi, "w") # NULL)
A fputs(F2, sp) # 0 A
fclose(F2)=0

equiv = LC.save(fr, fi).LL

ADD-TO-TRACE(this, clear());

ADD-TO-TRACE(Ty, cfNotice_YN(fr, "File exists. Overwrite it?"));
ADD-TO-TRACE(TY, F=fopen(fi, "r"), fclose(F), F2=fopen(fi, "w")
[fputs(F2, s;)],, fclose(F2));

ADD-TO_TRACE(Twr, set_title(fi));

where parse(T, I, C, CE, FN, F§, L), I=init_draw(d, xw, wf}, Ty is the
class access trace for Utils, and Tg is the trace for the file system

(F=fopen(fi, "r") = NULL) A
=fopen(fi, "w") = NULL)

equiv = LC (file_status = FILE_OPEN_ERR).L;
ADD-TO-TRACE(this, clear());

ADD-TO-TRACE(Tf, fopen(fi, "r"));

ADD-TO-TRACE(T),, cfNotice_OK(f, "The file could not be
opened.™));

where parse(T, 1, C, CE, FN, FS, L), Ty, is the class access trace for
Utils, and Tg is the trace for the file system

(F=fopen(fi, "r") = NULL) A
(F2=fopen(fi, "w") # NULL)
A fputs(F2,5) =0

equiv = LC.(file_status = FILE_WRITE_ERR).L;
ADD-TO-TRACE(Tf, F=fopen(fi, "), fclose(F), F2=fopen(fi, "w")
[fputs(F2, sp)],, fclose(F2));

ADD-TO-TRACE(T),, cfNotice_OK(f, “An error occurred writing
the file."));

where parse(T, I, C, CE, FN, FS, L), Ty, is the class access trace for

Utils, and T is the trace for the file system

(F=fopen(fi, "t") = NULL) A
(F2=fopen(fi, "w") # NULL)
A fputs(F2, 5p) # 0 A
fclose(F2) #0

equiv = L.C.(file_status = FILE_CLOSE_ERR).L;
ADD-TO-TRACE(Ty, Ty, F=fopen(fi, "r"), fclose(F), F2=fopen(fi,
“w") [fputs(F2, s;)],, fclose(F2));

ADD-TO-TRACE(T), cfNotice_OK(f, "An error occurred closing

the file."));
where parse(T, I, C, CE, FN, F§, L), Ty, is the class access trace for
Utils, and Ty is the trace for the file system

else

equiv = L.C.save(fr, fi).L

ADD-TO-TRACE(this, clear());

ADD-TO-TRACE(T, F=fopen(fi, "r"), fclose(F), F2=fopen(fi, "w")
[fputs(F2, s;)1%,, fclose(F2));

ADD-TO_TRACE(Twr, set_title(fi));

where parse(T, I, C, CE, FN, FS, L), I=init_draw(d, xw, wf), and Tf
is the trace for the file system

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true”;

e Tis defined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e ILCfilestatus, I.C, I.C.save.L are all canonical
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Consistency (3): All RHC values are unique:
e Each different in either output tracc or modifications to other traces. -

T.loadline(fr, n, 1) =

conditions equivalences

1[0] = '# v 1{0] =\ T

stmemp(l, "box", 3) =0 A equiv = LCFN.FS.loadline()

1 not in proper box format ADD-TO-TRACE(Ty, cfNotice_OK(fr,
"Map file format error: bad box @ line
<n>"));
where parse(T, I, C, CE, FN, FS, L)

strncmp(d, "cyl”, 3)=0 A equiv = LC.FN.FS.loadline()

1 not in proper cylinder format ADD-TO-TRACE(Ty, cfNotice_OK(fr,
“Map file format error: bad cylinder @

line <n>"));

where parse(T, I, C, CE, FN, FS, L)
1[0] # '# A 1[0] # \0' A stmcmp(l, "box”, 3) | equiv = L.C.FN.FS.loadline()

#0 A stnemp(l, "eyl”, 3) 2 0 A ADD-TO-TRACE(Ty, cfNotice_ OK(fr,

1 not in proper cylinder format "Map file format error: unknown object @
line <n>"));
where parse(T, I, C, CE, FN, FS, L)

else equiv = LC.FN.FS.L.loadline()

where parse(T, I, C, CE, FN, FS. L)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition, tests on | all different
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”:

e Tis defined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ L.C.FN.FS.loadline* is canonical
Consistency (3): All RHC values are unigue:

¢ One value, one error.

T.file_status() =
conditions equivalences
T = Map() %uninitialized%
else equiv = LC.CEFN file_status.L;
where parse(T, I, C, CE, FN, FS§, L)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation: '

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the L.HC is 'true:

e T is defined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e 1.C.CE.FN.file_status.L is canonical
Consistency (3): All RHC values are unique:

* One value, one error.
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{4) YALUES

OUTPUT VALUES

Viwidth}(T) =

~conditions values
parse(T, I, C, CE,FN, FS, L) A w where
C# C = change_size(f,w,L,s)
else 12

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

« else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

» first case is defined since change_size() must be defined if C # _; second case is

constant.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
« NA

Consistency (3): All RHC values are unique: :
« The first case value may be the same as the constant, but not always, requiring

V[lengthl(T) =

Viscalel(T) =

Vifilename](T) =

partitioning.
conditions values
parse(T, I, C, CE,FN, FS, L) A 1 where
C= C = change_size(f,w.1,s)
else 12
Consistency/Completeness: Same as above.
conditions values
parse(T, I, C, CE,FN,FS, L) A s where
C= ‘ C = change_size(f,w,l,s)
else 40
Consistency/Completeness: Same as above.
conditions values
parse(T,1, C, CE,FN,FS, L) A fi where FN = load(fr, fi) v
FN = FN = save(ft, fi)
else o

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true’: ‘

e first case is defined since load() or save() must be in trace if FN # _; second case is

constant.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e NA

Consistency (3): All RHC values are unique:
e  One has real filename, other is blank.

Vichange_ok]}(T) =
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conditions values

parse(T, I, C, CE, FN, FS, L) A %undefined%
C=_ACE=
parse(T, I, C, CE, FN, F§, L) A 1
Cz#_ ACE=
else 0

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ cases one and two are distinguished by C test; else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘'true”:

* all outputs are constant or error and therefore defined.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« NA
Consistency (3): All RHC values are unique:
* true.

Vlloadsave_ok](T) =
conditions values
parse(T, 1, C, CE, FN, FS, L) A 0
FS =FILE_OPEN_ERR A
FS = FILE_WRITE_ERR A
FS = FILE_CLOSE_ERR

parse(T, I, C, CE, FN, FS, L) A 1
EN#_
else Joundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ logic in load() + save() equivalences prohibits baving a value in FS when value in FN,

therefore these conditions are separate; else insures partition for other cases.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true:

¢ all outputs are constant or error and therefore defined.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e NA
Consistency (3): All RHC values are unigue:
*  true.

V[loadline_ok)(T) =

conditions values
parse(T, I, C, CE, FN, FS, L) A 0
L = loadline(, i, 1) A bad_line(l)
parse(T, I, C, CE, FN, FS, L) A 1

L = [loadline(f, i, DI, A
not(bad_line(l,))
else Jeundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» Either L is defined and bad or it is defined and ok: else insures partition for other cases.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”

¢ all outputs are constant or error and therefore defined.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e« N/A
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Consistency (3): All RHC values are unique:
e true.

V{(output_screen))(T) =

conditions values
T = Map() %ono_output%
parse(T, I, C, CE,FN, FS,L) A | rect of size 12%40 x 12*40 with
I = Map().init_draw(d,xw,wf) A objects defined by L (if not
C=_ bad_line) drawn in window with
‘ ' Display *d, Window xw
parse(T, I, C, CE, FN, F§, L) Ao | rect of size w¥*s x I¥s with objects
1= Map().init_draw(d,xw,wf) A defined by L (if not bad_line)
C = change_size(f,w,1,s) drawn in window with Display
*d, Window xw

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

= If trace does not have just Map(), then I will be equal to Map().init_draw combination,

and C comparision insures partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”:

» values are either constant or defined from variables present in LHC, therefore defined.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e N/A
Consistency (3): All RHC values are unique:

e case 3 may be same as constant values in case two, but not always, requiring

RETURN VALUES

partitioning.
Program Name Argument No Value
change size Value change ok
load Value loadsave_ok
save Value loadsave_ok
loadline Value loadline ok .

Completeness (2): There is one output function/relation that specifies each output value:
o There are output values defined above for each value in the table: V[change_ok],
V{loadsave_ok], and V{loadline_ok]; the other values above are not return values.
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CLASS: POPUPLOADMAP

TYPE IMPLEMENTED: <PopupLoadMap>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#?
init <void> <Xv_opaque> <Map*> pMap
owner_frame
show <void>
load <void> <Panel_item> item
OUTPUT VARIABLES
Variable Name Type Access
{ (popup window) ' (XView Popup window) | N/A ]
CILASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2
| cfload { <void> [ <Panel_item> 1 <Event> ]
INPUT VARIABLES
Variable Name Type Access
load_error <int> input pseudo-event
Map::filename <char*> direct access
entered_filename <int> XView xv_get vaiue
FRAME _CMD_PUSHPIN_IN <int> XView xv_get value
XV _KEY _DATA <Xv_opague> XView xv_get value
INSTANCE <Attr_attribute> direct access

EXTERNAL ACCESS PROGRAMS

Func Name Value Argitl Arg#2 Arg#3 Arg#4d
Map::load <int> <Xv_opaque> <char*>
load_error popup_frame loadfile
(2) CANONICAL TRACES

canonical(Tj) <-> (Tij=_)v '(Ti = init(o,p)) v (T = init(o,p).show(}) v (Tj = init(o,p).show().load(it)) v

(Tj = init{o,p).show() Joad(it).load_error)

canonical(T¢) <—> (T¢ =)

Consistency (1): The cancnical form fulfills the requirements of section XI.
~ The traces in the set are not further reducible when passed through the equivalences
« The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS
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parse(S,81,82,83,54) =
conditions equivalences

(S=51.82.53.84) A true
(81 = [init(o,p)] L) A
(82 = [show()1._) A

(S3 = [load(it)]Ly) A
(84 = [load_error]l
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

¢ Constants, therefore always defined.
Consistency (3): All RHC values are unique:

e True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
e There is one each for init, show, load, load_error, and cfLoad

T.init(o,p) =

conditions equivalences
T= init(o,p)
T# Yealready_initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e If one LHC condition is true, the other must be false, and they therefore partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e init(o,p) is defined by event itself, other RHC item is error message.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Only one is specified, init(), and it is canonical.

Consistency (3): All RHC values are unique:
e One is value, one is error.

T.show() =
conditions equivalences
T= Yerminitialized %
else . Lshow()
where parse(T, I, S, L, LE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» First case is empty trace, second has something in trace, third is else, insuring partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”

e First two cases are errors, in last I must be defined since T is not empty.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e Trace init().show() {I.show()] is in the canonical trace.

Consistency (3): All RHC values are unique:
e  True.
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T.load(it) =

conditions equivalences

T=

%uninitialized%

T = init(o,p) Youndisplayed%

parse(T, 1, S, L, LE) A equivalence = .S load(it);
S # _ A I=init(o,p) A ADD-TO-TRACE(Tp, load(f, entered_filename))
p->load() = TRUE where { is frame created by init()

else

equivalence = 1.8 load(it).load_error;

ADD-TO-TRACE(Tp, load(f, entered_filename))

where parse(T, I, S, L, LE) A I=init(o,p) A load_error = load() A f is
frame created by init()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» First two are obviously different, third has show() in T, else separates third from fourth.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e I and S defined for traces in 3rd/4th cases; p, load_error defined as given;
entered_filename and f defined if popup has been created (since init must be in trace,
that is true).

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e init().show().Joad() and init().show().load().load_error are canonical
Consistency (3): All RHC values are unique:

e 3rd + 4th cases differ in equivalence

T.load_error =

conditions equivalences
T = init(o,p).show().load(it) T.load_error
else Poundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true":

e T defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

» T.load_error canonical if T is as defined by LHC
Consistency (3): All RHC values are unique:

¢ One value, one error.

Te.cfLoad(item,e) = T¢; ADD-TO-TRACE(Tp, load(item))

where Popl.oadMap* p = xv_get(item, XV_KEY_DATA, INSTANCE);

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is true":

» If load occurs, the PopupLoadMap object must have already been created, and p will be

valid.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T canonical by definition.
Consistency (3): All RHC values are unique:

¢ Only one value.
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(4) VALUES
OUTPUT VALUES

Vipopup_frame[(T) =

conditions values
T= Joundefined %
else frame created via init function

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

» else insures partitioning.
Completeness {(4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true":

« frame is defined by init, which must be part of any non-empty trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
» No traces in RHC

Consistency (3): All RHC values are unique:

« Either frame or error.

Vi{popup_window)}(T) =

conditions values
T= Poundefined %
T = init{o,p) P%undisplayed%

T = init(o,p).show()

popup window displayed on screen;
Filename field = p->filename; value may be
modified by user

T = init(o,p).show{).load(it) A popup field set to value from p-> as given above

xv_get(frame created by init(),
FRAME _CMD_PUSHPIN_IN) = TRUE

T = T1.load(it) A
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = FALSE

popup window disappears from screen

else popup forced to remain on screen,with values as
modified by user

-0 WestWorld: Load Map
Filename: <string>
Load
[PopupL.ocadMap]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

e LHC partitions the entire canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true™:

* window and fields are created by init, which is included in RHC trace
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e No traces in RHC

Consistency (3): All RHC values are unique:

» Either has constant (default) appeance or one modified by user input.
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RETURN VALUES

(none)
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CLASS: POPUPSAVEMAP

TYPE IMPLEMENTED: <PopupSaveMap>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#?
init <void> <Xv_opague> <Map*> pMap
owner. frame
show <void>
save <void> <Panel_item> item
OUTPUT VARIABLES
Variable Name Type Access
i (popup window) | (XView Popup window) | N/A |
CLASS ACCESS PROGRAMS
Func Name Value Arp#l Arg#2
| cfSave | <void> | <Pape]_item> ] <Event> |
INPUT VARIABLES
Variable Name Type Access
$ave_error <int> input pseudo-event
Map::filename <char*> direct access
entered_filename <int> XView xv_get value
FRAME_CMD_PUSHPIN IN <int> XView xv_get value
XV_KEY DATA <Xv_opaque> XView xv_get value
INSTANCE <Atu_attribute> direct access
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arpi#2 Arg#3 Arg#4
Map::save <int> <Xv_opaque> <char*>
save_error popup_frame savefile
{2) CANONICAL TRACES

canonical(Tj) <> (Tij=_) v\('l‘i = init(o,p)) v (T} = init(o,p).show()) v (T = init(o,p).show().save(it)) v
(Tj = init(o,p).show(}.save(it).save_error)

canonical(T¢) <~> (Te =)

Consistency (1): The canonical form fulfills the requirements of section XI.
= The traces in the set are not further reducible whea passed through the equivalences
= The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS
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parse(S,51,52,53,54) =

conditions equivalences
(§=S51.52.53.54) A true
(S1 = [init(o,p)]L) A
(52 = [show(lL,) A
(83 = [save(in]Ly) A
(S4 = [save_error].)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

« Constants, therefore always defined.
Consistency (3): All RHC values are unique:

e True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
o There is one each for init, show, save, save_error, and cfSave

T.init(o,p) =

conditions equivalences
T= init(o,p)
T Palready_initialized %

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o If one LHC condition is true, the other must be false, and they therefore partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”.

o init{o,p) is defined by event itself, other RHC item is error message.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o Only one is specified, init(), and it is canonical.

Consistency (3): All RHC values are unique:
e One is value, one is error.

T.show() =
conditions equivalences
T= %uninitialized %
else I.show()
’ where parse(T, I, S, L, LE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

«  First case is empty trace, second has something in trace, third is else, insuring partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”

«  First two cases are errors, in last I must be defined since T is not empty.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o Trace init().show() {I.show()] is in the canonical trace.

Consistency (3): All RHC values are unique:
e True.
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T.save(it) =

conditions equivalences

T= Youninitialized%

T = init(o,p) Gundisplayed%

parse(T, 1, S, L, LE) A equivalence = 1.S.save(it);

S # _ A I=init(o,p) A ADD-TO-TRACE(Tp, save({, entered_filename))

p->save() = TRUE where f is frame created by init()

else equivalence = 1.S.save(it).save_error;
ADD-TO-TRACE(T p- save(f, entered_filename))
where parse(T, 1, S, L, LE) A I=init(o,p) A save_error = save() A fis
frame created by init()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

»  First two are obviously different, third has show() in T, else separates third from fourth.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true":

¢« T and S defined for traces in 3rd/4th cases; p, save_error defined as given;

entered_filename and f defined if popup has been created (since init must be in trace,
that is true).
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o init{).show().save() and init().show().save().save_error are canonical
Consistency (3): All RHC values are unique:

» 3rd + 4th cases differ in equivalence

T.save_error =

conditions equivalences
T = init(o,p).show(}.save(it) T.save_error
else Joundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures.
Compieteness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true":

* T defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* T.save_error canonical if T is as defined by LHC
Consistency (3): All RHC values are unique:

¢ One value, one error.

Te.cfSave(item,e) = Tc; ADD-TO-TRACE(Tp, save(item))

where PopSaveMap* p = xv_get(item, XV_KEY_DATA, INSTANCE);

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true":

e If save occurs, the PopupSaveMap object must have already been created, and p will be

valid.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* T¢ canonical by definition.
Consistency (3): All RHC values are unique:

¢ Only one value.
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(4) VALUES

OUTPUT VALUES
Vipopup_frame}(T) =
conditions values
T= %oundefined %
else frame created via init function

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

» frame is defined by init, which must be part of any non-empty trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC
Consistency (3): All RHC values are unique:

» Either frame or error.

VI(popup_window)](T) =

conditions values
T= Jeundefined%
T = init(o,p) Joundisplayed%
T = init(o,p).show() popup window displayed on screen;
Filename field = p->filename; value may be
modified by user
T = init(o,p).show().save(it) A popup field set to value from p-> as given above
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = TRUE
T = Tl.save(it) A popup window disappears from screen
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = FALSE
else popup forced to remain on screen,with values as
modified by user
O WestWorld: Save Map
Filename: <string>
Save
[PopupSaveMap]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e LHC partitions the entire canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is ‘wrue’:

e window and fields are created by init, which is included in RHC trace
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e No traces in RHC
Consistency (3): All RHC values are unique:

« Either has constant (default) appeance or one modified by user input.
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RETURN VALUES

(none)
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CLASS: POPUPMAPSIZE

TYPE IMPLEMENTED: <PopupMapSize>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Aro#2
init <void> <Xv_opaque> <Map*> pMap
owner_frame
show <void>
change <void> <Panel_item> item
OUTPUT VARIABLES
Variable Name Type Access
| ~ (popup window) | (XView Popup window) | N/A
CLASS ACCESS PROGRAMS
Func Name Value Argitl Arg#?
cfChange <void> <Panel_item> <Event>
INPUT VARIABLES
Variable Name Type Access
change_error <int> input psecudo-event
Map::width <double> direct access
Map::length <double> direct access
Map::scale <int> direct access
entered_width <char *> XView xv_get value
entered_length <char *> XView xv_get value
entered_scale <int> XView xv_get value
FRAME_CMD_PUSHPIN_IN <int> XView xv_get value
XV _KEY DATA <Xv_opaque> XView xv_get value
INSTANCE <Attr_attribute> direct access
EXTERNAL ACCESS PROGRAMS
Func Name Value Arp#l Argit? Arg#3 Argitd
Map:: <int> <Xv_opaque> <double> <double> <int>
change_size change_error popup_frame new_width new_length new_scale
(2) CANONICAL TRACES

canonical(Tj) <> (Tj = _) v (Tj = init(o,p)) v (Tj = init(o,p).show()) v (Tj = init(o,p).show().change(it))

v

(Tj = init(o,p).show().change(it).change_error)

canonical(T¢) <> (T = )

Consistency (1): The canonical form fulfills the requirements of section XI.
o The traces in the set are not further reducible when passed through the equivalences

156




e The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

parse(S,51,52,53,54) =

conditions equivalences
(§=581.82.83.54) A true '
(81 = [init(o,p)l o) A
(82 = {show(ll o) A
(83 = [change(iD]L) A
(84 = [change_error]l_)
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true” ’

* Constants, therefore always defined.
Consistency (3): All RHC values are unique:

o  True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
e ‘There is one each for init, show, change, change_error, and cfChange

T.init(o,p) =

T.show() =

conditions equivalences
T= init(o,p)
T# %already_initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ If one LHC condition is true, the other must be false, and they therefore partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
:the LHC is 'true”:

* init(o,p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* Only one is specified, init(), and it is canonical.
Consistency (3): All RHC values are unique:

¢ One is value, one is error.

conditions equivalences
T= : %uninitialized%
else Lshow()
where parse(T, 1, §, C, CE)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e First case is empty trace, second has something in trace, third is else, insuring partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true":

¢ First two cases are errors, in last I must be defined since T is not empty.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical;

e Trace init().show() [I.show()] is in the canonical trace.
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Consistency (3): All RHC values are unique:

e Tre.
T.change(it) =
conditions equivalences
T= Yuninitialized%
T = init(o,p) Joundisplayed%
parse(T, 1, S, C, CE) A equivalence = .8.change(it);
S # _ A I=init(o,p) A ADD-TO-TRACE(T P

p->change_size() = TRUE

where f is frame created by init()

else

equivalence = 1.S.change(it).change_error;
ADD-TO-TRACE(T),

A f is frame created by init()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

»  First two are obviously different, third has show() in T, else separates third from fourth.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is ‘true”:

e Tand S defined for traces in 3rd/4th cases; p, change_error defined as given; entered*

values defined if popup has been created (since init must be in trace, that is true).
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* init().show().change() and init().show().change().change_error are canonical
Consistency (3): All RHC values are unique:

* 3rd + 4th cases differ in equivalence

T.change_error =

conditions equivalences
T = init(o,p).show().change(it) T.change_error
else Youndefined %

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ else insures.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

e T defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e T.change_error canonical if T is as defined by LHC
Consistency (3): All RHC values are unique:

e One value, one error.

Te.cfChange(item,e) = Tc; ADD-TO-TRACE(Tp, change(item))

where PopMapSize* p = xv_get(item, XV_KEY_DATA, INSTANCE);

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» No partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

« If change occurs, the PopupMapSize object must have already been created, and p will

be valid.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e T, canonical by definition.
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change_size(f, atof(entered_width), atof(entered_length), entered_scale))

change_size(f, atof(entered_width), atof(entered_length), entered_scale))
where parse(T, I, S, C, CE) A I=init(o,p) A change_error = change_size()




Consistency (3): All RHC values are unique:
e Only one value.

(4) VALUES
OUTPUT VALUES
V[popup_frame|(T) =
conditions values
T= 9oundefined%
else frame created via init function

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

* frame is defined by init, which must be part of any non-empty trace.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC
Consistency (3): All RHC values are unique:

» Either frame or error.

V{(popup_window)I(T) =

conditions values
T=_ Yundefined %
T = init(o,p) Pundisplayed%
T = init(o,p).show() popup window displayed on screen;

Width field = p->width formatted "%.2{";
Length field = p->length formatted "%.2f";
Scale field = p->scale; values may be modified by
user

T = init{o,p).show().change(it) A popup fields set to values from p-> as given
xv_get(frame created by init(), above
FRAME_CMD_PUSHPIN_IN) = TRUE

T = T1.change(it) A popup window disappears from screen
xv_get(frame created by init(),
FRAME_CMD_PUSHPIN_IN) = FALSE

else popup forced to remain on screen,with values as
modified by user

-0 Map Size

Width: «fl%.2f> Length: <fi%.2f>

Scale: __<int>___ ESIIS'Z!

Change

[PopupMapSize]

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
e LHC partitions the entire canonical trace.
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”: '
e window and fields are created by init, which is included in RHC trace
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e No traces in RHC
Counsistency (3): All RHC values are unique:
o Either has constant (default) appeance or one modified by user input.

RETURN VALUES

(none)

160



TYPE IMPLEMENTED: <WinMap>

CLASS: WINMAP

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#?2 Arg#3
init <void> <Xv_opaque> <Map*> <PopuploadMap*>
#4 <PopupSaveMap*> | #5 <PopupMapSize*>
unimplemented <void>
quit <void>
set_title <void> <char*> new_title
OUTPUT VARIABLES
Variable Name Type Access
frame <Xv_opaque> publicly accessible
{main window) (XView window) N/A
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#? Arg#3
cfMenuFileLoad <Menu _item> <Menu_item> <Menu_generate>
cfMenuFileSave <Menu_item> <Menu_item> <Menu_generate>
cfMenuFileQuit <Menu_item> <Menu_item> <Menu_generate>
cfMenuMapRedraw <Menu_item> <Menu_item> <Menu_generate>
cfMenuMapClear <Menu_item> <Menu_item> <Menu_generate>
cfMenuMapChangeSize <Menu_item> <Menu_item> <Menu_generate>
cfMenuUnimplemented <Menu_item> <Menu_item> <Menu_generate>
cfRepaint <Canvas> <Xv_window> <Display>
#4 <Window> #5 <Xv_xrectlist>
cfDestroy <Notify_value> | <Xv_opaque> <Destroy_status>
CLASS OUTPUT VARIABLES
Variable Name Type Access
[ notify _value ] <Notify value> func retum
INPUT VARIABLES
Variable Name Type Access
XV _KEY _DATA <Xv_opaque> XView xv_get value
INSTANCE <Attr_attribute> direct access
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Ara#f? Argi#3
PopuploadMap::show <void>
PopupSaveMap::show <void>
PopupMapSize::show <void>
Map::init_draw <void> <Display> <Window> xid <WinMap*>
display pWinMap
Map::clear <void>
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Utils::cfNotice_ OK <void> <Xv_opaque> <char *>
owner message

(2) CANONICAL TRACES
canonical(T;) <~> (Tj=_) v (Tj = init(o,p1,p2)) v (Tj = init(o,p1,p2).set_title(t))
canonical(T¢) <--> (T¢ = ) v (T¢ = cfDestroy(c, s))

Consistency (1): The canonical form fulfills the requirements of section XI.
e The traces in the set are not further reducible when passed through the equivalences
e The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
e There is one each for access functions init, unimplemented, quit, cfMenuFileQuit,
cfMenuMapRedraw, cfMenuMapChangeSize, cfRepaint, and cfDestroy

T.init(o,p1,p2,p3,p4) =
conditions equivalences
T=_ equivalence= T.init(o,p1,p2,p3,p4);
ADD-TO-TRACE(Tp], init_draw(disp, xid))
where disp + xid are defined by XView calls to
create the window
clse Yoalready _initialized%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true":

* init(o,p) is defined by event itself, other RHC item is error message.
Consistency (2): All traces specified in the RHC of the equivalence seclion are canonical:

¢ Only one is specified, init(), and it is canonical.
Consistency (3): All RHC values are unique:

¢ One value, one error.

T.unimplemented() =
conditions equivalences
T= %uninitialized%
else equivalence = T;
ADD-TO-TRACE(Ty,

cfNotice_OK(f, "This function
has not been implemented.”™)
where Ty, is the class access trace
for Utils

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

s T defined by equivalence.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« T is canonical by definition.
Consistency (3): All RHC values are unique:

«  One value, one error.
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T.quit() =

conditions equivalences
T= %uninitialized %
else T
Completeness/Consistency same as above.
T.set_title(t) =
conditions equivalences
T= Youninitialized%

T = T1.init(o,p1,p2.p3,p4)
T = Tl.set_title(t")

T.set title(t)
T1.set_title(t)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
+ LHC partitions the canonical trace completely.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true":

T and 1 defined by LHS; T1 defined by LHC

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

init().set_title() canonical; third case LHC and RHC same trace and therefore canonical.

Consistency (3): All RHC values are unique:

One replaces set_title, one adds.

*
.

Tc.cfMenuFileQuit(item, op) =

conditions

equivalences

xv_get(item, XV_KEY _DATA, INSTANCE) =0

%invalid item%

op = MENU_NOTIFY A

equivalence = T¢;

xv_get(item, XV_KEY_DATA, INSTANCE) =0 ADD-TO-TRACE(Tp, quit())

where WinMap* p =

xv_get(itemn, XV_KEY_DATA, INSTANCE);

else Tc

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
¢ first two differentiated by =/#; else insure partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true™:

T defined by LHS; if fn called then item must be created and therefore p will be valid.

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

T is canonical by definition.

Counsistency (3): All RHC values are unique:

error + one has ADD-TO-TRACE, other does not.

Te.cftMenuMapRedraw(item, op) =
conditions

equivalences

xv_get(item, XV_KEY_DATA, INSTANCE) =0

%invalid item%

op = MENU_NOTIFY A
xv_get(item, XV_KEY_DATA, INSTANCE) #0

equivalence = Tg;
ADD-TO-TRACE(Tp, draw())
where Map* p =
xv_get(itern, XV_KEY DATA, INSTANCE);

else

Tc
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Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

» first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true”:

e T, defined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T, is canonical by definition.
Consistency (3): All RHC values are unique:

¢ error + one has ADD-TO-TRACE, other does not.

Te.cfMenuMapChangeSize(item, op) =
conditions

equivalences

xv_get(item, XV_KEY DATA, INSTANCE) =0

%invalid item%

op = MENU_NOTIFY A
xv_get(item, XV_KEY_DATA, INSTANCE) = 0

equivalence = T¢;
ADD-TO-TRACE(Tp, show())
“where PopupMapSize* p =
xv_get(item, XV_KEY_DATA, INSTANCE);

else

Te¢

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

* first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the carresponding predicate in

the LHC is 'true”:

o T, defined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T¢is canonical by definition.
Consistency (3): All RHC values are unique:

* emor + one has ADD-TO-TRACE, other does not.

Te.cfMenuUnimplemented(item, op) =
conditions

equivalences

xv_get(item, XV_KEY_DATA, INSTANCE) =0

Poinvalid item%

op = MENU_NOTIFY A
xv_get(item, XV_KEY_DATA, INSTANCE) # 0

equivalence = T¢;

ADD-TO-TRACE(T, P unimplemented())
where WinMap* p=
xv_get(item, XV_KEY _DATA, INSTANCE);

else

Tc

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e Tcdefined by LHS; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e T, is canonical by definition.
Consistency (3): All RHC values are unique:

e errar + one bas ADD-TO-TRACE, other does not.

Te.cfRepaint(canvas, pw, display, xid, rects) =

conditions _equivalences

| xv_getpw, XV_KEY_DATA, INSTANCE) = 0 | %invalid item%
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op = MENU_NOTIFY A equivalence = Tg;
xv_get(pw, XV_KEY_DATA, INSTANCE)#0 | ADD-TO-TRACE(Tp, draw())

where Map* p=
xv_get{pw, XV_KEY_DATA, INSTANCE);

else

Te

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» first two differentiated by =/#; else insure partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

o T defined by LHS,; if fn called then item must be created and therefore p will be valid.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ T is canonical by definition.
Consistency (3): All RHC values are unique:

» error + one has ADD-TO-TRACE, other does not.

Te.cfDestroy(client, status) = cfDestroy(client, status)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ no partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true":

e defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o cfDestroy() is canonical
Consistency (3): All RHC values are unique:

¢ one value only

(4) VALUES
OUTPUT VALUES
Viframel(T) =
conditions values
T= %undefined%
T = init{o.p1,p2) frame id for (main window)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e LHC paritions the canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’: ,

e frame is defined by init.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e No traces in RHC.
Consistency (3): All RHC values are unique:

e Elther frame or error.
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V[(main_window)](T) =

conditions values
T= Joundefined %
T = init(o,pl,p2,p3.p4) display WinMap on screen, with canvas exactly

encompassing default map size, with title
"WestWorld -- <None>", with border fitting map
size (Map::init_draw), with menus as follows:

- File: Load..., Save..., Quit

- Map: Redraw <default>, <blank>, Update
HELIX Map, Clear Map, Change Map Size...,
New Map Object...

- Robots: Summon... <default>, <blank>, Start
All, Stop All, Quit All

T = T1.set_title(t) same window as above, with title
"WestWorld -- t"

O WestWorld — <NONE>

File 4 Map | Robots |

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e LHC paritions the canonical trace.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”

e window is defined by init.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC.
Consistency (3): All RHC values are unique:

e Window titles differ.

V[notify_value](T¢) =

conditions values
Te=_ Youndefined%
Te = cfDestroy(client, status) A notify_next_destroy_func(client, status)
status = DESTROY_CLEANUP
else NOTIFY_DONE

Completeness (3): The predicates in the ILHC of each table partition the intended domain of the

relation:
e first two differ, else insures partition.
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”: ’
e constant, egror, or client/status defined by LHC
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e« N/A
Consistency (3): All RHC values are unique:
« Error, constant, or fn call return

RETURN VALUES

Program Name Argument No Value
| cfDestroy 1 Value B notifv_value i

Completeness (2): There is one output function/relation that specifies each ontput vaiue:
» There is one output value defined above for notify_value.
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CLASS: UTILS
TYPE IMPLEMENTED: <Utils>
(1) SYNTAX

CLASS ACCESS PROGRAMS

Func Name Value Arg#l Arg#?
cfNotice_ OK <void> <X v_opaque> owner <char *> message
cfNotice_ YN <int> yn_answer <Xv_opague> owner <char *> message
CLASS OUTPUT VARIABLES
Variable Name Type Access
(notice) (XView Notice) N/A
yn_answer <int> func retum
INPUT VARIABLES
Variable Name Type Access
notice_confimm notice Confirm button pseudo-event
notice_yn notice Y/N button value pseudo-event
{2) CANONICAL TRACES

canonical(T¢) <> (T¢ = ) v (Te = cfNotice_OK(o,m)) v (T¢ = cfNotice_YN(o,m))) v
(T¢ = notice_yn)
Consistency (1): The canonical form fulfills the requirements of section XI.

¢ The traces in the set are not further reducible when passed through the equivalences
e The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
* There is one each for cfNotice_OK. cfNotice_YN, notice_confirm, and notice_yn.

T¢.cfNotice_OK(o,m) =

conditions equivalences
T = cfNotice_OK(o,m) v Towaiting%
T¢ = cfNotice_YN(o,m)
else cfNotice_ OK(0,m)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

o event defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« cfNotice_OK is canonical.
Consistency (3): All RHC values are unique:

* One value, one error.
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Te.cfNotice_YN(o,m) =

conditions equivalences
T = cfNotice_OK(o,m) v Fowailing%
T = cfNotice_YN(o,m)
else cfNotice_ YN(o.m)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partition. ,
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e event defined by LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o cfNotice_YN is canonical.
Consistency (3): All RHC values are unique:

¢ One value, one error.

Tc.notice_confirm =

conditions equivalences
T = ¢fNotice_OK(o,m) . :
else %no Confirm notice%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

* constants.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e _ iscanonical.
Consistency (3): All RHC values are unique:

¢ One value, one error.

Tenotice_yn =

conditions equivalences
Te = ¢fNotice_YN(o,m) notice_yn
else %on0 YN notice%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

e notice_yn defined by LHS.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e notice_yn is canonical.
Consistency (3): All RHC values are unique:

e  One value, one error.
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(4) VALUES

OUTPUT VALUES
V{(notice)](T) =
conditions values
T= %no_output%
T = cfNotice_OK(o, m) display X View notice with owner
0, message m, and Confirm
button
T = cfNotice_YN(o0, m) display XView notice with owner
o0, message m, and Yes and No
buttons

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» Since T is canonical, the conditions partition the canonical trace and therefore give a full

partition.

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”

e defined by LHC
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ N/A
Consistency (3): All RHC values are unique:

*  One value, one error.

Vyn_answer)(T) =

conditions values
T = notice_yn A TRUE (1)
notice_yn = NOTICE_YES
T = notice_yn A FALSE (0)
notice_yn # NOTICE_YES
else Zundefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partition.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true': .

* constants
Consistency (2): All traces specified in the RHC of the equivalence section are canonicak:

s potice_yn is canonical.
Consistency (3): All RHC values are unique:

« Two distinct values, one error.

RETURN VALUES
Program Name Argument No Value
| cfNotice_ YN | Value | yn_answer |

Completeness (2): There is one output function/relation that specifies each output value:
« There is one output value defined above for yn_answer.
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V. Clear Boxes

The clear boxes consist of the following files, which are attached:

ww_ui.H — header file containing class, constant, and misc. definitions

Main.C — file with main() loop and global variables

Map.C — class implementation for Map

PopupLoadSave.C — class implementations for Popupl.oadMap + PopupSaveMap
- PopupMapSize.C — class implementation for PopupMapSize

WinMap.C — class implementation for WinMap

Utils.C — misc/utility routines

See below for increment 2 C4+ headers.
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1 Design an | BB ification n vel

This section deals with objects or functions that were "discovered” during the implementation of the first
level of clear boxes.

(1) Choose candidate objects

During the development of the Map object, it became apparent that there was a need for some additional
classes. First, the interaction with files appeared to be similar to dealing with an external object, and
therefore it appeared that it would be easier to encase these interactions into a File class, which is defined
below. However, it was decided that since File would only be used by Map and would not significantly
improve the specification's readability, a separate class was not created. In the code above, filesystem is
considered to be an external object with a set of function calls.

In addition, the Map object requires a data structure to hold the Map data. The structure must be able to
represent multiple types of objects, specifically boxes and cylinders in this increment and perhaps others in
future increments. Therefore, a hierarchy with an abstract base class and subclasses which actually
implement the specific object types is appropriate. This results in the MapQObject hierarchy, with
subclasses MapBox and MapCylinder. This hierarchy was at first included in the first level on this
increment, but it was realized that this was inappopriate, since the MapObject hierarchy should only be
defined after its requirements are clear from developing the Map class.

{2) Assign top-level stimuli to objects
Not applicable at this level.
(3) Identify inter-class stimuli

MapObiject responds to cfSelectAndload() by selecting the appropriate MapObject subclass via checking
cfisMe() for each subclass and then creates an instance of the class that has cflsMe()=TRUE and calls
load(Xv_opague frame, char* line) for the new object. If there are problems with loading, a notice
explaining the problem is displayed using the passed frame. MapBox and MapCylinder have to have
appropriate class function cflsMe and instance functions load(), save(), and draw(). The save(char *line,
int limit) function takes the current data in the object and creates a loadable file line for the object to be
saved to a file via the calling function. The set_next(MapObject*) function sets the next pointer for the
object to the given parameter and returns that pointer, next contains the value of the current next pointer.
An overloaded next() function was considered 10 provide both the set_next and next services, but this was
deemed unacceptable because of possible confusion during specification and design. MapObject is an
abstract superclass, and therefore cannot be instantiated.
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Figure Y: Second Increment Object Interaction Diagram (Final)

(4) Black Box Definitions

define_BB MapObject
access programs
MapObject()

MapObject* set_next(MapObject* nextobj)
virtual int load(Xv_opaque frame, int lineno, char* line)
virtual void save(char *buffer, int bufsize)
virtual void draw(Display *display, Window xid, int scale, int maxy)

oufput variables
MapObiject* next

class access programs

static MapObject* cfSelectAndLoad(Xv_opague frame, int lineno, char* line)

external access

int MapBox::cfIsMe(char* 1)

int MapCylinder::cfIlsMe(char* 1)

void Utils::cfNotice_OK(char *message)
MapBox* MapBox::new()
MapCylinder* MapCylinder::new()

void MapBox::deiete(MapBox*)

void MapCylinder::delete(MapCyiinder*)

transition
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Si = MapObiject() --> no response )
S = next --> returns value from last set_next(n) call, otherwise returns NULL
Si = set_next(p) -->p
Sj = load(f,n,l) --> not implemented in this class
Sj = save(b, bs) --> not implemented in this class
Si = draw(d,xw,s) --> not implemented in this class
Sj = cfSelectAndLoad(f,n,1) A MapBox::cfIsMe(1) = TRUE A
(p = new MapBox)->load(f,n,l) = TRUE --> p
Si = cfSelectAndLoad(f,n,1) A MapBox::cflsMe(l) = TRUE A
(p = new MapBox)->load(f,n,}) = FALSE --> NULL
Si = cfSelectAndLoad(f,n,1) A MapBox::cflsMe(l) = FALSE A
MapCylinder::cfIsMe(l) = TRUE
(p = new MapCylinder)->load(f,n,]) = TRUE --> p
Si = cfSelectAndLoad(f,n,]) A MapBox::cflsMe(l) = FALSE A
MapCylinder::cflsMe(l) = TRUE
(p = new MapCylinder)->load(f,n,]) = FALSE --> NULL
S = cfSelectAndLoad(f,n,]) A MapBox::cfisMe(l) = FALSE A
MapCylinder::cfIsMe(l) = FALSE -->
Utils::cfNotice_OK(f, "Map file format error: unknown object @ line <n>");
return NULL
end_BB

define_ BB MapBox
access programs
MapObject() <inberited>
MapObiject* set_next(MapObject*) <inherited>
virtual int load(Xv_opaque frame, int lineno, char* line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) <inherited>, <overridden>
virtual void draw(Display *display, Window xid, int scale, int maxy)
<inherited>, <ovemridden>

output variables
MapObiject* nexi <inherited>

class access programs
static void cfSelectAndLoad(Xv_opaque frame, int lineno, char* line) <inherited>
static int cfIsMe(char* ling)

external access
void Utils::cfNotice_OK({(char *message)

transition

Sj = load(f,n,I) A legal_box(l) --> TRUE

Sj = load(f,n,I) A not(legal_box(l)) -->
Utils::cfNotice_OK(f, "Map file format error: bad box definition @ line <n>")
return FALSE

S = save(b, bs) -->
copy information from load() into "box <locx> <locy> <width> <length>
<height>" with default height if none specified by load() and limited to length
of bs.

Sj = draw(d,xw,s) -->
draw rectangle at <locx>*s,<locy>*s+<length>*s of size
<width>*s,<length>*s (origin in bottom LHC of map)

Si = cfisMe(l) A stmcmp(l, "box", 3) = 0 --> TRUE

S; = cfIsMe(l) A stmcmp(l, "box", 3) # 0 --> FALSE
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end_BB

Spec Function
[legal_box(l) ] =
[ iflisof form "box <locx> <locy> <width> <length> [<height>]" --> TRUE
else --> FALSE ]

NOTES:
(1) only new or over-ridden routines are re-defined in a derived class (subclass).

define_ BB MapCylinder
access programs
MapObject() <inherited>
MapObiject* set_next(MapObject*) <inherited>
virtual int load(Xv_opaque frame, int lineno, char* line) <inherited>, <overridden>
virtual void save(char *buffer, int bufsize) <inherited>, <overridden>
virtual void draw(Display *display, Window xid, int scale, int maxy)
<inherited>, <ovemridden>

output variables
MapObject* next <inherited>

class access programs
static void cfSelectAndl.oad(Xv_opaque frame, int lineno, char* line) <inherited>
static int cfisMe(char* line)

external access
void Utils::cfNotice_OK(char *message)

transition

Si = load(f,n,1) A legal_cylinder(l) > TRUE

Si =load(f,n,1) A not(legal_cylinder(l)) -->
Utils::cfNotice _OK(f,

"Map file format error: bad cylinder definition @ line <n>")

retumn FALSE

Sj = save(b, bs) -->
copy information from load() into "cylinder <locx> <locy> <radius> <height>"
with defauit beight if none specified by load() and limited to length of bs.

Si = draw(d,xw,s) -->
draw circle at <locx>*s,<locy>*s of radius <radius>*s, origin in bottom LHC
of map

Si = cfIsMe(l) A stncmp(l, "cy!”, 3) = 0 --> TRUE

Sj = cfIsMe(l) A strncmp(l, "cyl”, 3) # 0 --> FALSE

end_BB

Spec Function
[ legal_cylinder(l) ] =
[ iflisof form "cyl[inder] <locx> <locy> <radius> [<height>]" --> TRUE
else --> FALSE ]
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TAM

ifications for Class

econd Level

CLASS: MAPOBJECT

TYPE IMPLEMENTED: <MapObject>

(1) SYNTAX
ACCESS PROGRAMS
Func Name Value Arg#l Arg#? Arg#3 Other
MapObiect (constructor)
set_next <MapObject*> <MapObject*>
nextobj
load <int> load_ok <Xv_opaque> <int> lineno <char*> line virtual
frame
save <void> <char*> buffer <int> bufsize virtual
draw <void> <Display*> <Window> xid <int> scale virtual
display
(Arg#4) <int>
maxy
OUTPUT VARIABLES
Variable Name Type Access
next <MapObject*> public
load_ok <int> fn return
buffer <char*> fn param retum
CILASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#? Arg#3
cfSelectAndLoad | <MapObject*> | <Xv_opaque> frame <int> lineno <char*> line
created
CLASS OUTPUT VARIABLES
Variable Name Type Access
| created { <MapObject*> | fn return
INPUT VARIABLES
Variable Name Type Access
boxnew <MapBox*> ext fn return
cylnew <MapCylinder*> ext fn retum
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arg#2
MapBox::cflsMe <int> <char*> line
MapCylinder::cflsMe <int> <char*> line
Utils::cfNotice_ OK <void> <Xv_opaque> frame <char*> message
MapBox::new <MapBox*> boxnew
MapCylinder::new <MapCylinder*> cylnew
MapBox::delete <void> <MapBox*>
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I MapCylinder::delete | <void> | <MapCylinder*> .

{2) CANONICAL TRACES
canonical(T;) <--> (Tj = MapObject()) v (T} = set_next(n))
canonical(T¢) <--> (T = ) v (T = boxnew) v (T¢ = cylnew)

Consistency (1): The canonical form fulfilis the requirements of section XI.
o The traces in the set are not further reducible when passed through the equivalences
» The traces contain exactly the information needed for the equivalences and outputs

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
o There is one each for MapObject(), set_next(), load(), save(), draw(),
cfSelectAndLoad(), boxnew, cylnew

T.MapObject() = MapObject()

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defired whenever the corresponding predicate in
the LHC is ‘true":

¢ No partitioning of domain, therefore complete
Consistency (2): All'traces specified in the RHC of the equivalence section are canonical:

*  MapObject() is a canonical trace
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.

T.set_next(n) = set_next(n)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true":

o set_next() defined by RHS, L & D defined by parsing T.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e set_next() is canonical.
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.

T.load(f, In, 1) = %undefined for this class%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

*  No partitioning of domain, therefore complete
Compieteness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true”

e error
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e NA
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.

T.save(b, bs) = %undefined for this class%

177



Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

* emor
Consistency (2): All traces specified in the RHC of the equivalence section are cananical:

e N/A
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.

T.draw(d, xw, s, m) = %undefined for this class%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

* error
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* N/A
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.
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Te.cfSelectAndLoad(f, In, 1) =
conditions

eguivalences

MapBox::IsMe()=TRUE A
(boxnew = new MapBox)->load(f, In, )=TRUE

equiv = boxnew;

ADD-TO-TRACE(T¢mb, IsMe(1));
ADD-TO-TRACE(T b, new);
ADD-TO-TRACE(Thoxnew- load(f, In, 1)),
where Temb is the class trace for MapBox

MapBox::IsMe()=TRUE A
(boxnew = new MapBox)->load(f, In, )=FALSE

equiv=_;

ADD-TO-TRACE(T b, IsMe(D);
ADD-TO-TRACE(T¢mb, new);
ADD-TO-TRACE(Tpoxnew, load(f, In, 1));
ADD-TO-TRACE(Tcmp. delete),

where Temb is the class trace for MapBox

MapBox::IsMe()=FALSE A
MapCyl::I1sMe()=TRUE A
(cylnew = new MapBox)->load(f, In, )=TRUE

equiv = cylnew;

ADD-TO-TRACE(T b, IsMe(D);
ADD-TO-TRACE(T¢mc, IsMe(D);
ADD-TO-TRACE(T¢mc, new);
ADD-TO-TRACE(Tcyinew. load(f, In, 1),
where Temp is the class trace for MapBox and
Teme is the class trace for MapCylinder

MapBox::IsMe(l)=FALSE A
MapCyl::IsMe(@)=TRUE A
{cylnew = new MapBox)->load(f, In, )=FALSE

equiv = _;

ADD-TO-TRACE(Tcmb. IsMe(l));
ADD-TO-TRACE(Tcme, IsMe(1));
ADD-TO-TRACE(T¢mc, new);
ADD-TO-TRACE(Tcylnew, load({, In, 1));
ADD-TO-TRACE(T e, delete(cyinew)),
where Temb is the class trace for MapBox and
Temg is the class trace for MapCylinder

else equiv=_;
ADD-TO-TRACE(Tcmb. IsMe(D));
ADD-TO-TRACE(T e, IsMe());
ADD-TO-TRACE(T);, cfNotice_OK(f, "Map file
format error; unknown object @ line <n>"),
where Ty, is the class trace for Utils, Temp is the
class trace for MapBox and Teme is the class
trace for MapCylinder
Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
e else insures parititioning
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
" the LHC is "true”:
e values defined by LHC or LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e _, boxnew, cylnew all canonical for T¢ ‘
Consistency (3): All RHC values are unique:
e equiv and ADD-TO-TRACE results all different
Tc-boxnew = boxnew

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

e No partitioning of domain, therefore complete
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true”: ’
e boxnew defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
e boxnew is a canonical trace
Consistency (3): All RHC values are unique:
e No partitioning, therefore unique.

Te.cylnew = cylnew

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is true":

e cylnew defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* boxnew is a canonical trace
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.

(4) VALUES
OUTPUT VALUES
Vinext}(T) =
conditions values
parse(T, 1, L, D) A I = set_nexi(n) n
else NULL

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
¢ else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is "true':
* ndefined in LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
¢ No traces in RHC
Consistency (3): All RHC values are unique:
¢ Value or NULL.

V{load_ok](T) = %undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* no partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

s error only.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC.
Consistency (3): All RHC values are unique:

e error only.

Vibaffer](T) = %undefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:
* o parlitioning.
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Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true” ’
e error only.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
¢ No traces in RHC.
Consistency (3): All RHC values are unique:
e error only.

Vicreated(T¢) =
conditions values
T¢ = boxnew value of boxnew
T = cylnew value of cylnew
else NULL

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation: ‘

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e defined in LHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e No traces in RHC
Consistency (3): All RHC values are unique:

e different values or NULL.

RETURN VALUES
Program Name Argument No Value
| cfSelectAndLoad | Value | created |

Completeness (2): There is one output function/relation that specifies each output value:
e There is one output value V{created] defined above for the one value in the table.
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CLASS: MAPBOX

TYPE IMPLEMENTED: <MapBox>
(1) SYNTAX

Note: (i) items are inberited

ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Arg#3 Other
(1) (constructor)
MapObject
(i) set_next <MapObject*> <MapObject*>
nextobj
(1) load <int> load_ok <Xv_opaque> <int> lineno <char*> line virtual,
frame overridden
(i) save <void> <char*> buffer <int> bufsize virtual,
overridden
(1) draw <void> <Display*> <Window> xid <int> scale virtual,
display overridden
(Arg#4) <int>
maxy
OUTPUT VARIABLES
Variable Name Type Access
(i) next <MapObiject*> public
(i) load ok <in> fn return (overridden)
(i) buffer <char*> fn param retum
(output _screen) (X display window) N/A
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#2 Argi#3
(i) cfSelectAndload [ <MapObject*> | <Xv_opaque> frame <int> lineno <char*> line
created
cfIlsMe <int> isMe <char *> line
CLASS OUTPUT VARIABLES
Variable Name Type Access
| (i) created | <MapObiect*> | fn return
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#l Arg#2
|  Utils::cfNotice_OK { <void> | <Xv_opague> frame | <char*> message

(2) CANONICAL TRACES
canonical(Tj) <--> (T;j = MapObject() v set_next(n)) v

(Tj = [MapObject() v set_next(n)].Joad(f,In,1)) v
(Tj = (MapObject() v set_next(n)].load(f,In,I).draw(d,xw,s,m))
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canonical(T¢) <--> (Te = ) v (T = boxnew) v (T¢ = cylnew) v (T = cflsMe(l))
~ Consistency (1): The canonical form fulfills the requirements of section XI.

e The traces in the set are not further reducible when passed through the equivalences
e The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

parse(S,51,52,83) =
conditions equivalences

(S = S1.82.53.54) A true
(81 = [MapObject() v set_next(n)]) A
(82 = [load(f,In,D)]}_ ) A

(S3 = [draw(d,xw,s,m)]. )

else faise

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

¢ Constants, therefore always defined.
Consistency (3): All RHC values are unique:

e True.
legal_box(l) =
conditions equivalences
(1 is of form "box <locx> <locy> <width> true
<length> {<height>1"
else false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true": ‘

» Constants, therefore always defined.
Consistency (3): A RHC values are unique:

e True.

(3) EQUIVALENCES

Completeness (1): There is one equivalence for each event class.
* There is one each for set_next(), load(), save(), draw(), and cfIsMe(); MapObject(),
cfSelectAndload(), boxnew, cylnew are unchanged from previous

T.set_next(n) = set_next(n).L.D where parse(T, 1, L, D)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”

e set_next() defined by RHS, L. & D defined by parsing T.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

o set_next(), set_next().load(), and set_next().load().draw() are all canonical traces.
Consistency (3): All RHC values are unique:

¢ No partitioning, therefore unique.
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T.load(f,In, 1) =

conditions equivalences
legal box() Lload(f, In, 1) where parse(T, I, L, D)
else equiv = Lload(f, In, I) where parse(T, 1, L, D);

ADD-TO-TRACE(T\, cfNotice_OK(f, "Map file
format error: bad box definition @ line <In>")
where Ty, is the class trace for Utils

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

else insures partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true™
defined by LHS

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

Lload() is canonical
Consistency (3): All RHC values are unique:

T.save(b,bs) =T

trace alone or trace + ADD-TO-TRACE().

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:
[ ]

no partition

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'rue"
defined by LHS

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

T is canonical by definition
Consistency (3): All RHC values are unique:

e only one
T.draw(d, xw, s, m) =
conditions equivalences
parse(T, I, L, D) A L = load(f, In, 1) A legal box(1)| LL.draw(d, xw, s, m)

else

P%cannot draw without legal load() first%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

else insures partition

Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in

the LHC is ‘true”:
defined by LHS

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

L.load() is canonical
Consistency (3): All RHC values are unique:

Te.cflsMe(l) = cfisMe(l)

trace alone or trace + ADD-TO-TRACE().

Completeness (3): The predicates in the LHC of each table partition the intended domain of the

relation:

No partitioning of domain, therefore complete

Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in

the LHC is 'true”:
cflsMe() defined by LHS

Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

cfIsMe() is a canonical trace
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Consistency (3): All RHC values are unique:
e No partitioning, therefore unique.
{4) VALUES
OUTPUT VALUES

Note: V[next] and V[created] are unchanged from inherited; V[load_ok] and V[buffer] override superclass
def.

Viload_ok](T) =
conditions values

parse(T, L, L, D) A TRUE (1)

L=load(f,ln,I) A

legal box(l)

parse(T, L L, D) A FALSE (D)

L=load(f,In,1) A

not(legal_box(l))

else Foundefined %

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

« else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e constants or error.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* No traces in RHC.
Consistency (3): All RHC values are unique:

e opposite values or error.

Vibuffer}(T) =
conditions values
parse(T, L L, D) A "box <locx> <locy> <width>
L=load(f,In,}) A <length> <height>" from load()
legal_box(l) with default height if none
specified
clse "

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

» else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true':

e value or error.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e No traces in RHC.
Consistency (3): All RHC values are unique:

s value or error.

Vi(output_screen)}(T) =
conditions values
parse(T, L L,D) A draw rectagle parsed from lin
L=load(f,In,1) A legal_box(l) A window defined by 4, xw with
D=draw(d,xw,s,m) scale s and positioned relative to
bottom LHC of window
else Youndefined%
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Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true”:

e defined by RHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC
Consistency (3): All RHC values are unique:

* one value or error.

V(isMel(Tc) =
conditions values
Te = cfisMe(l) A TRUE (1)
stmemp("box",1,3) =0
Te = cfIsMe(l) A FALSE (0)
stmemp("box", 1, 3) <0
else Joundefined %

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

* constants.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

« No traces in RHC
Consistency (3): All RHC values are unique:

e opposite values or error.

RETURN VALUES
Program Name Argument No Value
(i) load Value load_ok (overridden)
(i) save Arg#l buffer (overridden)
(i) cfSelectAndload Value created
cfIsMe Value isMe

Completeness (2): There is one output function/relation that specifies each output value:
* Yes, except for inherited values that are not overridden.
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CLASS: MAPCYLINDER .
TYPE IMPLEMENTED: <MapCylinder>
(1) SYNTAX

Note: (i) items are inherited

ACCESS PROGRAMS
Func Name Value Arg#l Argi#2 Arg#3 Other
) (constructor)
MapObiect ,
(i) set_next <MapObject*> <MapObject*>
. nextobj
(i) load <int> load_ok <Xv_opaque> <int> lineno <char*> line virtual,
frame overridden
(i) save <void> <char*> buffer <int> bufsize virtual,
overridden
(i) draw <void> <Display*> <Window> xid <int> scale virtual,
display overridden
OUTPUT VARIABLES
Variable Name Type Access
(i) next <MapObject*> public
(i) load ok <int> fn return (overridden)
(i) buffer <char*> fn param return
(output _screen) (X display window) N/A
CLASS ACCESS PROGRAMS
Func Name Value Arg#l Arg#?2 Argt3
(i) cfSelectAndload | <MapObject*> | <Xv_opaque> frame <int> lineno <char*> line
created
cfisMe <int> isMe <char *> line
CLASS OUTPUT VARIABLES
Variable Name Type Access
l (i) created | <MapObiject*> fn returmn
EXTERNAL ACCESS PROGRAMS
Func Name Value Arg#] Arg#2
| Utils::cfNotice OK | <void> |__<Xv opague> frame |  <char*> message |
(2) CANONICAL TRACES

canonical(Tj) <--> (Tj = MapObiject() v set_next(n)) v
(T = [MapObject() v set_next(n)].load(f,In,])) v
(T; = MapObject() v set_next(n)].load(f,In,}).draw(d,xw,s,m))

canonical(T¢) <--> (T¢ = ) v (T¢ = boxnew) v (T¢ = cylnew) v (T; = cflsMe(l))
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Consistency (1): The canonical form fulfills the requirements of section XI.
» The traces in the set are not further reducible when passed throughb the equivalences
» The traces contain exactly the information needed for the equivalences and outputs

AUXILIARY FUNCTIONS

parse(S,S1,52,83) =

conditions equivalences

(S =51.82.83.54) A true
(81 = [MapObject() v set_next(n)]) A
(82 = [load(f,In,1)] .‘ ) A

(83 = [draw(d,xw,s,m)].)

else

false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

o Else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'orue’:

e Constants, therefore always defined.
Consistency (3): All RHC values are unique:

e True.

legal_cylinder(l) =

conditions equivalences
(1is of form "cyl[inder] <locx> <locy> <radius> | true
[<height>]™)
clse false

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "rue’:

e Constants, therefore always defined.
Cansistency (3): All RHC values are unique:

e True.

(3) EQUIVALENCES

Compileteness (1): There is one equivalence for each event class.
e There is one each for set_next(), load(), save(), draw(), and cfIsMe(); MapObject(),
cfSelectAndLoad(), boxnew, cylnew are unchanged from previous

T.set_next(n) = set_next(n).L.D where parse(T, 1, L, D)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

e set_next() defined by RHS, L & D defined by parsing T.
Consistency (2): All traces specified in the RHC of the equivalence seclion are canonical:

e set_next(), set_next().load(), and set_next().load().draw() are all canonical traces.
Consistency (3): All RHC values are unique:

e No partitioning, therefore unique.
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T.oad(f, In, 1) =

conditions equivalences
legal_cylinder(l) Lload(f, In, I) where parse(T, I, L, D)
else equiv = Lload(f, In, 1) where parse(T, I, L, D);

ADD-TO-TRACE(Ty, cfNotice_OK(f, "Map file
format error: bad cylinder definition @ line
<In>"), where Ty is the class trace for Utils

Compileteness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partition
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'rue”:

¢ defined by LHS
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

* Lload() is canonical
Consistency (3): All RHC values are unique:

e trace alone or trace + ADD-TO-TRACE().

T.save(b,bs)=T

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* po partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”

* defined by LHS
Consistency (2): All traces specified in the RHC of the equxvalence section are canonical:

» T is canonical by definition
Consistency (3): All RHC values are unique:

» onlyone
T.draw(d, xw, s, m) =
conditions equivalences
parse(T, I, L, D) AL =load(f, In, I) A I.L.draw(d, xw, s, m)
legal cylinder(l)
else Jocannot deaw without legal load() first%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partition
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is "true”:

s defined by LHS
Consistency (2): All traces specified in the RHC of the equ:valence section are canonical:

* Lload() is canonical
Consistency (3): All RHC values are unique:

e trace alone or trace + ADD-TO-TRACE().

Te.cflsMe(l) = cflsMe(l)

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

*  No partitioning of domain, therefore complete
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true’:

e cflsMe() defined by LHS
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Consistency (2): All traces specified in the RHC of the equivalence section are canonical:
s cfIsMe() is a canonical trace ’
Consistency (3): All RHC values are vnique:
* No partitioning, therefore unique.

(4) VALUES
OUTPUT VALUES

Note: V[next] and V{created] are unchanged from inherited; V[load_ok] and V{buffer] override superclass
def.

V{load_ok](T) =
conditions values

parse(T, L, D) A TRUE (1)
L=load(f,In,I) A
legal cylinder(l)

parse(T, I, L, D) A FALSE (0)
L=load(f,In,I) A

not(legal_cvlinder(1))
else Joundefined %

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is "true:

s constants or error,
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

¢ No traces in RHC.
Consistency (3): All RHC values are unique:

e opposite values or error.

Vibuffer](T) =
conditions values
parse(T, I, L, D) A “cylinder <locx> <locy>
L=load(f,In,I) A <radius> <height>" from load()
legal_cylinder(l) with default height if none
specified
else

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

* else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the comresponding predicate in
the LHC is 'true”:

¢ value or error.
Consistency (2): All races specified in the RHC of the equivalence section are canonical:

e No traces in RHC.
Consistency (3): All RHC values are unique:

e value or error.
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V[(output_screen)](T) =

conditions values
parse(T, L, L, D) A draw circle parsed from 1 in
L=load(f.In,!) A legal_cylinder(l) | window defined by d, xw with
A D=draw(d,xw,s,m) scale s and positioned relative to
, bottom LHC of window
else Youndefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

e else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is 'true”:

e defined by RHC.
Consistency (2): All traces specified in the RHC of the equivalence section are canonical:

e No traces in RHC
Consistency (3): All RHC values are unique:

¢ one value or error.

V[isMel(T¢) =
conditions values
Te = cflsMe(l) A TRUE (1)
stmemp{"cyl",1,3) =0
Te = cflsMe(l) A FALSE (0)
strnemp("cyl”, 1, 3) # 0
else Youndefined%

Completeness (3): The predicates in the LHC of each table partition the intended domain of the
relation:

¢ else insures partitioning.
Completeness (4): The predicates in the RHC are defined whenever the corresponding predicate in
the LHC is ‘true":

e constants.
Consistency (2): All traces specified in the RHC of the equivalence section are canonicak:

¢ No traces in RHC
Consistency (3): All RHC values are unique:

e opposite values or error.

RETURN VALUES
Program Name Argument No Value
(i) load Value load_ok (overridden)
(i) save Arg#l buffer (overridden)
(i) cfSelectAndLoad Value created
cfIsMe Value isMe

Completeness (2): There is one output function/relation that specifies each output value:
* Yes, except for inherited values that are not overridden.
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lear Box nd Level

The clear boxes consist of the following files, which are attached:
MapObject.C — class implementation of MapObject, MapBox, and MapCylinder

Increment 2 C++ Header Definitions (Complete)

// ww_ui.H

/7

// WestWorld

/7

// Alex L. Bangs, 2/10/92

F e e

// Modification History:
// 2/10/93 ALB Increment 1
// 6/21/93 ALB Increment 2

#ifndef WW_UI_HEADER
#define WW_UT_HEADER

#include <math.h>
// Map constants

const double default_width = 12.0;
const double default_length = 12.0;
const int default_scale = 40;

const int min_scale = 1;

const int max_scale = 100;

const double min_width = 1.0

const double min_length = 1.0;
const int panel_text_size = 80;
const int filename_size = 80;

const double default_obj_height = 2.0;
// simple #define functions

#define min(a,.b) ((a) < (b) ? (a) : (b))
#define scalelt (coord) (irint ((coord) * scale))

// Main descriptor

// (note no real class for Main, but has function + globals
// class Main

// void main(int argc, char **argv);

extern Attr_attribute INSTANCE;

extern class MapObject;
extern class WinMap;

// Other clasc descriptors
class Map {

Display *display;
Window xid;

GC dac;
MapObject* objects;
WinMap* pWinMap;

public:
double width, length;
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};

class PopupLoadMap {

public:

int scale;

char filename[filename_size];

Map();
~Map () ;
void init_draw(Digplay*, Window, WinMap*);
void draw() ;
void clear();
int change_size(Xv_opague frame,
double new_width, double new_length, int new_scale);
int load (Xv_opaque frame, char *lcadfile);
int save (Xv_opaque frame, char *savefile);
int loadline (Xv_opaque frame, int lineno,

Xv_opaque frame;

Xv_opaque controls;

Xv_opague filename_field:

Xv_opadue button;

Map* pMap;

void update();

void init (Xv_opagque owner, Map* pTheMap);
void show() ;

void load(Panel_item item);

// class functions

}:

class PopupSaveMap {

public:

static void

cflLoad(Panel_item item, Event

Xv_opagque frame;

Xv_opaque controls;

Xv_opaque filename_field;

Xv_opaque button;

Map* PMap;

void update () ;

void init(Xv_opaque owner, Map* pTheMap);
void show () ;

void save (Panel_item item);

// class functions

};

class PopupMapSize ({

static void

Xv_opaque
Xv_opaque
Xv_opague
Xv_opague
Xv_opagque
Xv_opagque

Map* pMap;
void update () ;

cfSave(Panel_item item, Event

frame;

controls;
map_width_field;
map_length_field;
map_scale_field;
change_button;
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char *line);

*event) ;

*event) ;

// update numbers in the window



public:

void init (Xv_opaque owner, Map* pTheMap);
void show () ; // redisplay the box, and do an update
void change (Panel_item); // change button pressed; send values to

pMap

// class functions
static void cfChange(Panel_item item, Event *event);
// XView button callback for Change
}i

class WinMap {

Xv_opagque controls;

Xv_opaque file_menu_button;

Xv_opaque map_menu_button;

Xv_opadque robots_menu_button;

Xv_opaque canvas;

Xv_window canvas_paint;

Display* display;

Window xid;

Xv_opaque file_menu_create(caddr_t *, Xv_opaque);

Xv_opaque map_menu_create (caddr_t *, Xv_opague);

Xv_opague robots_menu_create(caddr_t *, Xv_opaque);

Map* pMap;

PopupLoadMap* pPopupl.oadMap;

PopupSaveMap* pPopupSaveMap;

PopupMapSize* pPopupMapSize;

public:

Xv_opaque frame;

void init (Xv_opaque owner, Map*, Popupl.ocadMap*, PopupSaveMap*,
PopupMapSize*);

void unimplemented() ;

void quit ();

void set_title(char* new_title);:

// XView interface callbacks

static
static
static
static
static

Menu_item
Menu_item
Menu__item
Menu_item
Menu_item

(class functions)
cfMenuFilelcad(Menu_item item, Menu_generate op);
cfMenuFileSave (Menu_item item, Menu_generate op);
cfMenuFileQuit (Menu_item item, Menu_generate op);
cfMenuMapRedraw (Menu_item item, Menu_generate op);
cfMenuMapClear{(Menu_item item, Menu_generate op);

Menu_item
Menu_item

static
static

cfMenuMapChangeSize (Menu_item item, Menu_generate op);
cfMenuUnimplemented (Menu_item item, Menu_generate op):;

// general XView callbacks (class functions)
static Notify_value cfDestroy (Xv_opaque client, Destroy_status status);
static void cfRepaint (Canvas canvas, Xv_window paint_window,
Display *display, Window xid, Xv_xrectlist *rectsg);
}:

class Utils {

public:

// class functions
static void cfNotice_ OK(Xv_opague owner,
static int cfNotice_YN(Xv_opague owner,

char* message);
char* message);
}i

class MapObject {

194



protected:
double locx, locy, height;

public:

MapObject* next;

MapObject(};

MapObject* set_next (MapObject* nextobj);

virtual int load (Xv_opaque frame, int lineno, char* line) = 0;

virtual veid save(char* buffer, int bufsize) = 0;

virtual void draw(Display* display, Window xid, int scale, int maxy) =
0;

// class functions
static MapObject* cfSelectAndLoad(Xv_opaque frame, int lineno,
char* line);
1

class MapBox : public MapObject {
// private
double width, length;

public:
int load (Xv_opague frame, int lineno, char* line);
void save (char* buffer, int bufsize);
void draw(Display* display, Window xid, int scale, int maxy);

// class functions
static int cfIsMe(char* line);
};

class MapCylinder : public MapObject ({
// private
double radius;

public:
int load (Xv_opaque frame, int lineno, char* line);
void save (char* buffer, int bufsize);
void draw (Display* display, Window xid, int scale, int maxy):;

// class functions
static int cflIsMe(char* line);
}i

#endif
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Alex L. Bangs was born in Midland, Michigan on July 23, 1966. He grew up in
Michigan and moved to Indiana, where he started his first professional programming job
at the age of 14. He attended Harvard University, where he was active in the
International Relations Council and worked in the Harvard Robotics Laboratory. In 1988
he received an A.B. degree in Computer Science and Engineering Sciences magna cum
laude.

After graduation, he worked for a year at the Institute for Defense Analyses in
Alexandria, Virginia as a Research Staff Member where he concentrated on technology
policy analysis. He next worked at Honeybee Robotics in New York City as a Project
Engineer, developing space and commercial robotic prototypes including a robot
bartender. In 1990, he moved to Tennessee to work at Oak Ridge National Laboratory.
The same year he began work on his Master of Science degree at the University of
Tennessee, concentrating in software engineering, and worked during the 1991-1992
school year as a research assistant. He graduated in August 1993.

Since 1990, he has been a Research Associate in the Intelligent Systems Section at Oak
Ridge National Laboratory, most recently concentrating in cooperating mobile robots
research. He has also been an ongoing computing consultant to Bangs Laboratories of
Carmel, Indiana since its incorporation in 1988.

The author is a member of ACM and IEEE.
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