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Abstract 

A formal framework for navigating a robot in a geometric terrain populated by an 
unknown set of obstacles is considered. Here the terrain model is not a priori known, 
but the robot is equipped with a sensor system (vision or touch) employed for the 
purpose of navigation. Our focus is restricted to the non-heuristic dgorithms which 
can be theoretically shown to be correct within a given framework of models for the 
robot, terrain and sensor system. These formulations, although abstract and sim- 
plified compared to real-life scenarios, provide foundations for practical systems by 
highlighting the underlying critical issues. First, we consider the algorithms that are 
shown to navigate correctly without much consideration given to the performance 
parameters such as distance traversed, etc. Second, we consider non-heuristic algo- 
rithms that guarantee bounds on the distance traversed or the ratio of the distance 
traversed to the shortest path length (computed if the terrain model is known). Then 
we consider the navigation of robots with very limited computational capabilities such 
as finite automata, etc. 

vi i 





1 Introduction 

As the robot and computer technologies progress into the next century, more and 
more tasks are likely to be performed by autonomous machines. In particular, mo- 
bile robots could be employed to perform a variety of operations including (a) tasks 
in environments that are not suitable for human operation, e.g., nuclear plants and 
waste sites, chemical and toxic industries, (b) monotonous and tedious tasks such as 
parts delivery and movements in manufacturing plants, and (c) operations such as 
extra-terrestrial and underwater explorations, etc. One of the basic components in 
the operation of such robots is the capability to autonomously navigate in terrains; 
particularly in exploratory applications, the robots must deal with terrains whose 
models at best are only partially-known. Advances in various areas such as engineer- 
ing, computer science, applied mathematics, etc., are required to fully achieve such 
autonomous navigation capabilities. In this survey we consider computer science as- 
pects of navigational methods in unknown terrains from an algorithmic perspective. 

The area of robot path planning and navigation has been studied by various re- 
searchers over the last decades, resulting in a large number of works. Several aspects 
of this fascinating area can be found in the recent book by Latombe [42] and the 
survey paper by Hwang and Ahuja [33]. There are two basic formulations of the path 
planning and navigation problem based on the availability of the terrain model. In a 
known terrain, the terrain model is given as input, and the motion planning problem 
becomes one of geometric programming; there are a large number of techniques pro- 
posed to solve this problem (see Latombe [42], Sharir [76]). In an unknown terrain, 
the terrain model is not known but the robot obtains local terrain information by 
employing a sensor (vision or touch) system; several works of this formulation are de- 
scribed in Hwang and Ahuja [33]. One of the fundamental differences between these 
formulations is that a path can be preplanned in the former, whereas in the latter a 
path must be incrementally computed as the newer parts of the terrain are explored. 
To illuminate the differences between these two formulations consider an example of a 
human being required to move from one location to a destination location (e.g. main 
office or a vending room or an exit) in an unfamiliar building. If the floor plan of 
the building is given, one can plan a path and move along the path. On the other 
hand, if no floor plan is available, one must systematically search the building for the 
destination, say, by using visual information. Further , this problem becomes harder 
if the interior of the building is dark and the human being does not have any light 
sources; then, one has to rely on touch sensing alone. 

In an unknown terrain, we have two critical aspects: (a) the computation is based 
on local (or partial) information, and (b) sensing is an integral part of the navigation. 
Because of the first aspect, the algorithms for unknown terrains are often called on- 
line algorithms (Kleinberg [41] and Bar-Eli et a1 [4]). In the light of second aspect, 
an algorithm for an unknown terrain is required to schedule the sensor operations, 
and this aspect is absent in known terrains. Moreover, in unknown terrains differ- 

'In some known terrain cases, where the terrain model is large but the robot navigates within 
a restricted locality, it might be advantageous to consider only certain parts of the terrain; in such 
cases algorithms for unknown terrains couid be suitably employed. 

1 



ent classes of algorithms are, in general, required to navigate robots equipped with 
different types of sensors. 

In this survey, we consider a very specialized class of methods for the unknown ter- 
rains navigation problem, namely the non-heuristic algorithms; here the correctness 
of the algorithm is guaranteed within the stated framework of models for the robot, 
terrain and sensor system. Such algorithms are very important in the mission-critical 
operations, e.g., shutting down a malfunctioning reactor. We will concentrate on the 
algorithmic issues under the assumptions of ideal sensors. For the majority of the 
works, we consider a point-sized robot navigating in two-dimensional terrains. For 
the unknown terrains navigation, there are several methods that are demonstrated to 
work well in practical situations, but are not designed to be non-heuristic (see [33]). 
There are two types of such works. The first kind deals with navigating robots in 
real-world environments, such as those discussed in Elfes [24], and Turchen and Wong 
[80] (just to name a few). The second kind deals with a framework of terrains and 
sensors in a precise formulation but the algorithms are not guaranteed to converge 
to a destination such as methods discussed in Iyengar et a1 [34] and Chan and Tam 
[13] (again just to name a few). These works are fairly extensive and are outside the 
scope of this survey. 

Over the past few years, the topic of non-heuristic navigation algorithms in un- 
known terrains has received increasing attention by the researchers in the areas of 
robotics, computer science and engineering; of particular importance are the meth- 
ods that ensure some properties such as performance guarantees, etc. The focus here 
is to obtain provably correct algorithms for navigating automata or robots in terrains 
whose maps are not known ahead of time. At the outset, the formulations of these 
problems appear to be of only theoretical interest; however, these methods constitute 
an important guide to a number of practical solutions as evidenced from the works 
of Lumelsky [45]. Such line of thought seems to have been followed by a number of 
researchers since as far back as 1873, in the form of maze searching problems studied 
by Weiner (Ore [57]). Before the advent of computers and electronic circuits, the 
majority of these works have been basically theoretical. Subsequently, several contri- 
butions to this field have been made by a number of researchers working in diverse 
areas. Many of these results are scattered in various publications, and an overall 
introductory treatment of these (particularly early and recent) works is not available 
in a single location. In view of the recent upsurge of interest in these problems, such 
a treatment will be helpful to non-specialists and newcomers to this area. 

We mainly consider the navigation probZem that deals with moving a robot to a 
destination while avoiding a certain set of obstacles on the way. The obstacles are 
detected using a sensor system (since they are not a priori known). Consequently, 
solutions to this problem vary greatly with the sensory system of the robot. The 
other factors affecting the algorithm are the assumptions on the obstacle terrain and 
the computational power of the robot. We also consider the terrain model acquisition 
problem that deals with building a terrain map by exploring the terrain using sensors. 
Most of our discussion deals with a point-sized robot amidst two-dimensional obstacles 
in the plane. Obstacles can be simple closed curves (of finite perimeter) [44], or 
polygonal [61] or have boundaries consisting of sequences of line segments and circular 
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arcs [62]. We basically consider touch and vision sensors, which are assumed to operate 
without errors. The algorithms based on touch sensors assume that the robot has 
some type of capability to move along the boundaries of the obstacles. 

The algorithms surveyed in this paper can be classified into three broad categories 
based on the overall objectives. The first category deals with algorithms that are 
shown to navigate correctly without giving much consideration to the performance 
parameters such as distance traversed, etc. In the second category, the main objective 
is to guarantee bounds on the distance traversed or ratio of the distance traversed to 
the shortest path length computed if the terrain model is known. The third category 
deals with robots with limited computational capabilities such as finite automata, etc. 
Also, we can classify the navigation algorithms for unknown terrains based on the 
sensor systems used by the robot. Typically these algorithms employ either touch or 
vision sensors. A taxonomy based on these characterizations is provided in the next 
section. 

The treatment in this paper is informal and elementary, and is intended to high- 
light the basic ideas of various methods; the technical details of the works can be 
obtained from the appropriate references. 

The organization of the paper is as follows. We provide a classification of various 
navigational methods of unknown terrains in Section 2. Algorithms for simple maze 
searching are discussed in Section 3. These works constitute some of the earliest ef- 
forts to solve the navigational problems within formal frameworks. Although many 
of these works are fairly limited in their applicability, they provide some of the basic 
ideas that have been subsequently used. In Section 4, we consider algorithms based 
on touch sensors; these algorithms are pioneered by Lumelsky [45] and could be con- 
sidered an inspiration to a number of subsequent works. Algorithms based on vision 
sensors are presented in Section 5. We consider two types of vision sensors: discrete 
sensors perform 360 degrees scan from the present location, and continuous sensors 
“see” all visible parts of the terrain as the robot navigates. In terms of information, 
a continuous sensor can simulate a discrete sensor but not vice versa if the latter is 
restricted to perform only a finite number of scan operations. Section 6 deals with the 
works that have been done in past few years as a part of renewed interest in this area; 
major inspiration seems to be the challenge of achieving some type of optimality in 
navigating in unknown terrains. Section 7 deals with computational issues involved 
in solving the navigation problem by considering a robot with very limited computa- 
tional capabilities; several works show the limitations of robots in searching mazes. 
The brief description in Section 8 is intended to provide some related information on 
algorithms for searching unknown graphs; several graph methods have been employed 
to solve a number of navigation problems, and an insight into the-former will help 
understand some important issues of the latter. In terms of algorithmic content, the 
problem of navigating in a geometric terrain is easier than that in graphs, mainly due 
to  the presence of spatial information in the former (see Blum and Kozen [7]). 
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2 A Taxonomy of Navigation Algorithms 

Algorithms for various formulations of the navigation problem in unknown terrains 
have been studied by a diverse set of researchers, e.g., mathematicians, electrical engi- 
neers, computer scientists, etc. Although the focus and treatment of these algorithms 
can differ considerably, often they can be visualized to be having some common un- 
derlying themes. Instead of a strict classification (which is very difficult to provide), 
we provide some broad keywords and phrases that characterize some classes of these 
algorithms. We consider the criteria of (I) overall objectives, and (11) sensor systems. 

(I) Overall Objectives: We can classify the existing methods into three classes 
based on the overall objectives of the navigation. 

(A) In the Class A methods, the main goal is to guarantee that the navigation 
objective is achieved, e.g., reaching a destination point, acquiring a model 
of the terrain, etc. In general, these algorithms are not designed to optimize 
parameters such as distance traversed, etc. Early works on this class of 
algorithms can be traced back to Sutherland [79] who presents an outline 
of a proof for the algorithm of Shannon’s mouse proposed in late 1940. In 
eighties, interest in these algorithms has been rejuvenated by the works 
of Lumelsky [45]. Several of the early maze searching algorithms can be 
included in this class; discussion on several maze searching algorithms and 
their relation to robot navigation algorithms can be found in Lumelsky 
(421 and Sankaranarayanan and Masuda [70]. 

(B) The Class B methods are intended to optimize parameters such as dis- 
tance traversed, figure of merit, etc. This area has attracted the attention 
of several researchers over the past few years. Although several perfor- 
mance measures, such as number of scan operations, number of elementary 
motion commands, etc., can be considered, recent works deal with either 
minimizing the distance traversed by the robot (Baeza-Yates et a1 [3]) or 
the ratio of the distance traversed to the shortest possible distance when 
the terrain model is known (Papadimitriou and Yanakakis [58], Blum et a1 
[5 ] ,  etc.). This line of algorithms is expected to receive increasing attention 
in future. 

(C) The Cluss C algorithms attempt to extract the basic computational issues 
involved in these problems along the lines of theory of computation. For 
example, assuming that the robot has the computational capability of a 
finite state automata, one might be interested in the type of navigational 
problems that can be solved. Most of these works are restricted to the 
terrains of mazes. Some of the early work in this area is pioneered by 
Budach [ll]. 

* 

(11) Sensor System: There are two different varieties of sensors, namely touch and 
vision, that have been studied in literature. 
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Class C 

Subclassification 
maze searching 

touch sensor 

continuous vision 

discrete vision 
searching in plane 
figure of merit 

restricted computation 

Class 
Class A 

Representative References 
Shannon’s mouse [79], Tarry and 
Tremaux 1571, Fraenkel 1271, 
Pledge algorithm [ 11 
Lumelsky [45],Cox and Yap [18], 
Sankaranarayanan and Vidyasagar [73] 
Sutherland [79], Lumelsky et a1 [50], 
Lumelsky and Skewis [51] 
Rao [61], Choo et al [15], Foux et al. [26] 
Baeza-Yates [3], Kao et a1 [38] 
Papadimitriou and Yannakakis [58],  
Blum et a1 [5], Bar-Eli et a1 [4], 
Deng et a1 [20], Klein [40], Kleinberg I411 
Kalyanasundaram and Pruhs [37, 35, 361 
Budach [lo,  111, Coy [19], Dopp [22], 
Shah 1751, Blum and Kozen 171 

- 

Class B 

Table 1: A taxonomy of non-heuristic navigation algorithms. 

(A) Touch Sensors: Typically a touch sensor detects when the robot touches an 
obstacle. Several algorithms based on such sensors have been extensively 
studied by Lumelsky [45] and by many other researchers. Early use of 
touch sensors goes back to the Pledge algorithm [l]. Some of the more 
recent works based on these sensors are due to Cox and Yap [18] and 
Sankaranarayanan and Vidyasagar [72, 71, 731. 

(B) Vision Sensors: A vision sensor typically provides the information visi- 
ble to the robot; there are two basic characterizations of a vision sensor: 
continuous and discrete sensors. As the robot navigates along a path, a 
continuous sensor can detect all parts of the terrain that are visible. Some 
of the early navigation algorithms based on continuous vision sensors are 
due to Sutherland [79). More recently, the algorithms of Lumelsky and 
Skewis [51] solve the navigation problem using the continuous vision sen- 
sors; the terrain model acquisition problem is solved by Lumelsky et a1 
[50], and Deng et a1 [20]. The discrete vision sensor provides a 360 degrees 
scan from a single position of the robot, i.e. the sensor obtains the bound- 
ary of all obstacles that are visible from a single point. Such operation is 
called a scan and the robot is required to perform only a finite number of 
such operations. Rao [61] studied algorithms based on the discrete vision 
sensors for solving the navigation and terrain model acquisition problem 
(the latter has also been studied by Choo et a1 [15]). If the number of scan 
operations is bounded, then there are navigational problems that cannot 
be solved by using discrete scan sensors, e.g. in terrains where obstacle 
boundaries are sequences of line segments and circular arcs [62]. Based 
on the range that a vision system is capable of, there are infinite distance 
sensors and finite distance sensors. Many of the vision based algorithms 
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A B 

Figure 1: Graphical representation of a maze 

assume that the range of vision is unlimited; Lumelsky and Skewis [51] 
describe algorithms when the radius of vision is limited. In many cases, 
especially in maze searching by Fraenkel [27], a vision or a touch sensor 
system that is capable of identifying the “corridors7’ or “paths” is implicitly 
assumed. 

A taxonomy of the works described in this paper is provided in Table 1 with some 
represent at i ve references. 

3 Simple Maze Searching 

Maze searching algorithms have been studied since as early as 1873 by Weiner (Ore 
[57]), and interest in such problems can be traced back to the Euler’s work on 
Konigsberg bridge problem (see Chapter 1 of Harary [30] for details of this prob- 
lem). Typically, in these problems we have an automaton with the ability to touch 
and/or see. There are two objectives of maze-searching algorithms: first to search for 
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r-> Path of the mouse - Obstacle wall 

Figure 2: Path followed by Shannon’s mouse 

a “treasure” hidden in an unknown location inside the maze, and second to escape 
out of a maze from an unknown location. 

Early efforts to solve maze problems are based on modeling the maze as a graph 
(see Fig. 1.) and invoking a suitable graph search algorithm. Here in Fig. 1 each 
corridor is represented by a graph edge, and a vertex represents a location where two 
corridors meet or a corridor dead-ends. A systematic exploration of the graph edges 
can result in finding a way out of the maze. In Fig. 1, entire interior of the maze can 
be seen if each edge has been traversed (equivalently each corridor has been traversed) 
using a continuous vision sensor; at the termination of such algorithm the robot is 
guaranteed to find the treasure or exit. Such ideas have subsequently resulted in a 
number of useful navigation algorithms both in known and unknown terrains; see 
Lumelsky [49] for discussion on the relation between maze-searching algorithms and 
navigation algorithms in unknown terrains. 

In this section we first discuss an interesting maze searching algorithm due to 
Shannon (Sutherlmd [79]). Early maze-searching algorithms based on graph search- 
ing methods discussed in Ore [57] and Fraenkel[27] will be described Sections 3.2 and 
3.3 respectively. The Pledge algorithm, based on a touch sensor and a compass-like 
device, is described in Section 3.4. 

3.1 Shannon’s Mouse 

In late 1940’s Claude Shannon built a maze-solving mouse that is capable of finding 
“cheese” stored in one of the squares of a 25-square checkerboard maze (described in 
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Sutherland [79]). Two adjacent squares are separated by removable aluminum walls. 
He proposed a rnaze-searching algorithm which is the first of its kind. Each square 

is assigned two bits which indicate an arrow showing which way the mouse went in 
the last last visit (if any) to the square. When exploring the maze, the mouse always 
attempts to leave each square it entered in a direction 90 degrees to the left of the 
recorded direction, updating its recording. If the mouse is struck by a wall in that 
direction, it returns to the center of the square and tries again another 90 degrees to 
the left. With this algorithm the mouse will eventually find the cheese; this algorithm, 
however, appears inefficient because the mouse will sometimes leave a square by the 
very opening it used in entering. See Fig. 2 for an execution of this algorithm. An 
informal correctness proof of this algorithm is given by Sutherland [79]. Notice that 
the mouse here has at most four directions to move from any cell, and it finds out 
that an adjacent cell is not reachable by “bumping” into the separating wall. 

Figure 3: Execution of Tarry’s algorithm 

3.2 Tarry and Trt5maux Algorithms 

The connection between graph searching and maze searching has been discovered in 
several early works. A graph model of a maze (such as the one in Fig. 1) is employed 
by the algorithms of this and the next section. 

The Tarry’s algorithm [57] constructs a cyclic directed path passing through each 
edge once and only once in each direction. The algorithm starts at an arbitrary vertex 
a0 and follows a path P marking each edge with the direction in which it has been 
traversed. When one arrives at some vertex g for the first time, the entering edge is 
marked specially. When one reaches a vertex g ,  one always follows next an edge (9, r )  
which either has not been previously traversed, or if it has been, it has been traversed 
only in the opposite direction. However the entering edge should be followed only as a 

last resort, i.e., when there are no other edges available. The execution of the Tarry’s 
algorithm will terminate at the initial vertex ao, with each edge traversed twice, once 
in each direction. An execution of Tarry’s algorithm is shown in Fig. 3. In spirit, 
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2 5 

4 3 

Figure 4: Execution of Fraenkel’s algorithm 

this algorithm is similar to the popular depth-first search algorithm used in graphs 

The same result is obtained in a different method proposed by Tremaux 1571. The 
procedure adopted is that of progressive covering of the graph. The technique ensures 
that all the vertices within a certain distance have been visited. It is easy to touch 
upon the vertices of distances 1: one passes through the various edges at a0 to their 
end points, each time returning to ao. Each edge E = (ao, a l )  is marked once as one 
leaves a0 and at al it is marked as the entering edge. To reach a vertex at a distance 
2 from ao, one selects some open edge E = (ao, a l )  and marks it again; at a1 a similar 
procedure is applied and reachable. vertices from al are marked. At a1 if one traverses 
and reaches a vertex which has already been visited then it is marked closed. If all 
the vertices from al are closed then the edge (ao, a l )  is marked closed. The operation 
is continued until all edges at a0 are marked twice. This algorithm is similar to the 
breadth-first search algorithm used for searching graphs [2]. 

PI- 

3.3 Fraenkel’s Algorithm 

An improvement to the TrBmaux and Tarry’s algorithm has been proposed by Fraenkel 
[27, 281. In this algorithm every edge is traversed once and at most once in each 
direction. We assume that upon the arrival at a vertex v, its entrance edge and the 
edges incident to v which have been traversed previously along with the direction are 
known. Let p(v) be the valence of v, i.e., the number of edges incident to v and let 
vo be the initial vertex. Without loss of generality we assume p(v0) = 1 of the initial 
terminal of this alley is 1. 

The algorithm proceeds as follows: 

2By visualizing two contra-directed edges for each corridor, we can see that this algorithm defines 
a subclass of directed Euler graphs (a directed graph is called a directed Euler graph if each node has 
the same number of incoming and outgoing arcs [17j). The path taken by the robot runs through 
each directed edge precisely once and such path is called the directed Euler tour .  For this subclass 
of directed graphs, the depth-first search algorithm yields the directed Euler tour. 
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(1) Start out from vo with the counter initialized to zero. The counter is increased 
by unity upon arrival at a vertex that has not been traversed before. 

(2) If we arrive at a vertex v such that before entering it there was at least one edge 
incident to it which was not yet traversed, and upon arrival at v there remains 
at most one such edge, decrease the counter by 1. 

(3) As long as the counter is positive, the tour is conducted according to Tarry’s 
algorithm, but, whenever possible, an edge not traversed before, is used in 
preference over an edge traversed before. 

(4) Suppose the counter becomes zero at vertex ok. If there is an untraversed edge 
incident to vk follow it. Otherwise, leave all vertices via their entrance edges. 

An execution of Fraenkel’s algorithm is shown in Fig. 4. It is to be noted that 
the above solution is not unique and several other valid solutions exist. 

Notice that the algorithms of Tarry, Tremaux and Fraenkel assume that the sensors 
are adequate to navigate the automaton along the required corridors. Further they 
assume that the robot can identify a corner when it revisits; this capability can be 
implemented by using real arithmetic and suitably storing the points visited by the 
aut omat on. 

3.4 Pledge Algorithm 

The Pledge algorithm deals with navigating a point automaton with touch sensing, 
and a compass that can measure the “amount of turn”. The automaton is trapped 
inside a maze, and it is required to escape out of the maze. The following algorithm 
for this problem has been reportedly invented by a 12 year old boy in Exeter, England 
(reported in Abelson and diSessa [l]). Fig. 5 illustrates a point automaton escaping 
a maze using Pledge Algorithm by the following steps. 

(1) Choose an arbitrary fixed direction call it Fin;t and face this way. 

(2) Walk following Finit until you detect an obstacle by front sensor. 

(3) Turn left and follow the obstacle boundary keeping the obstacle on the right 
side. 

(4) Follow the obstacle around, until the total turning angle is zero. Go back to 
step 2. 

Notice that the automaton only needs a primitive computational ability of adding 
and subtracting the amount of turn, which is a real number. The sensor system must 
enable the automaton to (a) navigate along the obstacle boundaries, and (b) meamre 
amount of turn. Pledge algorithm is the first non-heuristic algorithm based on touch 
sensing. A detailed proof of correctness of the algorithm is given by Abelson DiSessa 
111. This algorithm inspired some robot navigation algorithms such as algorithm 
Curve1 of Sankaranarayanan and Masuda [ 701. 
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Figure 5: Execution of Pledge algorithm 
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There are several features of these maze searching algorithms that are subsequently 
used in robot navigation algorithms. First notice that the Shannon’s mouse discovers 
obstacles by bumping into them and each obstacle is known to be a wall separating 
two cells; also, the direction of movement of the mouse is restricted to four known 
directions. The algorithms of Tarry, Tremaux and Fraenkel are high level strategies 
based on the assumption that corridors a n  somehow be detected and followed. The 
Pledge algorithm is based on detecting obstacles by touching them. 

In terms of the memory used, the Pledge algorithm is unique in that it requires 
just one variable denoting the amount of turn, whereas the other algorithms explicitly 
store information about the locations that have been visited earlier. 

4 Navigation Using Touch Sensing 

The interest in non-heuristic algorithms for navigation in unknown terrains has been 
rekindled in mid eighties due to the pioneering works of Lumelsky and Stepanov [53]. 
As a result a number of algorithms based on touch sensing have been subsequently 
studied; these algorithms will be the focus of this section. 

We first discuss two basic algorithms Bug1 and Bug2 of Lumelsky and Stepanov 
[53]. The ideas behind these algorithms have been subsequently extended to several 
contexts. Then we discuss the algorithms of Sankaranarayanan and Vidyasagar [73] 
and Sankaranarayanan and Masuda [70]. Then we consider a navigation algorithm 
for a ladder based on a touch sensor due to Cox and Yap [18]. We then deviate from 
the main line of discussion of this paper to discuss the applications of the algorithms 
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of Lumelsky et al. [46, 471 to manipulators. 

4.1 Lumelsky’s Algorithms 

A point robot capable of touch sensing is considered here; the robot can detect a 
contact with an obstacle and also follow its boundary. Obstacle boundaries are simple 
closed curves of finite length. Two basic algorithms, Bug1 and Bug 2, are proposed in 
(531. Here the problem is to reach a specified destination T from the present location 
S. Some simple strategies will not correctly navigate the robot to the  destination; we 
discuss these aspects briefly in Section 5.4. 

In the algorithm Bugl the automaton meets the ith obstacle at a hit point Hi, 
i = 1 , 2 , .  . . and leaves it at a leave point Li, a = 1,2,. . .; Lo = S. The behavior of the 
automaton is illustrated in Fig. 6. The algorithm proceeds as follows: 

(1) From the point L , L ~ ,  move towards the target along a straight line until one of 
the following occurs: (a) if the target is reached, then terminate the algorithm; 
(b) if an obstacle is encountered, define hit point, Hi and go to Step 2. 

(2) Turn left and using this local direction, follow the obstacle boundary. Stop if 
target is reached. Else, after having traversed the whole boundary and hav- 
ing returned to H;,  define a new leave point Li, which is a point on obstacle 
boundary closest to the destination. 

(3) Take shortest distance path along the obstacle boundary to the point L; after 
returning to  Hi .  Apply the target reachability test. If the target is reachable 
then the algorithm terminates. Otherwise increment i and go to Step 1. 

A proof of correctness of Bugl is described in [53]. By the execution of this 
algorithm the length of the path P produced will never exceed the limit D + 1.5. xi pi 
where D is the straight line distance between the target and the start points, and p;  
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refers to the perimeter of the obstacles intersecting the disc of radius D centered at 
the target. 

For the algorithm Bug& the automaton starts from Lo. Let d(P)  denote the 
distance between a point P and the target point. The algorithm consists of the 
following steps. 

(1) From point &-I, move along the straight line ST until one of the following 
occurs: (a) if the target is reached, the algorithm terminates; (b) if an obstacle 
is encountered, a hit point, Hi,  is defined. 

(2) Using the accepted local direction, follow the obstacle boundary until one of 
the following occurs. (a) The target is reached, and the algorithm terminates. 
(b) The line ST is met at a point Q such that the distance d(Q) < d(H; ) ,  and 
the line QT does not cross the current obstacle at the point Q. Define the leave 
point Li = Q. Increment j and go to Step 1. (c) The automaton returns to Hi 
and thus completes a closed curve without having defined the next hit point, 
Hi+l. In ( c )  the target is trapped and cannot be reached, and the algorithm 
stops. 

In this algorithm a path segment navigated around an obstacle is often (but not 
always) shorter than the perimeter of the obstacle (Fig. 7). The proof of correctness 
of this algorithm is described in 1.531. The length of the path generated never exceeds 
D + xi y, where p;  refers to the perimeter of the obstacles intersecting the straight 
line segment ST and n; is the times the ith obstacle is visited. 

A comprehensive treatment - including a general lower bound and correctness 
proofs - of the algorithms of Lumelsky and his associates is given in [45]. 

4.2 Sankaranarayanan’s Algorithms 

Several extensions to the early versions of Lumelsky’s algorithms have been proposed 
by Sankaranarayanan and Vidyasagar [72,71,73] and Sankaranarayanan and Masuda 
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[70]; these algorithms lead to generalized solutions. We discuss Algl and Alg.2 of 
[71, 721 and Curve1 of [70] in this section. 

As a nice intermediary between the algorithms Bugl and Bug2, a new algorithm 
Algl has been proposed by Sankaranarayanan and Vidyasagar [71] in which the au- 
tomaton travels less along the obstacle boundaries and more along the straight line 
segments towards the target point T .  Algorithm Algl can be briefly described as 
follows. 

(1) The robot moves along the line M-line joining the start (S) and destination ( T )  
locations until an obstacle is met. 

(2) The robot follows the boundary in a specified local direction (say left). The 
robot leaves the obstacle boundary at a point L if and only if the following 
two conditions are satisfied: (a) robot can moves along the line joining L to 
destination; (b) L is the closest point to destination on the M-line ever visited 
by the robot. 

(3) After meeting an obstacle at hit point Hj and moving along that obstacle bound- 
ary, the robot can meet a previously defined hit point or leave point &k (IC < j ) .  
If that happens, the robot retraces its path back to Hj and moves along the 
section of the obstacle boundary on the other side of H j .  

Note that Bugl traverses along the entire boundary of every obstacle it encounters 
and Bug2 avoids such traversals in simple cases by attempting to navigate only along 
a part of the boundary; however in complex terrains, Bug2 may repeatedly visit the 
same obstacle. Algl avoids this problem. The path length generated by this algorithm 
is upperbound by 2 pi + D. See Fig. 8 for an execution of this algorithm. 
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Figure 9: Execution of algorithm Alg2 

The algorithm Alg2 proposed by Sankaranarayanan and Vidyasagar [72] can be 
described briefly as follows. 

(1) The automaton travels along a straight line towards the destination T until an 
obstacle is met. 

(2) The automaton leaves the obstacle boundary at  a point L if and only if the 
following two conditions are satisfied: (a) at  L ,  the automaton can move along 
a line segment LT that does not enter the obstacle, and (b) L is closest to T 
among all x ever visited by the automaton prior to visiting L.  

(3) If a previously defined hit or a leave point is met then the following rule is 
applied: if returning to a hit point H ,  the automaton moves along the unvisited 
section of the obstacle boundary, which starts at H .  

In this algorithm the length of the path generated never exceeds the limit 2 xi  pi + 
D. An execution of Alg2 is shown in Fig.9. 

Sankaranarayanan and Vidyasagar [73] classify the touch based navigation algo- 
rithms into classes I and 11. Algorithms of Class I traverse the entire boundary of 
every obstacle they encounter (such as Bugl) at least once before leaving it; algo- 
rithms of Class I1 leave at least one obstacle before traversing its entire boundary. For 
the former class they show a lower bound of 1.5Cp; + D for the distance traversed by 
the robot and for the latter class of algorithms they show a lower bound of 2 p;  + D 

The algorithms Bugl, Bug2, Algl and Alg2 are called metric algorithms since 
they use information such as position, distance, etc. Sankaranarayanan and Masuda 
[70] present the algorithm Curve1 that uses non-metric information to follow a track 
in a terrain populated by unknown obstacles. A guide track is a non self-intersecting 
curve ST, connecting the source S and the target T .  The algorithm is based on 
the topological property observed in the Jordan-Curve theorem that the curve ST 

P31. 
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Figure 10: Execution of Curvel Algorithm 

intersects an obstacle boundary at even number of points. The automaton has a 
counter C associated with it. The algorithm is described as below. 

(1) Start from the point S. Set the counter C to zero. 

(2) Move along the curve ST until one of the following occurs: (a) the target T is 
reached, stop; (b) an obstacle is met, then follow the obstacle boundary in the 
local direction left. 

(3) Follow the obstacle boundary until one of the following occurs: 

(a) The target T is reached, then stop; 

(b) The curve ST is met at a point P. One of the following steps is executed. 

i .  The counter C reads zero and, at P, the automaton can move along 
curve ST towards T .  Follow the curve ST away from the obstacle. 

ii. The counter C reads non-zero and, at P ,  the automaton can move 
along curve ST towards T .  Decrement the counter C by unity and 
move along the obstacle boundary. Goto Step 3. 

iii. At P ,  the automaton cannot move along curve ST towards T .  Incre- 
ment the counter C by unity and continue moving along the obstacle 
boundary. Goto Step 3. 

Fig. 10 illustrates the execution of the algorithm Curvel. This algorithm is 
inspired by the Pledge algorithm discussed in Section 3.4; notice that the robot in 
this case is able to follow the track with just a compass-like device. 
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4.3 Cox and Yap’s Algorithm 

Navigation of a rod or ladder using a touch sensor has been studied by Cox and 
Yap [18] in two-dimensional terrains populated by polygonal obstacles. The ladder 
can be thought of as an autonomous vehicle which can carry out “guarded move” 
instructions consisting of motion along a smooth curve or a compliant motion which 
maintains specified obstacle contacts until an event occurs, such as contact with a 
new obstacle or a coordinate taking on a specified value. 

Let F P  be the set of all positions of the ladder that do not cause a collision with 
obstacles. The idea of this algorithm is to have the ladder search the environment 
while keeping in contact with the obstacles, dynamically constructing a road-map of 
the environment. The road-map consists of a superset of the edges of the topological 
boundary of FP. The notion of road-map has been extensively used in known terrains 
(see Canny I121 for details on road-map), and in vision based algorithms in unknown 
terrains (Rao [61]). 

All guarded move instructions specify two constraints that define a curve in F P ;  
the instruction will specify which of two directions to move in that curve. Each 
constraint is of the following form: (a) maintain contact of the ladder with a particular 
corner, (b) maintain contact of a ladder endpoint with a particular wall, ( c )  maintain 
a certain orientation of the ladder, (d) restrict an endpoint of the ladder to move 
along a particular line in physical space. 

A guarded move is terminated automatically when one of the following event 
occurs: (a) ladder makes a new obstacle contact; (b) one or several of the coordinates 
reaches some specific value(s); (c) an endpoint of the ladder reaches some specified 
point in physical space. 

Cox and Yap 1181 dynamically construct a road-map of the relevant portions of the 
environment with a motion that has a path complexity bounded by O(6)  = O(n2) ,  
where n is the number of obstacle walls, and IC is the total number of pairs of obstacle 
corners and walls within a distance less than or equal to the length of the ladder. This 
algorithm is a synthesis of retraction techniques (used extensively in known terrains 
[76] and to a limited extent in unknown terrains [67]) and the technique of Lumelsky 
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4.4 Navigation of Manipulators 

So far we discussed mobile robots navigating in unknown terrains. We now illustrate 
that the basic underlying algorithms can also be applied to robot manipulators (see 
Paul [59] for general discussions on manipulator programming and control). These 
algorithms are due to Lumelsky and his group [46, 471. Lumelsky and Sun [52] present 
a comprehensive treatment of motion planning methods for manipulators within the 
framework of touch sensors. Our objective here is only to provide some feel for the 
applicability of previous algorithms to the case of manipulators; this section is not 
intended to be an exhaustive survey on non-heuristic algorithms for manipulators. 

A planar manipulator arm can be visualized as a set of line segments (called links) 
joined at end points. Base link can be translated or rotated with respect to a fixed 
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Figure 11: Five Effective Combinations 

base. And any other link can be translated or rotated with respect to the links it is 
joined to; in the former case we have a sliding joint and in the latter we have a revdute 
joint. Computational aspects of manipulators have been studied extensively in known 
terrains (for example see Hopcroft et a1 [31]). The entire manipulator operates in the 
plane where the source and target point lie. We consider only manipulator arms with 
two degrees of freedom; each position of the manipulator is given by a pair of variables, 
which are either angles or linear translations. The arm is able to do following actions: 
(a) move the endpoint along parts of a known simple curve, connecting S and T (call 
this curve M-line), compute the coordinates of consecutive points along the M-line 
and transform them into the corresponding joint values if necessary; (b) when the 
arm's body contacts an obstacle, identify the points of contact. 

By suitably joining links with sliding and revolute joints, we can potentially have 
32 arbitrary combinations for the planar arm connections. Because some joints are not 
admissible, some are equivalent, and some are not meaningful, only 5 combinations 
are required in practice (see Fig.11). Here we choose a manipulator with two revolute 
joints (Fig.ll(a)) as an example to present the navigation algorithm. Since each 
position of this arm is specified by a pair of angles, we can imagine the manipulator 
to be a point moving on a surface of a torus. The regions of the torus that correspond 
to positions that are not attainable by the manipulator due to the obstacles constitute 
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Figure 12: Image Space of Planar Arm Manipulator Algorithm 

wvirtual obstacles. Thus the navigation problem of this manipulator is reduced to that 
for a point robot amidst virtual obstacles on the torus. We have two different types 
of virtual obstacles: type I obstacles form a single closed curve on the surface of 
the torus, and type I1 obstacles form a band-like structure (on the torus) limited by 
two simple closed curves. During the motion, some points of the arm body meet 
obstacles. We have hit points Hj corresponding to points of intersection between the 
M-line image (projected onto torus) and boundaries of the virtual obstacles. While 
following the virtual boundary, the arm may meet the M-line more than once. The 
point at which the arm leaves the obstacle is called the leave point Lj. Because of 
the structure of the surface of torus, we can have four types of M-lines denoted by 
M,,Mz,M3 and M4 as shown in Fig.12; let these lines be ordered by their lengths, 
with MI being shortest one. Now the following is a brief outline of the procedure 
using Lumelsky’s method for a manipulator with two revolute joints (refer to Fig. 
12). The manipulator uses two counters C1 and C2 which will record the angles as 
the robot moves; it also uses a Boolean variable called the Jag. 

(1) Let M-line be Ml-line, flag be set down and j = 1. 

(2) Let C1 and C2 be initialized to zero. The arm moves following the M-line from 
Lj-l until the target is reached, otherwise it must hit obstacle and define the 
hit point H j .  

(3) Set up the counters C1 and C2. The arm follows the virtual boundary until 
the target is reached; otherwise either ( a )  M-line is met at a distance d from T 
such that d < d(H, ,  2’) and point Lj is defined, then the increase j go back to 
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step 2, or (b) if the arm returns to H, without contacting the M-line ever, then 
go to next step. 

(4) At this step there are two different cases: after checking the obstacle range (that 
is in the counter C1 and C2) if the status belongs to following Case (a) then 
stop the procedure. If not go to Case (b) then go to step 5. 

(a) The range of C1 and C2 is (0,O) (this is a Type I obstacle), or the range 
is not (0,O) (this is Type I1 obstacle) and the flag is up. The result is that 
target is unreachable. 

(b) The range is not (0,O) and the flag is down: designate shorter of M3 and M4 

as the M-line, if the range is (0,n2); 1.21 2 1 as an integer; or designate 
shorter of Mz or M4 as the M-line, when the range is (nl,O), 1.11 2 1; 
or aesignate shorter of Mz,M3 and M4 as the M-line, when the range is 
(nl ,  n2);  1.11, 1.21 2 1. 

( 5 )  Reset the arm to start point, set the flag up. Let j=1, go back to step 2. 

Now consider a three-dimensional arm that requires at least three degrees of free- 
dom (three links and three joints). Thus maneuvering a body around another body 
in three-dimensional space presents an infinite number of alternatives and precludes 
direct application of the strategy of following simple closed curves in the image space. 
The natural constraints imposed by the arm kinematics may still allow one to reduce 
the problem to simpler cases. See Lumelsky [43, 481, Lumelsky and Sun [52] and Sun 
and Lumelsky [78] for discussions on navigation algorithms for 3D manipulators. 

5 Navigation Using Vision 

Vision is the most commonly used sense for navigation by human beings. It is both 
interesting and challenging as to how to use visual information to navigate robots. 
In this section, we address the problem of navigating robots using continuous and 
discrete vision sensors. Robot equipped with a discrete vision sensor performs a scan 
operation from a location to return the visibility polygon which is the polygonal region 
of all points visible to the robot from its location (a point is visible if the line segment 
joining the present location to the point is not intersected by any obstacle). See Fig. 
13(a) for an example of the visibility polygon obtained by a discrete vision sensor. 
Certain computation cost and time is associated with each scan operation, and it is 
critical that only a finite number of scan operations are performed during navigation. 
Using a continuous vision sensor, the robot can obtain all the visible points as it 
moves along a path; more precisely, the robot navigating along a path S will detect 
the union of all visibility polygons from all locations on S (see Fig. 13(b)). In general, 
this operation of a continuous vision sensor can be simulated by performing an infinite 
number of discrete scan operations, but, such simulation is not possible if only a finite 
number of scan operations are allowed. 

The type of vision sensor employed by the robot impacts the navigational algo- 
rithm. A navigational algorithm designed for a discrete scan sensor can be executed 
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Figure 13: Vision scan operations. 

by using a continuous vision sensor but not vice versa. Also, as will be discussed later, 
there are navigation problems that can be solved using continuous vision sensors but 
not by using a finite number of scan operations performed by a discrete vision sensor. 
Also, touch sensing, at least in theory, can be implemented using continuous vision 
sensors. 

In this section, we first discuss Sutherland’s algorithm which is the first formal 
navigation algorithm based on a continuous vision sensor [79]. We then consider the 
navigational framework of Rim [61] which establishes that a graph algorithm can be 
utilized on a geometric structure of the terrain to solve the navigation and terrain 
model acquisition problems; this work is mainly concerned with a polygonal terrain 
in which a discrete sensor is adequate for navigational purposes. Then we consider 
the navigation problem and the terrain model acquisition problem using continuous 
vision sensors due to Lumelsky and Skewis [51], and Lumeisky, Mukhopadhyay and 
Sun [50] respectively. We also briefly mention some other works based on continuous 
vision sensors. 

5.1 Sutherland’s Algorithm 

The robot uses a continuous vision sensor to detect “hide regions” behind the obsta- 
cles; these regions are called “spurs”. In Fig. 14, consider the robot initially located 
at S; the region on the other side of the point P1 defines spur 1, and as the robot 
moves to the next location the points of spur 1 are all completely seen but a new spur 
(spur 2) is detected. Here each of P1 and P2 is called the “point defining the spur”. 
The main idea of Sutherland’s algorithm is to move the automaton until all the hide 
regions are seen. The Sutherland’s algorithm can be described in the following steps: 

(1) Automaton scans the horizon completely. If there is no spur, then automaton 
can reach target directly. 
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Figure 14: Execution of Sutherland Algorithm 

(2) When there is spur in the vision (if there i s  more than one spur then one is 
chosen arbitrarily), the automaton judges which side of the open doorway the 
spur is located and allows for the width of the robot. For example, if the spur 
is to the left hand side of an open doorway, the automaton moves towards 
but slightly to the right so that when the automaton gets in doorway, there is 
enough distance between automaton and obstacle to avoid hitting the obstacle. 
Then the automaton moves to explore the chosen spur by getting around the 
doorway of the spur. 

(3) As the automaton keeps navigating in the terrain, some spurs disappear and 
possible new ones will appear. Automaton continues to scan. If there are more 
spurs the automaton goes back to step 2; otherwise it implies that the whole 
maze has been explored, the target must be in the view, and should be reached. 

The Fig. 14 shows the automaton executing the Sutherland’s algorithm to reach 
a goal. 

The approach used in the Sutherland’s algorithm can be traced in several other 
subsequent works. Similar algorithm has been recently described in Deng, Kameda 
and Papadimitriou [20]. If the terrain is polygonal then the above algorithm can be 
conceptualized as a finite graph search as shown in the next section; also in this case, 
a finite number of scan operations using a discrete vision sensor will be sufficient for 
navigational purposes. 

5.2 Framework for Discrete Vision Sensors 

An algorithmic paradigm that yields correct algorithms to solve the navigation prob- 
lem and the terrain model acquisition problem has been proposed by Rao [61]. A 
finite graph called the navigation course g, is used as an underlying structure for the 
navigational purposes. Initially navigation course is not known, but it is incremen- 
tally constructed from the sensor operations. The robot executes a graph algorithm 
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Figure 15: Restricted Visibility Graph 

using the navigation course. In solving the navigation problem, the robot starts at a 
vertex of the navigation course, and carries out navigation until it reaches a vertex 
from which the destination point is found to be reachable. In solving the terrain 
model acquisition problem, the robot systematically visits all vertices of the naviga- 
tion course. 

In order that a graph exploration algorithm terminates, the navigation course must 
contain a finite number of edges and vertices, i.e., must satisfy finiteness property. 
It must satisfy the terrain-visibility property which requires that every point in the 
free-space is visible from some vertex of the navigation course. It must also satisfy 
the connectivity property which requires that every pair of vertices be connected by a 
graph path on the navigation course. We require that adjacency list of a f-vertex can 
be constructed from the information of a single scan; this property is called the local- 
constructibility. For a navigation course 5 that satisfies the properties of finiteness, 
connectivity, terrain-visibility and local-constructibility, any graph search algorithm 
(e.g. depth-first search) can be employed to solve the navigation and the terrain 
model acquisition problems. 

We now discuss three examples of the navigation course. We first discuss the 
restricted visibility graph, RVG = (V, E) which is defined as follows [65]: (a) V is the 
set of all convex obstacle vertices, (b) an edge (vl ,  v2), for V I ,  v2 E V represents the 
fact that the line joining V I  and v2 either corresponds to an obstacle edge or does not 
intersect any obstacle polygon. See Fig. 15 for an example of RVG. 

The second structure V D  is based on the Voronoi diagram, and can be described 
as follows [67]. Consider terrain 0 of Fig. 16. The convex hull CH of 0 is the 
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Figure 16: Voronoi Diagram of Terrain 

minimal polygonal region that encloses all obstacle polygons. The extended hull EH 
is the convex polygonal region obtained by pushing out the edges of CH by a distance 
z. The Voronoi diagram of the terrain is the locus of points that are closest to at 
least two points on the obstacle boundary. The Voronoi diagram consists of straight 
line segments and second order curve segments. The V U  is obtained by taking the 
union of the Voronoi diagram contained in E H ,  and the boundary of EH as in Fig. 
16(b). 

Figure 17: Dual Graph of Terrain 

There many other ways of generating navigational courses, based on dual graphs 
corresponding to decompositions such as trapezoidal decomposition, triangulation, 
etc., of free space [64]. Consider the terrain of Fig. 17. We decompose the free-space 
into trapezoids by sweeping a horizontal line. When this line reaches a vertex, we 
extend (at most two and at least one) line segments from this vertex into free-space 
until obstacle boundary is reached or to infinity. The free-space is then decomposed 
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into trapezoids by these line segments. Then a dual graph is obtained by denoting each 
trapezoid by a node and joining two nodes by an edge if and only if the corresponding 
trapezoids share a boundary edge. 

The terrain model acquisition problem is first formulated and solved for two and 
three dimensional terrains by Rao et al [66] using the visibility graph as the navigation 
course. Later the restricted visibility graph obtained by removing concave corners 
from the visibility graph, is shown to suffice for two-dimensional terrains [65]. 

Discrete vision sensors are sufficient to navigate in polygonal terrains. But, they 
are inadequate to navigate in more general terrains, if we are constrained to perform 
only a finite number of scan operations. For example, if each obstacle boundary 
consists of a sequence of line segments and circular arcs, then Rao [62] showed that the 
navigational problems cannot be solved by using discrete sensors; these problem can 
be solved using Voronoi diagram methods using continuous vision sensors. However, 
if we stipulate a precision such that the portions where obstacle boundaries are closer 
than a specified value, are taken as obstacles, then both the navigation problem and 
terrain model acquisition problem can be solved using the methods of visibility graphs 
and Voronoi diagrams [62]. 

\- 
S 

Figure 18: Execution of VisBug21 

When the robot is circular in shape, Rao and Iyengar [65] propose a navigation 
course based on a visibility graph. Here the robot must be capable of performing 
straight line motion, rotating around the center and around a point on the periphery 
of the circle. The visibility polygons returned by the sensor is from a fixed point p 
on the robot, and the robot locates p at certain points in the terrain to perform scan 
operat ions. 

For a robot of polygonal shape with an ability to translate in any direction, FOUX 
et al. [1993] propose a navigation algorithm. They convert this problem to that of a 
point robot by using the well-known obstacle growing technique of Lozano-Perez and 
Wesley (19791. Their algorithm is based on employing the Dijkstra's shortest path 
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algorithm on a structure similar to the visibility graph corresponding to the parts of 
the terrain that have been seen so far. An interesting feature of this work is that 
they employ a heuristic that the boundaries known to the robot constitute the entire 
set of obstacles at any stage of navigation; they constuct some portions of visibility 
graph in the regions that have not been seen so far, based on this heuristic. 

Path of robot ----* 

(a) execution of VisBug22 

- Pathofrobot 

(b) execution of Bug2 

Figure 19: Execution of VisBug22 

5.3 Continuous Vision Sensors 

Lumelsky and Skewis [51] discuss navigation algorithms using continuous vision sen- 
sors where the sensor has a fixed radius within which it can detect the visible obstacle 
boundaries. Here the obstacles are simple closed curves (not necessarily polygons); 
thus the algorithms of last section are not adequate. Two algorithms VisBug-21 and 
VisBug-22 are proposed to solve the navigation problem. These algorithms are based 
on the Bug2 algorithm (discussed in section 4.1) that uses a touch sensor. 

Informally the algorithm VisBug-21 "mentally" reconstructs within the range of 
vision the segment of the path that would have been produced by Bug2; then the 
farthest point on this segment is made an intermediate target, and the robot makes 
a step towards the target. If the radius of vision is zero, then this algorithm will be 
identical to Bug2. If the radius of vision is small then the robot moves around the 
obstacles and gets into the vision of the M-line so that it is seen. On the other hand 
if the radius of vision is large then the robot does not move close to the M-line. See 
Fig. 18 for an execution of this algorithm. 
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Figure 20: Sightseer Strategy 

The second algorithm, VisBug22, does not follow the path of Bug2 completely, 
but tries to compute intermediate goals on M-line and chooses the goal closest to the 
target T ;  the robot then moves to this intermediate goal and repeats the process. An 
execution of this algorithm is given in Fig. 19(a); here radius of vision is much larger 
than the diameter of the obstacles. Compare this path to that produced by Bug2 in 
Fig. 19(b). See Lumelsky and Skewis [51] for more details on these algorithms. 

The terrain model acquisition problem using continuous vision sensors with a 
radius of vision d is considered by Lumelsky et a1 [50]. Two distinct models of the 
environment are studied here. In Model (a), the terrain is either finite or infinite and 
at least one obstacle is visible from the starting position and all the obstacles are 
mutually visible from each other. In Model (b), the terrain must be finite and the 
obstacles need not be visible from each other. Two algorithms called the Sightseer 
s trategy and Seed Spreader  s trategy are proposed in [50]. 

The Sightseer algorithm applies to Model (a). Standing at its starting position, the 
robot scans for a visible obstacle. If no obstacle is visible its job is done. Otherwise, 
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Figure 21: The Seed Spreader strategy 

the robot linear navigates towards the nearest obstacle and then circumnavigates it 
completely and marks it as visited. The robot now chooses the nearest unvisited 
obstacle from the obstacle it has just visited. Since the next obstacle it has to visit is 
visible from the current obstacle, the robot does not encounter any other obstacles. 
When no other obstacle is visible from the current obstacle, the robot backtracks. 
The process ends when no unvisited obstacles remain. See Fig. 20 for an execution 
of this algorithm. 

The Seed Spreader strategy is applied when the terrain has many obstacles in it 
and the obstacles are “nicely distributed” and are of “nice geometry”. The strategy 
is to encircle a group of obstacles say by a rectangular path and circumnavigate each 
of them. We divide the terrain into a number of equidimentional strips and we hope 
that the obstacles within are wholely acquirable without actually visiting them in the 
course of navigation around the strip. However when it becomes apparent that an 
obstacle cannot be wholely acquirable by staying on the perimeter of the strip then 
the robot moves off the strip to the obstacle and circumnavigates. The path the robot 
takes on the strip is called the M-line. Various special cases that arise due multiple 
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(a) simple navigation procedure (b) continuous vision Sensor 

0 sensor operation 

(c) discrete scan vision sensor 

Figure 22: Test case for simple navigation methods 

hit of the same object and due to an obstacle on the M-line are resolved as shown in 
the Fig. 21. 

5.4 A Test Case 
Many of the navigation algorithms discussed so far are fairly intuitive, but, many of 
the intuitive methods that appear to be non-heuristic will not be so after a closer 
inspection. One simple navigation 
method for this robot could be: move towards the goal until an obstacle is encountered 
or the goal is reached; if an obstacle is encountered then turn left and navigate around 
the obstacle until the robot can move towards the destination again and then repeat 
the same step (until the destination is reached). In this case the robot will get stuck 
in an infinite loop around an obstacle configuration in the case shown in Fig. 22(a). 

The same test case can be used in the context of a robot with vision sensors. 
Consider a case where a robot concludes that the terrain model is completely acquired 
when there are no partially seen obstacles, Le., all obstacle that have been detected 
so far are completely seen. Such conclusion would be useful in deciding if the terrain 
model is completely acquired or the destination is not reachable. This algorithm 
fails to detect some obstacles in the terrain. In the case of continuous scan shown in 

Consider a point robot with a touch sensor. 

29 



Fig. 22(b), the robot has completely seen the boundaries of all obstacles that it has 
detected, but failed to detect the obstacle contained in the interior; the seed spreader 
algorithm of Lumelsky et a1 [50] fails to acquire the terrain in this case. Similar failure 
occurs for the discrete vision scan based algorithm of Choo et a1 [15] as shown in Fig. 

The configuration in Fig. 22 can be often useful in testing new algorithms for the 
22(c). 

navigation and/or terrain model acquisition in unknown terrains. 

Algorithms with Performance Guarantees 

In the last few years, there had been an increasing interest in the algorithms that guar- 
antee performance in some way. The algorithms of last two sections only guarantee 
that they solve the required navigational problems, but are not aimed at guaranteeing 
any performance parameters. 

In this section we consider algorithms that minimize the distance traversed or the 
figure of merit, which is the ratio of distance traversed to the shortest path length. We 
first consider the case of minimizing (among a class of algorithms) the total distance 
traversed by a robot operating in plane. These problems are pioneered by Baeza- 
Yates et a1 [3]. Then we consider the algorithms of Papadimitriou and Yannakakis 
[58], Blum et a1 [3] and BarEli et a1 [4] that optimize the above-mentioned ratio. 

Some of the algorithms of the last sections provide bounds for certain performance 
parameters; in fact some of them are optimal within restricted classes of algorithms. 
But, their main focus is not the optimization of the parameters. Lumelsky [45] 
proves a lower bound on the distance traversed by the robot in terms of the sums of 
the boundary lengths of the obstacles encountered by the robot. Bounds in terms of 
the lengths of the depth-first trees of the navigation course are shown for the discrete 
vision algorithms by Rao [63]. Also, in the context of discrete vision algorithms, Rao 
[63] showed that the solutions that implement A* algorithm are shown to achieve 
optimal number of scan operations among the class of all solutions that employ ad- 
missible graph search algorithms (see Pearl [60] for an extensive discussion on A* 
algorithms and admissible graph search algorithms). Among the class I and class I1 
of [73] algorithms based on touch sensing the Bug1 of Lumelsky and Stepanov [53] 
and Alg2 of Sankaranarayanan and Vidyasagar [72] achieve the optimal worst-case 
path lengths. 

Here we first consider algorithms for searching in a plane due to Baeza-Yates et 
a1 [3]; this work is often considered a starting point in the renewed interest in algo- 
rithms with performance guarantees. We then discuss algorithms to solve navigation 
problems that optimize figures of merit. Then we consider an algorithm to solve the 
terrain model acquisition problem due to Deng, Kameda Papadimitriou [20]. Finally 
we consider the problem of crossing a street, which is a special case of a navigation 
problem [40]. 
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6.1 Searching in Plane 

Given 
normal to the line 
line’s distance 
line’s distance and that it is horizontal or vertical 
line’s distance 
lines slope 
line is horizontal or vertical 
nothing 

Baeza-Yates et a1 [3] solve several problems dealing with an automaton capable of 
computation with real numbers in plane. The robot is searching for an object in plane 
such that for each new probe a cost proportional to the distance of the probe position 
relative to the current probe position, is incurred. The objective is to minimize the 
total cost incurred by the robot. 

Two basic search problems in the plane are considered in [3]. First consider a 
robot that is searching for a point at an unknown distance n on a line. The robot 
can sense the point only when it is directly located above the required point. Any 
algorithm to solve this problem can be described as function f(i), where f ( i )  is the 
number of steps it makes to the left (or right) before the ith turn and where the 
odd terms are the number of steps to the left and the even terms are to the right 
as measured from the starting location of the robot. They propose the Linear Spiral 
Search where f ( i )  = 2;, i 2 1. The total distance walked by the robot is 9n steps 
which is shown to be optimal up to lower order terms. 

The second problem consists of starting from the origin and searching for a lattice 
point located at an unknown point at a distance n (n  is also unknown); the robot can 
move left, right, up or down in one step. Any algorithm for this problem is shown 
to traverse a distance of 2n2 + 4n + 1 steps. They propose Balanced Algorithm and 
Flipped Balanced Algorithm that locate the point in 2n2 + 5a + 2 steps. The execution 
of the balanced and the flipped balanced algorithm is shown in Fig. 23. The balanced 
algorithm can be described as follows. Let a diamond (shown in dotted lines in Fig. 
23) of distance a correspond to all lattice points at distance of a units from origin. 
The algorithm operates in steps. In ith step, the robot visits half of the points of 
diamond of distance i. The second algorithm is a flipped version of the first. A close 
observation of the Fig. 23 reveals that the Flipped Balanced Algorithm is superior to 
Balanced Algorithm. 

In particular the following formulations are discussed when the robot is searching 
for an unknown line in plane. Consider that the automaton is at the origin in the 
plane and we are searching for a line that is at a distance of n steps from the origin. 
The following is a list of results from [3], depending on the information available 

number of steps needed 
a 
3n 
3f in  
(1 + f i  + 7n/6)n 
972 
13.02n 
13.81n 

ab 

ing 
for a point located on one of the rays is studied by Baeza-Yates et a1 131; they propose 
a deterministic algorithm. A randomized algorithm for this problem is proposed by 
Kao et al [38]. 
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Figure 23: Balanced algorithms for better worst case behavior 

E 

6.2 Algorithms with Figure of Merit 

Let R(S)  denote the distance traversed by a robot in going from s to t in a scene S, 
and let d(S)  denote the length of the shortest path between s and t .  Further S(n)  
denote the scenes in which the Euclidean distance between s and t is n. Following 
[58], the figure of merit for the robot is defined as p(R, n)  = max m. This figure of 

merit is first independently studied by Papadimitriou and Yannakakis [58] and Eades 
et a1 [23], and later by Blum et a1 [3] and BarEli et a1 [4]. When this ratio is constant 
the algorithm is said to be competitive following similar approaches in the area of data 
structures [77]. 

S E S ( n )  4s) 

6.2.1 Navigation Problem 

If s and t are two points in plane and all obstacles are squares, then p(R, n )  is shown 
to be at least 1.5, and an algorithm attaining p(R, n )  5 1.5+0(1) for all n, is proposed 
by Papadimitriou and Yannakakis [58]. 

Consider a two-dimensional terrain with rectangular obstacles with their edges 
parallel to the axes (if the obstacles are allowed to intersect or be of skewed orientation 
no bounded figure of merit is possible). The robot is equipped with continuous vision 
sensor. In this case it is shown that no strategy that achieves a bounded ratio is 
possible [58]. Then terrains populated by square obstacles are considered. In this 
case they show that there can be no strategy that achieves the figure of merit better 
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Figure 24: Case of 45 degrees 

than 5 ,  which holds for the case of unit square obstacles. They propose an algorithm 

nearest corner heuristic: proceed horizontally and when faced by an obstacle go to 
its nearest corner. This strategy leads to a factor arbitrarily close to 2. As a second 
heuristic, consider that the line joining s to t makes 45 degrees then the heuristic 
that chooses the vertex closer to the line will ensure a ratio of 4 as shown in Fig. 
24. Then the navigation algorithm uses the nearest point heuristic until the position 
forms an angle 45 degrees with t then uses the second heuristic. This mixed heuristic 

Then the special case of unit square obstacle is considered. Define e = -&. When 
faced with an obstacle the robot has bias ,8 towards the corner which is closer to the 
z-axis. We prefer the corner closer to x-axis if it is less than & away; otherwise, 
we choose the other corner. Initially /? = e.  Every time we choose the corner farther 
away from z-axis, we increase ,8 by e, and in the other case we decrease p by if 
,8 = e already. It is shown that this heuristic, called the bias heuristic achieves a ratio 
arbitrarily close to $ as n grows. 

Blum, Raghavan and Schieber [5] formulate the room problem where the goal is 
to traverse from a corner to the center of a square room provided that the obstacles 
have the form of rectangles aligned with the walls of the room. They propose an 
algorithm with the figure of merit of 0(2&). An algorithm with improved figure of 
merit of O(1nn) is proposed by Bar-Eli, Berrnan, Fiat and Yan [4]. 

The navigation problem inside a simple rectilinear polygon is studied by Kleinberg 
1411 who shows that the notion of essential cut introduced in Chin and Ntafos [14] 
is a critical feature in determining the figure of merit. An algorithm for a simple 
rectilinear polygon with n essential cuts that achieves a figure of merit of O(m) is 
proposed in [41]. 

that achieves a ratio of J- ,’” by combining two intuitive strategies. First consider the 

is shown to achieve a ratio of & . 
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Figure 25: Polygon PI. 
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The problem of searching for an object that can be recognized when it is in the field 
of vision but with unknown location is studied by Kalyanasundaram and Pruhs [37] 
for terrains populated by convex obstacles. This problem together with the terrain 
model acquisition problem is studied by them; we provide a brief discussion of their 
work in the next section. 

6.2.2 Terrain Model Acquisition Problem 

The problem of terrain model acquisition using continuous vision sensors is studied 
by Deng, Kameda and Papadimitriou [20]. They show a result that there is no 
competitive strategy for a polygonal room with arbitrary polygonal obstacles even if 
all polygons are parallelograms. If the polygonal room contains a bounded number 
of polygons then they propose a competitive algorithm to explore the interior of 
general polygonal room populated by a bounded number of polygonal obstacles. This 
algorithm has a figure of merit of the order of thousands. 

If the room is rectilinear and populated by IC rectilinear obstacles, then they 
propose a more efficient algorithm which achieves figure of merit of O(IC). Since the 
general algorithm is quite involved, we will present only an outline of the algorithm 
for the rectilinear case. This algorithm consists of two parts: first part explores the 
interior of a polygon which is the boundary of the room and the second part explores 
each of the exteriors of the obstacles. We now briefly describe the first part. Let P be 
the boundary polygon. We extend each side s until it hits the side of the polygon, and 
thus we form a set of extended line segments. If it is necessary to cross the segment of 
s in order to see s, then this segment is called necessary. If there is no way to cross el 
without also crossing e2, then we remove e2 from the set of necessary segments. Then 
we obtain another polygon P I  from P by removing the farther side of e as shown in 
Fig. 25. 

The algorithm visits all essential segments of P in a clockwise manner as fol- 
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(ii) 

(iii) 

Figure 26: Cases for the algorithm of Deng, Kameda and Papadimitriou. 
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lows. The strategy is to maintain a current map M of the polygon containing all 
features that have been seen so far. This map consists of several disconnected pieces 
of boundary of P. Let C denote the part that contains zo and f its end in the clock- 
wise direction as in Fig. 26. Let f lie on the line segment l ( f ) .  As C expands f will 
move in the clockwise direction: it “jumps” when other fragments of the boundary 
are merged into C. As the algorithm proceeds, M, C and f are updated according to 
the three following cases. Let x = xo and M ,  C and f correspond to portions visible 
from 20. 

(i) If f can be seen from x, and is at 270 degrees corner, move perpendicularly to 
Z ( f )  towards Z ( f )  until we arrive at Z ( f )  or its extension. If another part of the 
boundary is encountered, we move parallel to l ( f )  towards f as necessary. 

(ii) If f can be seen from x, and is at an interior point of the line segment Z ( f ) ,  
then we follow step (i). 

(iii) If f cannot be seen from 2, then compute the shortest path from x to f on 
which f becomes visible as early as possible and follow it until f is visible. 

The cases (i) through (iii) are illustrated in Fig. 26. 
A lower bound of a for the figure of merit is established for this problem in [20] 

and it is open question to bridge the gap between the bounds. This deterministic 
algorithm achieves a figure of merit of 2, and Kleinberg [41] reduced it to 5/4 using 
a randomized algorithm. See [20, 411 for a discussion on various interesting open 
problems on this topic. 

For the terrain composed of convex polygonal obstacles, the terrain model acqui- 
sition problem is studied by Kalyanasundaram and Pruhs [37]. The aspect ratio of a 
convex polygonal object 0; is defined to be R/r where R is the radius of the smallest 
circle that circumscribes 0; and T is the largest circle that inscribes 0;. Consider a 
terrain of k convex polygonal obstacles. Let a and & denote the maximum and average 
of the aspect ratios of the obstacles. Then let M(k,c i )  be defined as m i n ( k , G ) .  
We now briefly consider the works of Kalyanasundaram and Pruhs [35, 371. They 
show a lower bound of f l(M(lc,G)) for the figure of merit of any algorithm. Then 
they study three algorithms Nearest Neighbor, Bifold Nearest Neighbor and Tourist. 
In the Nearest Neighbor strategy, the robot from the start position, picks the nearest 
obstacles, and moves to it and then circumnavigates it. Then in each step, it picks 
the obstacle nearest to the present obstacle (that has just been circumnavigated), 
and moves to it and circumnavigates it. The figure of merit of this simple strategy is 
shown to be R ( a M ( k ,  C y )  and O(a1og k M ( k ,  C y ) ) .  The Bifold Nearest Neighbor algo- 
rithm operates in phases; in each phase it explores the terrain contained in a square 
R, region centered at the start location. In the next phase, the R;+I is obtained by 
doubling the length of the side of R.. In each phase, the Nearest Neighbor algorithm 
is used with modifications such that the next obstacle to be explored must interset 
R,. This method is shown to perform better than Nearest Neighbor with the figure of 
merit bounded by @(log k M ( k ,  ti)). The other algorithm Tourist operates on a graph 
based on a grid superimposed on the terrain in phases that operate on exponentially 
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Figure 27: Illustration of unbounded value for figure of merit. 

growing neighborhoods. This algorithm is shown to be optimal with figure of merit 

Kalyanasundaram and Pruhs [36] solve the visual traveling salesperson problem 
which requires that the perimeter of every obstacle be traversed. They present an 
on-line algorithm which achieves path lengths no more than 17 times the shortest 
possible path if the terrain model is available. Using this algorithm, the robot can 
obtain the entire terrain model, but such tour is not always necessary to map the 
entire terrain model. For example, it is sufficient to visit convex obstacle vertices to 
obtain the terrain model (by the terrain-visibility property of the restricted visibility 
graph described in Section 5.2). This algorithm is justified when a close proximity to 
obstacle is needed in order to accurately map the terrain boundaries (see [36] for an 
interesting discussion on these aspects). 

of O ( M ( k ,  6 ) ) .  

6.2.3 Walking an Unknown Street 

Along the same spirit of the algorithms last subsections, Klein [40] studied the problem 
of navigating from a source vertex s to a goal vertex g inside a simple polygon P (with 
no holes). Here the robot uses a continuous vision sensor such that newly encountered 
convex vertices can be detected as the robot is in motion. This problem is akin to 
that encountered by a human being finding a place in an unknown city. The main 
objective is to minimize D s ( P )  the ratio of length of the path traversed by the robot 
using strategy S to that of a shortest path. It can be easily shown that if the polygon 
is general, then this ratio can be unbounded; for example in Fig. 27 the robot may 
have to explore every branch before it sees g.  Let L and R denote the oriented 
boundary chains leading from s to 9. Then P is called a street if and only if L and 
R are mutually weakly visible, i.e., if each point of L can be seen from at least one 
point of R and vice versa. See Fig. 28 for an example of a street. For this special 
case, Klein [40] proposed an algorithm with Dl,d(P)< 1 + !z. 

Each point of L can be connected to some point of R by a line segment contained 
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Figure 28: Execution of Klein’s algorithm for walking a street. 

in the polygon, and vice versa. The basic idea of this algorithm is to cross all these 
line segments on the way from s to 9. This algorithm consists of a high-level and a 
Zow-level strategy. The former finds the path subject to the following invariants: at 
each position p on the path either the robot can see the goal, or which of the visible 
corners ahead is visited by the shortest path from s to 9 or robot can identify two 
corners ahead one of which is visited by the shortest path. In the last case, the robot 
uses the low-level strategy to choose a point t on the line joining these two vertices. 
In the first case the robot moves to g ,  and in the second the robot moves to the 
identified vertex visited by the shortest path. See Fig. 28 for an example. 

Recently, Kleinberg [41] proposed a method that improves the figure of merit of 
Klein’s algorithm by more than a factor of 3. If P is unknown and minimization of 
D s ( P )  is not a primary criterion, then this problem can be easily solved using the 
restricted visibility graph or Voronoi diagram methods of Rao [61]. If the terrain 
model is known, the shortest path can be computed with a complexity of O(1og n + k) 
time with a preprocessing step of complexity O(n) by Guibas and Hershberger [29], 
where n is the number of edges of P and k is the number of line segments of a shortest 
path. 

7 Restricted Computational Models 

Algorithms discussed in the last three sections assume that the robot can store and 
manipulate real numbers. Even in the case of Pledge algorithm, the robot is required 
to store and manipulate real numbers. In particular if the robot is capable of perform- 
ing real arithmetic, then the problem of exploring a maze can be easily accomplished 
using algorithms of Rao [61] and Lumelsky [45]. Some of the fundamental questions 
of this section deal with capabilities of robots that are computationally less powerful 
than those assumed in earlier works such as [61, 451. 

Informally a niaze i s  a finite, two-dimensional, obstructed checkerboard as shown 
in Fig. 29. A finite automaton is a device that can only be in a finite number of 
states and operates by reading from a finite set of input symbols (see [32] for a formal 
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Obstructed cell 

0 Non-obstructed cell 

Figure 29: Example of a maze. 

definition of finite automata). A finite automaton consists of finite control with start 
and halt states and a transition function. The automaton can be in any state chosen 
from a finite set of states. At any step, the automaton looks at input and its current 
state and decides the next state specified by a transition function. In the context of 
maze searching, the automaton determines which of its neighbor cells are reachable 
in one step and then, depending on its state, moves north, east, south or west one 
cell. In 1974 Lothar Budach gave a proof that no single finite automaton can search 
all mazes (this rather long proof runs for 175 manuscript pages) [lo]. Here “search” 
means visiting all cells of a maze; note that using such search the automaton could 
find “cheese” stored in an unknown cell. Thus the power of a finite automaton is 
inadequate to search the mazes. 

We first describe the algorithms of Coy that use more powerful computational 
models than a finite state automata. Then we consider the case of finite automata, 
but the robot is equipped with pebbles that it can drop in a cell, recognize and pick 
up; these pebbles are used as markers on certain cells (when the coordinates of cells 
cannot be computed). Shah [75] illustrated an algorithm for a finite automaton that 
uses five pebbles. Then Blum and Kozen [7] showed that a finite automaton with two 
pebbles can achieve the same result. The algorithms for finite automata with pebbles 
are described briefly in the last part of this section. 

39 



7.1 Algorithms of Coy 

Dopp posed the following question [22]: does there exist a finite automaton that 
finds a way out of every finite open maze from any initial position and finally moves 
arbitrarily far away ? Muller [54] and Budach [lo] gave negative answers to this 
question; the latter used the original formulation of Dopp, and Muller used a graph- 
theoretic variation of the formulation. Coy [19] considers the cases of finite automaton, 
pushdown automaton, linear bounded automaton and a Turing machine; in terms 
of computational capabilities this sequence represents strictly increasing power (see 
Hopcroft and Ullman [32] for a formal discussion on these models). Informally, a finite 
automaton equipped with a stack is called a push down automaton; the computations 
performed by the former can be performed by latter and not vice versa, i.e., there are 
computations that are performed by push down automata that cannot be performed 
by finite automata. The Turing machines represent the most powerful af these four 
models, and a linear bounded automaton is a Turing machine constrained to use 
a storage whose size is proportional to the size of the input. Then the answer to 
Dopp's question is negative for the case of finite state automata and push down 
automata. This problem can be solved by a linear bounded automata (hence by a 
Turing machine). See Coy [19] for details. 

We now briefly and informally describe the algorithm of Coy [19] for a Turing 
machine. First a Turing machine can be (informally) visualized as a finite state 
automaton equipped with an infinitely long tape of cells. The read/write head of the 
Turing machine scans one cell at a time; in a moue a Turing machine can read the 
symbol in the cell and write a symbol on the cell and move to the left or right. Each 
move is realized by a control that resembles the finite state machine. An algorithm 
corresponds to the finite state control, and each execution of such algorithm uses 
working space in terms of cells written/read on the tape. The input to the Turing 
machine is given as a symbols written on a sequence of cells on the tape which the 
Turing machine reads. A Turing machine is called a linear bounded uvtomata if the 
working space (number of tape cells) used is restricted to the length of the input (in 
terms of number of cells). 

We can think of an algorithm which allows the construction of a robot equipped 
with Turing machine that is able to reach from any initial position in a maze any 
position in the maze as follows. An arbitrary maze can be described as an infinite 
tree with an initial node Po (initial placement of the robot). This infinite tree has a 
finite subtree such that every node of the maze is represented by at least one node 
of the finite subtree. If the robot is able to start in Po walk to a node PI and return 
to Po and if the robot may enumerate the paths from Po to all nodes P; in the finite 
subtree then it will visit all the cells of the maze. This task is done by the robot by 
enumerating (in base 4 ), in increasing order, every path from Po to some Pi of the 
finite subtree may be described by a natural number Wk, . . . , wl. Here each direction 
w; specifies the next cell to be visited by the robot, and the robot takes the direction 
w1 first , w2 next and so on to reach wk. To reach PO again, it will simply read 
wk, . . . , w - 1 backwards. As there are only finitely many paths in the subtree which 
covers all cells of the maze, there exists an upper bound wwo > 'UI on the numbers to be 
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Unique points \ I  
Unique cells 

Figure 30: Unique points and cells. 

generated. The result that a Turing machine can solve the problem posed by Dopp 
is provided by Dopp himself. This algorithm of Coy actually shows that a linear 
bounded automaton is sufficient to solve this problem. 

7.2 Automata with Pebbles 
Automaton with pebbles have been first investigated by Blum and Hewitt [6] and 
then subsequently by Mylopoulos [55] and Savitch [74]; these automata have been 
studied in image processing applications in Shah [75] and Rosenfeld [69]. Although 
the early focus of these automata is not directed towards robotic applications, the 
underlying principles shed some light on some navigation algorithms. 

As in the last section finite automaton consists of finite control with start and halt 
states and a transition function. We may equip the automaton with a finite number 
of pebbZes each with a unique name. At the start, the automaton is carrying all the 
pebbles. There after, i t  is always carrying some subset of its pebbles and the rest are 
lying on non-obstructed cells of the maze. In each step the automaton determines the 
names of the pebbles it is carrying and the names of the pebbles lying on the cell it 
is visiting. It may use this information to help determine its next transition. In each 
step the automaton may pick up pebbles from the cell it is visiting or deposit some. 

An automaton can also be equipped with a counter. A counter holds a non- 
negative integer and can be initialized to zero. In each step, the automaton can 
increment or decrement the counter by one and test for zero. 

An outline of Shah’s algorithm for searching a maze is as follows. Let mi, i = 
1,2, .  . . , 5  denote the ith pebble. The robot finds the leftmost point of the topmost 
row using three pebbles. Then the robot traverses a complete row at a time. A 
horizontal sequence of non-obstructed cells is called a segment if the neighboring cells 
of the leftmost and right most cells are obstructed. The pebble m5 is placed on the 
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(a) traversal of boundary 

@) traversal of the maze 

Figure 31: Traversal of simply connected region. 

right end of a segment; the m4 is dropped at the leftmost segment to the right of 7-125. 

Then it is shown that m4 and m5 will be on the same border. Now the robot scans 
the new segment left to right and repeats the process of finding the leftmost segment 
to the right of the current segment and in the row as the current segment. Therefore 
the robot scans every segment of a row until it finds that there is no segment to the 
right of the current segment. This means that the current row is scanned completely, 
so the robot moves to the next lower row, if any. If there is no row below the present 
row then the robot has scanned all the rows, therefore it halts. 

Blum and Kozen [7] show a theorem that there exits a finite automaton with one 
counter which can search any maze and halt. As a corollary to this theorem they 
show that there is a finite automaton with two pebbles which can search any maze and 
halt, and also that there are two finite automata which together can search any maze 
and halt. Their algorithm is based on Unique Point Lemma which can be informally 
presented as follows. The unique point of a boundary, BDRY is the unique point 
( ~ 0 , t ~ o )  f BDRY such that for all (z,y) E BDRY, either yo 5 y, or y = yo and 
X O  5 x. A unique cell of a boundary is the unique white cell whose NE or SW vertex 
is the boundary’s unique point. See Fig. 30 for examples. Then the lemma states 
that there exists both 2 pebble and 1 counter automata that one may place on any 
white cell C, of a maze together with 2 pebbles or an empty counter in state Q N E  (or 
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Figure 32: Execution of algorithm of Blum and Kozen. 

qsw), The automaton, after some moving about in the maze will return to C with 
its 2 pebbles or empty counter and stop in state 45:’ (&$’) if the N E  ( S W )  vertex 
of C is a unique point of a boundary and in 

A barrier is any maximal connected set of obstructed cells, and the unique infinite 
barrier is called the border. The boundary of a barrier is the set of edges that separate 
black cells from the white cells called boundary cells. Let us assign to every vertex 
(corner point of a cell) of a maze a color. Unique points are colored green and all 
other vertices are to be colored white. Then they define a green-eyed automaton as 
a finite automaton so that in any cell and in any state there, the automaton can 
determine which, if any, of the cell’s 4 vertices are green. 

If all unobstructed cells form a simply connected region, i.e., if their only barrier 
is the border, then a finite automaton can visit all boundary cells by moving from one 
cell to the next, keeping the boundary always on the left. To search an entire simply 
connected maze, modify the above procedure so that each time the automaton steps 
from one boundary cell to the next, it first goes into a subroutine that causes the 
automaton to move north until it reaches a barrier and then to return south whence it 
came before going on to the next step. This way, each white cell interior to a simply 
connected maze gets visited immediately after the white cell beneath it gets visited. 
See Fig. 31 for illustrations of these algorithms. 

Any maze can be converted to a simply connected one by relabeling all vertical 
edges that lie between each green vertex and the barrier immediately beneath it as 
boundary edges. Once this boundary is identified, we use the same algorithm for the 
simply connected region. See Fig. 32 for the execution of the algorithm. In order 
to halt, the finite green-eyed automaton has to check that it twice visited the (only) 

(&$) if not. 
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border cell having a green vertex. The rest of the algorithm is identical to the case 
of simply connected region. 

Blum and Kozen [7] also prove that (a) there are two automata which together can 
search all mazes; (b) there is a logspace algorithm to search mazes, a vast improvement 
over the naive linear space algorithm which constructs a map of the maze. 

8 Exploring Unknown Graphs 

This section is intended to provide some results in graph exploration algorithms that 
can illustrate that some search problems that are easily accomplished in searching 
a geometric terrain become computationally very hard when required on graphs. A 
complete survey of graph algorithms for searching unknown graphs is not intended 
here; we only discuss some graph problems that appear to be very similar to the robot 
navigation algorithms in unknown terrains. 

In terms of searching by an automata of the type of last section, Blum and Sakoda 
[8] posed the question of weather it is easier to search mazes than planar graphs 
(planar graphs are the graphs that can be embedded in plane such that no two edges 
intersect [30]). Mazes and regular planar graphs (planar graphs where each node has 
the same number of neighbors) appear similar on surface, but they differ substantially. 
The main difference is that an automaton in maze has a compass that can distinguish 
N ,  E ,  S, W directions. A compass can provide valuable information. Blum and Kozen 
[7] show that no single finite automaton can search all finite planar graphs; they show 
that no automaton can search the subclass of planar called the cubic graphs. They 
further show that no three automata can search all planar cubic graphs. Thus they 
show that in terms of the finite automata the mazes are easier to search than graphs. 

1 9 

Figure 33: Searching layered graph of width two 

Papadimitriou and Yannakakis [58] first posed the problem of searching a layered 
graph that is dynamically specified. A layered graph is a graph in which the nodes are 
partitioned into layers L1, Lz, . . . , L,  and all edges are between adjacent layers. The 
edges between L; and L; + 1 and their lengths become known only when a node in 
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Li is reached; the number of layers is also unknown. Edges can be traversed forward 
or backwards, and the lengths are non negative integers when we switch from a node 
u to  node v, we we incur a cost proportional to the distance of the path from u to 
v. Fig. 33(a) shows a layered graph, where a shortest path from node s to node t is 
desired. If the graph is completely known in advance, then a path can be computed 
using dynamic programming methods or using the more general Dijkstra’s algorithm 
[2]. The graph is dynamically given in that it is given one stage at a time. In the 
beginning only part shown in Fig. 33(b) is known. In the next stage the known part 
of the graph is shown in Fig. 33(c). Then a natural choice in this case would be to 
make the lower choice in the first step; then the lower edge of length 5 is revealed. 
A reasonable strategy could be to persist on the present path until there is a path 
on the other side of length less than half of the present one. In the second step, the 
algorithm persists on lower choice in Fig. 33(c); but switches to upper choice in the 
next step as in Fig. 33(d). This strategy is shown to be optimal for two-layered 
graphs and achieves a worst-case ratio of distance traveled to shortest path equal to 
9, the best possible. 

Figure 34: Canadian traveler’s problem 

Further work on the layered graph traversal is done by Fiat et a1 [25]. The width 
of layered graph is max{IL;I}. They give a deterministic on-line algorithm which 
achieves the ratio of O(9’”) for graphs with width w. Several other related results are 
provided in 1251 

Papadimitriou and Yannakakis [58] also discuss Canadian Traveler’s Problem. 
Consider Fig. 34. The road map (a graph) is known to us, but some roads (edges) 
could be unsuitable to travel due to snowfall; but, the status of a road is revealed only 
when an adjacent node is visited. They address the problem of devising a strategy 
which guarantees a given ratio to the shortest path. This problem is shown to be 
PSPACE-complete, which indicates that this problem is computationally very hard 
(see [2] for details on PSPACE-complete problems). 

Deng and Papadimitriou I211 consider the following problem of exploring a directed 
and strongly connected graph. At each point we have a map of all nodes and edges 
that have been visited, and these nodes and edges can be recognized if they are visited 
again. We know how many unexplored edges emanate form each node we have visited, 
but cannot tell where each edges leads until we follow it. The objective is to minimize 
the ratio of the total number of edges traversed divided by the optimum number of 
edge traversals, had we known the graph. A graph is Eulerian if there exists a path 
that visits each edge precisely once. For Eulerian graphs the ratio cannot be better 
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than two and can be achieved by a simple algorithm [21]: ( u )  take unexplored edges 
whenever possible; ( b )  if stuck, consider the closed walk of unexplored edges just 
completed, and retrace it, stopping at nodes that have unexplored edges, and apply 
this algorithm recursively from each such node. The deficiency of a graph is the 
number of edges to be added to make it Eulerian. An algorithm that achieves a 
bounded worst-case ratio when the deficiency is bounded is given in [21]. They also 
show that if partial information about the graph is given, minimizing the worst-case 
ratio is PSPACEcomplete. An illuminating example of learning by a child and its 
connection to the exploration of an unknown graph is given in [21]. 

Given a weighted planar graph G such that the nodes adjacent to a vertex v 
are revealed when v is visited, the problem of visiting all vertices of G is studied 
by Kalyanasundaram and Pruhs [36]. They propose an algorithm with a cost no 
more than 16 times the length of the traveling salesperson tour, which is the shortest 
path that runs through all nodes of a graph and comes back to the start node. This 
algorithm runs in O(n2 log n )  time on a graph of n nodes. Intuitively, this algorithm 
performs depth-first search on small regions of the graph and occasionally jumps 
between such regions. 

9 Conclusions and Open Problems 

Algorithmic approaches for navigating robots in geometric terrains populated by un- 
known set of obstacles are considered. Here the terrain model is not a priori known, 
but the robot is equipped with a sensor system that is employed for the purpose of 
navigation. We are interested in non-heuristic algorithms that can be theoretically 
shown to be correct within a given framework of models for the robot, terrain and 
sensor system. These methods are abstracted and simplified compared to real-life 
scenarios. But, they yield useful results in (a) providing foundations for practical 
systems by highlighting the underlying critical issues, and (b) concentrating on some 
central aspects. We broadly classified these algorithms into three categories. First, 
we considered the algorithms that are shown to navigate correctly without much con- 
sideration for the performance parameters such as distance traversed, etc. Second, we 
considered non-heuristic algorithms that guarantee bounds on the distance traversed 
or the ratio of the distance traversed to the shortest path length (computed if the 
terrain model is known). Then we considered robots with very limited computational 
capabilities such as finite automata, etc. 

In spite of the long history of the non-heuristic algorithms, this area is generally 
considered to be in its infancy; compared to its counterpart in known terrains, many 
issues of this area are open for further investigation. Some of the topics for future 
study can be described as follows. 

(a) Sensory systems: Most of the existing non-heuristic algorithms are based on 
ideal sensors. It would be interesting to study algorithms that can perform in 
the presence of sensory errors. Also, there are several sensors such as ultrasonic 
and laser range finders that can measure the distance to an obstacle in a given 
direction. There are no non-heuristic navigation that can guarantee that the 
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robot caa navigate to a destination using sensors that return the distance to the 
obstacle along a discrete direction (if only a finite number of distance probes 
are allowed). The problem of inferring a shape of a polygon by probing in a 
number of directions has been solved by Cole and Yap [16]; works along the 
same spirit that enable a mobile robot to infer its environment by using results 
of probe operations will be of interest. It has been observed in practice that 
many non-trivial navigational tasks require a systems of sensors, since a single 
sensor is of limited utility (see special issue edited by Brady [9]). The problem of 
navigating using a system of similar or disparate sensors could be investigated; 
in general it may be more efficient to use an array of laser range finders or 
ultrasonic sensors in solving the navigation problems. 

(b) Robot Systems: Majority of the algorithms in this survey are restricted to 
point robots (exceptions include circular robot of Rim and Iyengar [65] and 
polygonal robot of Foux et a1 [26]). In known terrains, the problem of navigating 
a non-point robot can be reduced to that of a point robot in configuration 
space amidst “suitably grown” obstacles. It is unclear if such method is directly 
applicable to the present case since we need to ensure that the required portions 
of the configurations must be incrementally constructed based on the sensor 
readings. Also when non-point robots are considered, the motion primitives of 
the robot must be given explicit consideration; for example, a car can move 
along certain paths but cannot move along arbitrary curves. Such problems 
have been investigated in the known terrains formulations under the title of 
non-holonomic path planning. Such works are needed for unknown terrains 
formulations in order to yield practical implementations for real-life robots. 

(c) Terrain Models: Most of the terrains discussed here are two-dimensional (with 
some exceptions such as Rao et al [66]); it would be interesting to see if some 
of the techniques of 2-dimensional terrains can be extended to 3-dimensional 
terrains. Also, for algorithms that store the terrain models, most works deal 
with polygonal terrains or mazes; such methods for non-polygonal terrains will 
be of interest. Terrains with moving obstacles could be another topic for future 
investigation. 

(d) Performance Parameters: In many real-life robot systems, the sensor op- 
erations could be memory intensive and computationally time-consuming. For 
example, simulating a 360 degree scan using a vision system would be very 
expensive. In such applications, algorithms that perform less number of scan 
operations would be preferred. Some preliminary work that shows that among 
the class of admissible graph search algorithms, the A* algorithm uses least 
number of scan operations has been presented in Rao [63]. However, more gen- 
eral results are needed in order to be of practical value. The algorithms that 
guarantee bounds on the distance traversed or figure of merit are being actively 
pursued. 

(e) Systems of Robots: In general, i t  would be interesting to see if some navi- 
gational objectives can be better achieved by employing more than one robot. 
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Apart from the method of Blum and Kozen [7] that enables two automata to col- 
lectively search a maze, we are unaware of non-heuristic navigation algorithms 
that employ a system of robots. 

(f) Robot Learning: If a robot is required to visit a sequence of destination 
points (in stead of just one), then the robot can potentially store the terrain 
model in the places that it has been and use this information in improving the 
performance of the subsequent navigation. In general, the robot can use the 
terrain information to avoid performing sensor operations in known regions and 
also avoid getting into local detours. This type of learning is referred to as 
incidental learning by Rao [61] (see also Oommen et a1 [56]). Also in the case 
entire terrain model is completely built, the robot can switch off sensors and 
navigate in optimal paths (when possible). A formal treatment of incidental 
learning can be very useful in practical systems. At present this area has been 
investigated only to a limited extent. 

(g) Potential Field Methods: In known terrains, the potential field methods 
pioneered by Khatib (391, have been found to be very useful; exact navigation 
algorithms based on these methods are described in Rimon and Koditschek 
[68]. In these methods, a field is used to guide the robot to the destination; this 
field consists of an attracting field located at the destination and a repulsive 
field due to obstacles. It would be interesting to see if any of these methods 
(in particular local minima free fields) can be computed incrementally so as to 
yield non-heuristic algorithms for unknown terrains. 
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