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PARALLEL UNIVERSAL MATRIX MULTIPLICATION ALGORITHMS 

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS 

Jaeyouiig Clioi 

Jack J .  Dongarra 

David W. Walker 

Abstract 

This paper describes the Parallel Universal Matrix Multiplication Algorithms (PUMMA) 
on distributed memory concurrent computers. The PIJhlMA package includes not only 
the non-transposed matrix multiplication routine C = A . B. but also transposed multi- 
plication routines C = AT . B, C = A .  BT, and C = AT . BT, for a block scattered data 
distribution. The  routines perform efficiently for a wide rauge of processor configurations 
and block sizes. The PUMMA together provide the same functionality as the Level 3 

BLAS routine xGEMM. Details of the parallel implementation of the routines are given, 

and results are presented for runs on the Intel Touchstone Delta computer. 
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1. Introduction 

Chren t  advanced architecture computers possess hierarchical memories in which accesses to  

data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are 

faster than those in lower levels (shared or off-processor memory). One technique to more 

effectively exploit the power of such machines is to develop algorithins that maximize reuse of 

data held in the upper levels of the hierarchy, thereby reducing the need for more expensive 

accesses to  lower levels. For dense linear algebra computations this can be done by using 

block-partitioned algorithms, that is by recasting algorithms in forms that involve operations 

on subniatrices, rather than individual matrix elements. An example of a block-partitioned 

algorithm for LU factorization is given in [7,16]. The Level 3 Basic Linear Algebra Subprograms 

(BLAS) perform a number of commonly-used matrix-matrix operations, and are available in 

optimized form on most computing platforms ranging from workstations up t,o supercomputers 

~ 3 1 .  
The Level 3 BLAS have been successfully used as the building blocks of a number of appli-- 

cations, including LAPACK, a software library that uses block-partitioned algorithms for per- 

forming dense and banded linear algebra computations on vector and shared memory computers 

[2,3,9,11,14]. On shared memory machines block-partitioned algorithms reduce the number of 

times that data most be fetched from shared memory, while on distributed memory machines 

they reduce the number of messages required to get data from other processors. Thus, there 

has been much interest recently in developing versions of the Level 3 BLAS for distributed 

memory concurrent computers [1,6,18,19]. 

An important routine in the Level 3 BLAS is xGEMM for performing matrix-matrix mul- 

tiplication. The general purpose routine performs the following operations: 

where "." denotes matrix multiplication, A, B and C are matrices, and a and p are scalars. 

In this paper, we present the Parallel Universal Matrix Multiplication Algorithms (PUMMA) 

for performing the above operations on distributed memory concurrent computers. [Jnzversnl 

means that the PUMMA include all the above multiplication routines and that their per- 

formance depends weakly on processor configuration and block size A block scattered data 

distribution is used, which can reproduce many of the common data distributions used in dense 

linear algebra computations [8,16], as discussed in the next section. There have been many im- 
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plementations of matrix multiplication algorithms on distributed memory niachines [20,21,24]. 

Many of them are limited in their use since they are implemented with a pure block (non- 

scat.tered) distribution. or specific (not general-purposej data d h i b u t i o n .  and/or on square 

processor configurat,ions with a specific number of processors (column and/or row numbers of 

processors are powers of 2 ) .  The PUMMA package eliminates all of these constraints. 

The first part of this paper focuses on the design and implementation of the non-transposed 

matrix multiplication routine on distributed memory concurrent comput.ers. WF then deal with 

the other cases. A parallel matrix transpose algorithm, in which a niatrix with a block scattered 

decomposition is transposed over a two-dimensional processor mesh, is presented in a separate 

paper [lo]. All routines are implemented in Fortran 77 plus message passing and compared 011 

the Intel Touchstone Delta computer. 

2. Design Issues 

The way in which an algorithm’s data are distributed over the processors of a concurrent 

computer has a major impact on the load balance and communication characteristics of the 

concurrent algorithm, and hence largely determines its performance and scalability. The block 

scattered (or block cyclic) decomposition provides a simple, yet general-purpose, way of dis- 

tributing a block-partitioned matrix on distributed memory concurrent. computers. In the block 

scattered decomposition, described in detail in [8], a matrix is partitioned into blocks of size 

T x s, and blocks separated by a fixed stride in the column and row directions are assigned to the 

same processor. If the stride in the column and row directions is P and Q blocks respectively. 

then we require that P Q equals the number of processors. X p .  Thus, it is useful to  imagine 

the processors arranged as a P x Q mesh, or template. Then the processor a t  position ( p , q )  

( 0  5 p < P ,  0 5 p < Q) in the template is assigned the blocks indexed by, 

where i = 0 , .  . . , [(MQ - p - 1)/PJ, j = 0 , .  . . [ (Nb - q - l ) /QJ ,  and MQ x XQ is the size of the 

matrix in blocks. 

Blocks are scattered in this way so that good load balance can be maintained in algorithms, 

such as LU factorization [7,16], in which rows and/or columns of blocks of a matrix become 

eliminated as the algorithm progresses. However, for some of the distributed Level 3 BLAS 

routines a scattered decomposition does not improve load balance. and may result in higher 

concurrent overhead. The general matrix-matrix multiplication routine xGEMM is an example 

of such a routine for which a pure block (i.e., nonscattered) decomposition is optimal when 

considering the routine in isolation. However, xGEMM may be used in an application for 

which, overall, a scattered decomposition is best. We are faced with the choice of implementing 
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a nonscattered distributed version of xGEMM, and transforming the data decomposition to this 

form if necessary each time xGEMM is called, or of providing a scattered version and thereby 

avoiding having to transform the data decomposition. Weopt, for the latter solution because i t  is 

more general, and does not impose on the user the necessity of potentially costly decomposition 

transformations. Since the nonscattered decomposition is just a special case of the scattered 

decomposition in which the block size is given by 1’ = [ M / P ]  and s = [N/Q1,  where the 

matrix size is M x A’, the user still has the option of using a rionscattered decomposition for 

the matrix multiplication and transforming between decompositions if necessary. The Basic 

Linear Algebra Communication Subprograms (BLACS) are intended to perform decomposition 

transformations of this type [4,12,17]. 

The decompositions of all matrices involved in a call to  a Level 3 HLAS routine must be 

compatible with respect to  the operation performed. To ensure compatibility we impose the 

condition that all the matrices be decomposed over the same P x Q processor template. Most, 

distributed Level 3 BLAS routines will also require conditions on t,lie block size to  ensure 

compatibility. For example, in performing the matrix multiplication C = A . B,  if the block 

size of A is P x s then that of B and C must be s x t and r x t ,  respectively. 

Another advantageous aspect of the distributed Level 3 BLAS is that often a distributed 

routine will call sequential Level 3 BLAS routines. For example. the distributed version of 

xGEMM, described in Section 3.2, consists of a series of steps in each of which each processor 

multiplies two local matrices by a call to the sequential version of xGEMM. Since highly opti- 

mized assembly-coded versions of the sequential Level 3 BLAS already exist on most processors 

we can take advantage of these in  the distributed implementation. 

Figure 1 (a) shows the performance of the DGEMM routine for square matrices on one 

i860 processor of the Intel Touchstone Delta. In general, performance improves with increasing 

matrix size and saturates for matrices of size greater than A4 = 150. Figure 1 (b) shows that in 

our Fortran implementation, for nonsquare matrices, a multiplication a column shape of A by 

a row shape of B is more efficient than its opposite. In both the square and nonsquare cases, 

the size of the matrices multiplied should be maximized in order to  optimize performance of the 

sequential assembly-coded version of xGEMM routines. Thus, in the PUMMA routines, instead 

of multiplying individual blocks successively on each processor, blocks are conglomerated to 

form larger matrices which are then multiplied. 

The distributed Level 3 BLAS routines have similar argument lists t o  the sequential Level 

3 BLAS routines. In the distributed xGEMM routine, for example, original matrices A and B,  

are preserved as in the sequential routine. Users, who are familiar with the sequential routines, 

should have no difficulty in using the distributed routines. 
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Figure 1: Performance of DGEMM on one i860 processor of the Delta. ( a )  The routine is tested 
with Afilxfif . B M % M ,  A ~ ~ f i . ~ l .  . B M 1 z x M ,  and A M 1 2 x M  . B M ~ M I ? .  where I..'' denotes matrix 
multiplication, and (b) tested with A500xbl . B & f x 5 o o  and A,~J~SOO . B S o O x ~ f .  
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(a) matrix point-of-view (b) processor point-of-view 

Figure 2: A matrix A with 12 x 12 blocks is distributed over a 2 x 3 processor template. ( a )  
From the matrix point-of-view. Each shaded and unshaded area represents a different template. 
The numbered squares represent blocks of elements, and the number indicates at which location 
in the processor template the block is stored - all blocks labeled with the same number are 
stored in the same processor. The slanted numbers, on the left and on the top of the matrix, 
represent global indices of block row and block column, respectively. (b) From the processor 
point-of-view, each processor has 6 x 4 blocks. 

3. Algorithms 

To illustrate the basic parallel algorithm we consider a matrix A distributed over a 2-dimensional 

processor template as shown in Figure 2 (a), where A with 12 x 12 blocks is distributed 

over a 2 x 3 template. If the matrix distribution is seen from the processor point-of-view 

as in Figure 2 (b), each processor has several blocks of the matrix and the scattered blocks, 

A(O,O), A(2 ,0 ) ,  A(4, 0) ,  . . ., A(10,O) are vertically adjacent, in the 2-dimensional array in the 

first processor Po, and can be accessed as one long block column ;4(0 : 11 : 2,O). In the same 

way, A(0, 0), A(O,3) ,  A(O,6), A(O,9) are horizontally adjacent in PO, and can be accessed as 

one long block row A(O,O : 11 : 3). We exploit this property in implementing the algorithms 

to  deal with larger matrices instead of several small individual blocks. We assume data are 

stored by column in both our Fortran 77 and message passing implementation. In general, 

the algorithms are presented from the matrix point-of-view, which is simpler and easier to  

understand. In dealing with the implementation details, we explain the algorithms from the 

processor point-of-view 

3.1. The Basic Matrix Multiplication Algori thm 

Our matrix multiplication algorithm is a block scattered variant of that of Fox, Hey, and Otto 

[20], that  deals with arbitrary rectangular processor templates. 

Suppose the matrix A has Mb block rows and Lb block columns, and thc matrix B has Lb 
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I D o I < = o . L b - 1  
[Columncast one block of B ( B ( I ,  MOD(I + I<, f i t , ) ) ,  I = 0 . Lb) 
along each column across template] I 

I P A R D O I = O , M b - l  

I PARDO J 0,Nb - 1 
I 
I IiP = hlOD(Ii  -t I ,  Lb) 

C(Z, J )  = C ( I ,  J )  + A ( I ,  IiP) B(I<P. J )  
I END PARDO 
~ 

END PARDO 
I [Roll A leftivards] 
1 E N I D 0  

Figure 3: A distributed block scattered matrix inultiplication algorithm. The PARDO’S in- 
dicate over which indices the data are decomposed. All indices refer to blocks of elements. 
Communication phases are indicated in square brackets. 

block rows and Nb block columns. Block ( I ,  J )  of C is then given by 

Lb-1 

C ( I ,  J )  = A ( I ,  I<) . B ( K ,  J )  

where I = 0 . 1 , .  . . , Mb - 1, J = 0 , 1 , .  . ., Nb - 1. In Equation 2 the order of summation is 

arbitrary. 

Fox et al. initially considered only the case of square matrices in which each processor 

contains a single row or a single column of blocks. That is, the blocks that start the summation 

lie along the diagonal. The summation is started at  a different point, for each block row of C 

so that in the phase of the parallel algorithm corresponding to summation index Ii, A ( I .  Ii) 
and B ( K ,  J )  can be multiplied in the processor to which C ( I ?  J) is assigned. 

This requires each processor containing a block of B to  be multiplied in step Ii to broadcast 

that, block along the column of the processor template at  the start of the step. Also A must 

he rolled leftwards at  the end of the step so that each column is overwritten by the one to the 

right, with the first column wrapping round to overwrite the last column. The pseudocode for 

this algorithm is shown in Figure 3. Another variant of this algorithm involves broadcasting 

blocks of A over rows, and rolling B upwards. 

In Figure 3 and subsequent figures a “columncast” is a communication phase in which one 

data item (typically a block, or set of blocks) is taken from each block column of the matrix 

and is broadcast. to all the other processors in the same column of the processor template. 

A “rowcast” is similar, but broadcasts a data item from each block row of the matrix to all 

processors in the same row of the template. 
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K = O  

i:".' 
' 1  2 

K =  1 

Figure 4: Snapshot of SDB algorithm. The blocks of the matrix B communicated in the first 
two stages of the matrix multiplication algorithm are shown shaded. In this case P = 2 a n d  
Q = 3. In each stage, only one wrapped diagonal is columncast. The total number of stages is 
Lb. 

3.2. Matrix Multiplication Algorithm with Block Scattered Decomposition 

We now consider the multiplication of matrices distributed with a block scattered decomposi- 

tion. The block sizes for matrices A and B are r x s and s x t ,  respectively, where r ,  s, and t are 

arbitrary. In this case the summation in row I starts at  K = I ,  so the blocks of B broadcast in 

each stage lie along diagonal stripes. The parallel algorithm proceeds in Lb stages, in each of 

which one block of B is broadcast along each column of the template, and A is rolled leftwards. 

We call this the SDB (Single Diagonal Broadcast) algorithm. 

Figure 4 shows, from the matrix point-of-view, the wrapped diagonal blocks of B broadcast 

in the first two stages of the SDB algorithm, where B with 12 x 12 blocks is distributed over 

a 2 x 3 template. Only one wrapped diagonal is columncast in each stage. In implementing 

the algorithm, the size of the submatrices multiplied in each processor should be maximized to  

optimize the performance of the sequential xGEMM routine. From the processor point-of-view, 

as shown in Figure 2 (b), the first processor PO has A(0 : 11 : 2,O : 11 : 3) and B(0 : 11 : 

2,O : 11 : 3), and it will have C(0 : 11 : 2,O : 11 : 3) after the computation. In the first stage 

of Figure 4 (A' = 0), PO multiplies A(O,O), A(2,0),  ., A(10,O) with B(0,O). These operations 

can be combined as one matrix multiplication since blocks of A(0,  0) ,  A ( 2 . 0 ) ,  . . . , A( 10,O) are 

vertically adjacent in PO. The processor multiplies a long block column of A (A(O : 11 : 2,O)) 

with one block B(0,O). This is the reason why we prefer a scheme of columnwise broadcasting 

B t o  a scheme of rowwise broadcasting A in our Fortran implementation, where 2-dimensional 

arrays are stored by columns. 

Denoting the least common multiple of P and Q by L G M ,  we refer to a square of L C M  Y 
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DO A'l = 0, LCM - 1 
[Columncast Lb/LCM blocks of B (B(1. J : Nb : L C M ) ,  I = 0 : IAb. 
J = MOD(l  + h'l. L C M ) )  along each column of template] 

DO h '2  = 0, Lb/LCM - 1 
Ii = Iil + Ii'2 x LCM 
P A R D O I = O , M g - 1  

I<P = MOD(Ii + MOD(I. LCA4).  Lb) 
P A R D O J = O , N g - l  

C(1, J )  = C ( I ,  J )  + A ( I ,  IiP) . B(I<P, J )  
END PARDO 

END PARDO 
END DO 
[Roll A leftwards] 

EKD DO 

Figure 5: hlDBl algorithm. which is a distributed matrix multiplication algorithm suitable for 
a block scattered decomposition. The outer li loop has been split into loops over lil  and 122 
so that the communication for several steps can be sent in a single message. 

L C M  blocks as an L C M  block. Blocks belong to the same processor if their relative locations 

are the same in each square L C M  block. The concept of the L C M  block is very useful. since an 

algorithm may be developed for the first' LCM block, and then be applied to  the other L C M  

blocks, which all have the same structure and data distribution as the first L C M  block. That 

is, when an  operation is executed on a block of the first L C M  block. the same operation can 

be done simultaneously on other blocks, which have the same relative location in each L C M  

block. 

For a block scattered decomposition the communication latency can be reduced by perforni- 

ing multiple instances of the outer Ii' loop (see Figure 3) together. The communication latency 

is reduced when instances of the outer K loop separated by LCM are grouped together, as 

shown in Figure 5. We call this the MDBl (Multiple Diagonal Broadcast 1) algorithm. In this 

case the parallel algorithm proceeds in LCM stages, in each of which [Lb/LCM1 blocks of the 

B matrix are broadcast down each column of the template by a single communication phase in 

the outer loop. In Figure 6 we show the two ( [Lb/LCM1 = 12/6) wrapped diagonal blocks of 

B broadcast in the first two stages of the algorithm. The size of the submatrices multiplied in 

each processor cannot be increased and it is the same as in the SDB algorithm. 

The communication latency can be reduced even further by noting that the data for matrix 

A returns to the processor in which it started after A has been rolled Q tinies. Thus. we 

introduce a third variant of the parallel algorithm that proceeds in Q stages, in each of which 

[Lb/Q1 blocks of B are broadcast down each template column by a single communication 
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K 

Figure 6: Snapshot of 
Q is 6. In each stage. 
number of stages is L( 

t 
r , 

= O  

ClDBl algorithm. In this case 
,WO ( [ L b / L c M 1  = 12/6) wra 
‘111. 

K =  1 

P = 2, Q = 3, and so the LCM 
ped diagonals are columncast. 1 

f P and 
he total 

phase in the outer loop. Figure 7 shows the four ([Lb/Q1 = 12/3) wrapped diagonal blocks 

of B broadcast in each stage. The pseudocode for this version of the algorithm is the same as 

that  shown in Figure 5, except that “LCM” is replaced by “Q.” This is called the “MDB2 

(Multiple Diagonal Broadcast 2)” algorithm. 

In implementing the MDB2 algorithm, the granularity of the algorithm is increased. In the 

first stage shown in Figure 7 (IC1 = 0), the first processor Po multiplies a column block A 

(A(0 : 11 : 2,O)) with B(O,O), B(O,3), B(O,6) and B(O,9). These blocks of B are horizontally 

adjacent in the 2-dimensional subniatrix in Po, and form a long block row B(0,O : 11 : 3) .  

These operations are replaced by one multiplication. Po multiplies a long block column of A 

(A(0 : 11 : 2,O)) with a long block row of B (B(0,O : 11 : 3)). The combined multiplication 

looks like a block version of the outer produci operation. Since [Lb/LCM1 = 2, Pc, needs to 

do another outer product operation at  the same step, A(O : 11 : 2 , 6 )  with B(6.0 : 11 : 3), as 

shown in Figure 8 (a). 

In MDB2 algorithm, the granularity of the algorithm is maximized. PO has two  block rows 

of B t o  broadcast (B(0,O : 11 : 3) and B(G, : 11 : 3)), which are condensed to  one large matrix 

( B ( 0  : 11 : G , O  : 11 : 3)) for economical communications. If block columns of A are presorted 

with radix L C M  in the beginning of the algorithm (or radix L C M / Q  in each processor) as 

shown in Figure 8 (b), two block columns of A (A(0 : 11 : 2,O) and A(0 : 11 : 2,6))  are accessed 

as one large matrix (A(0 : 11 : 2.0 : 11 : 6)). Now, Po can complete its operation with one 

large matrix multiplication of A(O : 11 : 2 , 0  : 11 : 6) and B(O : 11 : 6,O : 11 : 3) .  All processors 

compute one matrix multiplication in each step instead of [LbILCM] multiplications. The 
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K = O  K =  1 

Figure 7:  Snapshot of MDU2 algorithm. In each stage, four ( L b / Q  = 12/3) wrapped diagonals 
are colui-nncast. The total number of stages is Q .  
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(a) C = A ’ B  in PO from processor point-of-view 
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C - presorted A condensed B - 
(b) computation in Po with presorted A 

Figure 8: C = A . B in Po from processor point-of-view, where P = 2, Q = 3 and Mb = Nb = 
Lb = 12. Columns of A are presorted in (b). The shaded area of A and B represents blocks to  
be multiplied, and that of C represents blocks to be updated by the multiplication. 
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DO I = 0, Mb - 1 
PARDO J = 0,Nb - 1 

I P  = MOD(I + J ,  Mb) 
PARDO Ii = 0; Lb - 1 

END PARDO 
T(l<) = [A(Ii, IP) lT  . B(I i ,  J )  

DO li = 0. Lb - 1 
C ( I P ,  J )  = C( IY, J )  + T( Ii) 

END DO 
END PARDO 
[Roll A leftwards] 

EKD DO 

Figure 9: The basic transposed matrix multiplication algorithm, C = AT . B for a block 
scattered decomposition. [A(Ii ,  IP)IT is the transpose of block A(l<,  I P ) .  This algorithm needs 
a sequential DO loop to compute C(IP,  J )  by adding the temporary results T(Ii) columnwise. 

computation is like a block version of muti-ix-matrzx multiplication. 

The communication scheme of the MDB2 algorithm can be changed to  rowwise broadcasting 

of [L,/P1 blocks of A and columnwise shifting of presorted B without decreasing its perfor- 

mance. The two schemes have the same number of steps and the same amount of computation 

per processor in each step, but they have different communication strategies. 

3.3. Transposed Matrix Multiplication Algorithm, C = AT . B 

We now describe the multiplication of transposed matrices, that is, multiplications of the form, 

C = AT . B and C = A . BT. The multiplication algorithm of two transposed matrices, 

C = AT .BT, is presented in Section 3.4. Lin and Snyder [24] has given an algorithm computing 

C = A . B based on a block distribution, that first transposes one of the matrices and then 

uses a series of block multiplication and reduction steps to evaluate C .  

Consider first C = AT . B, where A and B are Lb x Mb and Lb x Nb blocks, respectively, 

and they are distributed with a block scattered decomposition. C ( I ,  J )  is then computed by 

L b - 1  

C ( I ,  J )  = [A(Ii, I)]* . B ( K ,  J )  (3)  
K =O 

where I = 0 , 1 , .  . ., Mb - 1, J = 0 , 1 , .  . . , Nb - 1 and [A(A’, I)IT is the transposed block of 

A ( K ,  I ) .  As in Equation 2,  block indices are used, and the order of summation is arbitrary. 

Figure 9 gives the pseudocode of the basic transposed matrix multiplication algorithm. The 

algorithm proceeds in Lb steps, in each of which blocks of C lying along a wrapped diagonal 
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DO 11 = 0,Q - 1 
DO 12 0 ,  Mb/Q - 1 

1 I =  Il-t 12 X Q  

PARDO J = 0,  Ivb - 1 I 

I P  = MOD(I + MOD(J, Q ) .  Mb) 
PARDO IC1 = 0, P -- 1 I 

T(Il-1) = 0.0 
no IC2 = 0,  L*/P  - 1 I 

I I< = 1il + I i 2  x P 
T(I i1)  = T(K1) + [A(I<. If')]' R ( 1 i ,  J )  

END DO 
END PARDO 
DO Iil = 0 ,  P - 1 

I 

I END PARDO 
END DO 

i [Roll A leftwards] 
~ ENDDO 
i 

C ( I P ,  J )  = C(1P.  J )  + T(Ii1) 

I END DO 

Figure 10: The transposed matrix multiplication algorithm, C = AT . B.  The outer loop has 
been split into loops over I1 and 12 so that the communication for several steps can be sent in 
a single message. 

are evaluated. Each step consists of block matrix multiplication to form contributions to a 

wrapped diagonal block of C ,  followed by summation over columns. Finally, a communication 

phase shifts A to  the left by one block. 

As in the MDRl matrix multiplication algorithm of Section 3.2, the communication latency 

is reduced by simultaneously performing multiple instances of the outer I loop separated by 

L C M .  Again the communication latency is reduced further when instances of the outer loop 

separated by Q are executed together as in the MDB2 algorithm. The blocks of A return to  the 

same processor from which they started after they have been rolled Q times. So the algorithm 

proceeds in Q stages, in each of which [Lb/Q1 wrapped diagonal blocks of C are computed. 

The pseudocode of the modified algorithm is shown in Figure 10. 

The transposed matrix multiplication algorithm is conceptually simpler than the non- 

transposed matrix multiplication algorithm. In C = AT . B, processors in the same colurnri of 

the template compute and add their products, and distribute the summations to the appropri- 

ate positions. The most difficult aspect when implementing the algorithm is how to add and 

distribute the products efficiently. 

As an example, consider the matrix multiplication C = A' . B where matrices A and B .  
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I1 = o  I1 = 1 
(a) Computed blocks of C from matrix point-of-view 

0 3 1 4 2 5  0 . 7 1 4 2 5  0 3 7 4 2 5  

C - A B - 
(b> Snapshot of the first stage fiam processor point-of-view 

Figure 11: Snapshot of C = AT . B when P = Q = 3 and Mb = Arb = Lb = 6. (a) From 
the matrix point-of-view, the computed blocks of the matrix C in the first two stages of the 
transposed matrix multiplication algorithm are shaded. (b) Snapshot of the first stage from 
the processor point-of-view. The shaded area of A and B represents blocks to be multiplied, 
and that of C denotes blocks computed from the multiplication. Only diagonal processors have 
results in the first stage. After each stage, A is shifted to the left. 

each consisting of 6 x 6 blocks, are distributed over a 3 x 3 processor template as shown in 

Figure 11. In each stage, every &-th wrapped block diagonal of C is computed. In the first 

stage, as shown in Figure 11 (b), the processors in the first column of the template, Po, P3, 

and Ps, multiply the zeroth and third block columns of A (A(: ,O : 5 : 3)) with the zeroth and 

third block columns of B (B(:,O : 5 : 3)). They compute their own portion of multiplications 

and add them to obtain 2 x 2 blocks of C (G(0 : 5 : 2,O : 5 : 2)), which are placed in Po. In 

this example, where the template is square, only the diagonal processors Po, P4, and Pg have 

the computed blocks of C for each column of the template. After the first stage, A shifts to 

the left. The next wrapped diagonal processors Pz,  P3, and P; have the computed blocks of C 

in the second stage. 

Figure 12 shows the case of P = 3, Q = 2,  where C is computed in two stages. The first 
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(b) Snapshot of the first stage from processor point-of-view 

Figure 12: Snapshot of C = AT . B when P = 3, Q = 2, and Mb = Nb = Lb = 6. (a)  
From matrix point-of-view, the computed blocks of the matrix C in the first two stages of 
the transposed matrix multiplication algorithm are shaded. (b )  Snapshot of the first stage 
from processor point-of-view. If P and Q are relatively prime, the computed blocks of C are 
scattered over all processors in each stage. 

column of processors, Po, Pz, and P4, compute 3 x 3 blocks of C (C(0 : 5 : 2,O : 5 : a)),  by 

multiplying the zeroth, second and fourth block columns of A ( A ( : ,  0 : 5 : 2))  with the zeroth, 

second and fourth block colunins of B ( B ( : ,  0 : 5 : 2)) .  After summing over columns they have 

computed their own row blocks of C .  

When Q is smaller than P ,  processors need more memory t,o store the partial. products, if 

they compute their own products first and then add them together. Imagine the case when 

P = 4, Q = 1 and Mt, = h'b = Lb = 4. Each processor has 1 x 4 blocks of A and B,  and it has 

1 x 4 blocks of C aft,er the computation. But processors need 4 x 4 blocks to store their own 

partial products. Thus, memory requirements do not scale well. 

Processors can multiply one block column of A with whole blocks of B in each step to avoid 

nonscalable memory use. In the first step of Figure 12, Po, Pz7 and r), compute C(0,O : 5 : 2) 

by multiplying A ( : ,  0)  wit11 I?(:! 0 : 5 : 2). The computed blocks of C are placed in Po. These 
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(a) C = AT. B in PO from processor point-of-view 

0 6 2 8 4 1 0  0 2 4 6 8 10 
0 0 
3 3 0 
6 6 6 
9 9 

presorted A B = condensed C 

(b) computation in PO with presorted AT 

Figure 13: C = AT I B in Pa from processor point-of-view, where P = 3, Q = 2 and Mb = 
Nb = Lb = 12. The shaded area of A and B represents blocks to  be multiplied. And that of 
C stands for the result blocks to  be placed after multiplication and summation processes over 
the column of the template. 

processors then compute C(2,O : 5 : 2),which is placed in P4, and finally compute C(4,O : 5 : 2) ,  

which is placed in Pz. After this stage A is shifted to  the left. With this scheme, the processors 

require three steps to  compute C(0 : 5 : 2,O : 5 : 2) for the first stage of the algorithm. This 

procedure is less efficient, but needs less memory to  hold partial products. 

The loss of efficiency can be offset by overlapping computation and communication. Con- 

sider a modified algorithm in which the blocks of C rotate downwards over the processor 

template after each stage. Each processor computes its own products and updates the received 

blocks. The processors receive their own desired blocks of C after P - 1 communications. If P 

and Q are relatively prime as shown in Figure 12, all processors have their own blocks of C in 

each stage. They receive partial products from the processor above, add their contributions to 

the partial products, and then send them to the processor below. If processors are waiting to  

receive the products before multiplying some processors have to wait a long time when P = Q 

as in Figure 11 (or P and Q are not relatively prime). For these cases, processors compute 

their own multiplications first, and then add them after they receivr the products. This can 

be implemented effectively with asynchronous message passing to minimize processors’ waiting 

time to receive the products. 

As an example, consider Figure 13 (a), where 12 x 12 block matrices are distributed over a 
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3 x 2 processor template. Po computes two ( [ M b / L C M ] )  transposed matrix multiplications of 

block columns of A (A4(0 : 11 : 3,O) and A(O : 11 : 3,6)) with its own submatrix B (R(0  : 11 : 

3.0 : 11 : 2)) ,  and generates two block rows of C (C(0,O : 11 : 2) and C(6: 0 : 11 : 2)). The two 

rows of C are condensed for fast communications as in the MDB2 algorithm in Sectioii 3.2. If 

block columns of A are presorted with radix LCM (or radix LCAf /Q  for each processor) at t,he 

beginning of the algorithm, processors compute one transposed matrix multiplication in each 

step instead of [Lb/LCM1 multiplications as shown in Figure 13 (b) .  Again, the computation 

i s  like a block version of (transposed) matrzx-matrix multiplication. 

The case C = A . B’ is similar to the C = A” B algorithm, but the partial result blocks 

of C rotate horizontally in each step, and BT shifts upwards aft.er each stage. 

3.4. Multiplication of Transposed Matrices: C = AT . BT 

Suppose we need to  compute C = AT BT, where A is Lb x Afb  blocks, B is Nb x Lb blocks. 

and C is Mh x Kt, blocks. One approach is to evaluate the product 

L b - 1  

C ( I ,  J )  = [ A ( K ,  1)IT . [ B ( J ,  
K=O 

(4) 

directly using a variant of the matrix multiplication routine in Section 3.2. but in which blocks 

of A are columncast in each step, and blocks of B are rotated leftwards. The resultant matrix 

then has to be blockwise transposed, i.e., block C(Z, J )  must be swapped with block C ( J ,  I ) .  

in order to obtain C .  Thus. for this approach the algorithm is as follows, 

1 .  locally transpose each block of A and B, 

2. multiply A and B using variant of parallel algorithm. 

3. do a blockwise traiispose of the result to get C .  

In an actual implementation, the local transpose iii (1) can be performed within the calls to 

the assembly-coded sequential xGEMM routine. 

Another approach is to evaluate CT = B . A and then transpose the resulting matrix to  

obtain C .  In this case the algorithm is as follows, 

1. multiply B and A using the parallel algorithm in Section 3.2, 

2. locally transpose each block of result. 

3. do a blockwise transpose to get C .  

These last two steps together transpose CT and may be done in any order. The performance 

of both approaches is very nearly the same, but the second approach has the advantage of using 
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Figure 14: Performance comparison of the three matrix multiplication routines on an 8 x 8 
processor template. 
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Figure 15: Performance comparison of the three matrix multiplication routines on a 9 x 8 
processor template. 



- 1 9 -  

96 processors 64 processors 48 processors 
P x Q  Gflops P X Q  Gflops P x Q  GAops 
6 x 16 1.972 4 x 16 1.373 4 x 12 1.101 
8 x 12 2.007 8 x 8  1.447 6 x 8  1.181 

12 x 8 2.00s 16 x 4 1.444 8 x 6  1.200 
16 x 6 2.002 12 x 4 1.130 

Table 1:  Dependence of performance on template configuration (hl  = N = L = 1600). 

the existing algorithm for finding B . A,  as described in Section 3.2, without any modification 

being necessary. Parallel matrix transpose algorithms are described in [lo], and are used to 

compute C = o AT .BT+/? C as described above in twosteps: T = o B . A ,  then C = TT+B C. 

4. Results 

In this section we present performance results for the PUMMA package on the Intel Touch- 

stone Delta system. Matrix elements are generated uniformly on the interval [-1, 11 in double 

precision. Conversions between measured runtimes and performance in gigaflops (Gflops) are 

made assuming an operation count of 2 M N L  for the multiplication of a M x L by a 1, x N 

matrix. In our test examples, all processors have the same number of blocks so there is no load 

imbalance. 

4.1. Comparison of Three Matrix Multiplication Algorithms 

We first compared the three matrix multiplication algorithms, SDR, MDB1, and MDB2 on 

two fixed processor templates. Figures 14 and 15 show the performance of the algorithms on 

a square processor template (8 x 8, P = &) and a nonsquare template (9 x 8, P and Q are 

relatively prime), respectively. Two different block sizes are considered to see how block size 

affects the performance of the algorithms for a number of different sized matrices. 

The performance of the SDB and MDBl algorithms improves as the block size is increased 

from 5 to 10, but this change of the block size has almost no effect on the performance of 

the MDB2 algorithm, since in MDB2 the size of the submatrices multiplied in each processor 

(using the assembly-coded Level 3 BLAS) is independent of block size. For a square template, 

the number of communication steps is the same in the MDBl and MDB2 algorithms since 

LCM = Q, but there is a big difference in their performance. This difference arises because 

the basic operation of the MDBl algorithm is a multiplication of a block column of A with 

a single block of B ,  where as, in the MDB2 algorithm, larger matrices are multiplied in each 

step, as explained in Section 3.2. 

The block size is selected by the user. In most cases, the optimal block size is determined 

by the size and shape of the processor template, floating-point performance of the processor, 



- 20 - 

8 
v1 a 

6 

5 

4 

3 

2 

1 

0 
0 IO00 2000 3000 4000 5000 6000 7000 

Matrix Size, M 
(a) Performancp of MDB2 

0 50 100 150 200 250 300 
Number of Processors 

(b) Isogranularity Plot 

Figure 16: Performance of MDBZ algorithm. (a) Performance in gigaflops as a function of 
matrix size for different numbers of processors. (b) Isograniilarity curves in the (G. N,,) plane. 
The curves are labeled by the granularity g in units of lo3 matrix elements per processor. 
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communication bandwidth between processors, and the size of the matrices. However, for the 

MDB2 algorithm, the performance is independent of the block size. We adopted a block size 

of 5 x 5 in all subsequent runs of the matrix multiplication routines. 

We next considered how, for a fixed number of processors K, = P x Q ,  performance dr- 

pended on the configuratidn of the processor template. Some typical results are presented in 

Table 1 from which it may be seen that the template configuration does have a small effect, on 

performance, with squarer templates giving better performance than long, thin templates. For 

a fixed number for processors, a larger value of Q increases the number of outer loops performed, 

but reduces the time to  broadcast blocks of B across the template. The relative importance 

of these two factors determines the optimal template configuration. For rectangular templates 

with different. aspect ratios, those with small Q show better performance than those with small 

P .  For a fixed processor template with small P !  ai1 MDB2 algorithm, in which A is broadcast, 

rowwise and B is shifted columnwise, is preferable to  the version described in Section 3.2, in 

which B is broadcast columnwise and A is shifted rowwise. 

Figure 16 (a) shows the performance of the MDB2 algorithm on the Intel Touchstone Delta 

as a function of problem size for different numbers of processors for up to  256 processors. It1 

all cases a square processor template was used, i.e. P = Q: the block size was fixed at  5 x 5 

elements, and the test matrices were of size up to  400 x 400 elements per processor. 

In Figure 16 (b) we show how performance depends on the number of processors for a 

fixed grain size. The fact that these isogranularity plots are almost linear indicates that the 

distributed matrix multiplication routine scales well on the Delta, even for small granularity. 

4.2. Comparison with Transposed Matrix Multiplication Algorithms 

We compared the performance of the MDB2 version of the matrix multiplication routine C = 
A - B  with that of the transposed matrixmultiplication routines, C = AT.B,  and C = AT.BT. 

For C = A . B ,  we adopted a routine with rowwise broadcasting of A and columnwise shifting 

of B. C = AT B is implemented as described in Section 3.3. For C = AT . BT, B is directly 

multiplied with A to  form B I A, which is then transposed to  give C. 

Figures 17, 18, 19, and 20 show the performance of the algorithms on 8 x 8, 8 x 9, 8 x 10, and 

8 x 12 templates, respectively. In all cases the block size is fixed at  5 x 5 elements. The solid 

and the dashed lines show the performance of A . B and AT . B T ,  respectively. The difference 

of the two lines is due to the matrix transpose routine used in evaluating AT . B*. In most 

cases, the performance of the AT . B algorithm, which is drawn with the dot-dashed lines, lies 

between that of the A . B and AT . BT algorithms, but for the square template in Figure 17, 

its performance is worse than that of AT . B T .  In the AT . B routine, processors in the same 

column of the template sequentially update their own C. Some of the processors have to wait 
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P x Q Matrix Size Block Size A . B  AT B AT ElT 
1 x 1  1.640 1.529 1.607 

8 x 8  2400 x 2400 5 x 5  1.641 1.530 1.G19 
300 x 300 1.643 1.531 1.618 

1 x 1  1.902 1.904 1.732 
8 x 9  2520 x 2520 5 x 5  1.924 1.939 1.850 

35 x 35 1.926 1.946 1.860 
1 x 1  2.085 2.067 1.961 

8 x 10 2400 x 2400 5 x 5  2.107 2.110 2.033 
60 x 60 2.096 2.123 2.028 
1 x 1  2.374 2.121 2.265 

8 x 12 2400 x 2400 5 x 5  2.389 2.310 2.306 
100 x 100 2.397 2.338 2.317 

Table 2: Dependence of performance 011 block size (Unit: Gflops) 

P x Q Matrix Size A . B  A T . B  - 1 3 ~  
1 x 1  400 x 400 36.21 (100.0) 3.534 (100.0) 34.58 (100.0) 
8 x 8  3200 x 3200 27.77 (76.7) 25.86 (72.8) 27.36 (79.1) 
8 x 9  3240 x 3240 29.00 (80.1) 28.56 (80.4) 28.10 (81.3) 
8 x 10 3200 x 3200 28.25 ( i8 .0)  27.74 (78.1) 27.47 (79.4) 
8 x 12 3200 x 3200 28.44 (78.5) 27.55 (77.5) 27.48 (79.5) 

Table 3: Performance per node in Mflops. Block size is fixed at 5 x 5 elements. Entries for 
the 1 x 1 template case give the performance of the assembly-coded Level 3 BLAS matrix 
multiplication routine. Numbers in parenthesis are concurrent efficiency. 

a long time to receive the partial products if P = Q .  

Table 2 shows how the block size has an effect on the performance of the algorithms. It 

includes three cases of the block size, two extreme cases -- the smallest and largest possible 

block sizes - and 5 x 5 block of elements. The algorithms depend only weakly on the block 

size. Even for the case of the smallest block size ( 1  x 1 element), the algorithms show good 

performance. 

Performance per node is shown in Table 3. The 1 x 1 template gives the performance of the 

assembly-coded Level 3 BLAS matrix multiplication routine. The numbers in parentheses are 

concurrent efficiency, which is the relative performance of nodes compared with the maximum 

performance of the assembly-coded Level 3 BLAS routine. Approximately 77% efficiency is 

achieved for A . B ,  73% for AT .B, and 79% for AT .BT if P = Q. The routines perform better 

on templates for which P # Q. More than 80% efficiency is achieved for all cases if P and Q 

are relatively prime. 
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(b) Odd-even rotaring scheme 

Figure 21: Two rotating schemes. (a) Nodes first send to the left and then receive from the 
right. (b) In the first step, odd-numbered processors send data blocks and even-numbered 
processors receive them. In the next step, even-numbered processors send and odd-numbered 
processors receive. Odd-even rotating is faster on Delta. but simuhaneous rotating is faster on 
iPSCj8GO hypercube. 

4.3. Results with Optimized Communication Routines for the Intel Delta 

For the implementation of the PUMMA package, blocking and nonblocking communication 

schemes were used. In this section, we modify the algorithms with optimized communication 

schemes specifically for the Intel Touchstone Delta. 

First, force t ype  communications [22] are incorporated for faster communications. A force 

type message bypasses the normal flow control mechanism, and is not delayed by clogged 

message buffers oil a processor. A force type message is discarded if no receive has been posted 

on the destination processor prior to its arrival. If force types are not used on the Delta. the 

routines can accommodate matrices up to  400 x 400 elements per processor without encounting 

problems arising from system buffer overflow [23]. With force type communication, the routines 

can handle larger matrices, up to 500x500 per processor, where the maximumsize is determined 

by the available memory per processor rather than by system buffer constraints. 

A block rotating scheme is used to shift A rowwise in the MD332 algorithm of Section 3.2  and 

in the AT . B routine of Section 3.3. A simultaneous rotating scheme, shown in Figure 21 (a),  

may be used on the Intel iPSC/SSO hypercube. However, an odd-even rotating scheme is 

preferable on the Delta [25]. This scheme performs the communication in two steps as shown 

in Figure 21 (b). In the first step, odd-numbered processors send their own data blocks and 

even-numbered processors receive them. In the next step, even-numbered processors send and 

odd-numbered processors receive. 

In the original MDB2 algorithm, blocks of B are broadcast in each column of the template 

based on a ring communication scheme. In the Delta-specific MDB2 algorithm, messages are 

broadcast based on a minimum spanning tree. A special broadcasting routine is desirable for 

the Delta, which differs from that used on hypercubes [5]. Consider broadcasting a message on 

a linear array of p = 7 processors as shown in Figure 22,where nodes are numbered 0 through 6. 
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Figure 23: Collecting on linear array. Pz is a root node. 

In the hypercube scheme, the root node Pz, which has the message to be broadcast, first sends 

the message to P3, whose least significant bit (LSB) is different from the root, node. Then the 

message is delivered by toggling successive bits from LSB to the most significant bit (MSB). 

On a mesh topology such as the Delta, the network traffic becomes congested as the broadcast 

proceeds, as shown in Figure 22 (a). 

In order to  avoid network contention, the root node sends the message to the first node in 

the other half of the processors. By recursing for [logz P]  similar steps, the message is delivered 

to all nodes without any contention as shown in Figure 22 (b). In general, each column of the 

template has PIGCD root nodes in a stage, which broadcast their blocks of B over GCD 

processors of the column, where GCD denotes the greatest common divisor of P and Q. These 

operations are a form of group communication [15]. 

For AT . B in Section 3.3, the partial products in the same column of the processors are 

combined and the sum is stored in the root (destination) node. A special collecting scheme 

has been developed for the Delta to avoid network contention. The new collecting scheme on a 

linear array shown in Figure 23 (b) is based on the broadcasting scheme in Figure 22 (b) .  The 

partial products are sent and added in nodes which are nearer to the root node. Generally. in 

each stage of the algorithm, each column of the template has PIGCD root nodes to collect 

the partial products. Partial products of a group of GCD processors are added first with 
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P X Q  

4 x 4  
6 x 6  
8 x 8  

12 x 12 
16 x 16 

8 x 9  
8 x 10 
8 x 12 
8 x 16 

Matrix Size 

2000 x 2000 
3000 x 3000 
4000 x 4000 
6000 x 6000 
8000 x 8000 

3960 x 3960 
4400 x 4400 
4800 x 4800 
5600 x 5600 

RJNG 
0.515 
1.130 
1.985 
4.438 
7.844 

2.326 
2.561 
2.965 
3.858 

TREE RING 
0.530 0.488 
1.159 1.081 
2.056 1.908 
4.507 4.260 
8.001 7.542 

2.326 2.321 
2.641 2.493 
3.091 2.956 
4.022 3.707 

TREE 
0.496 
1.073 
1.901 
4.150 
7.325 

2.321 
2.486 
2.018 
3.622 

Table 4: Performance in Gflops with optimized communication routines on two structures, ring 
and spanning tree. Block size is fixed to 5 x 5. The routine €or A . B  is faster for a tree structure, 
but the routine for AT . B has better performance for a ring structure. 

the products of other group(s) in the same column. After P/GCD - 1 communications and 

additions, the partial products in each group of GCD processors are effectively added to the 

root nodes. 

The A ' B and AT . B routines have been implemented with the optimized communications 

for the Delta based on both the ring and the minimum spanning tree structure for broadcasts. 

Performance results are shown in Table 4. The non-transposed matrix multiplication routine 

for 8000 x 8000 matrices on 16 x 16 nodes performs at  about 8.00 GAops for the tree structure, 

arid the transposed multiplication routine executes at about 7.54 Gflops for the ring structure. 

They obtain about 31.25 Mflops and 29.46 Mflops per processor, respectively, which correspond 

to  concurrent efficiencies of 86% and 83%, respectively. 

If P and Q are relatively prime, there is no performance difference between tree and ring 

versions. The A . B algorithm performs well for the tree structure. Though broadcasting a 

message to  the entire column of the processors on the ring is slow, the overall performance 

is not influenced since the stages of the algorithm are pipelined. That is, processors directly 

proceed to  the next stage as soon as they finish their multiplication at the current stage. 

In a single stage of the AT I 8 routine, collecting the partial products in a column of tht, 

processor template is faster for the tree algorithm. However, overall the ring algorithm is 

preferred for the AT . B routine, since stages of the algorithm can be pipeliued. 

5 .  Conclusions and Remarks 

We have presented a parallel matrix multiplication routine and its variants for the block scat- 

tered decomposition over a two dimensional processor template. We have described how to 

develop the algorithms for distributed memory concurrent computers from a matrix point-of- 
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view, and given implementation details from a processor point-of-view . Finally we have shown 

how to adapt the communications for a specific target machine, the Intel Touchstone Delta 

computer, by exploiting its communication characteristics. The general purpose matrix multi- 

plication routines developed are universal algorithms that can be used for arbitrary processor 

configuration and block size. 

In general, the first dimension of the data matrix inay be different from the number of 

rows of the matrix in a processor. That means, when shifting A in the MDB:! routine, A 

needs to be copied before it is sent out. Instead of a direct copy. the block columns of A are 

presorted so that each processor performs a block versioii of matrix-matrix multiplication in 

each step. Without this presorting, processors compute multiplications as a block version of 

the outer product operation, i.e., a column of blocks is multiplied by a row of blocks. The 

outer product operation performs well and its performance is alniost the same as the routine 

with presorting for blocks larger than 5 x 5 elements. Rut  for the case of small block sizes, 

presorting improves performance. If the first dimension of matrix A is the same as the number 

of rows, the presorting is not necessary, and A can be sent out directly, since after Q shifts 

of A processors have their original blocks, and A is unchanged. This scheme may also save 

communication buffer space. For the transposed matrix niultiplication routines ( A T  B and 

A . BT), the presorting process improves the performance more than 10% for a block size of 

5 x 5. 

In some cases! the transposed matrix multiplication algorithm may be slower than the two 

combined routines, matrix transposition and matrix multiplication. That. is, C e AT . B can 

be implemented with two steps, (T A*, C t= T . B).  where extra memory space for T is 

necessary. Users can choose the best routine according to their machine specifications and their 

application. The performance of the routines not only depends on the machine characteristics, 

but also the processor configuration and the problem size. 

The performance of the PUMMA package can he improved with optimized assembly-coded 

op(A),  where op(A) = routines, if available, such as a twodimensional buffer copy routine (T 

A or A*), and a two dimensional addition routine (T -e (Y A + PT). 

The PUMMA package is currently available only for double precision real data, but will be 

implemented in the near future for other data types, Le., single precision real and complex, and 

double precision complex. To obtain a copy of the software and a description of how to use it, 

send the following message “send index from pumma” to netlibaornl .gov. 
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