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THE FOURIER ANALYSIS TECHNIQUE AND 
EPSILON-PSEUDO-EIGENVALUES 

June M. Donato 

Abstract 

The spectral radii of iteration matrices and the spectra and condition numbers 
of preconditioned systems are important in forecasting the convergence rates for 
iterative methods. Unfortunately, the spectra of iteration matrices or precondi- 
tioned systems is rarely easily available. The Fourier analysis technique has been 
shown to be a useful tool in studying the effectiveness of iterative methods by 
determining approximate expressions for the eigenvalues or condition numbers of 
matrix systems. 

For non-symmetric matrices the eigenvalues may be highly sensitive to pertur- 
bations. The spectral radii of nonsymmetric iteration matrices may not give a 
numerically realistic indication of the convergence of the iterative method. Tre- 
fethen and others have presented a theory on the use of 6-pseudo-eigenvalues in 
the study of matrix equations. 

For Toeplitz matrices, we show that the theory of 6-pseudo-eigenvalues includes 
the Fourier analysis technique as a limiting case. For non-Toeplitz matrices, the 
relationship is not clear. We shall examine this relationship for non-Toeplitz ma- 
trices that arise when studying preconditioned systems for methods applied to a 
two-dimensional discretized elliptic differential equation. 





1. Introduction 

The spectral radii of iteration matrices and the spectra and condition numbers of 
preconditioned systems are important in forecasting the convergence rates of iterative 
methods. A variety of methods are used in the analysis of such matrices [1,12,13,19]. 

It is not always possible to determine analytic formulas describing the eigenvalues 
of a given matrix. Similarly, it is not always possible to  determine reasonable analytic 
bounds on the extremal eigenvalues or the condition number of a matrix. In many 
cases where bounds have been determined, the analysis has been difficult or tedious 

When exact eigenvalue analysis is used to obtain extremal eigenvalue bounds, we 
must be aware that for non-normal matrices that these eigenvalues can be highly sen- 
sitive to  perturbations, Hence, the exact spectral radius or condition number of a 
non-normal iteration matrix may not give a realistic indication of the usefulness of the 
iterative method or preconditioner. 

Motivated by the sensitivity of the eigenvalues to perturbations in the matrix, Tre- 
fethen and others have utilized a theory on e-pseudo-eigenvalues in the study of matrix 
equations. The e-pseudo-eigenvalues of non-normal matrices may portray radically 
different qualities than the exact eigenvalues for the matrix. See references 11.51 and 

Alternately, a heuristic technique based on Fourier analysis can be used to  easily ob- 
tain eigenvalue approximations. The technique has been shown to be a useful heuristic 
when studying the effectiveness of iterative methods and preconditioners [3,5,6,7,8,10]. 
As yet no rigorous explanation of why this technique works so well for non-periodic 
non-constant diagonal matrices has been established. For symmetric Toeplitz matrices, 
the technique yields the true eigenvalue expressions, but it is does not always yield a 
good approximation for general matrices. 

Herein, it is shown that for Toeplitz matrices the theory of e-pseudo-eigenvalues in- 
cludes the Fourier analysis technique as a limiting case. Hence, the Fourier approximate 
eigenvalues serve as an approximation to the 6-pseudo-eigenvalues. 

For non-Toeplitz matrices, the relationship is not clear. Here, we consider non- 
Toeplitz matrices that arise when studying preconditioned systems for methods ap- 
plied to  a two-dimensional discretized elliptic differential equation. We examine the 
relationship bet ween the Fourier approximate eigenvalues and the e-pseudo-eigenvalues 
for these matrices. 

The remainder of this paper is organized as follows. In Sections 2 and 3 we very 
briefly overview the Fourier analysis technique and concepts from the  theofy of e- 
pseudo-eigenvalues, respectively. For greater detail and a wide range of examples and 
applications see the references, especially [6,15,18]. In Section 4 we present the theorem 
linking the Fourier analysis technique and 6-pseudo-eigenvalues for Toeplitz matrices. 
In Section 5 the spectra, Fourier approximate eigenvalues, and the E-pseudo-eigenvalues 
are graphically presented for a variety of Toeplitz matrices. In Section 6 we examine 
the relationship between the Fourier analysis technique and e-pseudo-eigenvalues by 
comparing results for preconditioned systems for a discretized two-dimensional elliptic 
partial differential equation. In Section i’ results and observations are summarized. 
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Derivations of the Fourier approximate eigenvalues expressions are given in an ap- 
pendix. 

2. Fourier Analysis 

Fourier analysis is a pervasive subject in all of mathematics. Here we are interested in 
how it can be used to  determine eigenvalues or approximate eigenvalues of a given 
matrix. Consider a one-dimensional constant coefficient elliptic partial differential 
equation (PDE) with periodic boundary conditions discretized on a uniform grid with 
N internal grid points. Let Au = 6 denote the resulting matrix system where A is an 
( N  + 1) x ( N  + 1) matrix. 

Let u ( ~ )  be a column vector of length N 4- 1 composed of the one-dimensional Fourier 
exponential modes.' The jth component of u ( ~ )  is given by 

2TS 
u(') = ~ ' J ' J  where 8, = - j = o , l ,  ..., N ,  s = O , l ,  . . . ,  N .  

3 N + 1 '  

The N + 1 vectors {u(") : s = 0,1, .  . . , N } ,  called the Fourier vectors, are eigenvectors 
of such a circulant matrix A .  The fact that we know a basis for such a matrix makes 
it quite easy t o  determine an analytic formula for its eigenvalues. 

Although elliptic PDEs rarely yield circulant matrices when discretized, Fourier 
analysis is often used [5,6,7,8] in the same way that von Neumann analysis is used for 
time-dependent systems [16], and local mode analysis is used for multigrid methods [4]. 

The steps of the Fourier analysis technique as given by [6] for an elliptic partial 
differential equation are summarized as follows: 

Treat the matrices involved as if they came from periodic problems. This may 
involve ignoring the original boundary conditions of the problem and/or extending 
the original matrix. 

Force the matrices to  have constant diagonal entries. This may entail using an 
asymptotic value for the diagonal entries, as in the case for the ILU precondi- 
tioner. 

From concepts developed in [6] use the relation h, = 2hd t o  relate the periodic 
mesh size to  the Dirichlet mesh size. 

After performing the above steps, we would have a circulant matrix whose eigenvectors 
are the Fourier vectors of the appropriate dimension. We are then able to use exact 
Fourier analysis on the altered matrix to  determine approximations of its minimum or 
maximum eigenvalues or to  observe the general shape of its spectrum. This is done 
simply by computing 

A&) = A s p ) ,  

'Similarly, for a constant coefficient matrix with Dirichlet or Neumann boundary conditions we 
would use the Fourier sine or cosine modes, respectively, as eigenvector components. 
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where 2 represents the modified matrix and is denotes the sth eigenvalue of A. Since 
A is constant diagonal, this computation can be done easily using component or stencil 

form. The eigenvalue, x,, is a function of 6p) = 27rsh, = 2ns/(n, + 1) where np = 
2nd + 1 and s E (1,. . . , np}. Thus, &') E (0,2n). 

The Fourier approximate eigenvalues of A ,  A, are then given by the eigenvalues of 
A: 

As = A,(A) = A,. 
The degenerate eigenvalue, is = 0, is ignored when doing analysis for a problem with 
Dirichlet boundary conditions. 

For higher dimensional problems, the same steps as given above would be followed to 
generate the approximating matrix A. However, the appropriate dimensioned Fourier 
modes would form the components of the eigenvectors of A. For example, suppose we 
have a two-dimensional problem discretized on a uniform grid with N internal grid 
points in each direction. Then the Fourier ( j ,  k) lh  component of the (s, t)th eigenvector 
would be given by 

7 0 I s , t  I n, ( s ~ t )  = e i 3 8 3 e i k h  
uJ,k 

where 8, = 27rsh, 4t = 2nth, h = l / ( n  + 1). As above, we would then determine 
from 

A U ( 4  -= j u(4), 
s , t  

As in the one-dimensional case, the singular cases with s = 0 or t = 0 are ignored in 
the analysis of problems with Dirichlet boundary conditions. 

3. 6-pseudo-eigenvalues 

For non-hermitian matrices, the eigenvalues of the matrix may be highly sensitive to 
perturbations. Hence, when analyzing a matrix t o  determine its behavior as an iteration 
matrix or as a preconditioner, the true eigenvalues of the matrix may be misleading. 
In fact, we are more interested in the behavior of the eigenvalues when the matrix A 
is perturbed. 

This is the connection to the theory of 6-pseudo-eigenvalues as presented in refer- 
ences [15,17,18]. There are several theoretically equivalent definitions for r-pseudo- 
eigenvalues. We will use the following definition from [lS]. 

DEFINITION: Given e > 0, X E C is an e-pseudo-eigenvalue of the N x N 
matrix A if X is an eigenvalue of A + E  for some E E C N x N  with llEl1 5 E .  The 
set of all e-pseudo-eigenvalues of A ,  called the €-pseudo-spectrum, is denoted 
& ( A )  or simply A,. 

Rather than examine the exact eigenvalues of a non-normal matrix A we want to 
examine A,. However, computing & ( A )  using the definition is not always desirable 
or feasible for large N .  But, Reichel and Trefethen [15] have observed a relationship 
between the E-pseudo-spectrum and the union of three sets for Toeplitz matrices. The 
following is an overview of one of their results. 
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Consider the matrix problem Au = b where A is a Toeplitz matrix 

A matrix of this form could have arisen from a finite-difference or finite-element dis- 
cretization of a one-dimensional self-adjoint PDE. The symbol [15] of this matrix is 
given by f(z) = C k = - ~  akzk .  The fundamental observation of [15] is that  for large N 
and small E, A, looks approximately like the union of three sets: 

N 

where 

Q, = ( 2  E C : I ( f ( S r ) , z )  > 0) 

O R  = ( 2  E c : I ( f ( S R ) , Z )  < 0) 

S, = circle of radius T ,  T = ( c / c ) l IN  

SR = circle of radius R, El = (c/C>-’” 
I (  f, z )  = winding number of f about z 

A = the eigenvalues of the matrix A 

A + A, = union of €-balls about the eigenvalues of the matrix A 

The values c and C (151 are generally taken to be 1. 

The images of Sr and SR, f (S , )  and ~ ( S R ) ,  are easily computed. Typically Q, 
and RR provide a good envelope for Ac(A). Hence, by computing the regions enclosed 
by f(S,) and ~ ( S R ) ,  we can get a general idea of the behavior of the matrix with- 
out the computationally expensive task  of computing A or & ( A ) .  This is certainly 
advantageous in the analysis of iterative methods and preconditioners. 

4. The link between the Fourier technique and e-pseudo-eigenvalues 

In this section it is shown that the Fourier analysis technique yields a limiting expression 
for the boundaries of the regions Or and QR. 

THEOREM: For the general one-dimensional Toeplitz matrix the boundary defined by the 
Fourier approximate eigenvalue expression, i ( A ) ,  is a limiting case of the boundaries of a,. 
and OR as T , R -  1. 
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Prmj Consider again the Toeplitz matrix (1). We have already noted that the 
symbol of this matrix is given by 

N 

f(z) = akrk. (3)  
k=-N 

From (2) we are interested in the boundaries of the regions Q, and O R ,  which are 
determined by the images of S, and SR via the symbol f(z). The image of S, is given 

by 
f ( ~ , )  = {Z = j ( T e i e )  : e E [0,2.ir]}, 

where 

N N 

with r = c1IN, and similarly for ~ ( S R )  using R = c-lIN instead of r .  As N -+ co, we 
have T 7 1, R --t 1 since E << 1. 

To apply the Fourier analysis technique to this Toeplitz matrix (1) we follow the 
steps outlined earlier. The circulant version of the matrix A is 

where A is an order 2N + 1 matrix. 
We calculate the j t h  component of 

to get 
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The Fourier approximate eigenvalues of A are then given by the eigenvalues of A ,  

where f??) E (0,2n). 
By comparing the Fourier approximate eigenvalues of A in ( 5 )  t o  the images of S,  

and S R  via the symbol for A in (4), we see that  (5) is a discrete version of (4) where 
T = 1. And as already noted, T = 1 and R = 1 are the limiting values as N - co. 1 

Thus the theory of E-pseudo-eigenvalues includes as a limiting case the Fourier 
analysis technique. This result is certainly related to  the fact that  exact Fourier analysis 
leads to samples of the curve f(I.1 = 1) for Toeplitz systems. In Reichel and Trefethen 
[15], it is stated that 

For small 6 and large N ,  the e-pseudospectrum A, of a Toeplitz matrix is 
roughly the same as the spectrum of the associated Toeplitz operator, namely, 
a region in the complex plane bounded by the curve f(S), where f(z) is the 
symbol of the matrix. 

The important and interesting concept here is that the theory of e-pseudo-eigenvalues 
may provide the explanation as to why the the approximate Fourier analysis technique 
has yielded good approximations even for situations where Fourier analysis does not 
strictly apply. 

For the non-limiting case, the boundary formed by the Fourier approximate eigen- 
values lies between 51, and fit". And so the Fourier boundary would enclose most (if 
not all) of the E-pseudo-eigenvalues. Empirically, we will see that it seems t o  include 
all of the 6-pseudo-eigenvalues. 

5 .  Toeplitz Examples 

In this section, some Toeplitz examples are given that demonstrate the relationship be- 
tween e-pseudo-eigenvalues regions and the boundary defined via the Fourier approxi- 
mate eigenvalues. In these examples, we use N = 100 for the order of the matrix A and 
e = First, we consider two Toeplitz matrices studied in [15]. After these exam- 
ples, we consider Toeplitz matrices arising from the discretization of a one-dimensional 
second-order differential equation. 

In each of these pictures, the true eigenvalues, the 6-pseudo-eigenvalues using a 
set of five randomly generated perturbation matrices, f (  S,): f (  S,), and the Fourier 
approximate eigenvalues are plotted. See the legend given in Table 1. 

In each of these pictures we see that the 6-pseudo-eigenvalues are enclosed by flR. 
which is surrounded by the Fourier boundary. 

In Figure 1, example (3.8) of [15] is plotted along with the Fourier approximate 
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.7 
1 
0 

eigenvalues. The matrix is 

In Figure 1, f(Sr) provides the tighter bound on the e-pseudo-eigenvalues. However, 
we still have the Fourier boundary between f (  S r )  and f( SR).  

Figure 2 shows the regions for the Bull’s head example [15] for the matrix 

0 0  
2i 0 
0 22 

A =  

1 
0 
0 

0 

.7 
1 
0 

2i 
0 

.7 
1 

0 
2i 
0 

0 
0 
2 i  
0 

1 
0 
0 
2i 

The regions depicted in Figure 2 are more complex, but it is still easy to  see that the 
Fourier boundary lies “in-between” s2, and QR and that the Fourier boundary encloses 
the e-pseudo-eigenvalues. 

Symbol Item Represented 
solid line R, 
dashed line RR 
0 c-pseudo-eigenvalues 
X Fourier approximate eigenvalues 
* eigenvalues 

Table 1: Legend for and A, figures 
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Figure 1: Regions for matrix A of (6)  

Figure 2: Bull's Head example 
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Next we consider the Fourier approximate eigenvalues and the €-pseudo-spectra for 
the following one-dimensional second-order differential equation 

- v m  + 7% = f, Y > 0, 
v(0) = u(1) = 0, 

on 51 = [O, 11. The region s1 is divided into n+ 1 uniform intervals of mesh size h = &, 
and centered differences for u,, and upwind differencing for yv, are used. We get the 
matrix equation 

Au = 6 ,  A E Rnxn (7) 

where A is an N x N ,  N = n2,  tridiagonal matrix of the form 

with a = 2 + yh, 6 = -1, and c = -1 - yh. In stencil form it is given by 

[-1 -yh, 2+7h, -11. 

The Fourier approximate eigenvalues of A are 

and the symbol of the matrix is 

f( Z) = a + bz + c2-l. 

In Figures 3-6, we use this nonsymmetric problem (7 )  to demonstrate the relation 
between the true eigenvalues of the problem and the Fourier and 6-pseudo-eigenvalues. 
The nonsymmetry of the problem is vaxied by altering the value of the parameter y. 
Again, N = 100 and t = loe4. 
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Figure 4: Regions for (7)  with y = 50. 
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Figure 5: Regions for (7 )  with y = 150. 

Figure 6: Regions for (7 )  with y = 200. 
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6. Non-Toeplitz Examples 

In the previous section, a relationship was shown to exist between the Fourier approx- 
imate eigenvalues and the e-pseudo-eigenvalues for Toeplitz matrices. Unfortunately, 
the proof relating the Fourier approximate eigenvalues and the 6-pseudo-eigenvalues 
bounding regions can not be immediately generalized to non-Toeplitz systems. 

and Fourier approximate eigenvalues of certain non-Toeplitz matrices. These matrices 
will arise from the preconditioning of a discretized two-dimensional elliptic partial dif- 
ferential equation. We use the Jacobi and SOR(w) splitting matrices and the ILU 
preconditioner. 

The model two-dimensional parameterized elliptic partial differential equation that 
we consider is 

In this section, we examine pictorially the relationship between the 6-pseudo-eigenvalues 

- A U + ( Y U , + & ,  = f on s1 = [0,1] x [0:1], 

u = 0 on dR. 

where R is partitioned into an uniform grid with n interior grid points in each direction 
having a mesh size of h = A. Centered differences are used for the Laplacian and 

upwind differencing is used for the convection terms. The equation for the ( j ,  k ) t h  grid 
value of u is given by 

where a = 4 -t ( a  + P ) h , b  = c = -1,d = -1 - ah,! = --I - ph. Using the rowwise 
natural ordering for the components of u, the resulting scaled discretized system is 
given by 

AU = h2 f ,  

where A is an N x N matrix, N = n2, in stencil form given by 

A =  d a [ I  1 -1 
4 + ( a + P ) h  -1 

- 1 - p h  . 

While this matrix is close t o  being Toeplitz, it is not because the Dirichlet boundary 
conditions introduce zeros entries in the super and sub-diagonals. Nor will the resulting 
preconditioned systems be Toeplitz. So, we can no longer directly use the Reichel- 
Trefethen observation for Toeplitz matrices, and the regions R, and RR will not be 
plotted. We compute the 6-pseudo-eigenvalues via the definition given in Section 3. 

In Figure 7, there are three groups of three pictures corresponding to  the three 
methods applied t o  the discretized system with parameter values of Q = ,i? = 0. In each 
set of three, we plot (from left t o  right) the the computed eigenvalues, the r-pseudo- 
eigenvalues, and the Fourier approximate eigenvalues for the matrix M - I A .  

The first set of three corresponds to  M being the diagonal of A (the Jacobi splitting 
matrix or preconditioner), the second set is for M corresponding t o  the splitting matrix 
for SOR(w), and the third set for M being the ILU preconditioner. 
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This scheme is repeated for parameter values of a = 5 , p  = 1 in Figure 8 and for 
parameter values of (Y = p = 5 in Figure 9. 

In computing the Fourier approximate eigenvalues for A and its preconditioned 
systems, the two-dimensional Fourier exponential modes are used in the Fourier analysis 
technique. 

The E-pseudo-eigenvalues are computed according to the definition given in section 
3 by calculating the eigenvalues of A + E for five randomly generated perturbation 
matrices with llEll 5 E. To compare the plots for the Fourier approximate eigenvalues 
and the 6-pseudo-eigenvalues we must choose a reasonable value of E .  For a polynomial 
p n ( z )  we have the relationship [14], 

L 
IIPn(z>llA 5 IIPn(A)II 5 -Ibn(z>llA,  2T€ 

where L is the arc length of the boundary of E-pseudo-eigenvalues. Rather than compute 
the arc length, which is a non-trivial process, we choose that value of E that reasonably 
scales the e-pseudo-eigenvalue plot. These values are given in Table 2. 

Jacobi 0.10 0.10 0.10 
SOR 0.10 0.10 0.10 

It is obvious from these pictures that the Fourier approximate eigenvalues and 
the 6-pseudo-eigenvalues can vary quite drastically in appearance when compared to 
the actual eigenvalues. Yet, the Fourier approximate eigenvalues mimic some of the 
clustering behavior of the c-pseudo-eigenvalues and does well in most instances to 
approximate the shape and extrema1 values of the E-pseudo-eigenvalues. 

If it is indeed more critical to  examine E-pseudo-eigenvalues when analyzing and 
designing iterative methods and preconditioners, then the Fourier analysis technique 
has several advantages. The Fourier approximate eigenvalues capture much of the clus- 
tering and bounding information of the E-pseudo-eigenvalues, but with significantly less 
computational effort. To compute the 6-pseudo-eigenvalues we actually must compute 
the eigenvalues of A + E for several randomly generated perturbation matrices. For 
each perturbation matrix this is an O ( N 3 )  operation for an N x N matrix. Computing 
the Fourier approximate eigenvalues is O ( N Z ) .  In addition, the Fourier approximate 
eigenvalues are computed from the Fourier expression, which can be analyzed indepen- 
dently. This allows a researcher to  tune a preconditioner to  have a desired behavior. 
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Figure 7: The computed eigenvalues, E-pseudo-eigenvalues, and Fourier approximate 
eigenvalues for M - ' A  using parameter values a = p = 0. 
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Figure 8: The computed eigenvalues, e-pseudo-eigenvalues, and Fourier approximate 
eigenvalues for M-I.4 using parameter values a = 5 ,  p = 1. 
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1 . .  . .  I 

Jacobi preconditioned system 

Preconditioned system using SOR splitting matrix 

- 
ILU preconditioned system 

Figure 9: The computed eigenvalues, E-pseudo-eigenvalues, and Fourier approximate 
eigenvalues for M - l  A using parameter values cy = 5, ,B = 5 .  
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7. Summary 

The Fourier technique used in the analysis of iterative methods and preconditioners is 
only an heuristic for nonnormal matrices, yet it yields estimates of extremal eigenvalues 
and condition numbers that are useful in predicting the behavior of iterative methods 
and preconditioners. 

For Toeplitz matrices a connection between the Fourier analysis technique and 
6-pseudo-eigenvalues regions has been demonstrated. The boundary of the Fourier 
approximate eigenvalues is the limiting case of the 0, and S Z R  boundary regions for 
E-pseudo-eigenvalues . 

The theory of e-pseudo-eigenvalues of Trefethen not only yields reasons why E- 

pseudo-eigenvalues are more crucial than eigenvalues for analysis methods for non- 
hermitian matrices, it also lends credence to  the usefulness of the Fourier analysis 
technique. 

For non-Toeplitz matrices the connection between the 6-pseudo-eigenvalues and the 
Fourier approximate eigenvalues is not clear. For the preconditioned systems examined 
herein, we see that the Fourier approximate eigenvalues do not form an envelop around 
the E-pseudo-eigenvalues. They do, however, capture some of the clustering behavior 
of the the 6-pseudo-eigenvalues along with estimates of extremal bounds. 
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9. Appendix 

In this appendix we derive the Fourier approximate eigenvalue expressions for the 
matrices used in the section on non-Toeplitz examples. Fortunately, the stencil for 
each of these matrices is a form of seven-point stencil. This allows us to  apply the 
Fourier technique to  each of the preconditioned systems using a general form. 

We denote the seven-point stencil operator by 

The Fourier approximate eigenvalues for this seven-point operator are given by 

The Fourier approximate eigenvalues for the matrix M - * A  is computed via 

This follows because the underlying premise of the Fourier technique is that  we have 
circulant matrices, which would both have the Fourier vectors as their eigenvectors. 

Let us write the matrix A in terms of its stencil form: 

-1 
4 + ( 0 + , f ? ) h  -1 

The Fourier approximate eigenvalues for A are then given by: 

&(A)  = 4 + (a + ~ ) h  - 2's - ei+t - (1 + crh)e-ies - (1 + ph)eWi#t 

Let us write the matrix A as A = D + L + U where D is a diagonal matrix, L 
is the strictly lower triangular part of A ,  and U is the strictly upper triangular part 
of A.  The Jacobi and SOR matrices can be easily written in terms of these matrices 
submatrices of A. For background on splittirgs and preconditioners see [ll]. 

Jacobi splitting matrix or preconditioner: 
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SOR( w) splitting matrix: 

M = D + w L =  

iS,&%!q = 4 + ( a  + P ) h  - w ( l  + cuqe-ies - w(1 + ph)e-i+t. 

For the incomplete factorization preconditioner (ILU), the goal is to  approximately 
factor the matrix into the product of a lower ( L )  and upper ( U )  triangular matrices 
where the triangular matrices have the same sparsity pattern as the original matrix. 
Let M = LU represent the ILU preconditioner. We also require that the corresponding 
entries of M and A are equal whenever the entry in A is non-zero. 

The ILU preconditioner for the five-point stencil is then given hy 

The entries mj-l,k+l = ~ d / a j - ~ , k  and mj+l,k-1 =I b & / a j , k - l  are called f i h S  be- 
cause they occur in locations corresponding to  places where the original matrix A had 
zero entries. For the center element of M we have the recurrence 

Following the steps in [6], we use an asymptotic value a for the a j , k  values. This is 
necessary since we need the entries along a given diagonal to  be a constant value to  
use the Fourier technique. 

For ILU, mjk = a and the asymptotic value for the aj ,k  is cr = a - 6d - c&. The 
asymptotic values for the fillins are then given by mj-l,kS1 = c d / a  and mj+l,k-1 = 
M/a. Hence, for analysis purposes, we use the asymptotic version of the matrix M : 
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