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The TORSED method provides a means of coupling cylindrical two-dimensional 
DORT fluxes or fluences to a threedimensional TORT calculation in Cartesian geometry 
through construction of external boundary sources for TORT. This can be important for 
several reasons. The two-dimensional environment may be too large for TORT simulation. 
The twodimensional environment may be truly cylindrical in nature, and thus, better treated 
in that geometry. It may be desired to use a single environment calculation to study 
numerous local perturbations. 

In Section I, the TORSED code is described in detail, and the diverse demonstration 
problems that accompany the code distribution are discussed. In Section Il, an updated 
discussion of the VISA code is given. VISA is required to preprocess the DORT files for use 
in TORSED. In Section III, the references are listed. 
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THE TORSED CODE 
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1. INTRODUCI'ION 

The purpose of TORSED is to provide a quick, reliable coupling between 2- 
Dimensional (2-D) DORT [rh88] calculations in cylindrical (RZ) geometry and 3-Dimensional 
(3-D) TORT [rh9lb,rh9la,rh87] calculations in Cartesian ( X Y Z )  geometry. There can be 
several motivations for such a coupling. In some cases, the entire environment is too large 
for 3-D simulation. An example is a building located on the ground a kilometer from a 
weapon source. In other cases, a portion of the problem is cylindrical in nature, but 3-D 
geometry is required for local detail. An example is a fixture at the surface of a reactor 
pressure vessel. In still other cases, fine mesh spacing or a special directional quadrature is 
required in the 3-D case that is not required in the 2-D environmental calculation. It may 
also be desired to study numerous local configurations with a single environment calculation. 

An earlier code, DOTTOR, [th86] was constructed more or less concurrently with 
TORT to perform the mapping of the aidground environment fluence from a weapon source 
to the surface. of a concrete building. This was used successfully in a detailed study of 
radiation received inside the building. [rh92b,rh89] DOTTOR was also used in a study of 
detailed flux patterns near beam tubes in the High Flux Isotope Reactor (HFIR). 
[ch88b,ch88a] 

The details of DOTTORs construction made it relatively expensive to use, however, 
and extending it to problems using one or two million mesh cells and discontinuous-mesh 
geometry was not feasible. In addition, questions about the reliability of DOTTOR have 
arisen over the years. By comparing DO'ITOR results with results from the new TORSED 
code, certain malfunction modes have been identified, and error stops have been put in place 
to prevent them. With these changes, DO'TTOR can apparently be used reliably, within its 
scope of applicability, and it was valuable in checking the early TORSED results. 

TORSED uses a much simpler procedure to map fluxes or fluences from one 
direction set and geometry to another, and it is constructed to run very large problems in 
minimal time and computer memory. It is fully compatible with the discontinuous-mesh 
features of TORT. Its straightforward construction facilitates checking and maintenance.. Its 
simple procedure has proven adequate for cases where the same quadrature is used in 2-D 
and 3-D calculations. A few special cases could, theoretically, prove inaccurate, and those will 
be discussed later. 

At this time, TORSED is compatible with all TORT features except the option to 
vary directional quadrature by energy group. If that should prove valuable, it can be added 
at a later date. Alternate procedures for performing the directional remapping are discussed 
in a later section. The early applications have been quite successful, however, and the 
demand for considering alternatives is not urgent. 
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21 BasicToRsEDMethod 

The task accomplished by TORSED is quite straightforward. It is to read the 5uence 
files from an RZ DORT calculation and to prepare an external boundary source file for a 
TORT X Y Z  calculation (Eigure 2.1). As indicated in the figure, the DORT direction set 
rotates with the azimuthal variable, rather than remaining fixed in space. The vertical plane 
in the illustration indicates the RZ grid of the DORT problem. In 2-D cylindrical geometry, 
there is no azimuthal grid, of course, and the same fluence applies at eveiy azimuth. The 
TORT geometry is located with respect to the DORT geometry by the radius and height of 
its origin, and by the rotation of its X axis counterclockwise fkom the DORT R axis. The 2 
axes of the trLo problems are assumed to remain parallel. The TORT direction set is fixed 
in space throughout the entire TORT geometry, but, in general, none of the directions match 
DORT directions exactIy. 

The spatial interpolation is straightfoward. The average DORT flux for each volume 
cell is assumed to be the flux value for the geometric center of the cell, and the flux at the 
geometric center of each surface cell on the TORT geometry is assumed to apply to that 
entire TORT 4. Accordingly, the radius and height in DORT coordinates of each center 
on the TORT surface is obtained, and the flux at that point €or each DORT direction is 
obtained by linear spatial interpolation between the nearest-neighbor DORT cell-center flux 
values (Figure 2.2). Linear interpolation of the logarithm of DORT flux is also an available 
option. It may be noted that either interpolation requires that the DORT mesh be large 
enough that its mesh centers completely enclose the TORT geometry. Extrapolation can lead 
to serious errors, and it is not allowed. 

The spatial interpolation establishes a value for the flux in each of the DORT 
directions at each cell center on the TORT surface. Some type of directional remapping must 
be used to obtain the flux in each TORT direction. TORSED presently uses a look- 
backward" method in which the flux in each TORT direction is set equal to the DORT flux 
in the nearest DORT direction. 

The spatial interpolation requires a grid sufficiently fine near the TORT surface that 
linear interpolation of the flux is valid When a cylindrical surface is modeled, it must be 
remembered that the Cartesian representation of this surface will be jagged. 

The look-backward method used in directional interpolation is at its best when 
matching direction sets are used in DORT and TORT, and when the DORT flux varies 
smoothly over the direction space. Examples of cases not properly treated by this method are 
the collapse of a fine DORT quadrature into a cOarSe TORT quadrature and the case where 
a single DORT ray such as the ray containing the unmllided component in an air transport 
environment has a large value. In the case of a single large value, it is also important that 
the DORT directions have equal weight, since no correction for weight mismatch is available. 
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A less obvious limitation can arise when the contents of the enclosed TORT volume 
do not have the same reflection and transmission properties as the corresponding space in the 
original DORT problem. If the flux entering the surface is perturbed significantly by changes 
within the volume, then the result may not be correct. This can happen, for example, if a 
large volume of air in the DORT geometry is replaced with a scattering medium that would 
reflect particles. If those reflected particles are able to leave the enclosed volume and then 
reenter it, the incoming DORT flux would not be correct for that case. Similarly, if particles 
would normally have passed through the volume and would have scattered back into it, new 
material in the volume might prevent that. Removing material can also cause perturbation. 
For example, replacing water with a beam tube removes reflection that would have taken 
place, and both outgoing and incoming flux may be altered. 

Several situations can mitigate this problem, however. If the enclosed volume is small 
with respect to a mean-free-path in the surrounding medium, a particle is unlikely to enter, 
leave, and then re-enter the volume. Backscatter of transmitted flux is rarely important due 
to the low probabilities involved. In the beam tube example, an unperturbed surface can be 
selected several mean-free-paths away from the perturbation in the water. If a small 
perturbation is described, selecting a surface distant with respect to the largest dimension of 
the perturbation may result in an unperturbed surface. It may be noted that perturbation of 
the outgoing flux is not important, since TORSED deals only with the incoming flux. 

2 3  Alternate Formulatiam - The Tnok-Fonmrd" Method 

One alternative to the "look-backward" method would be a "look-forward" approach. 
In this method, each incoming DORT ray would be apportioned among several nearest- 
neighbor TORT rays according to the relative nearness and weight of the neighbors. This 
method would account for a large discrete ray correctly, and it would allow a fine quadrature 
to be mapped into a coarse. It would be fairly tolerant of mismatched direction sets and 
uneven direction weights. It would always preserve flux and, if the direction sets were 
sufficiently fine, it would approximately preserve current. In certain special cases, however, 
it might provide no flux at all in some of the TORT directions. It would fail badly if a coarse 
DORT direction set were mapped into a fine TORT set. It would probably require the 
calculation and storage of additional information to be used in the mapping. Its use in other 
codes has not been so common as use of the "look-backward" method. 

2 4  Alternate Formulations - The DoTIylR Method 

We will descnk briefly, for the purpose of comparison, the method used by 
DO'ITOR. Full details can be found in the reference. DOTI'OR establishes sectors of 
direction space corresponding to each DORT and each TORT direction (Figure 23). 
Although the basic discrete ordinates formulation does not guarantee that this is always valid, 
it is a workable plan with the direction sets in common use with DORT and TORT. The 
DORT flux is assumed to be constant over its sector. Since the coordinates of the sectors 
are the azimuthal angle and the cosine of the polar angle, then summing each DORT flux 
times the area of its intersection with a given TORT sector approximates the integral of 
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DORT flux over the sector. Dividing by the TORT sector area gives the remapped flux to 
be used as a source in the TORT problem. 

This method generally has all of the desirable traits of the look-forward and look- 
backward methods except simplicity. It proved to be quite tedious to program and debug. 
The number of remapping constants is potentially huge; potentially, there would be a 
different set of coupling coefficients at each surface cell of the TORT geometry. Accordingly, 
the constants were calculated each time they were used, causing very large problems to 
require undesirable amounts of computer time. Still, the method performed well with all 
combinations of quadratures, treated discrete rays correctly, provided non-zero source in all 
directions, and preserved fla It was a valuable basis for comparison in the present work. 
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Figure 2.1 -- Transformation From an RZ DORT to an XYZ TORT 
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Figure 2.2 -- Spatial Interpolation to a Point on the TORT Surface 
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Figure 2.3 -- DOTTOR Hethod of Direction Happing 
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3. PROGRAMMER'S INFORMATION 

3.1 Input Output, and Common BIocks 

F 

The task of TORSED, from a programmer's point of view? is to transform an input 
file containing DORT flux values as processed by the VISA [rh74a] code into an output file 
for use as a boundary source by TORT. The format of the input file is that produced by the 
VISA code with the N"PE parameter set to 1. A description of the VISA code should be 
consulted for detailed specifications. The output file is produced in the VARBND format 
used as input by the TORT code. The VARBND format is described in Appendix E. 

Certain parameters and data arrays are required as input, as specified in Appendix A. 
In addition to the job title and data required to control the execution, descriptions of the 
space mesh and directional quadrature are required. The input parameters are read directly 
into common block COMSED described in Appendix B. The arrays are read into a single 
large "container" whose location is determined by calls to DORT support subroutines. 

The relative location of each individual array in the container is defined by a pointer 
stored in the common block The pointer for array ?? is always named L??, etc. For 
example, the array NAL begins at a location in the container array specified by the pointer 
LWAL In general, the pointers are stored in common in ascending order, so that the 
difference between the values of suocessive pointers indicates each array length. The 
container, once located, is called I). Then, to use array WAX, in a subroutine, the argument 
D(LIVAL) is included in the call statement, and the name N A L  is used in that position in 
the subroutine statement. This method of data storage is sometimes called "flexible 
dimensioning". It is similar in concept to the pointer feature of Cray FORTRAN, but it is 
not machine dependent. Since compilers do not require a special treatment of the flexiiile 
dimensioning array, there is no loss of efficiency comparable to that experienced with the 
Cray pointers. 

Additional input parameters are obtained from the input files as indicated in the first 
section of Appendix B. The appendix also indicates a number of parameters generated 
internally by the code as noted. 

TORSED uses several common arrays h m  DORT in order to communicate with 
DORT support subroutines. These blocks are: 

COMIN - general job status information 
COMIO -- VO unit status information 
COMBLK - reference address for the container 

The general ordering of data arrays in the container is indicated in Appendix C. 
Several arrays there are listed as originating from the user input or from the VISA input file. 
In certain special cases, data arrays may overlay each other, if they are not used concurrently, 
of course, The source Listing is the final word on those details. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . , . . . . . ., . . . . . . . .,. . .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- . . . . . . . . . . . . . . . . ._^ ... 



If IMTI.gt.0, the source arrays numbered 7? are not supplied, and only the 't" 
terminating that block is to be input. In that case, a conventional continuous mesh source 
is constructed for TORT. If IMTI.lt.0, a discontinuous mesh source will be constructed, and 
the 7? arrays are required as described in Appendix k A detailed discussion of the 
discontinuous mesh technique is given in Appendix D. Briefly the number of space cells is 
allowed to vary from row to row in a plane, and the number of rows is allowed to vary from 
plane to plane. This feature allows the computational work to be concentrated where it is 
needed to detail special features, and it is possible to define very complex geometric 
structures in this way. An important advantage of the feature is that it does not require the 
abandonment of the mathematical solution procedures developed for continuous mesh 
problems. 

3 2  GeneralcodeStructure 

A walkthrough of the main structural subroutines serves to describe the code 
structure. 

MAIN -- the main program reads the input data, obtains computer memory for the container, 
and calls SEDIN. 

SEDIN -- SEDIN calls DOPC to initialize the UO process and then sets up the pointers 
required for data array storage. It calls INPA twice, reads the remainder of the arrays, and 
continues the problem solution by a call to SEDUM. At the conclusion, a final call to DOPC 
disposes of all open data files properly. 

INPA -- the first call to INPA counts the total number of rows in the TORT mesh. In a 
continuous-mesh problem, this is simply JM*KM. The second call to INPA fills arrays needed 
to support the discontinuous mesh process, and then identifies K-sets. A K-set is a set of 
planes having identical space mesh specifications. The first plane belongs to the first K-set 
by default, as do all planes like it. The next plane to have a different space mesh begins K- 
set 2, and so on. The K-mate of a plane is K for the first plane having the same space mesh, 
i.e. the first plane having the same K-set value as the plane in question. 

SEDUM -- SEDUM calls the TORT quadrature and geometry routines, reads the description 
of the DORT quadrature and geometry from the VISA input file, calls the DORT quadrature 
and geometry routines, and then calls FLUXRZ to complete the execution. 

QUADT -- the TORT quadrature routine supplies the missing cosine, XZIT, and performs 
consistency checks to assure that the quadrature set is valid. 

GEOMT -- the TORT geometry routine finds the width and midpoint of each mesh interval 
and performs consistency checks on the mesh. 

QUADD -- the DORT quadrature routine supplies the missing cosine, XZI, calculates the 
cylindrical coordinates, RAD and PHI, of the projection of each direction in the plane 
perpendicular to Z, and calculates a "double-DORT' quadrature set in which the outward and 
inward directions are separated. It then uses subroutine ROTATE to find the double-DORT 
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direction matching each TORT direction at the position of the TORT origin and to convert 
the double-DORT direction index to a standard DORT direction index This index, MATCH, 
is listed in the standard edit of input data 

GEOMRZ -- the DORT geometry routine obtains the cylindrical DORT coordinates of each 
cell center on the surface of the TORT geometry. The arrays are called RZ? and THZ?, 
where ? takes on the values L, R, I, 0, B, and T denoting the TORT left, right, inside, 
outside, bottom, and top faces. Considerable reliance is placed on the built-in trigonometric 
functions in order to simplifj the work Figure 3.1 illustrates the logic used in the 
transformation. The special function ATANX is simply a call to the built-in function ATANZ 
with special provision made for the case where both arguments are 0. Some machines handle 
this case gracefully, providing 0 as the value, and others do not. ATANZ always provides the 
azimuth in the proper quadrant for use with other Eunctions, which is a considerable 
convenience. A degenerate case occurs when the position being converted is much farther 
away from the TORT axis than the TORT axis is distant from the DORT axis. In that case, 
the DORT cylindrical coordinates are taken to be equal to the TORT coordinates with little 
error. This procedure was tested extensively for various inputs, and it proved quite robust 
in spite of the double application of the law of cosines. 

33 Supporting Service R o u h  

TORSED draws extensively from the collection of service routines from the DORT 
distriiution. A brief discussion of the routines follows. In general, the source listing of each 
routiqe provides more detailed information as to the use and proper calling sequence. In 
some cases, the routines call other routines not discussed here, but those have the same 
function as in DORT. 

BLKIO -- controls the reading and writing of random (direct) access scratch arrays. 

CLEARX - sets a string of data locations to 0. 

CSEIT -- sets a string of data locations to a value supplied by the user. 

DLOCAL -- after initialization, acquires a memory area from the system for the container 
array, and later, returns it, 

DOPC -- controls the opening, and closing of random (direct) access scratch files. 

ERR0 -- writes error message, records highest error code reached, and provides termination 
if error code is too large. 

FIDOS -- implements the F’IDO data input format shared with DORT and TORT. 

HEADER -- writes a heading for the job. 

NDXR -- assembles the pivot arrays for discontinuous mesh problems. 
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SEQIO -- manages the opening, reading, writing, and closing of sequential disk aes. 

TIMEX -- provides summary of incremental and cumulative computer usage charge. 

TIMSET -- initializes the timing function performed by TIMEX 

WANDRl -- performs special UO tasks in reading the VISA input file. 

WOTlO -- provides edit of parallel columns of data, where the columns may not be of the 
same length. 

WOT4 -- provides edit of multidimensional arrays. 
t 
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Figure 3.1 -- Radial Location of TORT Surface Point in DORT Cylindrical 
Coordinates 

(Illustration depicts an xy surface; dort z location = tort z t zzero) 
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4. INrnALLATION AND E"MENT INFORMATION 

4.1 Installation 

The installation is assumed to be on a computer using a UNIX system. The reason 
for this is that UNIX is the only system available to the developer. Both DORT and TORT 
are installed using C-shell scripts contained as a part of the distribution material. The user 
designates the machine to be used, and the unloading procedure selects the appropriate 
installation scripts, in addition to making minor adjustments to the source material as 
required. The adjustments involve selecting alternate paths to use special features such as 
vector loops and selecting alternate subroutines to perform machine-specific system tasks such 
as timing. 

The materials required for both VISA and TORSED are made available as DORT 
is unloaded. After installing DORT and before installing TORT, VISA and TORSED can 
be installed with the following command: 

a h  -x -S jcldor visa 

This also creates a c-shell script "JSED" to be used later. 

After installing TORT using the JCLTOR script, standard test problems can be run by 
executing: 

a h  -x -S jsed run xxx 

where xxx is the name of a problem set chosen from: 

The output will appear on a file named OXXK 

4.2 DataFiles 

Standard uND[ naming conventions are followed, in that the file associated with 
logical unit ?? is named fort.??. The standard input is assumed to be unit 5, and the standard 
output is unit 6. Those files are assumed to be opened by the system without explicit action 
by the program. The two sequential data fila containing the VISA flux input and the TORT 
source output may be any number between 1 and 80 except 5 and 6. 
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The code opens scratch fles on 81,82,83, and 84. These are normally opened as 
random (direct) access files, but sequential files could probably be substituted with some loss 
of efficiency. The size of each file is: 

name number words use 
NTmxD 81 MM*IM*2 DORTfluxhrtwoadpcentrows 
NTMIK 82 MMTVVfPKSM MI0 array (if IMTLlt.0) 
NTUTK 83 MMTfIMTcKSM MJO array (if IMTLlt.0) 
NTMU 84 MMT*IMT*JMT MKO array 

The codes are intended to be operable on any system on which DORT can be 
installed. The TORSED routines are all written in FOR" 77, and they are in frequent 
use on both Cray mainframes and IBM workstations. The DORT routines make use of 
certain systemdependent features to provide special capability such as run-time memory 
allocation and timing data. Some C language is used in that area. Generic routines are 
provided with DORT that should allow operation with somewhat reduced capability on 
systems for which no specific compatibility package exists. 

The memory and CPU usage have been minimized by the use of scratch fila. A very 
large test problem generated 20 groups of source for a lo0,OOO mesh cell problem on a Cray 
Y-MP while using only 36,584 words of memory and 0.2 minutes of CPU+SYSTEM time. 
The delay produced by the scratch file usage was not measurable. 
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5. USERINFORMATION 

5.1 Input Requirements 

The input data requirements are detailed in Appendix k With the exception of the 
alphameric title, all data are input using the FIDO format also used by DORT and TORT. 
The user may refer to the corresponding documents for a specification of that format. 

The unit numbers of two files are required: 

NVISA -- file produced by VISA on unit NDATA 

"TORT -- boundary source prepared €or use by TORT on unit NTBSI 

The default memory allocation is suficient €or all but the largest problems. If more 
is required, it can be requested by supplying a value for LOCOBJ. 

The default value of E D I T  is adequate for most uses. If a programmer requires 
more output for diagnostic purposes, one of the sample problem illustrates that procedure, 
and the resulting output is discussed later. This is never required in normal use. 

The TORSED title and integer input parameters are edited first, followed by titles 
and parameters from the VISA file. Next, the TORT quadrature, and space mesh are edited, 
together with J-set, K-set, and K-mate data needed when the discontinuous mesh option is 
used. This is followed by the DORT quadrature and space mesh data. It may be noted that 
the R and 2 midpoints listed are only those for which fluxes have been transferred to 
TORSED. An array of integers relates the R midpoints to the corresponding DORT 
intervals. The meaning of PHI and RAD is explained in the earlier discussion of subroutine 
QUADD. 

This is followed by a listing of the full double-DORT quadrature, followed by the 
azimuthal angle and cosines of the DORT directions with respect to the TORT coordinate 
set at the location of the TORT origin. A column of integers gives the DORT direction 
corresponding to each TORT direction at that location. 

After each group is processed, a message containing the group index and the last 
upward flux value for the last four intervals in the last row of that group are given as a rough 
indication of the results. 

If NEDIT-gt-0, a large amount of diagnostic print is given, largely useful far debugging 
the program. Briefly, this consists of the DORT coordinates of each TORT surface cell and 
the DORT direction matching each TORT direction at each location. If N*10 is added to 
nedit, the value of each flux that becomes the source for TORT for groups 1 through N will 
be printed. Further details can be found by inspecting the program source, 

16 



53 ErrorMessages 

c 
Certain conditions can produce error warnings and, if severe enough, a halt to 

execution. Those from SEDIN, QUADT, GEOMT, GEOMRZ, and INTEFW are self- 
explanatory. Certain other error messages can arise from the DORT service routines, and 
these have the same meaning as in DORT. 
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6. DEMONSIRATION PROBLEMS 

Several demonstration problems have been developed to illustrate the use of VISA 
and TORSED to link DORT to TORT. The input streams for the problems are available 
in the TORT distribution material. Each of the problems uses the JDOS driver procedure 
as used with certain of the DORT and TORT problem sets. Instructions can be found in the 
distniution material for DORT. A discussion of each of the VISA-TORSED demonstration 
problems follows. 

ODOG2 -- 
A "metric doghouse" 2m x lm x lm high, with 5cm walls and lOcm roof of an 

absorbing material, is situated on the ground at a ground range of 205cm from a point source. 
This range was chosen so that the doghouse subtends roughly a 9Odegree azimuthal angle 
in the horizontal plane, a severe test of the directional remapping. The source is located at 
a height of 3OOm. Fictitious 2-group cross sections are used. The TORT solution is done 
with P1 scattering and S2 symmetrical quadrature. 

A continuous-mesh 2-group source for the doghouse is obtained from TORSED, and 
then, a discontinuous-mesh source is obtained. Two TORT problems demonstrate the use 
of the continuous- and discontinuous-mesh sources in turn. The results have been studied 
in considerable detail. The key responses shown indicate some differences in pointwise 
results, partly due to the fact that the midpoint locations have shifted, but the region integrals 
agree quite closely. These and other comparisons indicate correct functioning of the 
discontinuous mesh feature. 

ODOGAG -- 
The cross sections used in TORT problem set 6 are used to give a 20-group air- 

ground environment for the metric doghouse. The doghouse was moved to a ground range 
of 468m and rotated 270 degrees so that radiation could stream directly in through the 
doorway. An S6P3 treatment was used for both DORT and TORT. The source was 
processed in 2 groups, but only the first group was solved with TORT. It may be noted that 
using the "alternate s8 quadrature from Jvp" in the DORT portion of this problem will result 
in relatively poor results due to a mismatch in the weight and direction cosines applicable to 
the ray containing the uncollided flux. This difficulty could also occur in a shield with 
streaming ducts. In that case, a single ray or a few adjacent rays may carry a large fraction 
of the total flux. In such a case, it is important that the quadratures used in DORT and 
TORT match, and that the weights be uniform. 

OAG -- 
Ail groups of the 20-group air/ground problem are solved on the Cray by DORT and 

TORSED. The TORT problem models an actual concrete building roughly 17m by 70m by 
15m high. More than 100,OOO mesh cells are required. On a Cray Y-MP, TORSED uses 0.18 
minutes for 20 groups. The memory requirement is less than 37,000 words. 
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OAREAC - 
A reactor problem demonstrating the detailing in XYZ geometry of a sector of a 

pressure vessel is solved. After DORT uses an s6p3 solution to establish the fluxes in R2; 
geometry, TORSED and TORT calculate the fluxes in an XYZ sector of the geometry just 
outside of the core. The agreement with DORT at the inner boundaries is within 7%, while 
12% agreement is obtained at the outer boundary, where the curved surface of the core and 
container are represented by a jagged surface in XYZ.  Mesh refinement near the coupling 
surface has been shown to produce an even closer match. 

. 
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APPENDIX A - -  TORSED INPUT FSQUIREMENTS 

A.1 Title 

A single line of identifying information (72 characters). 

A.2 Parameter Input Block 

61$$ - -  Integer Parameters 

nvisa = visa input unit number 
ntort = tort output unit number 
imti = no. tort i intervals; (neg=discont. mesh) 
j m t  = no. tort j intervals 
k m t  = no. tort k intervals 

mmt = no. tort directions 
nedit = edit control (use 0) 
locobj= memory objective, words*1000 
ispl = spare; enter 0 
isp2 = spare; enter 0 

[finish this array with "e"] 

62** - -  Real Parameters 

rzero = dort radius of tort coordinate origin 
zzero = dort height of tort coordinate origin 
thzero= ccw rotation of tort coordinates (degrees) 
flxmin= minimum flux for log interpolation (0: use linear interpolation) 

[finish this array with 'e'] 

[follow these arrays with 't'l 

A.3 Discontinuous Mesh Block 

'9i$$ iset [jmt*kmt entries] i set by row and plane 
92$$ imbis [jmtfkmt entries] # of cells by i set 
73$$ j set [kmt entries] j set by plane 
74$$ jmbjs [kmt entries] # of rows by j set 
75$$ mset [igm entries] m set by energy group 
76$$ mmbms [igm entries] # of directions by m set 

[follow these arrays with 't'l 

Notes : 
. Fill unused portions of arrays with 0. 
. Arrays 71-74 are to be entered if and only if imti.lt.0. 
. Arrays 75-76 have not been implemented yet. 

A.4 Directional Quadrature Block 

81** wt [mmt entries] weight by direction 
82)' emut [mmt entries] cosine of angle with x axis 
83** etat [mmt entries] cosine of angle with z axis 
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[follow these arrays with ’t’l 

A . 5  General Data Array Block 

1** xt [entries: sum of imbis+l over all i setsl x mesh boundaries 
2** yt [entries: sum of jmbjs+l over all j setsl y mesh boundaries 
3** zt [entries : kmt+ll z mesh boundaries 

[follow these arrays with ‘t’l 

Notes : 
- iabs(imti) must be the length of the longest i set. 
. jmt must be the length of the longest j set. 
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APPENDIX B - -  COMMON BLOCK STRUCTURE 

B . l  Parameters From VISA File 

mm = number of directions in DORT quadrature 
igm = number of energy groups 
nip = number of radial points on VISA file 
njp = number of axial points on VISA files 

B . 2  TORSED Input Parameters 

[integer, then real parameters as listed in Appendix A] 

B . 3  Array Pointers 

[pointers for each array in the data container; principal arrays are 
explained in Appendix Cl 

B . 4  TORSED Control Parameters 

ITEM 
mm2 
mdn 
im 
jm 
mmdnt 

ksm 
imt 
ims i sm 
jms j sm 
msmsm 

ism 
j sm 
msm 
ims jrn 
mmdut 

ntf lxd 
ntm j k 
ntmik 
ntmi j 
ifmi j 

jphold 
title 
tdot 

SET BY DESCRIPTION 
main 2 * m ,  number of double-DORT directions 
quadd number of downward DORT directions 
main =nip, number of DORT i points 

quadt number of TORT downward directions for an m-set 

inpa number of k-sets 
main iabs (imti) , max number of tort i intervals 
sedin sum of im over i-sets 
II sum of jm over j-sets 

sum of mm over m-sets 

11 =njp, number of DORT j points 

II 

11 number of i-sets 
number of j -sets 
number of m-sets 

I 1  

It 

I 1  max number of ij cells in any plane 
quadt max number of directions in any hemisphere, any m-set 

sedin scratch file for DORT flux 
11 scratch file for mio array 
11 scratch file for mjo array 
11 scratch file for mko array 
main =O: mjk, mik, mij stored on disk; =1: internally 

interp j of DORT plane previously read in 
input title of this torsed job or input VISA job 
visa file title of original DORT job 
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APPENDIX C - -  PRINCIPAL DATA ARRAYS 
ITEM 
ival 

emu 
eta 
xz i 

phi 
rad 
fw 
f emu 
fxzi 

f eta 
fphi 
f rad 
rphi 
remu 

rxz i 
match 

W 

rm 
zm 

iset 
imbi s 
jset 
jmbjs 
mset 

&S 
kset 
hate 

ibis 
jbjs 
ibj k 
ijbk 
jbk 

wt 
emut 
etat 
xzit 

xt 
Yt 
zt 
xtm 
Ytm . ztm 
xtd 

ztd 
Ytd 

SET BY 
VISA file 
I 1  

11 

I1 

quadd 

11 

II 

II 

II 

II 

II 

II 

VISA file 
n 

input 
I1 

n 
II 

11 

inpa 
I1 

I 1  

I1 

It 

input 
I t  

I1  

quadt 

n 
II 

I1 

geomt 
11 

DESCRIPTION 
DORT i index of radial points 
DORT direction weight 
DORT cosine with r axis 
DORT cosine with z axis 
DORT cosine with theta axis 

DORT cylindrical geometry azimuth of direction m 
DORT cylindrical geometry radius of direction m 
double-DORT quadrature weight 
II cosine with r axis 
11 cosine with theta axis 

11 cosine with z axis 
I 1  cylindrical azimuth of direction m 
It cylindrical radius of direction m 
I 1  cylindrical azimuth of m in TORT system 
cosine of double-DORT direction with TORT x axis 

cosine of double-DORT direction with TORT y axis 
index o f  DORT direction matching TORT direction mt 

DORT radial position 
DORT axial position 

i set by j and k, padded with 0 
im by i set 
j set by k, padded with 0 
jm by j s  
m set by ig 

mmt by m set 
k set by k 
first k in k set ks 

sum of imbis over is 
sum of jmbjs over js 
sum of ims(j’k) over j and k 
sum of cells per plane over k 
sum of j m s  (k) over k 

TORT direction weight 
cosine of TORT direction 
cosine of TORT direction 
cosine of TORT direction 

TORT interval boundaries 
11 interval boundaries 
11 interval boundaries 
I1 midpoint on x axis 

midpoint on y axis 

midpoint on z axis 
11 interval width on x 
11 interval width on y 
11 interval width on z 

with x axis 
with y axis 
with z axis 

on x axis 
on y axis 
on z axis 

axis 
axis 
axi s 
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rzl 
thz 1 
rzr 
thzr 
rzi 

thzi 
rzo 
thzo 
rzb 
thzb 

rzt 
thzt 

ener 
f luxd 
f io 
mi o 
mjo 

mk0 

geomrz radius of TORT point in DORT system, left surface 
azimuth of TORT point in DORT system, left surface 
radius of TORT point in DORT system, right surface 

radius of TORT point in DORT system, inside surface 

I 1  

I 1  

I 1  azimuth of TORT point in DORT system, right surface 

II azimuth of TORT point in DORT system, inside surface 

I1 azimuth of TORT point in DORT system, outside surface 
I 1  radius of TORT point in DORT system, bottom surface 

11 

I1 radius of TORT point in DORT system, outside surface 

I1 azimuth of TORT point in DORT system, bottom surface 

I 1  radius of TORT point in DORT system, top surface 
I 1  azimuth of TORT point in DORT system, top surface 

energy group boundaries 
VISA file dort directional flux input 
fluxrz tort directional source output 
geomth m of DORT direction matching TORT mt, le€t/right surface 
I1 m of DORT direction matching TORT mt, in/outside surface 

11 m of DORT direction matching TORT mt, bottom/top surface 
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APPENDIX D - DISCUSSION OF TME 3-D DIXONTINUOUS 
MEsNTECFINIQUE 

In a conventional continuous-mesh problem, a computational mesh is defined by mesh 
interval boundaries along each of the coordinate axes. Planes passing through these interval 
boundaries, perpendicular to the respective coordinate axes, define the surfaces of each cell. 
Opposite cell surfaces are always parallel, and they always meet adjacent surfaces at right 
angles. The cell surfaces run continuously through the mesh. 

In such a mesh, let us call the first, second, and third coordinate axes the i, j, and k 
axes. The mesh cells lie in ordered rows parallel to the i axis, and the rows lie in planes 
perpendicular to the k axis. The vertical boundaries of each cell match the boundaries of 
adjacent cells. 

In a discontinuous mesh, as the term is used here, the requirements are relaxed 
slightly. Mesh cells are still bounded by parallel planes, each perpendicular to one of the 
coordinate axes, and the planes meet at right angles. The new flsolility is that only the k 
boundaries, i.e. the boundary planes perpendicular to the k axis, are required to run 
continuously through the mesh. Thus, the other boundary planes may be discontinuous at 
intersections. The mesh cells lie in rows having common j boundaries, but their i boundaries 
need not match. Rows lie in planes sharing common k boundaries, but neither i nor j 
boundaries of adjacent planes need match (except as required to allow acceleration and at 
the outer boundaries of the problem space). 

The advantage is that the mesh can be locally dense in areas where detail is needed 
most, thus using computational work more efficiently. An illustration is provided in Figure 
D.1. Since the transport within each cell is unperturbed by the irregularities, conventional 
evaluation procedures such as weighted difference, nodal, or characteristics methods can be 
used. Many years of research have gone into these methods, and they would not be 
relinquished easily. 



Figure D.l -- The Discontinuous Mesh Feature Allows the Mesh to be Locally 
Dense Where Required to Detail Problem Features 
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The conventional partial current acceleration already in widespread use in DORT and 
TORT is applicable in this instance, with the restriction that a coarse mesh be supplied? and 
that the coarse-mesh boundaries lie in each of the fine-mesh sets. (This last restriction could 
possibly be removed by reprogramming? but that has not been tried.) 

The programming is significantly more complicated with the discontinuous mesh, but 
a system of pre4alculated "pivot arrays" allows data items to be located and used without 
measurable loss of efficiency. The pivot arrays will be discussed later. Since all of the mesh 
cells lie in rows, the computational sweeps performed by the conventional TORTDORT 
subroutines can be used without modification, and they wii run at the traditional speeds. 
Some computational work is required, of course, to perform the "remeshing", i.e. the 
remapping of boundary flaws where adjacent rows and planes do not match. 

An important advantage is that the system can be imbedded into a conventional code 
without disturbing the conventional operation significantly. Like DOT 4 and DORT before 
it, discontinuous mesh TORT can produce the expected results to a conventional problem, 
and at the expected cost. 

Probably the most important disadvantage of the discontinuous mesh concept in two 
dimensions is that, although it can help in describing curved surfaces, it is not as powerful as 
general triangles or general quadrilaterals in this respect. Wes using the latter two concepts 
in discrete ordinates calculations exist, although none appear to have reached widespread use. 
It is not clear when they wiil be extended to three dimensions in a production code, or what 
the computational efficiency would be. 
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MACHINE IMPLEMENTATION 

We must necessarily ask the reader to pardon a mix of FORTRAN and algebra in that 
which follows. We will try to be clear. 

First, we define: 

IS 
surfaces; 

index of an i-set, i.e. a set of x or r boundaries defining mesh cell 
IS = 1, ..., ISM 

JS 5 index of a j-set, i.e. a set of y or theta boundaries d e f i i g  mesh 
cell surfaces; JS= 1, ... JSM 

For j-sets, input arrays consist of: 

JMBJS(JS) E # of mesh Ceus in j-set JS 
JSET(K) E j-set number €or plane K; K=1, ...,KM 

From these, we can always obtain: 

JS = JSET(K), index of the j-set for plane K 
JMS = JMBJS(JS), number of intervals for j-set JS 

With regular indexing, where all JMBJS(JS) = JM, we (or the compiler) can locate 
a function of J and JS by a simple integer computation: 

F( JJS) = F( J +JM* (JS-1)) 

but, since JMaTS is not necessarily constant in a $iscontinuous mesh, we now define a "pivot 
array": 

JBJS(1) E 0 
JBJS(JS+l) = JBJS(JS) f JMBJS(JS); JS=1, ... JSM 

and we denote the "irregular indexing" by (J'JS) rather than (J,JS). The item corresponding 
to J and JS can be found by: 

F(J'JS) = F(J+JBJS(JS)) 

In general, this is as computationally efficient as the conventional method of indexing. It 
requires additional storage, but generally not enough to present difficulty. 

In the case of variables such as y or theta, JMS rows are bounded by JMS+ 1 interval 
boundaries, and the use of the pivot array is slightly different. For example, the larger of the 
two Y's bounding interval J in j-set JS is located by: 

Y(J'JS) = Y(J+JBJS(JS)+JS) 
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Now, we define a new pivot array that will be a bit more indirect in definition, but 
much more useful: 

JBK(1) 0 
JBK(K+l) JBK(K) + JMBJS(JSET(K)); K=1, ...,KM 

From this a function of J and K can be obtained immediately: 

G(J’K) = G(J+JBK(K)) 

and it is convenient to note that JMS can be obtained in several ways, depending upon which 
data happen to be at hand: 

JMS = JMBJS(JSET( K)) 
= 
= JBK(K+l) - JBK(K) 

JBJS(JSET(K) + 1) - JBJS(JSET(K)) 

and the overall number of rows is given by: 

1oQ 

JMKM = JMBJS(JSET(K)) 

= JBK(KM+l) 
K-1 

This indexing scheme is the same method used in DOT 4 and DORT up to this point. 
The treatment of the I meshes follows the Same plan, but it is a bit messier, since it is nested 
one layer deeper. We use input arrays: 

IMBISQS) 
ISET(JX) * 

# of mesh cells in the ISth i-set 
# of the mesh set in the Jth r o w  of the Kth plane 

Once again, we can obtain. 

IS = 
IMS = 

ISET(J’K), the index of the i-set in row J of plane K 
IMBIS(IS), the length of i-set IS 

Now, we define: 

IBIS(1) 0 
IBIS(IS+l) E IBIS(IS) + IMBIS(E3); IS=l, ..., ISM 

so that a function of I and IS can be located: 
H(I’IS) = H(I+IBIS(IS)) 

For variables such as r or x, IMS cells are bounded by M S + 1  interval boundaries. For 
example, the larger of the two R’s bounding interval I in i-set IS is located by: 

R(I’1S) = R(I + IBIS(1S) + IS) 
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Now, we define a new pivot array in terms of a linear variable, JK, that runs through 
each value of J for a plane, then through each plane in turn, plus a final terminating value; 
i.e. 

JK= 1 ,... ,JMBJS( JSET( l)),JMBJS( JSET( 1)) + 1 ,..., JMKM,JMKM + 1 

In terms of this variable, we now define: 

IBJK(1) 3 0 
IBJK(JK+l) z IBJK(JK) + IMBIS(ISET(JK)) 

From this, a function of I, J, and K that would be, with regular mesh: 

P( I, J,K) = P( I +IM* (( J-1) +JM* (K-1 ))) 

becomes, with irregular indexing: 

P(I'J'K) = P(I+lBJK(J+JBK(K))) 

We also define: 

UBK(1) E 0 

IJBK(K+l) E UBK(K) + I M B T s ( = m m )  

IMBIS( ISET(J+JBK(K))); K=1, ...,KM 
J=l  

This is needed for indexing things that vary by I and J, but not K: 

Q(I'J) = Q(I+IBJK(J+JBK(K))-IJBK(K)); K=constant 

We also note that IMS can be obtained variously by  

IMS = IMBIS(ISET(K)) 
= IBIS(ISET(J+JBK(K))+ 1) - IBIS(ISET(J+JBK(K))) 
= IBJK(J+JBK(K)+l) - UBK(J+JBK(K)) 

and the overall number of mesh cells is: 

IMJMKME c 
K=1 J-1 

IhRBIS(ISET(J+JBK(K))) 

= I&TK(JMKM+l] 
= UBK(K+l) 
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- name: 
- date: 
- purpose: 
- notes: 

i is the 
j is the 
k is the 
m is the 

varbnd 

03 march 1993 

boundry source and associated interpretation data 

order of energy groups is by decreasing energy - -  
neutrons, then photons. 

first -dimension index. 
second-dimension index. 
third -dimension index. 
direction index. 

zero is a word set to zero used in padding to full length 

mult=l if word length is 8 bytes; mult=2 if 4 bytes. 

when im.gt.O, the mesh is a regular (continuous) mesh with im cells 
in each row and jm rows in each plane. ism=jsm=ksm=l. ims=im. 
jms=jm- ima=im. 

when im.lt.0, the mesh is discontinuous. each plane contains 
jms rows, where jms=jmbjs (jset (k) 1 . each row contains ims cells, 
where ims=imbis (iset (j'k) 1 . (j 'k) denotes j + sum of jms (kk) 
over kkd, .... k-1. ima=iabs(im). ism is the number of i-sets. 
jms is the number of j-sets. 

when m.gt.0, mm directions are used in the directional quadrature of 
flux in each energy group. msm-1. mms=mma. 

when mm.lt.0, the number of directions in the directional quadrature 
varies by group. ms=mmbms(mset(ig)) is the number of directions 
used in group ig. mma=iabs(mm). m6m is the number of direction 
sets. 

mmsdu(ig) is the larger of the number of downward or upward 
directions for the rn-set used in ig. mmdnup is the largest mmsdu 
for any ig. 

special note: 
by torsed and torset at this time. 

mmbms and mset are not on the output file produced 

- record type 
- - - - _ - - - - - -  
file identification 
file label 
integer parameters 
indexing arrays 
real arrays 

. . . . . . . . . . . . .  do ig=l,igm 

. . . . . . . . . . . .  do k=l,km 

present if 

always 
always 
always 
always 
always 

- - - - _ - _ _ _ _  
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- . . i-boundary directional data if ifbfxi.eq.O 
. . . . . . . . . . . .  enddo on k 
. . . . . . . . . . . .  do k=l,km 
- . . ]-boundary directional data if ifbfxj.eq.O 
. . . . . . . . . . . .  enddo on k 

. . . . . . . . . . . .  do j=l,jm 
- . . k-boundary source, top if ifbfxk.eq.O 
. . . . . . . . . . . .  enddo on j 

. . . . . . . . . . . .  do -j=l,jm 
- . . k-boundary source, bottom 
- . . . . . . . . . . .  enddo on j 

if ifbfxk.eq.0 

. . . . . . . . . . . . .  enddo on ig 

number of 

hname 
huse (i) 
ivers 
- - - - - -  - - -  

4 *mu1 t 

file name 
user file identification 
file version number 

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

date, user , charge, case , time , (titl (i) , i=1,9) 

number of words= 14*mult 

date 
user 
charge 
case 
time 
titl (i) 

as provided by timer option 4 - (a81 
as provided by timer option 5 - (a81 
as provided by timer option 6 - (a8) 
as provided by timer option 7 - (a8) 
as provided by timer option 8 - (a81 
title provided by user - (a81 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- integer parameters: 

igm, im, jm, km,mm, mmdnup, ism, j s m ,  imsism, j m s j s m ,  jmskm,msm,mmsmsm 
, ifbfxi,ifbfxj, ifbfxk, (idum(n) ,n=1,9) 

number of words= 25 

igm number of energy groups 
irn + / -  maximum number of cells in any i-set 
jm maximum number of rows in any j-set 
km number of planes 
mm + / -  maximum number of directions in any m-set 
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mdnup 

ism 
j sm 
ims i sm 
jms j sm 

j mskm 
mmsmsm 
msm 
ifbfxi 
ifbfxj 

ifbfxk 
idum 

maximum number of directions down or up 
in any m-set 

number of i-sets 
number of j-sets 
sum of ims over is 
sum of jms over js 

sum of jms over km 
sum of mmbms over ms 
number of m-sets 
.eq.O if i-boundary flux is included, else 1 
.eq.O if j-boundary flux is included, else 1 

.eq.O if k-boundary flux is included, else 1 
array set to 0 

imbi s 
jmbjs 
iset 
j set 
mmbmS 
mset 

number of cells in i-set is 
number of cells in j-set js 
i-set assigned to row j in plane k 
j-set assigned to plane k 
number of directions in m-set ms 
m-set assigned to energy group ig 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- real arrays: 

( ( x  (i I is) I i=1, ims+l) , is=1, ism) , ( (y  (j , js) , j= l  , jms+l) , j s = l  , j s m )  
, (z(k) ,k=l,km+l) , (ener(ig1 ,ig=l,igm) ,emin,eneut, (dumrl(i) ,i=1,8) 
number of words = imsism+ism+jmsjsm+~sm+km+l+~gm+2+8 

X i-interval boundaries by i-set 
Y j-interval boundaries by j-set 
z k-interval boundaries 

ener top energy boundary of group ig 
emin bottom energy boundary of group igm 
eneut bottom energy boundary of group neut 

(0 if neut=O) 
dumrl array set to 0. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- j-boundary source: 

((fjo(m,i) ,m=~,mms) ,i=~,ims), (zer0,1=~+mms*ims,mms*ima) 

number of words = mms*ima 

fjo j-boundary directional source 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- k-boundary source (top or bottom) : 

( ( f k o ( m ,  i) ,m=~,mmsdu) ,i=l,ims), (zero,l=l+mmsdu*ims,mmsdu*ima) 

number of words = mmsdu*ima 

fko k-boundary directional source, downward or upward 
(for j.gt.jms, fko is filled with zero.) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

end 
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SECTION I1 

THE VISA CODE 
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1. INTRoDucrl[ON 

Upon request, the DORT code [rh88] produces a very large file containing directional 
fluxes for selected space mesh cells. It is the job of the Variable Input Source Assembly 
Code (VISA) to process those fies into a form suitable for use in other d e s .  The task is 
complicated by several factors. First, it is necessary for DORT to write the data to the output 
file in the order in which they are generated, and this is not suitable for further use. Second, 
it is not practical for DORT to apply the results of the acceleration step on the last iteration. 
Because of this, the directional fluxes do not obey particle balance, and they do not match 
the scalar flux results. Third, the directional flux file generally contains more data than is 
required or can be conveniently processed by other codes, and VISA selects a more compact 
subset of that data. Finally, solving these difficulties requires the use of as many as three 
input files from two different codes, not convenient for the typical processing code. 

VISA unscrambles this mess and prepares output in a format suitable for Monte Carlo 
adjoint folding in the Vehicle Code System (VCS) [rh74a,rh74b] or for continued 3- 
dimensional discrete ordinates calculations by TORSED, reported elsewhere in this document. 
VISA is not a highly polished code, and error checking, in particular, is fairly sparse. A 
number of options have been added over the years to take care of particular needs, and these 
make the input seem complicated to the uninitiated. Even so, the code has proven robust 
and reliable in two decades of application. 

VISA was Eirst reported in 1974, together with VCS. That reporting was quite brief, 
however, and this broader treatment is needed to meet modem requirements. The roots of 
VISA go back even farther, to the mid-lWs, and to an undocumented code called LIMBO. 
The identity of the authors of LIMBO is also undocumented, although it is suspected that 
early pioneers such as R.D.Rodgers, F-RMynatt, and/or M.L.Gritzner were responsible. 
Recognition for the preservation of LIMBO after the original authors moved on is due to 
J.V.Pace,IIL Although the coding has been replaced and the function has been expanded, 
some of that basic idea survives in the modem product. 
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VISA uses input files containing directional flux and scalar flux data from DORT. 
First, VISA assembles the various components of the flux in each space cell into a suitably 
ordered array. Then, the weighted sum of the directional flux in each space cell over all 
directions is formed and compared with the conresponding scalar flux The directional flux 
is renormalized so that the sums match. 

If the DORT problem is started using a first collision source file such as that 
produced by the GRTUNCL code, that file is also required as input to VISA (GRTUNCL 
is an undocumented code commonly distributed with DORT.) In addition to the source, the 
GRTUNCL €ile contains the magnitude of the uncollided flux for each cell The magnitude 
of that flux is added to the DORT result in the direction nearest the ray extending from the 
GRTUNCL point source to the mesh cell. That result represents the total flux for the mesh 
cell. 

It may be noted that the output of MSA is €hence, rather than f i q  if the source 
used in GRTUNCL and/or DORT is a time integral. The term flux is used in the discussion 
as a convenience. 
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3. PROGRAMMER'S INFORMATION 

3.1 Input, Output, and Common Blocks 

The task of VISA, from a programmer's point of view, is to combine scattered 
information from two DORT files and one GRTUNCL file into a composite usable with the 
VCS code system or with the TORSED and TORT [rh91b,rh91a,rh87] codes. The DORT 
scalar flux file is produced in the VARnM format described in Appendix D. The directional 
flux is produced in the 'DOT Angular Flux Tape" format described in Appendix E This 
format simulates a very old file format produced by DOT 111 [rh73] insofar as possible. The 
GRTUNCL file uses the VARSOR format used for distributed source input in DORT and 
described in Appendix E. The output file is prepared in the VISA2 format described in 
Appendix C. 

Certain integer input parameters, specified in Appendix A, are required to control the 
execution. These data are read directly into common block COMVIS, described in Appendix 
B. In addition, a small array of real parameters and an array indicating which DORT radial 
intervals are to be included in the output are required, as listed in Appendix A. These are 
read into a single large "container" whose location is determined by calls to DORT support 
subroutines. The arrays are located in the container by the use of pointers as explained in 
the TORSED description. Additional input parameters and arrays are obtained from the 
input data files as indicated in Appendix B. 

The general ordering of data arrays in the container is indicated by the order of the 
pointers in Appendix B. In certain special cases, data arrays may overlay each other if they 
are not used concurrently. The source listing is the final word on those details. 

VISA uses several common arrays fiom DORT in order to communicate with DORT 
support subroutines, These blocks are: 

COMIN - general job status information 
COMIO -- I/O unit status information 
COMBLK -- reference address for the container 

32 Generalcodestructure: 

The functioning of the code is illustrated by a summary of the main structural 
subroutines. In the order of occurrence, they are: 

MAIN -- the main program reads the integer parameter data, obtains computer memory for 
the data container, sets pointer values for arrays in the container, and calls VISUS. 

VISUS -- this routine calls DOPC to initialize the UO process, reads the real parameter data, 
and couples arrays to the working subroutines according to the process chosen by the control 
parameters. At the conclusion, a final call to DOPC disposes all open data files properly. 
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WRVCS - this routine reads the input files and merges the information as d e s c r i i  earlier. 
The output is in a format suitable for use with VCS. For this application, the input flux is 
reorganized into records ordered by direction (M), then by axial interval (J). The records are 
written onto a random (direct) access scratch file according to radial interval (I), and then by 
energy group (IG). The records are then read in the order IG, then I, for writing to the final 
output. The subroutine is able to process input and output concurrently if the supporting 
DORT routines allow that. 

WRTOR -- in this case, the input is processed as in WRVCS, but the output is produced for 
TORSED. The flux in each record is ordered by M, then I. The output records are ordered 
by J, then IG. No random access files are required. 

UNTOR -- this special option allows a VISA file on unit NFLSV to be copied to unit 
NDATA Data from a second VISA file on unit “ C L  can be added to the data from 
NFlLsV. Data from each mput llle can be multiplied by a separate constant. 

VCSTOR - this allows data from a VISA file prepared for VCS and supplied on NFLSV to 
be re-sorted for use with TORSED and written to NDATA 

3 3  Supporting SeMce Routines 

VISA draws extensively from the collection of service routines in the DORT 
distriiution. A brief discussion of the routines is given in the TORSFD description. In 
general, the source listing of each routine provides more detailed information as to the use 
and proper calling sequence. In some cases, these routines call other routines, and those 
have the same function as in DORT. 
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4. INSTALLATION AND ENvIR0"T INJ?OR.MATION 

4.1 Installation 

The installation of VISA is accomplished as TORSED is installed, and no further user 
action is required. VISA is tested and demonstrated in each of the problem sets supplied 
with TORSED. 

4.2 DataFiles 

Standard UNIX naming conventions are followed, in that the file associated with 
logical unit ?? is named fort.??. The standard input is assumed to be unit 5, and the standard 
output is unit 6. Those files are assumed to be opened by the system without explicit action 
by the program. The sequential data files containing the input from DORT and GRTUNCL, 
as well as the VISA output, may be any number between 1 and 80 except 5 and 6. 

The code opens a scratch file on 91 if an output is being produced for VCS or if a 
VCS output is being converted to TORSED format. The size of the scratch file is: 

variable number words use 
NT9l 91 MM*NIP*NJP*IGM sorting of VCS data 

VISA is intended to be operable on any system on which DORT can be installed. 
The VISA routines are all written in FORTRAN 77, and they are in frequent use on both 
Cray mainframes and IBM workstations. The DORT routines make use of certain system- 
dependent features to provide special capability such as run-time memory allocation and 
timing data. Some C language is used in that area. The appropriate routines are provided 
in compatibility packages selected by the installation procedure. Generic routines are 
provided with DORT that should allow operation with somewhat reduced capability on 
systems for which no specific compatibility package exists. 

The memory and CPU usage for VISA are quite nominal. A very large test problem 
produced a VCS-format output with MM=240, NIp=llO, NJP=22, and IGM=212 on an 
IF3M RS/6000 Model 320h workstation while using only 313,259 words of memory and 5 
minutes of CPU+SYSTEM time. The elapsed time was 21 minutes. That file was later 
copied from an unformatted file to a formatted file in 53 minutes of CPU+SYSTEM time 
and 62 minutes of elapsed time. 



5. USERINFORMATION 

The input data requirements are detailed in Appendix A. With the exception of the 
alphameric title, all data are input using the FIDO format also used by DORT and TORT. 
The user may refer to the corresponding documents €or a specification of that format. 

In the most general case, three input data fifes are a b  required on units specified in 
the parameter input: 

NFLSV -- flux moment file produced by DORT on unit NTFOG. 

NAFT - "angular flux tape" produced by DORT on unit NTDIR. 

NUNCL -- first collision source file produced by GRTUNCL on unit NPSO. 

The output is written on: 

NDATA -- output from VISA for use in VCS or TORSED. 

The NAFT file DORT contains data for all I intervals and for all J between NJ1 and 
NJM. VISA restricts the output to NIP I intervals and NJP=NPU-NPL+1 J intervals. Of 
course, NPL and NPU may be equal to NJ1 and NJM. The I intervals to be output are 
selected by entering N I P  DORT I values in the input array NAL. 

If the NED parameter is set to a number of groups, the output flux for groups 
1, ...,NED will be edited. This produces an excessive amount of print for a large case. It is 
generally used only for testing. If N O W  is set to 1, the normalization of the directional flux 
to agree with the scalar flux is defeated -- again, useful mostly for testing. If ISGRI is set to 
N, it is expected that "CL contains only N groups of data. This would be used, for 
exampIe, if a coupled neutron-gamma problem were run using an NUNCL problem produced 
for neutrons only. 

If DORT does not perform iterations on certain groups, those groups will be missing 
from the NAFT file. This can happen if the user decides to bypass calculation of certain 
groups, such as the neutron groups in a coupled problem, or if DORT decides not to iterate 
on some groups because of a 0 source in that group I€ n initial groups of data are missing, 
setting N-=n will produce a correct result. It may be noted that, if groups are missed 
after the first group of actual output, this condition is not repairable. IfNTYPE.ge.10, NAFI' 
is not required, and it may be 0. 

The value of NTYPE controis the type of problem. Values of 0 or 1 produce the 
standard calculation as described above. Values of 10 or 11 copy a VCS or TORSED file 
previously produced by VISA from unit NFLSV to unit NDATA A value of 21 produces 
a conversion from VCS to TORSED. If 30 or 31 is used, VCS or TORSED files on NFLSV 
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and N"CL are added. Each is multiplied by a constant given in the real parameter input. 
The NEUI and NGAMX are needed only for special options discussed later. In all of the 
copy operations, the title from NFLSV replaces the title from the input stream. 

If NFLSV, NAFT, NUNC& and/or NDATA are set negative, the input or output 
corresponding to that file is expected to be formatted ASCII text, rather than an unformatted 
binary file. This option is useful largely in shipping data between unlike machines. The 
ASCII text can then be returned to unformatted using the copy option discussed above. The 
exact format can be deduced by comparing WANDRl with the corresponding calling 
statements, although it is seldom necessary to do this. 

5.2 VISA Without GRTUNCL Data or With GRTUNCL Data Ody 

If VISA is used to couple a reactor calculation to another calculation, for example, 
the DORT calculation may not have used GRTUNCL In that case, NUNCL and ISGFU 
should be set to 0. 

If ISGRI=O, the uncollided flux on NUNCL will be ignored, and only collided flux 
will be used. If ISGRI is set to negative, the uncollided flux will be used without the collided 
flux These options are valuable for testing only. 

53 s ~ G r o u p o p t i o n s  

The parameters NEUI and NGAMX control some truly obscure options. If 
NTYPE=30 or 31, then NGAMX indicates the number of groups that are missing on 
NUNCL, but not on NFLSV. This can be used, for example, to add a gamma-only file to a 
coupled neutron-gamma file. If NTYPE=O or 1, then NGAMX indicates the number of 
groups of 0 to be added between the last neutron group on NAFT and the first gamma group. 
In the latter m e ,  the last neutron group must be indicated by NEUI. 

If NEUI is set to -1*the number of neutron groups, then the VISA output will 
contain only gamma groups. 

5.4 SyntheticHux 

If NAFI'I is set to -1 +N, where N is a group number, the normal determination of flux 
is bypassed. Instead, fluxes in groups from 1 to N are set to 1.0, and the remainder of the 
fluxes are set to 0.0. This can be useful for testing. 

The title and integer input parameters are edited first, followed by parameters from 
NAFT, some internally derived parameters, and then the real input parameters. If NED.gt.0, 
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the index of the direction matching the uncollided flux ray in each mesh cell is edited. In 
parallel columns, the input quadrature data are edited. This edit ais0 includes the edit of the 
IVAL array, i s .  the I intervals selected for output, together with the R and 2 interval 
midpoints chosen for the output. 

As each group is assembled, a maximum scale convergence is edited, together with the 
first and last four words of each record. The scale convergence is the largest deviation of the 
renormalization factor from unity. If it is not small, on the order of the flux convergence in 
the DORT problem, there is a high likelihood of trouble with the input data. Mter this h e ,  
an edit of the total source moved to the output is given for groups indicated by the value of 
NED. 

5.6 Error Messages 

Certain conditions can produce error warnings and, if severe enough, a halt to 
execution. Certain other error 
messages can arise from the DORT service routines, and these have the same meaning as in 
DORT. 

Those from MAIN and VISUS are self-explanatory. 
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APPENDIX A - -  VISA INPUT REQUIREMENTS 

A.l Title 

A single line of identifying information (72 characters). 

A.2 Control Parameter Input Block 

1$$ - -  Integer Parameters 
nip = 
jpl = 
jpu = 
ned = 
norm = 

isgri = 

nflsv = 

naft = 

nuncl = 

ndata = 

- n5 - 
n6 - 
njl = 
njm = 
nafti = 

- 

ntype = 

neui = 

ngamx = 

no. of i intervals in visa output 
first j interval in visa output 
last j interval in visa output 
edit ned source groups 
0: normalize to scalar flux; 1: do not 

no. of groups on nuncl (0: use collided flux only) 
(negative: use uncollided only - -  for testing) 
logical no. scalar flux input default = 1 
(old visa output if ntype .ge -10) 
logical no. directional flux input default=2 
(may be 0 if ntype.ge.10) 
logical no. uncollided flux input default=3 
(may be 0) 
logical no. source output def ault=4 

logical no. standard input default =5 
logical no. standard output de f aul t=6 
first axial interval input; 0 implies=l 
last axial interval input; 0 implies=jm 
no. groups missing at beginning of naft 
(negative: first n groups=l, others 0 - -  for testing) 
0/1: create vcs/torsed file; 10/11: copy vcs/torsed on nflsv; 
21: vcs to torsed; 30/31: nuncl+nflsv 
last neutron group (rqd if ngamx.gt.O and ntype=0,1) 
(negative: delete neutron output groups) 
no. gamma groups added to group structure (ntype=O,l); 
initial groups missing on nuncl (ntype=30,31) 

[finish this array with 'e'] 

[terminate this block with 't'l 

A.3 Additional Array Block 

2** - -  Real Parameters 

sh = height of point source (ntype. It. 10) 
hsa = not used (enter 0) 
xneut= nflsv multiplier (ntype=30or31, dflt=l) 
xgam = nuncl multiplier (ntype=30or31, dflt=l) 

[finish this array with 'e'] 

4 $ $  ival [nip entries] radial intervals to be included in output 

[terminate this block with 't'l 44 



APPENDIX B - -  COMMON BLOCK COMVIS 

B . I  Parameter Input Pointers 

la dummy array 
lima length of common block 
lfxt pointer for integer parameter input 
lflt pointer for real parameter input 
lend termination marker 

B . 2  Data Array Pointers 

name array set by use 

lival input data dort i index corresponding to each visa output i 
lwt naf t file quadrature weight 
1 emu 11 cosine of direction with r axis 
leta cosine of direction with z axis 
lrl I1 midpoint of radial interval 

- - - -  - - - - _ _ - - - - - -  - - -  

II 

If 121 midpoint of axial interval 
lphi wrvcs, wrtor azimuthal angle in plane perpendicular to r axis 

liang 
ltheta II cosine of angle with r axis 

II m of direction containing uncollided flux 
laf n output flux 

laf lux 
lan2 
lunclf 
ldum 

11 

II 

It 

directional flux input from naft 
scalar flux input from nflxsv 
uncollided flux input from nuncl 
dummy array 

B . 3  Internal Working Parameters 

name set by use 

nerr 
igi 
igm 
igP 
neut 

main, visus error flag 
naft file no. of energy groups in DORT problem 
main no. of energy groups processed by VISA 

naft file no. of neutron groups in DORT problem 
I1 igm+l 

i sgrp main 
naf tm 11 

tdum 

no. of VISA source groups obtained from nuncl 
no. of VISA source groups missing from naft 
dummy array 

B . 4  Title Arrays Transferred To VISA Output File 

name set by use 

title input data VISA job title 
tdot naf t file DORT job title 

- _ _ -  - - - - _ _  - _ -  

B . 5  Internal Integers Parameters Transferred To VISA Output File 

set by 

naft file 
- - - _ - -  
I! 

use 

no. of quadrature directions in DORT problem 
no. of i intervals in DORT problem 

_ - -  
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I1 no. of j in te rva ls  i n  DORT problem 

I 1  igoi-1 

jm 

igop 
igo main no. of energy groups in VISA output 

wrvcs, wrtor number of downward direct ions i n  DORT quadrature 
I 1  

visus 
II 

B16 Integer Input Parameters 

number of j in te rva ls  i n  VISA output 
GRTUNCL point source height 
not used 

The 18 integer input parameters l i s t e d  i n  Appendix A are stored here, 
by : 

set  by 
- - - - - -  

use 

not used 
not used 

- - -  

B . 7  R e a l  Input Parameters 

The 4 real input parameters l i s t e d  i n  Appendix A a re  stored here.  

B . 8  F i l e  Input Scratch Array 

name 
- - - -  
xdum 
t inp main 

followed 

use 

dummy array 
scratch array f o r  input from naf t  or  nf l sv  

- - -  



- name: 

- date: 
- purpose: 

- notes: 

- i is the 
- j is the 
- m is the 

visa2 

17 march 1993 

boundary flux for forward/adjoint folding in vcs or for 
remapping by torsed and input to tort 

order of energy groups is by decreasing energy - -  
neutrons, then photons. 

first -dimension index (r axis). 
second-dimension index (z axis) . 
direction index 

- output is either vcs format or torsed format. the flux records 
- depend upon this choice. 

- if the source used to generate the input to visa is a time-integral, 
- then the output is fluence, rather than flux. 

- - - - _ _ _ - c - - _ _ _ _ - - - - - - ~ - - ~ - - - - - - - - - - ~ - - - ~ - - - - - - - - - - - - - ~ - ~ - - - - - - - - - - - - ~ - - -  

file structure: 

record type 

job titles 
integer parameters 
integer array 
directional quadrature 
space mesh 

- - - - - - - - - - -  

............ do i=l,nip 

. . . . . . . . . . .  do ig=l,igm 

. . boundary directional flux 

. . . . . . . . . . .  enddo 

. . . . . . . . . . .  .enddo 

. . . . . . . . . . . .  do ig=l,igm 

. . . . . . . . . .  .do j=1, njp - . boundary directional flux 

. . . . . . . . . .  .enddo 

........... .enddo 

present if 

always 
always 
always 
always 
always 

_ - - - - - - - - -  

vcs format 

torsed format 

(title (1) ,1=1,18), tdot (1) I 1=1,18) 

number of words = 36 

- title title of the visa job (a4 format) 
tdot title of the dort job input to the visa job (a4 format) 
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ti t 1-( i title provided by user - (a81 

mm,im,jm,igm,igp, mmdn,njp,ish,isha,nip, jp1,jpu 
, (junk(1) ,l=l,ll) 

number of words = 23 

mm no. of quadrature directions in dort problem 
im no. of i interval midpoints in dort problem 
jm no. of j interval midpoints in dort problem 
igo no. of energy groups in visa output 
igop i go+ 1 

mmdn no. of downward directions in dort quadrature 
nj P no. of j intervals in visa output 
ish grtuncl point source height 
isha not used 
nip no. of i intervals in visa output 

jpl index of First j interval in visa output 
jpu index of last j interval in visa output 
junk array of undefined integers to fill out length 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- directional quadrature: 

(wt (m) ,m=l,mm), emu(m) ,m=l,mm), eta(m) ,m=l,mm) 

number of words = 3*m 

wt quadrature weight 
emu cosine of direction with r axis 
eta cosine of direction with z axis 



rl 
21 

radial mesh interval midpoint 
axial mesh interval midpoint 
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APPENDIX D - -  DORT FLUX MOMENT FILE FORMAT 

C*********************************************************************** 

C revised 10 nov 76 

cf varf lm 
Ce variable mesh flux moment data with boundary fluxes 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

C 

cd 
cd 
cd 
cd 

order of groups is by decreasing energy 
i is the first-dimension index 
j is the second-dimension index 
jm=l for 1-dimensional geometry 

cs 
c s  
cs 

file structure 

record type present if 

cs 
cs 

file identification 
file label 

cs file control 
cs file integer parameters 
cs file real parameters 

cs **************(repeat over all groups) 
cs * flux moments 
cs * boundary directional flux 
cs *************** 

cs 

always 
always 
always 
always 
always 

always 
always 

C 

cr 

cl 
C 

C 
cw 
C 

cd 
cd 
cd 
cd 
cd 
cd 
C 

file identification 

hname, (huse (i) , i=1,2), ivers 

1+3*mult=number of words 

hname 
huse (i) 
ivers 
mult 

hollerith file name - varflm - (a61 
hollerith user identification - (a6) 
file version number 
double precision parameter 

1- a6 word is single word 
2- a6 word is double precision word 

c-  - 
C 

cr 

cl 
C 

C 
cw 
C 
cd 
cd 
cd 
cd 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

file label 

date,user,charge,case,time, (titl(i) @i=1,12) 

17*mult=number of words 

date as provided by timer option 4 - (a61 
user as provided by timer option 5 - (a61 
charge as provided by timer option 6 - (a6) 
case as provided by timer option 7 - (a6) 
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c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
cr file control 

cd igm,neut,jm,lm,ima,mma,ism,ims~smlisbt,~ter, (idum(n) ,n=1,15) 

cw 25=number of words - 

cd igm number of energy groups 
cd neut l a s t  neutron group 
cd (igm if all neutrons, 0 if a11 gammas) 
cd j r n  number of second-dimension ( j )  intervals 
cd lm maximum length of moment expansion 
cd ima maximum number of first-dimension intervals 
cd m a  number of boundary directions 
cd ism number of i-boundary sets - 
cd imsism t o t a l  number of i-intervals, a l l  i-sets 
cd isbt i-set for system boundaries 
cd iter outer iteration number at which flux was 
cd writ ten - 
cd idum(i) array set to 0 

C 

C 

C 

C 

cr file integer parameters 

cl (lmbig (ig) , ig=1 , igm) I 
cl *(imbis(is),is=i,ism), (iset(j),j=l,jrn) 

cw igm+ism+jm=number of words 

cd lmbig(ig) length of moment expansion for group 
cd imbis(is) number of intervals in iset is 
cd iset(j) i-set assigned to interval j 

C 

C 

C 

C 

cr 

cl 
cl 
cl 

C 

C 
cw 
C 
cd 
cd 
cd 
cd 
cd 
cd 
cd 
cd 
cd 
cd 

file real parameters 

(z (j) , j=i, jml) , ((r(i,is) ,i=l,iml) ,is=l,ism), 
*(ener(ig),ig=l,igm),emin,eneut,ev,dev~,effk,power, 
* (dumrl (i) ,i=l, 13) 

jm+imsism+ism+igm+20=number of words 

z (j) 
r(i,is) 
ener (ig) 
emin 
eneut 

ev 
devdk 
effk 
power 

j-interval boundaries 
i-interval boundaries for i-set i 
top energy boundary of group ig 
bottom energy boundary of group igm 
bottom energy boundary of group neut 

eigenvalue 
derivative of ev vs. effk 
effective multiplication factor 
power (watts) to which flux is normalized 

( 0  if neut=O) 
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cd dumrl 
cd jml 
ca iml 
C 

array set to 0 
jm+l 
imbis (is) +1 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - " - - - - - - - - - - - - - - - - - - - - - - - - - -  
cr boundary directional flux 
c 
Cl ((fio(m, j) ,m=l,mma), j=1, jm), ((fjo(m,i) ,m=l,mma) ,i=a,imb) 

cw m a *  (jm+imb) =number of words 

cd €io directional flux outgoing by direction and 
cd j -interval 
cd fjo directional flux outgoing by direction and 
cd i-interval. fjo=0 for a 1-d geometry 
cd imb imbis(is) for is corresponding to isbt 

C 

C 

C 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

end 
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APPENDIX E - -  DORT SOURCE MOMENT FILE FORMAT 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C revised 04 jan 8 2  

cf varsor 
ce variable mesh source moment data 
C 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

cd 
cd 
cd 
cd 
cd 

order of groups is by decreasing energy 
i is the first-dimension index 
j is the second-dimension index 
jm=l for 1-dimensional geometry 
if isop.gt.0, source is first-collision type 

c----------------------------------------------------------------------- 

cs . 

cs 

cs file structure 

cs record type present if 

CS file identification always 
cs file label always 
cs file control always - 
cs file integer parameters always 

cs **************(repeat over a l l  groups) 
cs * source moments always 
c. *************** 

cs **************(repeat over all groups) 
cs * scalar uncollided flux isop.  gt - 0 
cs *************** 
C 
c----------------------------------------------------------------------- 

_ - - - _ - - - _ " - _ - - _ - _ - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - -  

cs 

C 



cd 
cd 
cd 
cd 
cd 
C 
C- - 

user 
charge 
case 
time 
tit1 (i) 

as provided by 
as provided by 
as provided by 
as provided by 
title provided 

timer option 5 p 

timer option 6 - 
timer option 7 - 
timer option 8 - 
by user 

cr file control 

cd igm,neut, jm,lm,ima,mma,ism,ims~sm,isop, (idum(n) ,n=l,16) 

cw 25=number of words 

C 

C 

C 
cd igm 
cd neut 
cd 
cd jm 
cd lm 
cd ima 

number of energy groups 
last neutron group 

number of second-dimension (j) intervals 
maximum length of moment expansion 
maximum number of first-dimension intervals 
number of boundary directions 
number of i-boundary sets 
total number of i-intervals, all i-sets 
uncollided flux flag 

(igm if all neutrons, 0 if all gammas) 

0 - no uncollided flux records present 
1 - uncollided flux records present 

array set to 0 

cd 
cd 
cd 
cd 
cd 
cd 
cd 
C 
C- - 

m a  
i sm 
imsism 
i sop 

idum (i) 

cr file integer parameters 
C 
cl 
cl 
C 
cw 
C 
cd 
cd 
cd 
C 

(lmbig (ig) , ig=1 , igm) , 
*(imbis(is),is=l,ism), (iset(j),j=l,jrn) 

igrn+ism+jm=number of words 

lmbig (ig) length of moment expansion for group ig 
imbis (is) number of intervals in iset is 
iset (j) i-set assigned to interval j 



CT 
C 
cl 
C 

cw 
C 
C 
c 1  
C 
cd 
C 

scalar uncollided flux 

( f lum ( 1) I i=1, ims 1 

ims=number of words 

do 1 - j = l / - j m  
read(n) *list as above* 

flux uncollided flux by interval 

end 

r 
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APPENDIX F - -  "DOT ANGULAR FLUX TAPE" FORMAT AS USED BY DORT 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

- name: "dot angular flux tape" 

- date: 22 jun 1993 

- purpose: simulate traditional dot iii directional flux output file 

- notes: order of energy groups is by decreasing energy - -  
neutrons, then photons. 

- i is the first -dimension index, i=l,,,im 
- j is the second-dimension index, j=l,,,jm 
- m is the overall direction index, m=l,,,mm 
- ig is the energy group index, ig=l,igm 

- this format i s  not usable  with discontinuous mesh, i.e. im.lt.0. 

- the simulation is not perfect in every detail; for example, 
- niszn and njszn did not appear in dot iii. 

- items listed as dummy have undefined values and should not be used. 

- fuller details may be found in the dot iv document, ornl-5851. 

- - - - - - - - - - - _ - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ - - - - - - - - - - - - - - - ~ - ~ - - - - - - - - - - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- file structure: 

record type present if 

control parameters a1 ways 
material by zone always 
zone number by mesh cell always 
fission spectrum a1 ways 
quadrature & input mesh boundaries always 
quadrature mates always 

. . . . . . . . . . . . .  repeat for ig=l,igm 
- . cross sections always 
. . . . . . . . . . . . .  end ig loop 

- _ _ - - - - - - - -  - - - - - - - - - -  

. . . . . . . . . . . . .  repeat for ig=l,igm 
. . . . . . . .  repeat all j=jm,l,-I 
. downward directional flux 
. . . . . . .  .end j loop 
........ repeat all j=l,jm 
. upward directional flux 
. . . . . . . .  end j loop 

. . . . . . . . . . . . .  end ig loop 
final radial mesh boundaries 
II axial 11 

always 

always 

always II 



iduml,iadj,isctma,mma,ingeom, izm,ima,jm,ktype,ev 
, evm,eps,nbcl,nbcr,nbct, nbcb,inpfxm,mode,mtm,mixl 
, idum2,rntp,niszn,njszn,idum3, id~m4~igm,iht,ihs~ihm 
, xnf,idum5,inpsrm,ifmi,idumG, ifxnf,trnax,jdirf,jdirl 
, (dumary(i) ,i=l, 18) 

number of words = 57 

iduml 
i ad] forward/adjoint control 
isctma iabs(isctm); order of cross section expansion 
iabs (nun) no. of quadrature directions 
ingeom geometry option 

i zm 
ima 

ktype 
ev 

jm 

evm 
ePs 
nbcl 
nbcr 
nbct 

nbcb 
inpfxm 
mode 
mtm 
mix1 

idum2 
mtP 
niszn 
njszn 
idm3 

idm4 

iht 
ihs 
ihm 

igm 

xnf 
idum5 
inpsnn 
ifxmi 
i dum6 

ifxmf 
tmax 
j dirf 
j dirl 

no. of material zones 
iabs (im) ; no. of radial mesh intervals 
no. of axial mesh intervals 
calculation type 
eigenvalue 

eigenvalue modifier 
convergence criterion 
left boundary condition 
right It I1 

top 

bottom 11 

flux input option 
flux recursion option 
total no. of cross section sets 
length of mixing table 

dummy 
no. of cross section sets from unit ntsig 
no. of I super zones 
no. of J super zones 
d-Y 

d W Y  
no. of energy groups 
position of total cross section 
position of self-scatter cross section 
no. of cross sections per group 

source normalizer 
durrmry 
distributed source input control 
initial inner iteration maximum per group 
dunmry 

final inner iteration maximum per group 
problem time limit 
first j for directional flux output 
last 1 1 1 1  I1  II 11 

11 I1 



izmt 
i zm 

material number by zone 
total number of materials 

_ _ L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L _ _ _ L _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

- quadrature & input mesh boundaries: 

(w(m) ,m=l,mm), (emu(rn) ,m=l,mm), (eta(m) ,m=l,mm) 
- * (rin(i),i=~lim+I),zin(j)fj=l,jm+L) 

number of words = 3*mm + im + j m  + 2 

W 
emu 
eta 
rin 
zin 

quadrature weight 
II cosine with r axis 

initial radial mesh boundaries 
11 axial 11 

II 11 II z 'I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- quadrature mates: 

(mtemu(m) ,m=l,mm), (mteta(m) ,m=l,mm) , (mtlvl(m) , r n = l , m m )  

number of words = 3*m 

mtemu quadrature emu mate 
mteta II eta mate 58 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- cross sections: 

(sig(ih) ,mx=l,mtm) 

number of words = mtm 

sig 
mtm 

dummy array 
number of materials 

2 final axial mesh boundaries 

end 
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