
3 4 4 5 6 0 3 7 5 9 8 4 0

Jaeyoung Chai
Jack J. 50ngasra
David W. Walker

4

ORNL/TM-12252

Engineering Physics and Mathematics Division l o 5
3 , I I Mathematical Sciences Section ,> !... .

PUMMA :

PARALLEL UNIVERSAL MATRIX MULTIPLICATION ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyoung Choi 5
Jack J . Dongarra
David W. Walker 5

5 Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

University of Tennessee at Knoxville
107 Ayres Hall
Knoxville, T N 37996-1301

t Department of Computer Science

Date Published: August 1993

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U.S. Department
of Energy, by the Defense Advanced Research Projects Agency un-
der contract DAAL03-91-C-0047, administered by the Army Re-
search Office, and by the Center for Research on Parallel Comput-
ing

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems: Inc.
for the

US. DEPARTMENT OF ENERGY
under Contract No. DEAC05-840R21400

3 4 4 5 b 0375984 0

Contents

1 Introduction . 1
2 DesignIssues . 2
3 Algorithms . 5

3.1 The Basic Matrix Multiplication Algorithm . 5
3.2 Matrix Multiplication Algorithm with Block Scattered Decomposition 7
3.3
3.4

Transposed Matrix Multiplication Algorithm, C = AT . B
Multiplication of Transposed Matrices, C = AT . BT

11
16

4 Results . 19

4.2 Comparison with Transposed Matrix Multiplicat. ion Algorithms 21
4.3 Results with Optimized Communicatioii Routines for the Intel Delta 25

5 Conclusions and Remarks . 27
6 References . 29

4.1 Comparison of Three Matrix Multiplication Algorithms 19

... . 111 .

PUMMA :

PARALLEL UNIVERSAL MATRIX MULTIPLICATION ALGORITHMS

ON DISTRIBUTED MEMORY CONCURRENT COMPUTERS

Jaeyouiig Clioi

Jack J . Dongarra

David W. Walker

Abstract

This paper describes the Parallel Universal Matrix Multiplication Algorithms (PUMMA)
on distributed memory concurrent computers. The PIJhlMA package includes not only
the non-transposed matrix multiplication routine C = A . B. but also transposed multi-
plication routines C = AT . B, C = A . BT, and C = AT . BT, for a block scattered data
distribution. The routines perform efficiently for a wide rauge of processor configurations
and block sizes. The PUMMA together provide the same functionality as the Level 3

BLAS routine xGEMM. Details of the parallel implementation of the routines are given,

and results are presented for runs on the Intel Touchstone Delta computer.

- v -

1. Introduction

Chren t advanced architecture computers possess hierarchical memories in which accesses to

data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) are

faster than those in lower levels (shared or off-processor memory). One technique to more

effectively exploit the power of such machines is to develop algorithins that maximize reuse of

data held in the upper levels of the hierarchy, thereby reducing the need for more expensive

accesses to lower levels. For dense linear algebra computations this can be done by using

block-partitioned algorithms, that is by recasting algorithms in forms that involve operations

on subniatrices, rather than individual matrix elements. An example of a block-partitioned

algorithm for LU factorization is given in [7,16]. The Level 3 Basic Linear Algebra Subprograms

(BLAS) perform a number of commonly-used matrix-matrix operations, and are available in

optimized form on most computing platforms ranging from workstations up t,o supercomputers

~ 3 1 .
The Level 3 BLAS have been successfully used as the building blocks of a number of appli--

cations, including LAPACK, a software library that uses block-partitioned algorithms for per-

forming dense and banded linear algebra computations on vector and shared memory computers

[2,3,9,11,14]. On shared memory machines block-partitioned algorithms reduce the number of

times that data most be fetched from shared memory, while on distributed memory machines

they reduce the number of messages required to get data from other processors. Thus, there

has been much interest recently in developing versions of the Level 3 BLAS for distributed

memory concurrent computers [1,6,18,19].

An important routine in the Level 3 BLAS is xGEMM for performing matrix-matrix mul-

tiplication. The general purpose routine performs the following operations:

where "." denotes matrix multiplication, A, B and C are matrices, and a and p are scalars.

In this paper, we present the Parallel Universal Matrix Multiplication Algorithms (PUMMA)

for performing the above operations on distributed memory concurrent computers. [Jnzversnl

means that the PUMMA include all the above multiplication routines and that their per-

formance depends weakly on processor configuration and block size A block scattered data

distribution is used, which can reproduce many of the common data distributions used in dense

linear algebra computations [8,16], as discussed in the next section. There have been many im-

- 2 -

plementations of matrix multiplication algorithms on distributed memory niachines [20,21,24].

Many of them are limited in their use since they are implemented with a pure block (non-

scat.tered) distribution. or specific (not general-purposej data d h i b u t i o n . and/or on square

processor configurat,ions with a specific number of processors (column and/or row numbers of

processors are powers of 2) . The PUMMA package eliminates all of these constraints.

The first part of this paper focuses on the design and implementation of the non-transposed

matrix multiplication routine on distributed memory concurrent comput.ers. WF then deal with

the other cases. A parallel matrix transpose algorithm, in which a niatrix with a block scattered

decomposition is transposed over a two-dimensional processor mesh, is presented in a separate

paper [lo]. All routines are implemented in Fortran 77 plus message passing and compared 011

the Intel Touchstone Delta computer.

2. Design Issues

The way in which an algorithm’s data are distributed over the processors of a concurrent

computer has a major impact on the load balance and communication characteristics of the

concurrent algorithm, and hence largely determines its performance and scalability. The block

scattered (or block cyclic) decomposition provides a simple, yet general-purpose, way of dis-

tributing a block-partitioned matrix on distributed memory concurrent. computers. In the block

scattered decomposition, described in detail in [8], a matrix is partitioned into blocks of size

T x s, and blocks separated by a fixed stride in the column and row directions are assigned to the

same processor. If the stride in the column and row directions is P and Q blocks respectively.

then we require that P Q equals the number of processors. X p . Thus, it is useful to imagine

the processors arranged as a P x Q mesh, or template. Then the processor a t position (p , q)

(0 5 p < P , 0 5 p < Q) in the template is assigned the blocks indexed by,

where i = 0 , . . . , [(MQ - p - 1)/PJ, j = 0 , . . . [(Nb - q - l) /QJ , and MQ x XQ is the size of the

matrix in blocks.

Blocks are scattered in this way so that good load balance can be maintained in algorithms,

such as LU factorization [7,16], in which rows and/or columns of blocks of a matrix become

eliminated as the algorithm progresses. However, for some of the distributed Level 3 BLAS

routines a scattered decomposition does not improve load balance. and may result in higher

concurrent overhead. The general matrix-matrix multiplication routine xGEMM is an example

of such a routine for which a pure block (i.e., nonscattered) decomposition is optimal when

considering the routine in isolation. However, xGEMM may be used in an application for

which, overall, a scattered decomposition is best. We are faced with the choice of implementing

- 3 -

a nonscattered distributed version of xGEMM, and transforming the data decomposition to this

form if necessary each time xGEMM is called, or of providing a scattered version and thereby

avoiding having to transform the data decomposition. Weopt, for the latter solution because i t is

more general, and does not impose on the user the necessity of potentially costly decomposition

transformations. Since the nonscattered decomposition is just a special case of the scattered

decomposition in which the block size is given by 1’ = [M / P] and s = [N/Q1, where the

matrix size is M x A’, the user still has the option of using a rionscattered decomposition for

the matrix multiplication and transforming between decompositions if necessary. The Basic

Linear Algebra Communication Subprograms (BLACS) are intended to perform decomposition

transformations of this type [4,12,17].

The decompositions of all matrices involved in a call to a Level 3 HLAS routine must be

compatible with respect to the operation performed. To ensure compatibility we impose the

condition that all the matrices be decomposed over the same P x Q processor template. Most,

distributed Level 3 BLAS routines will also require conditions on t,lie block size to ensure

compatibility. For example, in performing the matrix multiplication C = A . B, if the block

size of A is P x s then that of B and C must be s x t and r x t , respectively.

Another advantageous aspect of the distributed Level 3 BLAS is that often a distributed

routine will call sequential Level 3 BLAS routines. For example. the distributed version of

xGEMM, described in Section 3.2, consists of a series of steps in each of which each processor

multiplies two local matrices by a call to the sequential version of xGEMM. Since highly opti-

mized assembly-coded versions of the sequential Level 3 BLAS already exist on most processors

we can take advantage of these in the distributed implementation.

Figure 1 (a) shows the performance of the DGEMM routine for square matrices on one

i860 processor of the Intel Touchstone Delta. In general, performance improves with increasing

matrix size and saturates for matrices of size greater than A4 = 150. Figure 1 (b) shows that in

our Fortran implementation, for nonsquare matrices, a multiplication a column shape of A by

a row shape of B is more efficient than its opposite. In both the square and nonsquare cases,

the size of the matrices multiplied should be maximized in order to optimize performance of the

sequential assembly-coded version of xGEMM routines. Thus, in the PUMMA routines, instead

of multiplying individual blocks successively on each processor, blocks are conglomerated to

form larger matrices which are then multiplied.

The distributed Level 3 BLAS routines have similar argument lists t o the sequential Level

3 BLAS routines. In the distributed xGEMM routine, for example, original matrices A and B,

are preserved as in the sequential routine. Users, who are familiar with the sequential routines,

should have no difficulty in using the distributed routines.

- 4 -

- A (M X M) ' B (M X M)
_ - _ _ A(M x MI2) . B (M/2 x M I

A (M / 2 x M) . B (M x M / 2 I

0 100 200 300 400 5 00
Size of M

(a) multiplication of square matrices

40 B
3 35

30

25

20

15

10

5

0

!
I I I I

I 100 200 300 400 500
Size of M

(b) multiplication of non-square matrices

Figure 1: Performance of DGEMM on one i860 processor of the Delta. (a) The routine is tested
with Afilxfif . B M % M , A ~ ~ f i . ~ l . . B M 1 z x M , and A M 1 2 x M . B M ~ M I ? . where I..'' denotes matrix
multiplication, and (b) tested with A500xbl . B & f x 5 o o and A,~J~SOO . B S o O x ~ f .

0 1 2 3 4 5 6 7 8 9 1 0 1 1

(a) matrix point-of-view (b) processor point-of-view

Figure 2: A matrix A with 12 x 12 blocks is distributed over a 2 x 3 processor template. (a)
From the matrix point-of-view. Each shaded and unshaded area represents a different template.
The numbered squares represent blocks of elements, and the number indicates at which location
in the processor template the block is stored - all blocks labeled with the same number are
stored in the same processor. The slanted numbers, on the left and on the top of the matrix,
represent global indices of block row and block column, respectively. (b) From the processor
point-of-view, each processor has 6 x 4 blocks.

3. Algorithms

To illustrate the basic parallel algorithm we consider a matrix A distributed over a 2-dimensional

processor template as shown in Figure 2 (a), where A with 12 x 12 blocks is distributed

over a 2 x 3 template. If the matrix distribution is seen from the processor point-of-view

as in Figure 2 (b), each processor has several blocks of the matrix and the scattered blocks,

A(O,O), A(2 ,0) , A(4, 0) , . . ., A(10,O) are vertically adjacent, in the 2-dimensional array in the

first processor Po, and can be accessed as one long block column ;4(0 : 11 : 2,O). In the same

way, A(0, 0), A(O,3) , A(O,6), A(O,9) are horizontally adjacent in PO, and can be accessed as

one long block row A(O,O : 11 : 3). We exploit this property in implementing the algorithms

to deal with larger matrices instead of several small individual blocks. We assume data are

stored by column in both our Fortran 77 and message passing implementation. In general,

the algorithms are presented from the matrix point-of-view, which is simpler and easier to

understand. In dealing with the implementation details, we explain the algorithms from the

processor point-of-view

3.1. The Basic Matrix Multiplication Algori thm

Our matrix multiplication algorithm is a block scattered variant of that of Fox, Hey, and Otto

[20], that deals with arbitrary rectangular processor templates.

Suppose the matrix A has Mb block rows and Lb block columns, and thc matrix B has Lb

- 6 -

I D o I < = o . L b - 1
[Columncast one block of B (B (I , MOD(I + I<, f i t ,)) , I = 0 . Lb)
along each column across template] I

I P A R D O I = O , M b - l

I PARDO J 0,Nb - 1
I
I IiP = hlOD(Ii -t I , Lb)

C(Z, J) = C (I , J) + A (I , IiP) B(I<P. J)
I END PARDO
~

END PARDO
I [Roll A leftivards]
1 E N I D 0

Figure 3: A distributed block scattered matrix inultiplication algorithm. The PARDO’S in-
dicate over which indices the data are decomposed. All indices refer to blocks of elements.
Communication phases are indicated in square brackets.

block rows and Nb block columns. Block (I , J) of C is then given by

Lb-1

C (I , J) = A (I , I<) . B (K , J)

where I = 0 . 1 , . . . , Mb - 1, J = 0 , 1 , . . ., Nb - 1. In Equation 2 the order of summation is

arbitrary.

Fox et al. initially considered only the case of square matrices in which each processor

contains a single row or a single column of blocks. That is, the blocks that start the summation

lie along the diagonal. The summation is started at a different point, for each block row of C

so that in the phase of the parallel algorithm corresponding to summation index Ii, A (I . Ii)
and B (K , J) can be multiplied in the processor to which C (I ? J) is assigned.

This requires each processor containing a block of B to be multiplied in step Ii to broadcast

that, block along the column of the processor template at the start of the step. Also A must

he rolled leftwards at the end of the step so that each column is overwritten by the one to the

right, with the first column wrapping round to overwrite the last column. The pseudocode for

this algorithm is shown in Figure 3. Another variant of this algorithm involves broadcasting

blocks of A over rows, and rolling B upwards.

In Figure 3 and subsequent figures a “columncast” is a communication phase in which one

data item (typically a block, or set of blocks) is taken from each block column of the matrix

and is broadcast. to all the other processors in the same column of the processor template.

A “rowcast” is similar, but broadcasts a data item from each block row of the matrix to all

processors in the same row of the template.

- 7 -

K = O

i:".'
' 1 2

K = 1

Figure 4: Snapshot of SDB algorithm. The blocks of the matrix B communicated in the first
two stages of the matrix multiplication algorithm are shown shaded. In this case P = 2 a n d
Q = 3. In each stage, only one wrapped diagonal is columncast. The total number of stages is
Lb.

3.2. Matrix Multiplication Algorithm with Block Scattered Decomposition

We now consider the multiplication of matrices distributed with a block scattered decomposi-

tion. The block sizes for matrices A and B are r x s and s x t , respectively, where r , s, and t are

arbitrary. In this case the summation in row I starts at K = I , so the blocks of B broadcast in

each stage lie along diagonal stripes. The parallel algorithm proceeds in Lb stages, in each of

which one block of B is broadcast along each column of the template, and A is rolled leftwards.

We call this the SDB (Single Diagonal Broadcast) algorithm.

Figure 4 shows, from the matrix point-of-view, the wrapped diagonal blocks of B broadcast

in the first two stages of the SDB algorithm, where B with 12 x 12 blocks is distributed over

a 2 x 3 template. Only one wrapped diagonal is columncast in each stage. In implementing

the algorithm, the size of the submatrices multiplied in each processor should be maximized to

optimize the performance of the sequential xGEMM routine. From the processor point-of-view,

as shown in Figure 2 (b), the first processor PO has A(0 : 11 : 2,O : 11 : 3) and B(0 : 11 :

2,O : 11 : 3), and it will have C(0 : 11 : 2,O : 11 : 3) after the computation. In the first stage

of Figure 4 (A' = 0), PO multiplies A(O,O), A(2,0), ., A(10,O) with B(0,O). These operations

can be combined as one matrix multiplication since blocks of A(0, 0) , A (2 . 0) , . . . , A(10,O) are

vertically adjacent in PO. The processor multiplies a long block column of A (A(O : 11 : 2,O))

with one block B(0,O). This is the reason why we prefer a scheme of columnwise broadcasting

B t o a scheme of rowwise broadcasting A in our Fortran implementation, where 2-dimensional

arrays are stored by columns.

Denoting the least common multiple of P and Q by L G M , we refer to a square of L C M Y

- 8 -

DO A'l = 0, LCM - 1
[Columncast Lb/LCM blocks of B (B(1. J : Nb : L C M) , I = 0 : IAb.
J = MOD(l + h'l. L C M)) along each column of template]

DO h '2 = 0, Lb/LCM - 1
Ii = Iil + Ii'2 x LCM
P A R D O I = O , M g - 1

I<P = MOD(Ii + MOD(I. LCA4). Lb)
P A R D O J = O , N g - l

C(1, J) = C (I , J) + A (I , IiP) . B(I<P, J)
END PARDO

END PARDO
END DO
[Roll A leftwards]

EKD DO

Figure 5: hlDBl algorithm. which is a distributed matrix multiplication algorithm suitable for
a block scattered decomposition. The outer li loop has been split into loops over lil and 122
so that the communication for several steps can be sent in a single message.

L C M blocks as an L C M block. Blocks belong to the same processor if their relative locations

are the same in each square L C M block. The concept of the L C M block is very useful. since an

algorithm may be developed for the first' LCM block, and then be applied to the other L C M

blocks, which all have the same structure and data distribution as the first L C M block. That

is, when an operation is executed on a block of the first L C M block. the same operation can

be done simultaneously on other blocks, which have the same relative location in each L C M

block.

For a block scattered decomposition the communication latency can be reduced by perforni-

ing multiple instances of the outer Ii' loop (see Figure 3) together. The communication latency

is reduced when instances of the outer K loop separated by LCM are grouped together, as

shown in Figure 5. We call this the MDBl (Multiple Diagonal Broadcast 1) algorithm. In this

case the parallel algorithm proceeds in LCM stages, in each of which [Lb/LCM1 blocks of the

B matrix are broadcast down each column of the template by a single communication phase in

the outer loop. In Figure 6 we show the two ([Lb/LCM1 = 12/6) wrapped diagonal blocks of

B broadcast in the first two stages of the algorithm. The size of the submatrices multiplied in

each processor cannot be increased and it is the same as in the SDB algorithm.

The communication latency can be reduced even further by noting that the data for matrix

A returns to the processor in which it started after A has been rolled Q tinies. Thus. we

introduce a third variant of the parallel algorithm that proceeds in Q stages, in each of which

[Lb/Q1 blocks of B are broadcast down each template column by a single communication

- 9 -

K

Figure 6: Snapshot of
Q is 6. In each stage.
number of stages is L(

t
r ,

= O

ClDBl algorithm. In this case
,WO ([L b / L c M 1 = 12/6) wra
‘111.

K = 1

P = 2, Q = 3, and so the LCM
ped diagonals are columncast. 1

f P and
he total

phase in the outer loop. Figure 7 shows the four ([Lb/Q1 = 12/3) wrapped diagonal blocks

of B broadcast in each stage. The pseudocode for this version of the algorithm is the same as

that shown in Figure 5, except that “LCM” is replaced by “Q.” This is called the “MDB2

(Multiple Diagonal Broadcast 2)” algorithm.

In implementing the MDB2 algorithm, the granularity of the algorithm is increased. In the

first stage shown in Figure 7 (IC1 = 0), the first processor Po multiplies a column block A

(A(0 : 11 : 2,O)) with B(O,O), B(O,3), B(O,6) and B(O,9). These blocks of B are horizontally

adjacent in the 2-dimensional subniatrix in Po, and form a long block row B(0,O : 11 : 3) .

These operations are replaced by one multiplication. Po multiplies a long block column of A

(A(0 : 11 : 2,O)) with a long block row of B (B(0,O : 11 : 3)). The combined multiplication

looks like a block version of the outer produci operation. Since [Lb/LCM1 = 2, Pc, needs to

do another outer product operation at the same step, A(O : 11 : 2 , 6) with B(6.0 : 11 : 3), as

shown in Figure 8 (a).

In MDB2 algorithm, the granularity of the algorithm is maximized. PO has two block rows

of B t o broadcast (B(0,O : 11 : 3) and B(G, : 11 : 3)), which are condensed to one large matrix

(B (0 : 11 : G , O : 11 : 3)) for economical communications. If block columns of A are presorted

with radix L C M in the beginning of the algorithm (or radix L C M / Q in each processor) as

shown in Figure 8 (b), two block columns of A (A(0 : 11 : 2,O) and A(0 : 11 : 2,6)) are accessed

as one large matrix (A(0 : 11 : 2.0 : 11 : 6)). Now, Po can complete its operation with one

large matrix multiplication of A(O : 11 : 2 , 0 : 11 : 6) and B(O : 11 : 6,O : 11 : 3) . All processors

compute one matrix multiplication in each step instead of [LbILCM] multiplications. The

- 10 -

0 1 2 3 4 5 6 7 8 9 l o l l

0
I
2
3
4
5
6
7
8
9

10
I7

K = O K = 1

Figure 7: Snapshot of MDU2 algorithm. In each stage, four (L b / Q = 12/3) wrapped diagonals
are colui-nncast. The total number of stages is Q .

0 3 6 9 ~~

0
2
4
6

8
10

0 3 6 9
0
2
4

6

8

10

0 3 6 9
0
2
4

6
8
10

C - A B -
(a) C = A ’ B in PO from processor point-of-view

0 6 3 9 0 3 6 9 _ _ _ .

0
2

4

6
8

10

0 3 6 9

0
2

4

6
8

10

C - presorted A condensed B -
(b) computation in Po with presorted A

Figure 8: C = A . B in Po from processor point-of-view, where P = 2, Q = 3 and Mb = Nb =
Lb = 12. Columns of A are presorted in (b). The shaded area of A and B represents blocks to
be multiplied, and that of C represents blocks to be updated by the multiplication.

- 11 -

DO I = 0, Mb - 1
PARDO J = 0,Nb - 1

I P = MOD(I + J , Mb)
PARDO Ii = 0; Lb - 1

END PARDO
T(l<) = [A(Ii, IP) lT . B(I i , J)

DO li = 0. Lb - 1
C (I P , J) = C(IY, J) + T(Ii)

END DO
END PARDO
[Roll A leftwards]

EKD DO

Figure 9: The basic transposed matrix multiplication algorithm, C = AT . B for a block
scattered decomposition. [A(Ii , IP)IT is the transpose of block A(l<, I P) . This algorithm needs
a sequential DO loop to compute C(IP, J) by adding the temporary results T(Ii) columnwise.

computation is like a block version of muti-ix-matrzx multiplication.

The communication scheme of the MDB2 algorithm can be changed to rowwise broadcasting

of [L,/P1 blocks of A and columnwise shifting of presorted B without decreasing its perfor-

mance. The two schemes have the same number of steps and the same amount of computation

per processor in each step, but they have different communication strategies.

3.3. Transposed Matrix Multiplication Algorithm, C = AT . B

We now describe the multiplication of transposed matrices, that is, multiplications of the form,

C = AT . B and C = A . BT. The multiplication algorithm of two transposed matrices,

C = AT .BT, is presented in Section 3.4. Lin and Snyder [24] has given an algorithm computing

C = A . B based on a block distribution, that first transposes one of the matrices and then

uses a series of block multiplication and reduction steps to evaluate C .

Consider first C = AT . B, where A and B are Lb x Mb and Lb x Nb blocks, respectively,

and they are distributed with a block scattered decomposition. C (I , J) is then computed by

L b - 1

C (I , J) = [A(Ii, I)]* . B (K , J) (3)
K =O

where I = 0 , 1 , . . ., Mb - 1, J = 0 , 1 , . . . , Nb - 1 and [A(A’, I)IT is the transposed block of

A (K , I) . As in Equation 2, block indices are used, and the order of summation is arbitrary.

Figure 9 gives the pseudocode of the basic transposed matrix multiplication algorithm. The

algorithm proceeds in Lb steps, in each of which blocks of C lying along a wrapped diagonal

- 1 2 -

DO 11 = 0,Q - 1
DO 12 0 , Mb/Q - 1

1 I = Il-t 12 X Q

PARDO J = 0, Ivb - 1 I

I P = MOD(I + MOD(J, Q) . Mb)
PARDO IC1 = 0, P -- 1 I

T(Il-1) = 0.0
no IC2 = 0, L*/P - 1 I

I I< = 1il + I i 2 x P
T(I i1) = T(K1) + [A(I<. If')]' R (1 i , J)

END DO
END PARDO
DO Iil = 0 , P - 1

I

I END PARDO
END DO

i [Roll A leftwards]
~ ENDDO
i

C (I P , J) = C(1P. J) + T(Ii1)

I END DO

Figure 10: The transposed matrix multiplication algorithm, C = AT . B. The outer loop has
been split into loops over I1 and 12 so that the communication for several steps can be sent in
a single message.

are evaluated. Each step consists of block matrix multiplication to form contributions to a

wrapped diagonal block of C , followed by summation over columns. Finally, a communication

phase shifts A to the left by one block.

As in the MDRl matrix multiplication algorithm of Section 3.2, the communication latency

is reduced by simultaneously performing multiple instances of the outer I loop separated by

L C M . Again the communication latency is reduced further when instances of the outer loop

separated by Q are executed together as in the MDB2 algorithm. The blocks of A return to the

same processor from which they started after they have been rolled Q times. So the algorithm

proceeds in Q stages, in each of which [Lb/Q1 wrapped diagonal blocks of C are computed.

The pseudocode of the modified algorithm is shown in Figure 10.

The transposed matrix multiplication algorithm is conceptually simpler than the non-

transposed matrix multiplication algorithm. In C = AT . B, processors in the same colurnri of

the template compute and add their products, and distribute the summations to the appropri-

ate positions. The most difficult aspect when implementing the algorithm is how to add and

distribute the products efficiently.

As an example, consider the matrix multiplication C = A' . B where matrices A and B .

- 13 -

0 1 2 3 4 5 0 7 2 3 4 5

I1 = o I1 = 1
(a) Computed blocks of C from matrix point-of-view

0 3 1 4 2 5 0 . 7 1 4 2 5 0 3 7 4 2 5

C - A B -
(b> Snapshot of the first stage fiam processor point-of-view

Figure 11: Snapshot of C = AT . B when P = Q = 3 and Mb = Arb = Lb = 6. (a) From
the matrix point-of-view, the computed blocks of the matrix C in the first two stages of the
transposed matrix multiplication algorithm are shaded. (b) Snapshot of the first stage from
the processor point-of-view. The shaded area of A and B represents blocks to be multiplied,
and that of C denotes blocks computed from the multiplication. Only diagonal processors have
results in the first stage. After each stage, A is shifted to the left.

each consisting of 6 x 6 blocks, are distributed over a 3 x 3 processor template as shown in

Figure 11. In each stage, every &-th wrapped block diagonal of C is computed. In the first

stage, as shown in Figure 11 (b), the processors in the first column of the template, Po, P3,

and Ps, multiply the zeroth and third block columns of A (A(: ,O : 5 : 3)) with the zeroth and

third block columns of B (B(:,O : 5 : 3)). They compute their own portion of multiplications

and add them to obtain 2 x 2 blocks of C (G(0 : 5 : 2,O : 5 : 2)), which are placed in Po. In

this example, where the template is square, only the diagonal processors Po, P4, and Pg have

the computed blocks of C for each column of the template. After the first stage, A shifts to

the left. The next wrapped diagonal processors Pz, P3, and P; have the computed blocks of C

in the second stage.

Figure 12 shows the case of P = 3, Q = 2, where C is computed in two stages. The first

- l a -

0 7 2 3 4 5 0 1 2 3 4 5

I1 = 1
.-of-view

0 2 4 7 3 5

0

3

1

4

2

5

C I A B -
(b) Snapshot of the first stage from processor point-of-view

Figure 12: Snapshot of C = AT . B when P = 3, Q = 2, and Mb = Nb = Lb = 6. (a)
From matrix point-of-view, the computed blocks of the matrix C in the first two stages of
the transposed matrix multiplication algorithm are shaded. (b) Snapshot of the first stage
from processor point-of-view. If P and Q are relatively prime, the computed blocks of C are
scattered over all processors in each stage.

column of processors, Po, Pz, and P4, compute 3 x 3 blocks of C (C(0 : 5 : 2,O : 5 : a)), by

multiplying the zeroth, second and fourth block columns of A (A (: , 0 : 5 : 2)) with the zeroth,

second and fourth block colunins of B (B (: , 0 : 5 : 2)) . After summing over columns they have

computed their own row blocks of C .

When Q is smaller than P , processors need more memory t,o store the partial. products, if

they compute their own products first and then add them together. Imagine the case when

P = 4, Q = 1 and Mt, = h'b = Lb = 4. Each processor has 1 x 4 blocks of A and B, and it has

1 x 4 blocks of C aft,er the computation. But processors need 4 x 4 blocks to store their own

partial products. Thus, memory requirements do not scale well.

Processors can multiply one block column of A with whole blocks of B in each step to avoid

nonscalable memory use. In the first step of Figure 12, Po, Pz7 and r), compute C(0,O : 5 : 2)

by multiplying A (: , 0) wit11 I?(:! 0 : 5 : 2). The computed blocks of C are placed in Po. These

- 15 -

0 2 4 6 8 7 0 0 2 4 6 8 10 0 2 4 6 8 7 0
0 0 0
3 3 3
6 6 6
9 9 9

A B 0 C

(a) C = AT. B in PO from processor point-of-view

0 6 2 8 4 1 0 0 2 4 6 8 10
0 0
3 3 0
6 6 6
9 9

presorted A B = condensed C

(b) computation in PO with presorted AT

Figure 13: C = AT I B in Pa from processor point-of-view, where P = 3, Q = 2 and Mb =
Nb = Lb = 12. The shaded area of A and B represents blocks to be multiplied. And that of
C stands for the result blocks to be placed after multiplication and summation processes over
the column of the template.

processors then compute C(2,O : 5 : 2),which is placed in P4, and finally compute C(4,O : 5 : 2) ,

which is placed in Pz. After this stage A is shifted to the left. With this scheme, the processors

require three steps to compute C(0 : 5 : 2,O : 5 : 2) for the first stage of the algorithm. This

procedure is less efficient, but needs less memory to hold partial products.

The loss of efficiency can be offset by overlapping computation and communication. Con-

sider a modified algorithm in which the blocks of C rotate downwards over the processor

template after each stage. Each processor computes its own products and updates the received

blocks. The processors receive their own desired blocks of C after P - 1 communications. If P

and Q are relatively prime as shown in Figure 12, all processors have their own blocks of C in

each stage. They receive partial products from the processor above, add their contributions to

the partial products, and then send them to the processor below. If processors are waiting to

receive the products before multiplying some processors have to wait a long time when P = Q

as in Figure 11 (or P and Q are not relatively prime). For these cases, processors compute

their own multiplications first, and then add them after they receivr the products. This can

be implemented effectively with asynchronous message passing to minimize processors’ waiting

time to receive the products.

As an example, consider Figure 13 (a), where 12 x 12 block matrices are distributed over a

- 16 -

3 x 2 processor template. Po computes two ([M b / L C M]) transposed matrix multiplications of

block columns of A (A4(0 : 11 : 3,O) and A(O : 11 : 3,6)) with its own submatrix B (R(0 : 11 :

3.0 : 11 : 2)) , and generates two block rows of C (C(0,O : 11 : 2) and C(6: 0 : 11 : 2)). The two

rows of C are condensed for fast communications as in the MDB2 algorithm in Sectioii 3.2. If

block columns of A are presorted with radix LCM (or radix LCAf /Q for each processor) at t,he

beginning of the algorithm, processors compute one transposed matrix multiplication in each

step instead of [Lb/LCM1 multiplications as shown in Figure 13 (b) . Again, the computation

i s like a block version of (transposed) matrzx-matrix multiplication.

The case C = A . B’ is similar to the C = A” B algorithm, but the partial result blocks

of C rotate horizontally in each step, and BT shifts upwards aft.er each stage.

3.4. Multiplication of Transposed Matrices: C = AT . BT

Suppose we need to compute C = AT BT, where A is Lb x Afb blocks, B is Nb x Lb blocks.

and C is Mh x Kt, blocks. One approach is to evaluate the product

L b - 1

C (I , J) = [A (K , 1)IT . [B (J ,
K=O

(4)

directly using a variant of the matrix multiplication routine in Section 3.2. but in which blocks

of A are columncast in each step, and blocks of B are rotated leftwards. The resultant matrix

then has to be blockwise transposed, i.e., block C(Z, J) must be swapped with block C (J , I) .

in order to obtain C . Thus. for this approach the algorithm is as follows,

1 . locally transpose each block of A and B,

2. multiply A and B using variant of parallel algorithm.

3. do a blockwise traiispose of the result to get C .

In an actual implementation, the local transpose iii (1) can be performed within the calls to

the assembly-coded sequential xGEMM routine.

Another approach is to evaluate CT = B . A and then transpose the resulting matrix to

obtain C . In this case the algorithm is as follows,

1. multiply B and A using the parallel algorithm in Section 3.2,

2. locally transpose each block of result.

3. do a blockwise transpose to get C .

These last two steps together transpose CT and may be done in any order. The performance

of both approaches is very nearly the same, but the second approach has the advantage of using

- 17 -

2.0
2

0
I2

1.5

1 .o

0.5

0.0

I I I I I I I 1

MDB2

0 400 800 1200 1600 2000 2400 2800 3200 3(

Matrix Size, M
(a) block size = 5

Figure 14: Performance comparison of the three matrix multiplication routines on an 8 x 8
processor template.

- 18 -

2.5
v) a
0

2.0
?s

1.5

1 .o

0.5

0.0

2.5
v) a
0

2.0
0

1.5

1 .o

0.5

0.0

Matrix Size, M
(a) block size = 5

I I I I

MDB2

MDB

720 1440 2160 2880 3 600
Matrix Size, M

(b) block size = 10

Figure 15: Performance comparison of the three matrix multiplication routines on a 9 x 8
processor template.

- 1 9 -

96 processors 64 processors 48 processors
P x Q Gflops P X Q Gflops P x Q GAops
6 x 16 1.972 4 x 16 1.373 4 x 12 1.101
8 x 12 2.007 8 x 8 1.447 6 x 8 1.181

12 x 8 2.00s 16 x 4 1.444 8 x 6 1.200
16 x 6 2.002 12 x 4 1.130

Table 1: Dependence of performance on template configuration (hl = N = L = 1600).

the existing algorithm for finding B . A, as described in Section 3.2, without any modification

being necessary. Parallel matrix transpose algorithms are described in [lo], and are used to

compute C = o AT .BT+/? C as described above in twosteps: T = o B . A , then C = TT+B C.

4. Results

In this section we present performance results for the PUMMA package on the Intel Touch-

stone Delta system. Matrix elements are generated uniformly on the interval [-1, 11 in double

precision. Conversions between measured runtimes and performance in gigaflops (Gflops) are

made assuming an operation count of 2 M N L for the multiplication of a M x L by a 1, x N

matrix. In our test examples, all processors have the same number of blocks so there is no load

imbalance.

4.1. Comparison of Three Matrix Multiplication Algorithms

We first compared the three matrix multiplication algorithms, SDR, MDB1, and MDB2 on

two fixed processor templates. Figures 14 and 15 show the performance of the algorithms on

a square processor template (8 x 8, P = &) and a nonsquare template (9 x 8, P and Q are

relatively prime), respectively. Two different block sizes are considered to see how block size

affects the performance of the algorithms for a number of different sized matrices.

The performance of the SDB and MDBl algorithms improves as the block size is increased

from 5 to 10, but this change of the block size has almost no effect on the performance of

the MDB2 algorithm, since in MDB2 the size of the submatrices multiplied in each processor

(using the assembly-coded Level 3 BLAS) is independent of block size. For a square template,

the number of communication steps is the same in the MDBl and MDB2 algorithms since

LCM = Q, but there is a big difference in their performance. This difference arises because

the basic operation of the MDBl algorithm is a multiplication of a block column of A with

a single block of B , where as, in the MDB2 algorithm, larger matrices are multiplied in each

step, as explained in Section 3.2.

The block size is selected by the user. In most cases, the optimal block size is determined

by the size and shape of the processor template, floating-point performance of the processor,

- 20 -

8
v1 a

6

5

4

3

2

1

0
0 IO00 2000 3000 4000 5000 6000 7000

Matrix Size, M
(a) Performancp of MDB2

0 50 100 150 200 250 300
Number of Processors

(b) Isogranularity Plot

Figure 16: Performance of MDBZ algorithm. (a) Performance in gigaflops as a function of
matrix size for different numbers of processors. (b) Isograniilarity curves in the (G. N,,) plane.
The curves are labeled by the granularity g in units of lo3 matrix elements per processor.

- 21 -

communication bandwidth between processors, and the size of the matrices. However, for the

MDB2 algorithm, the performance is independent of the block size. We adopted a block size

of 5 x 5 in all subsequent runs of the matrix multiplication routines.

We next considered how, for a fixed number of processors K, = P x Q , performance dr-

pended on the configuratidn of the processor template. Some typical results are presented in

Table 1 from which it may be seen that the template configuration does have a small effect, on

performance, with squarer templates giving better performance than long, thin templates. For

a fixed number for processors, a larger value of Q increases the number of outer loops performed,

but reduces the time to broadcast blocks of B across the template. The relative importance

of these two factors determines the optimal template configuration. For rectangular templates

with different. aspect ratios, those with small Q show better performance than those with small

P . For a fixed processor template with small P ! ai1 MDB2 algorithm, in which A is broadcast,

rowwise and B is shifted columnwise, is preferable to the version described in Section 3.2, in

which B is broadcast columnwise and A is shifted rowwise.

Figure 16 (a) shows the performance of the MDB2 algorithm on the Intel Touchstone Delta

as a function of problem size for different numbers of processors for up to 256 processors. It1

all cases a square processor template was used, i.e. P = Q: the block size was fixed at 5 x 5

elements, and the test matrices were of size up to 400 x 400 elements per processor.

In Figure 16 (b) we show how performance depends on the number of processors for a

fixed grain size. The fact that these isogranularity plots are almost linear indicates that the

distributed matrix multiplication routine scales well on the Delta, even for small granularity.

4.2. Comparison with Transposed Matrix Multiplication Algorithms

We compared the performance of the MDB2 version of the matrix multiplication routine C =
A - B with that of the transposed matrixmultiplication routines, C = AT.B, and C = AT.BT.

For C = A . B , we adopted a routine with rowwise broadcasting of A and columnwise shifting

of B. C = AT B is implemented as described in Section 3.3. For C = AT . BT, B is directly

multiplied with A to form B I A, which is then transposed to give C.

Figures 17, 18, 19, and 20 show the performance of the algorithms on 8 x 8, 8 x 9, 8 x 10, and

8 x 12 templates, respectively. In all cases the block size is fixed at 5 x 5 elements. The solid

and the dashed lines show the performance of A . B and AT . B T , respectively. The difference

of the two lines is due to the matrix transpose routine used in evaluating AT . B*. In most

cases, the performance of the AT . B algorithm, which is drawn with the dot-dashed lines, lies

between that of the A . B and AT . BT algorithms, but for the square template in Figure 17,

its performance is worse than that of AT . B T . In the AT . B routine, processors in the same

column of the template sequentially update their own C. Some of the processors have to wait

- 2 2 -

2.5 I I I I

v)

A x B a -
-.-.- AT x B t2

0

1.5 -

I
0.5 -

0.0 I I I I

2.0
v) a
0

1.5

1 .o

0.5

0.0
0 400 800 1200 1600 2000 2400 2800 3200 3600

Matrix Size, M

Figure 17: Performance comparison of three routines on an 8 x 8 template. P = Q = LC'M =
8, and GCD = 8

-

-

I

-

- 23 -

2.5 I I I I I I I I

- A x B
AT x B

E
0

3

0.5 -

0.0 ---

-

-

-

-

3 .O z
2
0 2.5

I I I I I I I I I

2.0

1.5

1 .o

0.5

0.0

I

-

I I I I I I 1 I

-

Figure 20: Performance comparison of three routines on an 8 x 12 templa te
12, L C M = 24, a n d GCD = 4

I I I I I I 1
I

I

P = 8 , Q =

- 24 -

P x Q Matrix Size Block Size A . B AT B AT ElT
1 x 1 1.640 1.529 1.607

8 x 8 2400 x 2400 5 x 5 1.641 1.530 1.G19
300 x 300 1.643 1.531 1.618

1 x 1 1.902 1.904 1.732
8 x 9 2520 x 2520 5 x 5 1.924 1.939 1.850

35 x 35 1.926 1.946 1.860
1 x 1 2.085 2.067 1.961

8 x 10 2400 x 2400 5 x 5 2.107 2.110 2.033
60 x 60 2.096 2.123 2.028
1 x 1 2.374 2.121 2.265

8 x 12 2400 x 2400 5 x 5 2.389 2.310 2.306
100 x 100 2.397 2.338 2.317

Table 2: Dependence of performance 011 block size (Unit: Gflops)

P x Q Matrix Size A . B A T . B - 1 3 ~
1 x 1 400 x 400 36.21 (100.0) 3.534 (100.0) 34.58 (100.0)
8 x 8 3200 x 3200 27.77 (76.7) 25.86 (72.8) 27.36 (79.1)
8 x 9 3240 x 3240 29.00 (80.1) 28.56 (80.4) 28.10 (81.3)
8 x 10 3200 x 3200 28.25 (i8 .0) 27.74 (78.1) 27.47 (79.4)
8 x 12 3200 x 3200 28.44 (78.5) 27.55 (77.5) 27.48 (79.5)

Table 3: Performance per node in Mflops. Block size is fixed at 5 x 5 elements. Entries for
the 1 x 1 template case give the performance of the assembly-coded Level 3 BLAS matrix
multiplication routine. Numbers in parenthesis are concurrent efficiency.

a long time to receive the partial products if P = Q .

Table 2 shows how the block size has an effect on the performance of the algorithms. It

includes three cases of the block size, two extreme cases -- the smallest and largest possible

block sizes - and 5 x 5 block of elements. The algorithms depend only weakly on the block

size. Even for the case of the smallest block size (1 x 1 element), the algorithms show good

performance.

Performance per node is shown in Table 3. The 1 x 1 template gives the performance of the

assembly-coded Level 3 BLAS matrix multiplication routine. The numbers in parentheses are

concurrent efficiency, which is the relative performance of nodes compared with the maximum

performance of the assembly-coded Level 3 BLAS routine. Approximately 77% efficiency is

achieved for A . B , 73% for AT .B, and 79% for AT .BT if P = Q. The routines perform better

on templates for which P # Q. More than 80% efficiency is achieved for all cases if P and Q

are relatively prime.

- 25 -

0 1 2 3 4 5 6 7
et-e-r-e+-oC-o-e--e+o

(a) Simultaneous rotatiug scheme

step1 0-0 0-0 0-0 q-a
0 1 2 3 4 5 6 7

step2 t 0-0 34-0 0-0 0
I

(b) Odd-even rotaring scheme

Figure 21: Two rotating schemes. (a) Nodes first send to the left and then receive from the
right. (b) In the first step, odd-numbered processors send data blocks and even-numbered
processors receive them. In the next step, even-numbered processors send and odd-numbered
processors receive. Odd-even rotating is faster on Delta. but simuhaneous rotating is faster on
iPSCj8GO hypercube.

4.3. Results with Optimized Communication Routines for the Intel Delta

For the implementation of the PUMMA package, blocking and nonblocking communication

schemes were used. In this section, we modify the algorithms with optimized communication

schemes specifically for the Intel Touchstone Delta.

First, force t ype communications [22] are incorporated for faster communications. A force

type message bypasses the normal flow control mechanism, and is not delayed by clogged

message buffers oil a processor. A force type message is discarded if no receive has been posted

on the destination processor prior to its arrival. If force types are not used on the Delta. the

routines can accommodate matrices up to 400 x 400 elements per processor without encounting

problems arising from system buffer overflow [23]. With force type communication, the routines

can handle larger matrices, up to 500x500 per processor, where the maximumsize is determined

by the available memory per processor rather than by system buffer constraints.

A block rotating scheme is used to shift A rowwise in the MD332 algorithm of Section 3.2 and

in the AT . B routine of Section 3.3. A simultaneous rotating scheme, shown in Figure 21 (a),

may be used on the Intel iPSC/SSO hypercube. However, an odd-even rotating scheme is

preferable on the Delta [25]. This scheme performs the communication in two steps as shown

in Figure 21 (b). In the first step, odd-numbered processors send their own data blocks and

even-numbered processors receive them. In the next step, even-numbered processors send and

odd-numbered processors receive.

In the original MDB2 algorithm, blocks of B are broadcast in each column of the template

based on a ring communication scheme. In the Delta-specific MDB2 algorithm, messages are

broadcast based on a minimum spanning tree. A special broadcasting routine is desirable for

the Delta, which differs from that used on hypercubes [5]. Consider broadcasting a message on

a linear array of p = 7 processors as shown in Figure 22,where nodes are numbered 0 through 6.

- 26 -

db 0 c Gb .\ O G 3

l o 1 C Db
2 c.- @ c.)

3’

2 6 3 P I f@ “f 0) ‘:i 3 . c c ,I
3 l i 4 .I
r 5 c - “i O t 6 ; ?

4 :
5 c c
6 0 d >
step 1 step 2 step 3 step 1 step 2 step 3

(b) send from other half (a) send from LSB to MSB

Figure 22: Broadcasting on linear array of p = 7, wliere nodes are numbered 0 througli 6. P,
is a root node.

.\
5 0

.L ,-
6 o n - 0 6 . CJ

step 1 step 2 step 3 step1 step2 step3

(a) receive from MSB to LSB (b) IleCeive from near nodes

Figure 23: Collecting on linear array. Pz is a root node.

In the hypercube scheme, the root node Pz, which has the message to be broadcast, first sends

the message to P3, whose least significant bit (LSB) is different from the root, node. Then the

message is delivered by toggling successive bits from LSB to the most significant bit (MSB).

On a mesh topology such as the Delta, the network traffic becomes congested as the broadcast

proceeds, as shown in Figure 22 (a).

In order to avoid network contention, the root node sends the message to the first node in

the other half of the processors. By recursing for [logz P] similar steps, the message is delivered

to all nodes without any contention as shown in Figure 22 (b). In general, each column of the

template has PIGCD root nodes in a stage, which broadcast their blocks of B over GCD

processors of the column, where GCD denotes the greatest common divisor of P and Q. These

operations are a form of group communication [15].

For AT . B in Section 3.3, the partial products in the same column of the processors are

combined and the sum is stored in the root (destination) node. A special collecting scheme

has been developed for the Delta to avoid network contention. The new collecting scheme on a

linear array shown in Figure 23 (b) is based on the broadcasting scheme in Figure 22 (b) . The

partial products are sent and added in nodes which are nearer to the root node. Generally. in

each stage of the algorithm, each column of the template has PIGCD root nodes to collect

the partial products. Partial products of a group of GCD processors are added first with

- 27 -

P X Q

4 x 4
6 x 6
8 x 8

12 x 12
16 x 16

8 x 9
8 x 10
8 x 12
8 x 16

Matrix Size

2000 x 2000
3000 x 3000
4000 x 4000
6000 x 6000
8000 x 8000

3960 x 3960
4400 x 4400
4800 x 4800
5600 x 5600

RJNG
0.515
1.130
1.985
4.438
7.844

2.326
2.561
2.965
3.858

TREE RING
0.530 0.488
1.159 1.081
2.056 1.908
4.507 4.260
8.001 7.542

2.326 2.321
2.641 2.493
3.091 2.956
4.022 3.707

TREE
0.496
1.073
1.901
4.150
7.325

2.321
2.486
2.018
3.622

Table 4: Performance in Gflops with optimized communication routines on two structures, ring
and spanning tree. Block size is fixed to 5 x 5. The routine €or A . B is faster for a tree structure,
but the routine for AT . B has better performance for a ring structure.

the products of other group(s) in the same column. After P/GCD - 1 communications and

additions, the partial products in each group of GCD processors are effectively added to the

root nodes.

The A ' B and AT . B routines have been implemented with the optimized communications

for the Delta based on both the ring and the minimum spanning tree structure for broadcasts.

Performance results are shown in Table 4. The non-transposed matrix multiplication routine

for 8000 x 8000 matrices on 16 x 16 nodes performs at about 8.00 GAops for the tree structure,

arid the transposed multiplication routine executes at about 7.54 Gflops for the ring structure.

They obtain about 31.25 Mflops and 29.46 Mflops per processor, respectively, which correspond

to concurrent efficiencies of 86% and 83%, respectively.

If P and Q are relatively prime, there is no performance difference between tree and ring

versions. The A . B algorithm performs well for the tree structure. Though broadcasting a

message to the entire column of the processors on the ring is slow, the overall performance

is not influenced since the stages of the algorithm are pipelined. That is, processors directly

proceed to the next stage as soon as they finish their multiplication at the current stage.

In a single stage of the AT I 8 routine, collecting the partial products in a column of tht,

processor template is faster for the tree algorithm. However, overall the ring algorithm is

preferred for the AT . B routine, since stages of the algorithm can be pipeliued.

5 . Conclusions and Remarks

We have presented a parallel matrix multiplication routine and its variants for the block scat-

tered decomposition over a two dimensional processor template. We have described how to

develop the algorithms for distributed memory concurrent computers from a matrix point-of-

- 28 -

view, and given implementation details from a processor point-of-view . Finally we have shown

how to adapt the communications for a specific target machine, the Intel Touchstone Delta

computer, by exploiting its communication characteristics. The general purpose matrix multi-

plication routines developed are universal algorithms that can be used for arbitrary processor

configuration and block size.

In general, the first dimension of the data matrix inay be different from the number of

rows of the matrix in a processor. That means, when shifting A in the MDB:! routine, A

needs to be copied before it is sent out. Instead of a direct copy. the block columns of A are

presorted so that each processor performs a block versioii of matrix-matrix multiplication in

each step. Without this presorting, processors compute multiplications as a block version of

the outer product operation, i.e., a column of blocks is multiplied by a row of blocks. The

outer product operation performs well and its performance is alniost the same as the routine

with presorting for blocks larger than 5 x 5 elements. Rut for the case of small block sizes,

presorting improves performance. If the first dimension of matrix A is the same as the number

of rows, the presorting is not necessary, and A can be sent out directly, since after Q shifts

of A processors have their original blocks, and A is unchanged. This scheme may also save

communication buffer space. For the transposed matrix niultiplication routines (A T B and

A . BT), the presorting process improves the performance more than 10% for a block size of

5 x 5.

In some cases! the transposed matrix multiplication algorithm may be slower than the two

combined routines, matrix transposition and matrix multiplication. That. is, C e AT . B can

be implemented with two steps, (T A*, C t= T . B). where extra memory space for T is

necessary. Users can choose the best routine according to their machine specifications and their

application. The performance of the routines not only depends on the machine characteristics,

but also the processor configuration and the problem size.

The performance of the PUMMA package can he improved with optimized assembly-coded

op(A), where op(A) = routines, if available, such as a twodimensional buffer copy routine (T

A or A*), and a two dimensional addition routine (T -e (Y A + PT).

The PUMMA package is currently available only for double precision real data, but will be

implemented in the near future for other data types, Le., single precision real and complex, and

double precision complex. To obtain a copy of the software and a description of how to use it,

send the following message “send index from pumma” to netlibaornl .gov.

Acknowledgments

This research was performed in part using the Intel Touchstone Delta System operated by the

California Institute of Technology on behalf of the Concurrent Supercomputing Consortium.

- 29 -

Access to this facility was provided through the Center for Research on Parallel Computing.

6. References

[l] P. R. Amestoy, M. J . Dayda, I. S. Duff, and P. Morere. Linear algebra calculations on the

BBK TC2000. In G. Coos and J . Hartmanis, editors, Proceedzngs of Second J o z d Infer-

national Conference on Vector and Parallel Processing, pages 319-330. Springer-Vrdag,

1992

[2] E. Anderson, Z. Bai, C. Bischof, J . Demmel, J . Dongarra. J . DuCroz, A . Greenbaum.

S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra

library for high-perfornrance computers. In Proceedangs of Supercompzlhng ’N, pages 1-

10. IEEE Press, 1990.

[3] E. Anderson, Z. Bai, J . Demmel, J. Dongarra, J . DuCroz, A. Greenbaum, S. Hammarling,

A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACh- Users’ Guade. SIAM Press,

Philadelphia, PA, 1992.

[4] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, R . Tourancheau, and

R. van de Geijn. In Sixth Dzs-

tribzlted Memory Computing Conference Proceedings, pages 287-290. IEEE Computer So-

ciety Press, 1991.

Basic Linear Algebra Communication Subprograms.

[5] M. Barnett, D. G. Payne, and R. van de Geijn. Optimal minimum spanning tree broad-

casting in mesh-connected architecture. Technical Report TM-91-38, The TJniversity of

Texas at Austin, December 1991.

[6] P. Berger, M. J . Dayde, and P. Morere. Implementation and use of Level 3 BLAS kernels

on a transputer T800 ring network. Technical Report TR/PA/91/54, CERFACS, June

1991.

[7] J. Choi, J. J . Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear

algebra library for distributed memory concurrent computers. In Proceedings of F o u ~ t h

Symposium on the Frontiers of Massively Parallel Compvtation (McLean, Virgznia). IEEE

Computer Society Press, Los Alamitos, California, October 19-21, 1992.

[8] J . Choi, J . J . Dongarra, and D. W. Walker. The design of scalable software libraries

for distributed memory concurrent computers. In Proceedengs of Envzronmenf and Tools

for Parallel Sczentzfc Computing Workshop, (Saznt fldazre du T o w e l , France). Elsevier

Science Publishers, September 7-8, 1992.

- 30 -

[9] J . Choi, J . J . Dongarra, and D. W. Walker. Level 3 BLAS for distributed memory concur-

rent computers. In Proceeding5 of Eniizronrnent and Tools for Parallel Scaentafic Computang

Workshop. (Saint Hzlazre du Touvei. France). Elsevier Science Publishers. September 7-8.

1992.

[lo] J . Choi, J . J . Dongarra, and D. W. Walker. Parallel matrix transpose algorithms on dis-

tributed memory concurrent computers. Technical Report, TM-12309. Oak Ridge Bational

Laboratory, Mat heinatical Sciences Section, August 1993.

[ll] 3. Demmel. J . J . Dongarra, J . Du Croz, A. Greenbaum. S. Hammarling, and D. Sorensen.

Prospectus for the development, of a linear algebra library for high performance computers.

Technical Report 97, Argonne National Laboratory, Mathematics and Computer Science

Division, September 1987.

[12] J . J . Dongarra. Workshop on the BLACS. LAPACE; Working Note 34, Technical Report

CS-91-134, University of Tennessee, 1991.

[13] J . J . Dongarra, I. Duff, J . Du Croz, and S. Hammarling. A set of level 3 basic linear

algebra subprograms. ACM TOMS, 16:1-17, March 1990.

[14] J . J . Dongarra, I. S. Duff. D. C. Sorensen, and H. A. van der Vorst. Solvzng Lznear Systems

on Vector and Shared Memory Computers. SIAM, Philadslphia. PA, 1990.

[15] J . J . Dongarra, R. Hempel, A. J . G . Hey, and D. W. Walker. A proposal for a user-

level, message passing interface in a distributed memory environment. Technical Report

TM-12231: Oak Ridge National Laboratory, March 1993.

[16] 3. J . Dongarra, It. van de Geijn. and D. Walker. A look at. scalable linear algebra libraries.

In Proceedings of the 1992 Scalable High Performance Computing Conference, pages 372-

379. IEEE Press, 1992.

[17] J . J . Dongarra and R. A. van de Geijn. Two dimensional basic linear algebra communi-

cation subprograms. LAPACK Working Note 37, Technical Report CS-91-138, University

of Tennessee, 1991.

[18] A. C. Elster. Basic matrix subprograms for distributed memory systems. In D. W. Walker

and Q. F. Stout, editors, Proceedtngs of thr Fzfth Dwtrabuted Memory Computang Confer-

ence, pages 311-316. IEEE Press, 1990.

[19] It. D. Falgout, A. Skjellum, S. G. Smith, and C. B. Still. The multicomputer toolbos

approach to concurrent BLAS and LACS. In Proceedzngs of the 1992 Scalable High Per-

formance Computzng Conference. pages 121--128. IEEE Press, 1992.

- 31 -

[20] G. C. Fox, S. W. Otto, and A. J . G . Hey. Matrix algorithms on a hypercube I: Matrix

multiplication. Parallel Computing, 4:17-31, 1987.

[21] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G . Zhang. Matrix multiplication on

the Intel Touchstone Delta. Technical report, Supercornputing Research Center, 1993. in

preparation.

[22] Intel Corporation. Touchstone Delta Fortran Calls Reference Manual. April 1991.

[23] Intel Corporation. Touchstone Delta Sys-tem User's Guide, October 1991.

[24] C. Lin and L. Snyder. A matrix product algorithm and its comparative performance on

hypercubes. In Proceedings of the 1992 Scalable High Performance Computing Conference,

pages 190-194. IEEE Press, 1992.

[25] R. Littlefield. Characterizing and tuning communications performance for real applica-

tions. In Proceedings, Farst Intel Della Applzcatzon Workshop, CCSF-14-99, Pasadena,

Californza, pages 179-190, February 1992. presentation overheads.

- 33 -

ORNL/TM-12252

INTERNAL DISTRIBUTION

1.

2.
3.

4-8.
9-10,

11-15.

16.
17.

18.
19.
20.
21.
22.
23.

B. R. Appleton

C. Bottcher
B. A. Carreras
J. Choi
T. S. Darland
J . J . Dongarra

J . B. Drake
T. H. Dunigan

W. R. Emanuel
R. E. Flanery
W. F. Lawkins
M. R. Leuze
R. Mann
C. E. Oliver

24-28.
29-33.

34.
35.

36-40.
41-45.

46.
47.
48.
49.
50.
51.

52-53.

S. A. Raby
R. F. Sincovec
G. M. Stocks
M. It. Strayer
D. W . Walker
R. C. Ward

P. H . Worley
Central Research Library

ORKL Patent Office
K-25 Applied Technology Library

Y-12 Technical Library
Laboratory Records Department - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

54. Christopher R. Anderson, Department of Mathematics, University of California, Los An-

geles: CA 90024

55. David C. Bader, Atmospheric and Climate Research Division, Office of Health and En-

vironmental Research, Office of Energy Research, ER-76, U.S. Department of Energy,

Washington, DC 20585

56. David H. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet

Field, CA 94035

57. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia National

Laboratory, Albuquerque, NM 87185

58. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia, SC

29208

59. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedes,

FRANCE

60. Marsha J. Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street, NEW

York, NY 10012

- 34 -

61. Mike Berry, Department of Computer Science, University of Tennessee. 107 Ayes Hall,

Knoxville, T K 37996-1301

62. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 63 Linkoping, Swe-

den

63. A . W. Bojanczyk School of Electrical Engineering, Cornell University, ETC Building. Rni

337, Ithaca. KY 14853-6367

64. John H . Bolstad, Lawrence Livermore Kational Laboratory. L-16, P. 0. Box 808, Liver-

more, C.4 94550

65. George Bourianoff, Superconducting Super Collider Laboratory. 2550 Ueckleymeade Av-

enue, Suite 260, Dallas, T X 75237-3946

66. Roger W. Brockett, Pierce Hall, 29 Oxford Street, Iiarvard University. Cambridge. M A
02138

67. Bill L. Buzbee, National Center for Atmospheric Research, P. 0. Box 3000, Boulder, CO

80307

68. Thomas A. Callcott, Director, The Science Alliance Program, 53 Turner House, University

of Tennessee, Knoxville, TN 37996

69. Captain Edward A. Carmona, Parallel Computing Research Group, US. Air Force Weapons

Laboratory, Kirtland AFB, NM 87117

70. John Cavallini. Acting Director, Scientific Computing Staff, Applied Mathematical Sci-

ences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

71. I-hang Chern, Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South C a s Avenue, Argonne, IL 60439

72. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

73. Ray Cline, Sandia National Laboratories, Livermore, CA 94550

74. James Corones. Ames Laboratory, Iowa State University, Ames, IA 50011

75. Jean Cot&, RPN, 2121 TranscanadaHighway. Suite 508, Dorval, Quebec H9P 153, CANADA

76. John J . Doming, Department of Nuclear Engineering Physics, Thornton Hall, McCormick

Road, University of Virginia, Charlottesville, VA 22901

- 35 -

77. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, T N 37235

78. Donald J . Dudziak, Department) of Nuclear Engineering, 110B Burlingtori Engineering

Labs, North Carolina State University, Raleigh, NC 27695-7909

79. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX.

England

80. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

81. Richard E. Ewing, Department of Mathematics, University of Wyoming, Laramie, ‘CITY

82071

82. Ian Foster, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South C a s Avenue, Argonne, IL 60439

83. Geoffrey C. Fox, Northeast Parallel Architectures Center, Syracuse University, Syracuse,

NY 13244-4100

84. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N , Suite 500, Seat.tle, WA

98119

85. Paul 0. Frederickson, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035 0

86. Dennis B. Gannon, Computer Science Department, Indiana University. Bloomington, I N

47401

87. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of Wa-

terloo, Waterloo, Ontario, CANADA N2L 3G1

88. James Glimm, Department of Mathematics, State University of New York, Stony Brook,

NY 11794

89. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

90. Phil Gresho, Lawrence Livermore National Laboratory, L-262, P. 0. Box 808, Livermore,

CA 94550

91. William D. Gropp, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IL 60439

92. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

93. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA 50011

- 36 -

94. James J . Hack, Kational Center for Atmospheric Research, P. 0. Box 3000, Boulder. CO

80307

95. Robert M . Haralick, Department of Electrical Engineering, Director, Intelligent Systems

Lab. University of Washington. 402 Electrical Engineering Building. FT-10. Seattle, M’A

98195

96. Michael T. Heath, Center for Supercomputing Research and Development. 305 Talbot

Laboratory, University of Illinois, 104 South Wright Street. Urbana. 11, 61801-2932

97. Michael Henderson, Los Alamos National Laboratory, Group T-3. Los Alamos. N M 87515

98. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathemat,ical Sciences. Office

of Energy Research. U. S. Department of Energy, Washington, DC 20.585

99. Gary Johnson, Office of Scientific Computing, ER-7, Applied Mathematical Sciences,

Office of Energy Research, U . S. Department of Energy. Washington, DC 20585

100. Lennart Johnsson, Thinking Machines h c . , 245 First Street. Cambridge, MA 02142-1214

101. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.. Cornell

University, Ithaca, NY 14853-3901

102. Hans Kaper, Mathematics and Computer Science Division, Argonne National Laboratory.

9700 S. class Avenue. Bldg. 221 Argonne, IL 60439

103. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

104. Kenneth Kennedy, Department of Computer Science, Rice University, P. 0. Box 1892.

Houston, Texas 77001

105. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff, Office

of Energy Research, Office G-437 Germantown, Washington, DC 20585

106. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251

Mercer Street, New York, NY 10012

107. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

108. Rich Loft, National Center for Atmospheric Research. P. 0. Box 3000. Boulder. CO 80307

109. Michael C. MacCracken, Lawrence Livermore National Laboratory, L-262, P. 0. Box 508,

Livermore, CA 94550

110. Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop I.1265, Los Alamos, NM

87545

- 37 -

111. Len Margolin, LOS Alamos National Laboratory, Los Alamos, NM 87545

112. Frank McCabe, Department of Computing, Imperial College of Science and Technology,

180 Queens Gate, London SW7 2BZ, ENGLAND

113. James McGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808, Liver-

more, CA 94550

114. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. California

Blvd. Pasadena, CA 91125

115. Neville Moray, Department. of Mechanical and Industrial Engineering, University of Illi-

nois, 1206 West Green Street, Urbana, IL 61801

116. David Nelson, Director of Scientific Computing, ER-7. Applied Mathematical Sciences,

Office of Energy Research, U. S. Department of Energy, Washington, DC 20586

117. V. E. Oberacker, Department of Physics, Vanderbilt University, Box 1807, Station B,

Nashville] T N 37235

118. Joseph Oliger, Computer Science Department, Stanford University, Stanford: CA 94305

119. Robert O’Malley, Department of Mathematical Sciences, Rensselaer Polytechnic Institute,

Troy, NY 12180-3590

120. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of

Virginia, Charlottesville, VA 22901

121. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-

ton, NY 11973

122. Richard Pelz, Dept. of Mechanical and Aerospace Engineering, Rutgers University, Pis-

cataway, NJ 08855-0909

123. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR

97006

124. Robert J . Plemmons, Departments of Mathematics and Computer Science, North Car-

olina State University] Raleigh, NC 27650

125. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, T N

37996-1300

126. Andrew Priestley, Institute for Computational Fluid Dynamics, Reading University, Read-

ing RG6 2AX, ENGLAND

- 38 -

127. Daniel A. Reed, Computer Science Department, University of Illinois. Urbana, IL 61801

128. Lee Itiedinger, Director, The Science Alliance Program. University of Tennessee. Knoxville.

TS 37996

129. Garry Rodrigue. Numerical Mathernatics Group, Lawrence Livermore National Labora-

tory, Livermore, CA 94550

130. Ahmed Sameh, University of Illinois at Urbana-Champaign, Center for Supercomputer

R&D. 469 CSRL, 1308 West Main St., Urbana, IL 61801

131. Dave Schneider University of Illinois at Urbana-Champaign, Center for Supercomputing

Research and Development, 319E Talbot - 104 5;. Wright Street Urbana, IL 61801

132. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,

OR 97006

133. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA

94035

134. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

135. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los

Alamos, NM 87545

136. Peter Smolarkiewicz, National Center for Atmospheric Research. MhlM Group, P. 0. Box

3000, Boulder! CO 80307

137. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

138. Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-

tory, 9700 South Cass Avenue, Argonne, IL 60439

139. Paul N . Swarztrauber, National Center for Atmospheric Research, P. 0. Box 3000, Boul-

der, CO 80307

140. Wei Pai Tang, Department of Computer Science, University of Waterloo, Waterloo, On-

tario, Canada N2L 3G1

141. Harold Trease, Los Alamos National Laboratory, Mail Stop B257. Los Alamos, NM 87545

142. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA

23665

143. Mary E'. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box 1892,

Houston. T X 77251

- 39 -

144. Andrew B. White, Los Alamos National Laboratory, P. 0. Box 1663, MS-265, Los Alainos,

NM 87545

145. David L. Williamsori, National Center for Atmospheric Research, P. 0. Box 3000, Boulder,

CO 80307

146. Samuel Yee, Air Force Geophysics Lab, Department LYP, Wanconi AFB, Bedford, MA

01731

147. Office of Assistant Manager for Energy Research and Development, U.S. Department of

Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

148-149. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37830

