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ABSTRACT 

Decentralized control strategies for nonlinear systems are achieved via feedback lin- 
earization techniques. New results on optimization and parameter robustness of non- 
linear systems are also developed. In addition, parametric uncertainty in large-scale 
systems is handled by sensitivity analysis and optimal control methods in a completely 
decentralized framework, This idea is applied to alleviate uncertainty in friction pa- 
rameters for the gimbal joints on Space Station Freedom. As an example of decen- 
tralized nonlinear control, singular perturbation methods and distributed vibration 
damping are merged into a control strategy for a two-link flexible manipulator. 

xi 





CHAPTER 1 

INTRODUC TION 

1.1 PROBLEM STATEMENT 

“A purely linear world would be a sad place in which to live.” [I] 

Perhaps the above quote could be appended with the comment that it would be 
easier to control. But so many of today’s high performance electronics, industrial 
equipment, appliances, transportation vehicles, and materials are successful precisely 
because they are nonlinear. These systems exploit their nonlinear characteristics to 
achieve better performance than previously available. However, linear systems are 
easier to control and understand. This motivates the subject of linearization which 
allows one to apply linear system theory to a nonlinear model. 

Most theory of linearization has centered around the well-known Jacobian or op- 
erating point linearization in which the system i s  restricted to operate in a region 
small enough such that the system can be approximated as linear. But more recent 
theory has uncovered the fact that feedback can make a nonlinear system behave as a 
linear one exactly. That is, the system does not have to remain in some small region. 
This theory now allows one to employ the great abundance of linear control tech- 
niques without restricting the system to remain close to particular operating points. 
In this report, this method of linearization will be employed as a means of control 
for nonlinear systems that have more than one input-output channel. We will also 
focus on the issues of parametric uncertainty and optimal performance in nonlinear 
systems via feedback linearization. 

A primary motivation for this work is the subject of control of large space struc- 
tures. Indeed, one of the largest ever proposed of these structures, Space Station 
Freedom, is the topic of Chap. 5. These structures with their moving appendages, 
coupled rigid-body-flexible modes, and motorized joints are highly nonlinear and large 
in scale. Hence, decentralized control is a natural method of alleviating the computa- 
tional burden that would accompany a highly centralized control scheme. Combining 
decentralized control and nonlinear systems was a major emphasis of this report. 

Sensitivity analysis is a very useful tool designed to alleviate the effects of parame- 
ter uncertainty on control performance. We employ this tool to investigate the effects 
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of parameter variation in linear large-scale systems as well as an example of a motor 
with nonlinear friction utilized on the space station. Though sensitivity analysis is 
an old technique that has not garnered much recent attention, we show that there 
are fresh new avenues of research and applications for this theory. 

Finally, the subject of singular perturbations is a well-known technique for the 
control of flexible structures. In addition to reviewing relevant theory of singular 
perturbations, we apply these techniques to a two-link flexible manipulator modeled 
after the one in use at The Ohio State University. This study cornbines the methods 
of singular perturbations with the rapidly developing area of distributed vibration 
control to achieve powerful new methods for controlling vibrations while conducting 
desired slewing maneuvers. This section (appearing in Chap. 5 )  is also a good exam- 
ple of decentralized nonlinear control since feedback linearization via the method of 
asymptotic expansions is achieved at each link using only locally measurable signals. 

1.2 SPACE STRUCTURES 

The subject of space travel has fascinated humans for thousands of years, but it was 
not until the launching of Sputnik in 1957 that it became a reality. Since then, ve- 
hicles designed for both manned and unmanned space travel have gone farther and 
explored more of the solar system than ever before. But, proposed new structures 
such as the space station, the national aerospace plane, and many experimental probes 
(e.g., space-based interferometers) will require higher performance and vibration sup- 
pression than previous structures. 

Space structures must be designed to undergo large temperature changes, high 
speed motion, and quite varied orientations while maintaining a nearly vibration free 
environment for at least part of the structure. For instance, telescopes mounted 
on long arms must remain very steady in order to observe minute details of stars 
and other galactic features. Though materials may exist to provide such tolerance 
to vibrations, they are too heavy or expensive for a large space structure. Thus, 
active means of vibration damping must be pursued. Even if superior materials are 
developed, one can always achieve still better vibration suppression by employing 
active control. 

Space structures have the following features: closely packed and lightly damped os- 
cillatory modes, attached rotating appendages, and multiple actuators/sensors. The 
first of these features implies that active control is important in order to achieve ac- 
ceptable damping ratios. The second of these features implies nonlinear _dynamical 
behavior, and the third feature indicates that decentralized control may be desirable. 
Thus, this report is principally concerned with decentralized control of nonlinear sys- 
tems especially as it relates to active vibration control of flexible structures. 

Since most control techniques require the use of a mathematical model, the issue 
of modeling of space structures has been a subject of considerable interest. One of 
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the most common of these techniques is that of exact modeling or modeling from 
first principles. Since the structures themselves are distributed parameter systems 
(equations of motion depend on both time and position along the structure), the 
equations of motion will be partial differential equations. These equations are infinite 
dimensional in state space, thus discretization techniques such as assumed modes and 
finite differences are utilized to achieve finite-dimensional models. The methodology 
for generating these partial differential equations has been well known for centuries 
and includes such methods as Hamilton’s Principle, Lagrange’s equations, and the 
Newton-Euler formulation. More recent techniques include Kane’s equations and 
Gibbs-Appel equations. 

A classical example of a flexible structure is the Euler-Bernoulli beam in which 
a cantilevered beam vibrates in the transverse direction. The partial differential 
equation describing its behavior is written as 

a4a d2a  
E l -  + = 0 

8x4 

which can be approximated as an ordinary differential equation via the assumed 
modes method. This technique is outlined in the appendix and is applied to the 
flexible robot example of Chap. 5. 

Perhaps the most widely used modeling technique today for flexible structures is 
the finite-element method. This results in a finite-dimensional model from the start 
since the structure is divided into elements each of which is approximated its a second 
order mass-spring system. The resulting equations will have the general form 

M ( X ) Z  + F ( X ,  X )  + K X  = BU (1.2) 

where M is the effective mass matrix, Ir‘ is the effective stiffness matrix, and F is a 
possibly nonlinear term representing damping and other types of behavior. 

Sometimes the process of modeling a structure is too difficult to be done analyt- 
ically. Experimental results may be utilized directly to obtain a working model of 
the structure. This is known as system identification. It is also used to refine an 
analytically determined model and to reduce the order of an existing model. Indeed, 
system identification may be used to increase the confidence one has in a previously 
obtained model. Many methods exist (e.g., Eigensystem Realization Algorithm - 
ERA, Recursive Least Squares - RLS, Prony’s Method, etc.) as well as combinations 
of these techniques. 

Control of flexible structures (once a model is obtained) can be attacked by a 
variety of approaches. They run the scale from very simple to highly complex. The 
following list is by no means exhaustive but does give an indication as to the options 
available to control engineers of large space structures: 

0 Gain Scheduling (Proportional Integral Derivative - PID, output feedback) 
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e Dynamic Compensation (frequency shaping feedback) 

0 Optimal Control (Linear Quadratic Regulator/Linear Quadratic Gaussian - 
LQR/LQG) 

e Singular Perturbation Control (slow and fast modes) 

0 Decentralized Control (multi-body dynamics) 

e Nonlinear Control (adaptive, sliding mode, feedback linearization) 

0 Combinations of the above 

The structures considered for application of the above techniques contain flexible 
components for which we wish to minimize vibrations. These structures also exhibit 
rotational and translating capabilities which result in nonlinear behavior. A simple 
example of such a structure is a rigid hub that can translate in two dimensions and 
rotate in one dimension. Attached to this hub is a flexible beam that exhibits planar 
vibrations. This structure represents a coupling of linear vibration characteristics 
with nonlinear slewing behavior and is illustrated in Fig. 1. 

T I'" 

J' 
Fig. 1: Spacecraft with rigid h b and ttach d flexible append ge. 

Equations of motion can be derived for this spacecraft by modeling the beam as 
clamped at the hub and free at the other end. Then using the assumed modes method 
we retain one mode in the model (more modes can be handled quite easily). We also 
ignore gravity in this model. Let u1, 212, u3 be the velocity of A* (center of mass of 
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which is a fifth order nonlinear ordinary differential equation. The outputs can be 
chosen to be any of the five states, thus they will ordinarily be linear €unctions. By 
choosing two outputs (say, hub rotation, u3, and tip displacement, q l ) ,  we obtain a 
two-input, two-output nonlinear system. The first input/output port could be re- 
stricted to hub information only ( t i l ,  u2, us), and the second input/output port could 
be restricted to beam endpoint information only (ti4 and q1). This decentralization 
constraint would be desirable for a real spacecraft of the type in Fig. 1 because of the 
difficulty in exchanging information between the two ports. Thus, this is the type 
of structure for which the theory developed in the following chapters would be most 
useful. 

1.3 FLEXIBLE ROBOTICS 

In some ways, robotics are a special case of the previous section. Many of the same 
modeling and control techniques applied to space structures will work well for robotics. 
However, because of their nature as smaller more dedicated structures, we devote 



some discussion to their historical development. In particular, we concern ourselves 
with flexible robotics due to their light weight and utility in space applications. Fur- 
ther details on control and modeling of flexible robotics will appear in Chap. 5 and 
Appendix A. 

In many applications that involve slewing of mechanical structures such as in 
spacecraft and robotics, performance is limited by the mass and rigidity of the mov- 
ing appendages. The use of lightweight materials and slender appendages can enhance 
speed and mobility while reducing energy consumption but inevitably lead to flexi- 
bility. The principal drawback to flexibility in structures is the issue of control. This 
is due to the tremendous increase in complexity of the system dynamics as a result 
of the elasticity in the links. There is a wealth of literature on rigid robot control, 
but additional control strategies are needed to deal with the more complex dynam- 
ics of flexible links. Chapter 5 addresses the strategy of combining two methods 
for handling structural elasticity: perturbation techniques and distributed vibration 
damping. 

Two works in particular, Spong et al. [Z] and Siciliano and Book [3], apply per- 
turbation techniques to flexible joint and flexible link robots, respectively. In Ref. [2], 
the integral manifold approach is employed to decompose the dynamics into a fast 
subsystem representing the elastic forces at the joints and a slow subsystem repre- 
senting the rigid body motion. The control strategy is then an approximate feedback 
linearization which allows the use of rigid link control ideas. In Ref. [3], a singu- 
lar perturbation approach is utilized to achieve a similar approximate linearization 
strategy for manipulators with elastic links. 

In these perturbation methods, the system dynamics are a function of a small 
parameter E which represents stiffness of the joints or links. As E tends to zero the 
slow subsystem (integral manifold) tends to the rigid link manipulator model. The 
integral manifold is then expanded as a power series in E about E = 0. The pri- 
mary advantage of the integral manifold approach is that it enables one to linearize 
the system dynamics to an arbitrary order of E via the torque controllers. Other 
approximate linearization strategies have been proposed for flexible-link manipula- 
tors such as pseudo-linearization [4] and input-output inversion [5 ] .  But the integral 
manifold approach facilitates the incorporation of approximate linearization (for the 
slow subsystem) and distributed actuation (for the fast subsystem) as is done in this 
report. 

The concept of exact feedback linearization which is extensively used throughout 
this report is not an option for flexible robotics. It has been shown in Ding et 
al. [SI and Khorrami and Zheng [7] among others that the necessary and sufficient 
conditions for exact feedback linearizability of flexible link robots are not satisfied. 
That is, torque control alone cannot exactly linearize the full-order dynamic system 
since there are not as many control inputs as output variables. The purpose of 
applying integral manifold theory to the above structure is to be able to reduce the 
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dynamics of the system to the rigid body motion. This reduced order system will 
account for the flexibility of the links. In addition, the effects of the rigid body motion 
on the flexure are given by a manifold condition. 

The primary goal of distributed vibration damping is to add thin material (e.g., 
polymer films) to an elastic beam and apply control signals to effect a dampening 
of the modes of vibration. No particular distributed actuator is proposed here but 
instead analysis undertaken in Chap. 5 is applicable to a wide variety of thin film 
actuators whose characteristics are very similar in how they impact the equations but 
may differ in hardware implementation. The purpose of this analysis is to provide a 
description of how film actuators can reduce bending effects in flexible manipulators. 
The basic idea behind film actuators is that they produce a strain along the longitu- 
dinal axis of the links when applied with a voltage distributed along the link. It is 
shown here that feedback of various measured variables to this voltage can produce a 
strain which dampens the modes of vibration. Other actuators such as discrete actu- 
ators could have been employed, however, these actuators complicate the dynamics of 
the model and do not have the advantage of being able to control all the vibrational 
modes of a flexible beam as can a distributed actuator. 

The effect of some film actuators on vibrating beams with various boundary condi- 
tions is described in Bailey and Hubbard [8], Burke and Hubbard [9, lo], and Crawley 
and de Luis [ll]. In robotics, the action of the film is complicated by the rigid body 
motion, but it does not significantly alter the control of the slow subsystem (i.e., the 
slewing motion). A film actuator can also be used as a sensor as is done in Collins et 
al. [12] allowing one to measure link strain or tip deflection which can then be used 
for feedback control at  the joints. 

Our controller design is based upon a distributed parameter model of the two-link 
manipulator which is derived via the Hamiltonian formulation. Computer simula- 
tions are provided which show the results of the feedback linearizing torque control 
and the improvement in vibrational damping obtained with the distributed actuator. 
The computer simulation model is obtained from the distributed parameter model 
via the assumed modes method. Parametric data for the model are obtained from 
the OSU two-link flexible manipulator, and experimental identification results of this 
structure indicate that only one mode of vibration is apparent in the transverse mo- 
tion (Yurkovich et al. [13]). Thus, a one-mode expansion was implemented in the 
simulations. 

1.4 ORGANIZATION OF REPORT 

The report starts in Chap. 2 with a survey of feedback linearization and nonlinear 
observer techniques based upon differential geometry. The chapter continues with a 
discussion of singular perturbation methods in control theory and sensitivity anal- 
ysis for systems with uncertain parameters. This chapter finishes with a survey of 
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decentralized control theory. Chapter 3 covers two key issues in feedback lineariza- 
tion. One is that of optimal performance of a nonlinear system that has been feedback 
linearizcd. The second is that of robustness of feedback linearization to parametric 
uncertainty and additional control effort needed to rectify this situation. 

Chapter 4 provides a quartet of results on decentralized control of nonlinear sys- 
tems. The first of these is that of decentralized nonlinear observers. Next, the issue 
of controlling a linearized system in a decentralized manner is investigated. Third, 
stabilization of interconnected systems via decentralized feedback linearization and 
local linear-quadratic state feedback is studied. Fourth, the enhancement of lineariz- 
ability properties of nonlinear systems is developed with the aid of partial feedback. 
The chapter concludes with a thorough investigation of decentralized control via sen- 
sitivity models for large-scale systems with parameter uncertainty. 

Chapter 5 looks at two examples for applications of theoretical methods studied in 
this report. The first of these is a two-link flexible manipulator which is controlled by 
combining decentralized approximate linearization with distributed vibration control. 
The second example is the gimbal motors used for positioning the solar array panels 
on Space Station Freedom. Sensitivity analysis is applied to this motor by adding 
a term to a performance criterion that penalizes deviations of friction parameters 
from their nominal values. Chapter 6 provides concluding remarks and discussion of 
future avenues of research opened up by this report. Finally, Appendix A contains 
the modeling details of the two-link manipulator. 



CHAPTER 2 

CONTROL THEORY TECHNIQUES 

2.1 NONLINEAR CONTROL 

Control of linear systems is a highly developed subject area with many powerful 
analytical tools available and a long history of successful applications in physical 
problems. The study of nonlinear systems, though still extensive, is less developed due 
to the fewer analytical tools available and the significantly more complex dynamical 
behavior of these systems. One of the most common tools applied to linear, time- 
invariant systems is that of the transfer function. Due to the absence of linearity and 
superposition, the transfer function concept does not extend to nonlinear differential 
equations. It is this lack of linearity and superposition that makes much of linear 
system theory invalid in the study of nonlinear systems. In addition, such complex 
behavior as limit cycles (isolated closed curves in the state space), multipleequilibrium 
points, bifurcations (changes in stability behavior due to deviations in parameters), 
and chaos (extreme sensitivity to initial conditions) can occur in nonlinear systems. 

This chapter analyzes some of the control techniques utilized in nonlinear systems. 
In particular, feedback linearization, observer theory, perturbation met hods, and sen- 
sitivity analysis are discussed. All of these methods (except feedback linearization) 
are practiced in linear systems, and we make use of this fact. These analytical tools 
were chosen because they appear often in the research of this report. Other tech- 
niques such as phase plane analysis, describing functions, sliding modes, Lyapunov 
theory, and adaptive control (see the texts of Refs. [14, 15, 16, 171 for a treatment of 
these subjects) are quite common in nonlinear control theory but play only a minor 
role in this work. 

We begin by discussing mathematical representations of nonlinear systems. In 
general, there are many nonlinearities that cannot be written as a differential or 
algebraic equation such as multi-valued functions, e.%. hysteresis (see Fig. 2). But 
these types of nonlinearities can still be incorporated into nonlinear control theory by 
defining specific regions of operation. Then each region will have its own control law 
with some kind of protocols establishing transitions between regions. This is a very 
common technique in industrial settings. 

9 
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TYPES OF NONLlNEARmES 

1. Smooth 
, x  

2. Discontinuous r 
e.g. gravity 

3. Saturation 

e.8. motor speeds 

5. Hystepsls 

I X  

0.g. Coulomb friction 

4. Dead Zone 

iYi 
04. stlction 

6. Backlash 

0.8. relays 0.g. geers 

Fig. 2: Examples  of common nonlinearities in physical systems. 

Thus, we begin by looking at differential equations to describe nonlinear systems. 
Consider the following system 

j. = f(z, u, t )  , y = h(z ,  21, t )  (2.1) 

where 2 E R" is the state vector of the system, y E RP is the output vector, u E R" 
is the input vector, and t E R is the independent variable. The function f is an R"- 
valued mapping defined on the open sets U of R", V of R", and W of R. Likewise, h 
is an RP-valued mapping defined on the same open sets as f .  The functions f and h 
may be discontinuous in their arguments. In addition, distributed parameter systems 
(e.g. systems described by partial differential equations) could be characterized by 
(2.1) with the addition of another independent variable such as a spatial variable. 
Most of the differential equations dealt with in this report are time-invariant and are 
affine in the control. That is, an additional vector field g(z) multiplies the control 
input. Furthermore, the outputs considered here rarely contain a throughput term 
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(i.e., h is not an explicit function of u).  With these constraints, we obtain 

i = f ( z )  3- g(x)u, y = h ( z )  (2-2) 

which will become our standard nonlinear model. The vector fields, f and g, are 
smooth mappings of R" into R" defined on the open set U of R". By smooth, it is 
meant that f and g have continuous partial derivatives in x to any required order. 
The vector field h is a smooth mapping of R" into RP that is also defined on the set U .  
These domains and smoothness properties are to be assumed throughout the report 
except when otherwise noted. The above model has the additional feature that it is 
structurally similar to its linear counterpart 

j : = A x + B u ,  y = C x ,  (2.3) 

which is useful in discussing linearizations of a nonlinear model. 
This chapter starts by examining the concept of feedback linearization and the 

tools needed to accomplish this strategy. The chapter then proceeds to discuss the 
nonlinear observer problem. Since decentralized control is a primary focus of this re- 
port, it is necessary to examine methods for reconstructing the full state at particular 
input/output channels for synthesis of nonlinear control. Next, the issue of singular 
perturbations is dealt with which studies systems whose highest order derivatives are 
multiplied by a small parameter. This is a common situation in flexible structures 
in which rigid body and vibrational motion unfold at significantly different frequency 
ranges. Sensitivity analysis is the next topic surveyed due to its importance in the 
control of systems plagued by parametric uncertainty. Finally, this chapter culminates 
with an overview of decentralized control and the methods for its application. 

2.1.1 Feedback Linearization 

The concept of transforming a nonlinear system into a linear one via feedback has 
received a great deal of interest recently (see, for instance, Refs. [18, 19, 20, 21, 
221). The area of mathematics that has enabled this concept to come about is that 
of differential geometry. In particular, a key result utilized by most of the control 
techniques based upon differential geometry is the theorem of Frobenius [23]. To 
state this theorem, we first consider a set of m smooth vector fields {fi(x), . . . , fm(x)} 
defined on an open set U of R". The Frobenius theorem is principally concerned with 
the solution of the partial differential equation 

for i = 1,. . . , n - m where the smooth functions Xi(.) are what we wish to find. We 
have the following definitions. 
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Definition 2.1 A linearly independent set of vector fields { f l ( x ) ,  . . . , f m ( x ) }  defined 
on El" is completely integrable if and only if there exist smooth scalar functions A;, 
i = 1,. . . , n -m, satisfying (2.4) with the gradients %, i = 1 , .  . . , n--m being linearly 
independent. 

Definition 2.2 The iterated Lie Derivative of a vector field h ( z )  with respect to the 
vector field f(x) is defined as 

where it is noted that the above (with IC = 1) is simply a directional derivative with 
f(x) serving as the trajectory along which the vector field h is differentiated. 

Definition 2.3 We define the Lie bracket of a pair of vector fields f;(x), fj(z) as 

Definition 2.4 A linearly independent set of vector fields { fi(z), . . . , fm(x)} is in- 
volutive if and only if there exist scalar functions Gjk(2) such that 

m 

Simply stated, involutivity means that the Lie bracket of all pairs of vector fields from 
the set { fi,  . . . , f m }  can be expressed as a linear combination of the original set of 
vector fields. The Frobenius theorem is now formally stated without proof. 

Theorem 2.1 The set of linearly independent vector fields { f1,. . . , fm} is completely 
integrable if and only if it is involutive. 

This theorem provides us with a necessary and sufficient condition for the solv- 
ability of the class of partial differential equations (2.4). Thus, the solvability of (2.4) 
can be determined by checking the involutivity of the vector fields which is consider- 
ably easier than trying to solve (2.4) without knowing if a solution exists. This class 
of partial differential equations arises often in nonlinear control theory particularly 
as related to feedback linearization and nonlinear observers. Hence, the Frobenius 
theorem has proven useful in finding conditions for the solvability of nonlinear control 
problems. Most of this report deals directly with the results of feedback lineariza- 
tion theorems without explicit reference to the Frobenius theorem. However, much 
of these theorems owe their existence to the Frobenius theorem. 

The first paper to show that linearization was possible for single-input systems 
via feedback was Brockett [18]. Earlier work by Krener [24] had laid the groundwork 
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for such study. The more general methods of feedback linearization of multi-input 
systems was independently developed by Jakubczyk and Respondek [22], Hunt et al. 
[25,20], and Su 1261. Linearization of systems with outputs was extensively discussed 
by Cheng et al. [19]. The notion of zero dynamics which describe a system’s behavior 
when the outputs are constrained to be zero was introduced by Byrnes and Isidori 

Other more approximate methods such as extended linearization by Baumann and 
Rugh [as] and pseudo-linearization by Rkboulet et al. [29] relax the exact lineariz- 
ability conditions by performing it locally about a series of operating points. This 
method is reminiscent of gain scheduling whereby different sets of feedback laws are 
scheduled for different regions of operation. In some instances dynamic state feedback 
(i.e. the feedback law itself is described by a differential equation) can enhance the 
linearizability of a system as proposed by Charlet et al. [30]. Texts on nonlinear sys- 
tems which have extensive sections devoted to feedback linearization include Isidori 
[21], Nijmeijer and Van der Schaft [31], and Slotine and Li [lS]. 

There are several varieties of feedback linearization in the literature. Input-state 
linearization is exact state space linearization without regard to outputs. It is popular 
for systems which either have no outputs defined or have the freedom to use an arbi- 
trary nonlinear function of the states as an output vector. Input-output linearization 
seeks to render the input-output response linear despite the presence of unobservable 
or zero dynamics that remain nonlinear but do not affect the input-output behavior. 
Finally, exact linearization or exact state-space linearization implies that not only the 
input-output response is linear but also the full state space response has been lin- 
earized. This type of linearization assumes that the output vector is given and does 
not seek any new output functions to enable the linearization process. Throughout 
most of this report, it is this latter form of linearization, state-space exact linearization 
that interests us. This is because for most systems only a few combinations of states 
represent physically meaningful outputs. This is not only the case due to interest in 
just a few variables, but also some of the states may not be easily measurable. 

Multi-Input Multi-Output (MIMO) systems will interest us more than Single- 
Input Single-Output (SISO) systems due to the multivariable nature of large-scale 
systems, however both types of systems are analyzed here. The development of 
feedback linearization for MIMO systems parallels that of SISO systems with only 
minor differences in theory. The differences are more computational in nature than 
theoretical. 

The process of state-space linearization requires the computation of the system’s 
relative degree which is simply the number of times one must differentiate the output 
signal before the input term appears explicitly. Also needed is a coordinate transfor- 
mation that converts the original system’s dynamics into a normal form which makes 
apparent what the input term must be to cancel the nonlinearities. Thus, the system 
will be linear in only this new set of coordinates. Once linearized, the resulting system 

~ 7 1 .  
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will be linear and controllable lending itself easily to the wealth of linear control ideas. 
We begin by examining MIMO nonlinear systems of the form 

(2.8) 

where z E R", f (x)  and g;(x)  are smooth vector fields defined on an open set of R", 
h ; ( s )  is a smooth scalar function of x ,  and the rn ui/y; pairs are SISO channels. We 
also assume that each input/output pair has the full state x available for feedback. To 
begin the process of feedback linearization, we define the concept of relative degree. 

Definition 2.5 The vector relati.ve degree { r l ,  7-2,. . . , rm}  of (2.8) at some point xo 
satisfies 

Lg,L;hi(x) = 0 ,  1 1. Z,j 1. m (2.9) 

for all 2; < r; - 1 in a neighborhood of xo, and the mxm matrix 

has full rank at z = xo. 

Note that the number T;  is associated with the ith output of (2.8) and is the 
number of times one has to differentiate yi  to have at least one component of the 
control vector u appear explicitly. With this definition of relative degree we present 
the following lemma due to [19] which provides the necessary and sufficient conditions 
for exact linearization of (2.8). 

Lemma 2.1 Assume that rank [gl(xo) g2(x0) e . .  gm(zo)] = m. Then (2.8) can be 
rendered linear via a state feedback and a coordinate transformation if and only if 
there exists a neighborhood of xo such that (2.8) has some vector relative degree 
{ r l , r ,  , . . . , T ~ }  u t a o  a n d r 1 + r 2 + - . . + r m  = n .  

The coordinate transformation sufficient for achieving this linearization is defined as 

T 
,z = w = [ ~ ~ t x )  ,... , ~ ~ l ( x )  , . . . , ~ ~ ( x ) , . . . , ~ ~ m t z ) ]  (2.11) 

where 



The linearizing feedback can be written as 

u = a(.) + P(.). (2.13) 

with 

+) = -,4-*(x)r(z), p(.) = A-+) (2.14) 

(2.15) 

T and = [ol, 02 , .  . . , om] 
in a linear system of the form 

is a vector of inputs to the linearized system. This results 

i- = Az + Bv, y = Cz (2.16) 
where ( A ,  B,  C) are in Brunovsky canonical form [32]. The linearizing feedback (2.13) 
is also the standard noninteracting control [33], i.e., the feedback that input-output 
decouples (2.8). Another important point is that the linearizing coordinates transfor- 
mation and the linearizing feedback will be smooth vector fields if the original system 
vector fields in (2.8) are smooth [21]. Figure 3 demonstrates the concept of feedback 
linearization by clearly showing the composite linearized system. 

I 

I 
I 
I 
I 
I 

VI, 

Fig. 3: Linearization via feedback. 

The single-input single-output linearization problem is also examine, 
sider the following system 

here. Con- 

(2.17) 

where x E R” and y and 26 are scalars. As in the MIMO case, we need the notion of 
relative degree. 
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(2.18) 

Definition 2.6 The system (2.17) has relative degree r about a point I' if 

L,Lkfh(z) = 0 

for all IC < r - 1 and all x in a neighborhood of zo and 

L,L;-lh(xo) # 0 .  (2.19) 

Lemma 2.2 The SISO linearization problem is solvable in a neighborhood of xo if 
and only if (2.17') has relative degree r = n at xo. 

The linearizing coordinates in the SISO case are simply 

21 = $a(.> = L;- 'h(s) ,  1 5 i 5 n ,  

and the linearizing feedback is 

( - - L ~ h ( x )  + v) . 1 
L, L3-l h( x) 

U =  

This results in a linear system in normal form [27] 

(2.20) 

(2.21) 

(2.22) 

which is simply a chain of n integrators. 
As mentioned earlier, if one is not restricted to particular outputs, i.e., if one has 

freedom to choose new outputs, say y = X(x), then conditions involving f(z) and 
g ( x )  only (see Refs. [18, 20, 221) can be formulated to provide the existence of these 
outputs such that the relative degree requirements are satisfied. These results rely 
heavily on the Frobenius theorem which enables one to find a solution to  a particular 
differential equation yielding the new outputs. 

2.1.2 Nonlinear 0 bservers 

Much of the feedback control methods available to engineers rely upon full state 
feedback. One can often achieve better closed loop performance with the full state 
than with just an output or a partial set of states. However, this may require ex- 
pensive measuring devices and/or additional computing hardware. Thus, the issue 
of reconstructing the system state from available measurements has been a subject 
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of considerable study for decades. The theory for nonlinear systems is not as well 
developed as that for linear systems, but a number of results do exist. Observers 
based upon statistical linearization, Jacobian linearization, and sliding modes are 
well-known (see Ref. [34] for a survey). 

In this section, we look at the nonlinear problem from a Lie-algebraic approach. 
The use of differential geometry for the single-output nonlinear observer problem was 
independently developed by Bestle and Zeitz [35] and Krener and Isidori [36]. The 
multi-output case was analyzed by Krener and Respondek [37) who also looked at 
the problem with inputs as well. Since these observers require a transformation to 
observer canonical form, some attempts to alleviate the solving of the partial differen- 
tial equations that arise in this transformation have been attempted. One such effort 
is analogous to the extended Kalman filter for stochastic systems. It is based upon 
pseudo-linearization and is referred to as the extended Luenberger observer. This was 
introduced by Zeitz [38] and avoids the solution of partial differential equations. 

To focus entirely on the observer problem let us restrict ourselves to the single 
output nonlinear system with no input and state of dimension n 

(2.23) 

where xo is the initial state vector. Most of this discussion follows that of Ref. [36]. 
Suppose there exists a coordinate transformation z = @(s) which transforms the 
vector field f and the output map h into 

(2.24) 

h(@.-'(z)) = c z  (2.25) 

where ( A , C )  is an observable pair and I F  is an nxl vector valued function. Then an 
observer of the form 

( = ( A  + GC)t - GY + k(y), (2.26) 

where 6 is the estimate of the transformed state z,  is obtained. The observer error 
e = 6 - z = [ - @(x) has dynamics 

d = ( A + G C ) e  (2.27) 

which is linear and controllable (through G). The following lemma states the neces- 
sary and sufficient conditions for constructing such an observer. 
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Lemma 2.3 The observer linearization problem is solvable i f  and only i f  the following 
two conditions hold: 
(i) dirn(span{dh(zO), dLjh(zO), . . . , dLy-'h(x")} ) = n 
(i i) the unique vector solution T of 

(2.28) 

is such that 

[a$,T,udiT] = 0 (2.29) 

for all 0 5 i ,  j 5 n - 1. 

To find an observer with linear and spectrally assignable error dynamics, we need 
both of the above conditions to  hold. With condition (i) holding, we find the vector 
field T by solving (2.28). With condition ( i i )  holding and our solution T, we solve the 
partial differential equation 

d F  
dz 
- = [T(.) - ad&) * .. (2.30) 

to find the function F which is defined in a neighborhood Vo of zo such that F ( z o )  = 
2". Then setting CP = F-' ,  we compute the mapping k as 

(2.31) 

which results in the observer in (2.26). 
Condition (i) is the nonlinear analog of the observability rank condition for linear 

systems and condition (ii) is an involutivity condition. In some sense the nonlinear 
observer problem is the dual of the exact linearization problem where we needed a 
change in coordinates to more clearly solve the problem. The exact linearization and 
nonlinear observer problems are two key results utilized in this report to tackle nonlin- 
ear problems, in particular, decentralized control of nonlinear systems. Other results 
in the geometric theory of nonlinear systems not discussed here include disturbance 
decoupling and noninteracting control (see Refs. [21, 331). 
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2.2 SINGULAR PERTURBATIONS 

This section focuses on the methods of multiple scales and composite control for 
singularly perturbed systems. Singularly perturbed systems are ones in which their 
highest order derivatives are multiplied by a small parameter. This feature manifests 
itself as two-time-scale behavior. That is, a fast boundary layer system is coupled 
with a slow reduced-order system by a small parameter E .  Many examples of such 
behavior exist including flexible structures (fast vibrational behavior, slow slewing 
motion), fluid mechanics (fast boundary layer behavior, slow steady flow), and dc 
motors (fast armature current transients, slow armature angular speed). The idea 
behind singular perturbation techniques is to take these fast dynamics into account 
while only designing a control law explicitly for the reduced order or slow subsystem. 
This approximate technique can be carried out to as high an order in t as one wishes 
but is generally only carried out to first order expansions in e .  Thus, E. should be 
small (i.e., its relative value to other constants in the system should be much less 
than one). 

Singular perturbation methods are not as general as differential geometric methods 
because they are only useful in systems with multiple time scale behavior or boundary 
layer phenomenon. Differential geometric methods are applicable to more general 
nonlinear systems but conditions for implementation are more strict. In the next 
two subsections, the multiple time scale technique will be developed and applied 
to determine a composite control (one control for each time scale). Much of the 
theory of singular perturbations stems from the work of mathematicians such as 
Tikhonov [39], Vasil’eva [40], and Hoppensteadt [41] who analyzed the problem from a 
differential equations point of view. Much of this theory was utilized in fluid mechanics 
before it reached control theory (see texts of Cole [42] and Nayfeh [43]). Most of the 
applications of the singular perturbation literature to control systems was initiated 
by KokotoviE and colleagues 144, 45, 46, 47, 481. 

All singularly perturbed systems exhibit a small parameter t which could represent 
many different physical properties such as stiffness in a vibratory system, Reynolds 
number in fluid flow, uncertainty in a system parameter such as stray capacitance in 
an electrical network, etc. When e is zero the system has a lower dimension in state 
space than when t is nonzero. Thus, the system is singularly perturbed. One of the 
primary methods in finding the solution to the set of equations describing a singularly 
perturbed system is the method of matched asymptotic expansions [43]. Solving 
singularly perturbed equations exactly is very difficult, often intractable. Thus, this 
method expands the solution variable as a power series in c which is plugged into the 
original system equations. Then each term in the expansion is solved for separately 
by gathering the terms and obtaining a separate equation for each power of t. 

The equations are solved from the lowest order equation to as high as one wishes 
to go (the power series is infinite but ordinarily e is small so only a few terms will 
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be needed) using the solution of the previous order. The matching comes about 
when one discovers that the approximate solution often does not satisfy the boundary 
conditions. This implies the existence of a small boundary layer (width of order E) 

at the boundaries of the system. Then through a rather simple procedure (detailed 
in [43]) the asymptotic solution is matched to the boundary value by introducing 
an intermediate region of thickness 6 > E (6 is the distinguished limit) in which the 
asymptotic solution is “smoothed” to converge to the boundary value at the end of 
the intermediate layer. The solution thus obtained will approximate the true solution 
to an error on the order of the power of E to which one carried out the expansion. 

However, the matched asymptotic expansion method does not always result in 
a good approximation to the true solution in a singularly perturbed system. For 
singularly perturbed systems which exhibit multiple time scale behavior the above 
method will result in secular terms (explode as t t 00). Thus a more general method 
is needed to analyze these systems. In fact, most singularly perturbed control systems 
will have multiple time scales, e.g., adaptive control systems with slow adaptation 
[49], vibratory systems [50, 51, 3, 21, etc. The method of multiple time scales which is 
explained in the following subsection converts an ordinary differential equation into 
a partial differential equation because there is more than one time variable, but the 
method results in solutions that do not contain secular terms. 

2.2.1 Multiple Time Scales Technique 

We examine the following example [43] to illustrate the method. Consider the linear 
damped oscillator 

5 + 5 = -2EX (2.32) 

where E is a small positive parameter. We will first attempt a straightforward asymp- 
totic expansion of x in E, i.e., 

2 = 20 + EX1 + C2X2 + - - (2.33) 

where each successive term in the expansion is of smaller order than the previous 
term. Now, (2.33) is substituted into (2.32) and equating terms of like powers of E 

leads to 

O(1) : & + x o  = 0 
O(E) : 25.1 +XI = -2ic’o 

O(2)  : $2 + 52 = -2&. 

(2.34) 
(2.35) 

(2.36) 

The general solution of (2.34) is 

20 = a cos(t + 4) (2.37) 
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where a and q5 are constants determined by the initial conditions. Substituting 20 
into (2.35) and solving we get 

5 1  = -ut cos(t + 4) (2.35) 

which when plugged into (2.36) results in 

1 1 
2 2 

z2 = -at2 cos(t + 4) + -at sin(t t 4). 

Combining (2.37)-(2.39) we get the approximate solution 

x = ucos(t + 4) - mtcos(t + 4) 
1 
2 + -t2a[t2 cos(t + 4) + t sin(t + 4)] + O(c3). 

(2.39) 

(2.40) 

Clearly there is a problem here. When t > the second and third terms are not small 
compared to the first term and thus we no longer have an asymptotic expansion. In 
fact 51 and 2 2  contain secular terms (terms that explode as t -+ 00). Thus, this 
expansion is not valid for t > O(t-l). 

To see why the expansion failed, we look at the exact solution of (2.32) 

x = ae-" c o s [ J K &  + $1. (2.41) 

The exponential term in (2.41) yields the following Taylor series (about 0) 

1 
2 

e-'t - - 1 - Et + -€2t2 + . . e. (2.42) 

The problem is that t can and wiU become very large which implies that a finite num- 
ber of terms will result in a diverging value even though the infinite series converges 
to zero. When t is as large as E-' ,  the truncated expansion breaks down. All terms 
of the series are needed for the expansion to be valid for all time. Thus to find an 
expansion that is valid for times as large as f ,  the time scale et should be kept as a 
separate variable TI = O(1). 

Likewise, the expansion of the cosine term 

(2.43) 

is not valid for t as large as O(c-'). Then the time scale c2t should be kept as a 
separate variable Tz = O(1). This procedure indicates that x depends not only on t 
but also on e t ,  e2t ,  - *, as well as on e itself. To find a finite expansion that is valid for 
all times up to O ( C - ~ ) ,  we must find the dependence of 5 on the M + 1 time scales 
To, TI, - - -, TM-1 where 

Ti = c a t ,  (2.44) 
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and it should be noted that To = t .  

the chain rule to determine the new time derivatives, i.e., 
To apply these multiple time scales to our original problem (2.32), we need to use 

a d + E- + E 2 y  + . .  d d  
- 

d t  dTo dT1 dT2 

where the time scale Ti is slower than Timl. We can rewrite (2.45) as 

(2.45) 

(2.46) 

where ( = E t  is the slow time scale and 77 = (1 + c2w2 + 
scale. Then z can be expanded as 

e + c’w~)t is the fast time 

M-1 

x ( t ;  E )  = z(t, q;  E )  = EiZ& 17) + U(EM) 
i=O 

(2.47) 

where wi is constant. Note now that the ordinary differential equation has been 
transformed into a partial differential equation. 

Substituting (2.45) (and its second derivative which is obtained in a similar man- 
ner) into (2.32) and equating like coefficients of e, one gets the following partial 
differential equations for x0 and x1 (assuming a two-term expansion) 

(2.48) 

(2.49) 

Using i = fl and overbar to denote complex conjugation, the general solution to 
(2.48) is 

xo = ao(T1)eiTO + iio(Tl)e-iTO (2.50) 

where now the coefficients aren’t constants but instead functions of the slow time 
scale TI. Substituting (2.50) into (2.49), we get the general solution to 2 1  

z1 = a l ( ~ l ) e ’ T ~  + SilTle-’TO 

(2.51) 
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Examining (2.51), we see that x1 will contain secular terms unless a0 is chosen to 
eliminate the last two terms on the right hand side of (2.51). That is 

u o + - = o  
aT1 

which implies 

a. = cge-T1 

(2.52) 

(2.53) 

where ci, is a constant depending on initial conditions. 
We have the freedom to eliminate these secular terms because of the additional 

time scale. A condition on al would be obtained by carrying out the expansion to 
O(e2). In general, to obtain the solution accurate to n - 1 terms, one must carry 
out the expansion to n terms since its the next term that yields the nonsecularity 
condition for the previous term. Thus, we get the following one term expression for 5 

(2.54) 

where initial conditions would determine Q and &. The above expression is accurate 
to O(c) for all t .  To obtain an expression that is accurate to higher powers of E ,  one 
needs to repeat the above process for more terms in the expansion of (2.32). The 
above method is referred to as the derivative expansion procedure [43] which is a 
variant of the method of multiple scales. If (2.46) had been used instead of (2.45) one 
obtains the two variable expansion procedure which would result in the same final 
expression for z. There is also a variant which uses nonlinear scales to handle more 
complicated problems. 

5 =  [&eit + &e-"] e-'t + O(E)  

2.2.2 Composite Control 

Composite control is the application of the multiple time scales method to singularly 
perturbed control systems. These systems have the general form 

j. = f ( x , z , u ) ,  X E  R", u E R' 
€.i = g ( x , z , u ) ,  z E R" 

(2.55) 

(2.56) 

where u is the control variable and the smoothness assumptions and domain defini- 
tions are as in Sect. 2.1. The small parameter E > 0 represents the ratio of the speeds 
of the slow vs. the fast phenomena. The slow subsystem is represented by (2.55) and 
the fast subsystem is represented by (2.56). The control design is broken down into 
two stages. First a control u, is designed for the slow subsystem then another control 
u j  is designed for the fast subsystem. The control applied to the full system is the 
composite control u, = u8 + uf. The method is detailed in Ref. [44]. To understand 
the method, the concepts of slow and fast manifolds must be explained. 
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Definition 2.7 A slow manifold hf, is defined as 

M, = {x, 2 1 2 = h ( z ,  u, E ) } .  (2.57) 

The differentiable function h exists if the Jacobian 2 is nonsingular and h satisfies 

for E sufficiently small. The derivative in (2.58) is defined as 

dh A d h  d h d u  
- + --. 

dx dx d u d x  
_ -  - 

(2.58) 

(2.59) 

This definition can be thought of as the nonlinear analog of a linear subspace. Note 
that (2.58) is an existence condition for the slow manifold M,. Now we introduce the 
fast variable 

(2.60) 

which represents deviations of the fast subsystem from the slow manifold, i.e., it 
represents the transient response in converging to the slow manifold. 

‘The graph in Fig. 4 illustrates slow and fast manifolds for the case of n = rn = 1. 
The family of fast manifolds is represented by lines parallel to the z axis, Le., the 
slow variable x is restricted to some fixed function (in this case a constant). The slow 
manifolds are represented by S1 and 5’2. The “descent” to S1 and Sz along the fast 
manifolds is much faster than the “slide” along the slow manifolds themselves. In this 
figure, S1 is an unstable manifold (i.e., repulsive) while Sz is an attractive manifold. 
Another important property of the slow manifolds is that they are invariant, that is, 
if the system trajectories have converged to the slow manifold they remain there for 
all time. This means that a separate control can be designed to get the system to the 
slow manifold, i.e. fast control, and another control can be designed for the system 
once it is on the slow manifold, i.e., slow control. To exploit this decomposition, the 
slow control is expanded as a power series in E 

(2.61) 

where only a two term expansion is taken in the slow control and no expansion is 
needed for the fast control. 

The slow control is designed by letting 77 = 0 and approximating the slow manifold 
function h by ho + ehl to obtain the slow model 

(2.62) 

7 = z - h ( z , u , E ) ,  

u = uo(z) + E U * ( Z )  + U j ( T ) ,  q ( 0 )  = 0 

5 = f ( x ,  ho + chi, uo + CUI).  

But the choice of uo and u1 is constrained by (2.58), i.e., 

(2.63) 



25 

Fig. 4: Fast and slow manifolds of a singularly perturbed system. 

When the terms of like powers of e are equated, these constraints reduce to 

(2.65) 

where again it is noted that (2.65) is a partial differential equation. 
The design procedure is as follows: solve (2.64) for ho(z, UO) and plug it into (2.62). 

Then (2.62) can be used to design uo(z), the E = 0 slow control term. The uo term 
is then chosen to meet a design objective for e = 0 (e.g., linearization, PID control, 
etc.). Next, we use uo(x) and ho(x,uo(z)) and substitute them into (2.65) to find hl 
as function of x and u. Then hi is substituted into (2.62) which becomes our model 
for the design of the u1 term. This term, which represents a nonzero E correction 
term to uo, will normally be chosen to achieve the same design objective as for uo. 

The fast design model is 

4 = d x ,  h(x ,  21, e )  + 7 7 3 4  - s(z, h(z ,  u ,  €1, u )  (2.66) 

with (2.61) and 5,210, and u1 fixed. Thus, the only variables in (2.66) are 7 and u j ( q ) .  
The purpose of the fast control u f ( q )  is to drive q to 0. This may not be necessary 
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if the fast subsystem is already asymptotically stable (which it often is), but the fast 
control can be used to speed up convergence of the system trajectories to the slow 
manifold where the slow control takes over. The physics of the control problem will 
determine the type of fast control employed. 

It should be noted that the above composite control design procedure is an ex- 
ample of hierarchical control. In Ref. [52] it is pointed out that the slow subsystem 
is a higher level authority which sets the overall control goals of the whole system. 
Suppose there are M fast subsystems each operating on a faster time scale than the 
one preceding it. Then there is a hierarchy where information needed for control 
filters down from the slower subsystems to the faster subsystems. This hierarchy can 
be dynamic as it is in Ref. [52] because each level could be implementing optimal 
control. The slow subsystem can be thought of as a decision-making authority which 
determines the overall control objectives and sends the necessary information to the 
lower level fast subsystems to control the system. This control can be dynamic (i.e., 
optimal) and takes place in real time. 

2.3 SENSITIVITY ANALYSIS 

The primary purpose to feedback in the control of physical systems is to overcome 
uncertainty. Whether this be uncertainty in the model of the plant that the control 
design is based upon, uncertainty in external signals corrupting the plant, uncer- 
tainty in numerical and computational aspects of the processing of information, or 
uncertainty in communications with the outside world, feedback can be employed 
to overcome these difficulties. Figure 5 illustrates the typical feedback control sys- 
tem that is assigned the goal of tracking a given reference trajectory. If there is no 
uncertainty in this system and its environment whatsoever, feedback would not be 
necessary to accomplish this goal. It is precisely because of this uncertainty that 
so much effort has been expended in designing control systems that are robust to 
modeling errors, disturbances, and numerical issues. 

The uncertainty that is most commonly addressed in control theory is that of plant 
uncertainty. This refers to errors in modeling the physical processes of a system. It 
is difficult to write down differential equations that exactly model a system for all 
regions of operation taking into account all the system’s dynamics. The two basic 
types of plant uncertainty are structured and unstructured uncertainty. Structured 
uncertainty refers to errors in the coefficients multiplying the derivatives in the system 
differential equations. More precisely, structured uncertainty manifests itself as errors 
in the parameters of the system. These parameters can be physical constants ( e g . ,  9, 
the acceleration due to gravity) or physical dimensions (e.g., mass, length, material 
properties, etc.). Unstructured uncertainty implies that entire terms are missing or 
ignored in the mathematical model of the system. That is, there may be higher 
order dynamics (e.g., stray capacitances in an electrical network, vibrational modes 
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Controller % 
Fig. 5: Typical feedback control system with goal of driving y ( t )  __+ r ( t ) .  

in an elastic structure, etc.) that are being ignored or cannot be easily modeled. 
Furthermore, control system designers are often forced to work with lower order 
models due to the computational complexity of designing control systems for high 
order systems. 

Sensitivity analysis concerns itself primarily with structured or parametric uncer- 
tainty. Singular perturbation analysis, the subject of the previous section, is primar- 
ily concerned with unstructured uncertainty. Parametric uncertainty is important to 
consider because it is very common in engineering systems, and it can significantly 
alter the performance of the closed loop plant if it is not addressed. Parameters of 
interest besides coefficients of differential equations include initial conditions, natural 
frequencies, sampling times, and time delays. They can be caused by manufacturing 
tolerances, measurement errors, model approximations, component degradation, and 
changes in operating conditions. 

Most feedback control systems are designed based on some kind of model for 
the plant. If the model parameters differ from the plant parameters, the system state 
and outputs may deviate significantly from desired behavior. Repeating the controller 
design for a more accurate model is not only time-consuming but impractical for time- 
varying parameters. Sensitivity analysis allows one to take into account parameter 
errors without repeating the controller design. 

Since a sensitivity function is essentially a gradient (Le., it shows how the system 
state or output changes with respect to the parameters), its most basic uses are in op- 
timization and identification. Examples would be parameter identification, adaptive 
control, optimizing input signals for system identification, and optimal control. How- 
ever, sensitivity analysis is not a panacea for all instances of parametric uncertainty. 
One needs nominal values of parameters as a starting point in analysis then considers 
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perturbations from these nominal values. If one doesn’t know the nominal values of 
the parameters then some adaptive identification might be useful to get these values 
before embarking on a sensitivity analysis design. 

Sensitivity studies usually focus on parameter deviations small enough to require 
the use of only first-order sensitivity functions (to be defined shortly). If parameter 
deviations are large, more than 25% deviation from the nominal values for instance, 
then the theory of Kharitonov polynomials or second order sensitivity functions might 
be more fruitful. Both of these techniques are considerably more complex than first 
order sensitivity functions. Also a problem in sensitivity studies is the appearance 
of external disturbances. Though sensitivity analysis can still handle this situation, 
other techniques such as dynamic disturbance decoupling or sliding mode control 
would be more productive. But, sensitivity analysis can still be used effectively in 
nonlinear and time-varying systems. 

Historically, mathematicians have studied the effects of changes in coefficients 
of a differential equation on its solution. This analysis was motivated primarily by 
the desire to obtain solutions to differential equations when a coefficient was varied. 
Bode was the first to study sensitivity effects in the design of control systems by 
introducing his frequency domain sensitivity function in the 1940s [53]. Horowitz 
defined a more practical sensitivity function for transfer functions, but this was shown 
to be equivalent to Bode’s sensitivity function in the early 1960s [54]. Perkins and 
Cruz extended this function to include MIMO, time-varying, and even nonlinear 
systems via the comparison sensitivity operator in 1964 [55]. 

Kokotovid developed the method of sensitivity points to simultaneously determine 
all output sensitivity functions from a single model in the frequency domain in 1964 
[56]. Wilkie and Perkins extended this idea to state space in 1969 [57,58] via the total 
symmetry property and the complete simultaneity property. Whitaker and colleagues 
were the first to utilize the sensitivity function in adaptive control systems with the 
MIT rule in 1961 [59]. Dorato introduced the problem of parametric sensitivity of 
the performance criterion in optimal control systems during the early 1960s [60]. 
Recent work by Ringulac, Chow, and Winkelman demonstrates a simpler method 
than Wilkie and Perkins for generating the sensitivity functions of a linear MIMO 
system (1988) without requiring a transformation of the system to phase canonical 
form [61]. Extensions to nonlinear systems have been developed by siljak [62]. Texts 
on sensitivity analysis have been authored by Cruz [63, 641, Frank [65], and TomoviC 
[661. 

Consider a general nonlinear system model 

x = f(., a, u ,  t ) ,  .(to) = 20 (2.67) 

where x is the state, a is the parameter vector, and u is the control. The actual 
parameters a differ from the nominal parameters cyo (the parameters used in the 
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model) in the following way: 

(Y = CY' + AGY . (2.68) 

The sensitivity function S relates the error in parameters Aa to the parameter- 
induced errors of the state Ax as follows: 

Ax x S(ao)Acr (2.69) 

where the sensitivity function S depends on the nominal parameters Q' which are 
known. 

The sensitivity function S can be seen as a mapping from parameter space into 
state space. In particular, S maps the subspace of parameter variations Aa about a' 
into the subspace of parameter-induced errors in the state Ax. Figure 6 illustrates 
this concept. This mapping is in general nonlinear, but if deviations are small enough 
we can make a first-order approximation. 

Subspace o& 
A x  about x 

(nominal state 
trajectory) 

Fig. 6: Mapping of parametric deviations into state deviations. 

Briefly, we introduce the concept of frequency domain sensitivity functions. Let 
G = G(s,a)  and (70 = G(s,a0) be the actual and nominal transfer functions. Bode's 
sensitivity function with respect to the j t h  parameter of the parameter vector a is 

[531 

(2.70) 

We can also consider the sensitivity of a transfer function with respect to a subsys- 
tem transfer function. For example, consider the simple closed loop control system 
depicted in Fig. 7. 

The sensitivity of the closed loop transfer function, T ,  to changes in the plant G 
is 

dlnT 1 
BlnG 

s; = - 
1 + G(s, ao)W(s ,  ao) 

(2.71) 
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Fig. 7: Closed loop control system with plant, G, and feedback If. 

where T = &. This result shows that increasing the loop gain G H  will reduce 
the sensitivity of the closed loop system to the plant which is the basis for amplifier 
design. 

Frequency domain sensitivity functions are useful for linear systems but not helpful 
for nonlinear systems. Consider again the general nonlinear system 

i = f(x, a, 21, t ) ,  z(t0) = xo (2.72) 

with an output vector 

y = h ( x , a , u , t ) .  (2.73) 

The output of the system y(t, a' + Aa) can be expanded as a Taylor series about a' 

(2.74) 

If ha << a' (a' # 0), then the series can be truncated beyond the first order term 
with little loss in accuracy. 

If there are p parameters and rn outputs, the output sensitivity matrix is defined 
as 

[z] ' 
0 A a(t ,a  ) = - Iao= 

aa 
(2.75) 

k = 1 , .  . . , m , j = 1 , .  . . ,p .  Thus, to first order, the output error due to parameter 
deviations can be written as 

Ay(t, C Y )  = a(t ,  cro)Aa. (2.76) 
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* -. t- 

Likewise, if there are n states, we define the trajectory sensitivity matrix as 

Modei 

(2.77) 

i = 1,. . . , n , j = 1,. . . , p .  Where again the parameter-induced errors in the state 
trajectory for small Aaj’s are 

Ax(t, a) z A(t ,  ao)Aa .  (2.78) 

One can solve for the sensitivity functions by solving the equations explicitly. 
Another way is to use a structural approach in which the nominal model of the system 
is combined with a sensitivity model to generate the sensitivity functions. Figure 8 
shows the general scheme for generating sensitivity functions via a sensitivity model. 
The signals coming out of the nominal system model going into the sensitivity models 
will vary with the method used. The initial conditions for the sensitivity models are 
always zero. The sensitivity models are always linear even if the plant is nonlinear. 
If the plant is nonlinear or time-varying then the sensitivity model will be a linear 
time- varying system. 

Initial Conditions 

. 

0 ICs 

-+I Model 

0 ICs 
* I  

Fig. 8: Model to simultaneously measure all p output sensitivity functions. 

There are different methods to compute sensitivity functions via sensitivity mod- 
els. In the frequency domain, the two primary techniques are the variable compo- 
nent method [67] and the method of sensitivity points [56]. The variable component 
method is concerned with subsystems that depend on the unknown parameters. Each 
subsystem gets its own sensitivity model which is just a copy of the original subsys- 
tem. In the method of sensitivity points, it is shown that just one sensitivity model 
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is needed to generate all p output sensitivity functions, but it is restricted to linear 
systems. The key point is that the sensitivity model is just a copy of the nominal 
system model (see Fig. 9). This method was extended to state space by Wilkie and 
Perkins [57, 581. 

Initial Conditions 0 ICs 

Y “ct) Sensitivity Nominal 
u(t) System 

Model Model -- d 

Fig. 9: Method of sensitivity points. 

To consider time-domain generation of sensitivity functions, we start with a linear 

j. = AX + Bu,  to) = XO (2.79) 

system 

and an output vector 

Y = C X + D U  (2.80) 

where A,  B ,  C, D depend on the unknown parameters a. The trajectory sensitivity 
model can be formed by writing the differential equations 

(2.81) 
ax dz d A  8B - = A - + - x + - u  
d o  d a  d a  dcu 

dz dC dD 
d a  d a  d a  d a  

= C-+-----z+---u. - 8Y 

Noting the definitions from before, we get the system 

d A  0 dB X = AOX + - x + - u , X(t0) = 0 
d a  d a  

(2.82) 

which is a linear system! Not only that, it has the same A matrix as the nominal 
linear system, and it’s time-invariant if the original system is time-invariant. The only 
difference are some additional input terms. Figure 10 illustrates this relationship. 
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Sen \int itivity '--7q. Sensitivity Point 

Se.nsitivity 
Filters 

Fig. 10: Generation of trajectory sensitivity functions for a linear system. 

This concept can easily be generalized to nonlinear systems (2.72)-(2.73). In this 
case we get the linear but time-varying sensitivity model 

(2.83) 

where the external input, u, is assumed independent of a. For both the linear time- 
varying and nonlinear cases we need p sensitivity models using the above equations. 
This is not necessarily true for linear time-invariant systems due to the results of 
Wilkie and Perkins shown next. 



T w o  fundamental properties of sensitivity models for linear time-invariant systems 
were exploited by Wilkie and Perkins. These properties lead to the fundamental 
theorem which follows below. 
Total Symmetry Property: The antidiagonals of the sensitivity matrix are equal. That 
is, 

’413 ’414 ’415 

(2.84) 

This mcans that there are only 2n - 1 independent trajectory sensitivity functions. 
Complete Simultaneity Property: If the original (linear) system model is put into 
phase canonical form (companion form) then all sensitivity functions can be obtained 
as linear combinations of state variables of a single sensitivity model along with the 
nominal linear system. 

Theorem 2.2 For a linear time-invariant SISO system, all trajectory sensitivity 
functions with respect to all p parameters can be generated b y  the nominal system 
model and just one sensitivity model in companion form. 

This result has not been extended to nonlinear or time-varying systems, but Bingulac, 
Chow and Winkelman [61] have shown that it is not necessary to put the system in 
companion form if transfer matrices are utilized which may require less computation 
for most systems. 

The utility of sensitivity functions is witnessed by their successful application in 
such areas as system identification, adaptive control, optimal control, and sampled- 
data systems as well as their basic purpose of reducing a closed-loop plant’s sensitivity 
to variations in its parameters from modeled values. One such example is illustrated 
in Fig. 11 which shows that sensitivity functions can be used to estimate the unknown 
parameters of a plant. This is done by using the sensitivity functions to update a 
model until convergence is achieved. 

Another example is optimal control. Figure 12 shows how the addition of a sen- 
sitivity model in the feedback loop can reduce the system’s sensitivity to parameter 
deviations while minimizing a cost functional. To decrease the parameter sensitivity 
of an optimal feedback system, the sensitivity functions can be included in the cost 
criterion as follows 

r t .  r P 1 
J = l-’ IxTQr + uTRu + (ATSX,) I dt . 

“LO L i= l  J 
(2.85) 

(2.86) 

The control law then has the form 



35 

U 

Fig. 11: Parameter identification using a n  adaptive model. 

-...-.-Fb hi [ ith Sensitivity 
Model 

Fig. 12: Opt imal  control using a sensitivity model.  

where the gains, IC, are determined via Riccati equations. 
The purpose of this section besides surveying methods of sensitivity theory was 

to establish a mathematical framework for some of the results that follow in this 
report. These results employ sensitivity models in decentralized control schemes as 
well as optimal feedback loops to reduce a system's sensitivity to parameter errors. 
Much recent control theory effort has looked at sophisticated techniques for handling 
uncertainty such as H" methods and Kharitonov polynomials. Though these results 
are quite useful for many applications, the relatively old ideas of sensitivity analysis 
should not be forgotten since they do not require as much mathematical sophistica- 
tion. These ideas have also been very successful in industry and can still be applied 
to challenging problems in control theory as this report demonstrates. 
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1 

2.4 DECENTRALIZED CONTROL 

In many large-scale systems it would be impractical to send information from one 
controller to another due to hardware and communication constraints. Thus, decen- 
tralized control is a necessary strategy to controlling these large systems. Decentral- 
ization implies that each controller will use only input/output and state information 
available at its own channel to generate its input signal. Decentralized control may 
be necessary to achieve a degree of redundancy in a system since if one controller 
fails or malfunctions there are still other controllers that could accomplish the de- 
sired objectives. In addition, decentralized control provides relief from the extreme 
computational burden that would be inherent in a centralized control approach to a 
large-scale system. Figure 13 shows the general decentralized structure where each 

+ 

controller has access only to the output (and possibly the associated 
at the local channel where the input signal will be applied. 

Decentralized Control 

state) present 

Fig. 13: Decentralized control architecture. 

Historically, decentralized control has its origins in hierarchical control which was 
developed by Lefkowitz, MesaroviC, and colleagues in the 1950s and 1960s. Hierarchi- 
cal control is primarily an open loop strategy though it can be done in a closed loop 
setting. Early work in decentralized control can be credited to Wang and Davison 
[68] who introduced the concept of decentralized fixed modes, siljak and VukEeviC [69] 
who developed decentralized stabilization schemes, and Davison [70, 71, 721 for intro- 
ducing the concept of the decentralized servocompensator. Geromel and Bernussou 
[73, 741 contributed to decentralized optimal control schemes and Sundareshan [75] 
developed decentralized state estimators among others. Other mathematical tech- 
niques such as game-theoretic methods (Mageriou and Ho [76]) and graph-theoretic 
methods (Sezer and Siljak [77]) have been employed to develop decentralized stabi- 
lization strategies. Surveys and texts on decentralized control by Sandell et al. [78], 
Jamshidi [79], and Siljak [SO] among others explain these and other topics in detail. 
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Mahmoud [81] defined a system as "large" if it required more than one controller. 
This definition certainly includes many of today's large power, space, and industrial 
systems. Decentralized control has become common in these systems, but little has 
been done in the arena of nonlinear large systems. This motivates much of the work of 
this report. Indeed, Chap. 4 looks at optimal and robust control of nonlinear systems 
via decentralized control. 

The primary disadvantage to decentralized control is that one cannot achieve any 
better performance and often not even as good a performance as with a centralized 
control strategy. This is apparent in pole placement involving state feedback. In a 
centralized control strategy one has access to the full state and thus can achieve the 
limits of performance allowed by the controllability properties of the system. But in 
a decentralized setting, there may be open-loop poles called fixed modes[82, 83, 681 
that cannot be placed where one desires even though they may be controllable in a 
centralized sense. Thus, one must be careful in designing decentralized controllers. 
The concept of fixed modes was introduced by Wang and Davison [68] and are defined 
simply as the modes of a linear system that are invariant under decentralized static 
output feedback. If any of these modes are unstable then even dynamic decentralized 
output feedback will be unable to stabilize the system. Algebraic conditions for the 
existence of such modes were formulated by Anderson and Clements [82] as well as 
Davison and Ozgiiner [83]. 

For each input/output channel a control framework must be decided upon. That 
is, the structure of the feedback law must be determined Q priori. Currently, the 
most popular approaches to decentralized controllers are optimal control, adaptive 
control, and variable structure control. The optimal control approach utilized in this 
report is the decentralized servocompensator of Davison [70, 71,721 further refined by 
Geromel and Bernussou [73, 741 which is outlined shortly. This technique attempts to 
minimize a quadratic cost criterion with penalties on the input signal and a composite 
state which consists of the output error (from a specified setpoint) and the derivative 
of the state for each channel independently. The resulting controller is a proportional 
integral (PI) controller, i.e., the input signal of the ith channel will be proportional 
to the state available at the ith channel and the integral of the output error at the ith 
channel. The feedback gains are obtained by solving two coupled Lyapunov equations 
1841. One of the primary uses for this compensator is that of disturbance attenuation 
for large-scale systems under decentralization constraints [85]. 

The most common applications for decentralized control are large-scale systems in 
which the processing of information would be impractical on a Centralized basis. Such 
systems include large space structures, e.g., the proposed space station, large power 
systems, transportation and wide area communication networks, and manufacturing 
systems. Even smaller systems such as multi-arm robotic manipulators and multiple 
mirror optical tracking systems are more conveniently designed with decentralized 
control laws. 
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Consider the basic decentralized quadratic regulator problem: 

N 

i = Ax+C B;u;,  ~ ( 0 )  = xo 
i=l 

(2.87) 

(2.88) 

where N is the number of input/output channels, mi is the dimension of u;, and p;  
is the dimension of y;  . We wish to minimize the cost criterion 

N 

J = L W  ( x T Q x  + uTRiui) dt 
i=l 

(2.89) 

with the following feedback structure constraint 

ui = I(; y; , i = 1,. . . , N .  (2.90) 

It can be shown that [73, 74, 50, 84, 861 the necessary conditions for minimizing J 
given by (2.83) with the controller structure (2.90) imply the solution of the following 
system of nonlinear algebraic equations: 

ATP + P A ,  + Q = o 
A,L + LA: + XO = 0 

and 

where 

N 
Q = Q + C C ;  T T  Iii R,KiCi 

i=l 
T XO = X O X O .  

(2.91) 

(2.92) 

(2.33) 

The incorporation of set-points into the standard quadratic regulator problem is 
considered next. Consider the system 

j. = A x + B u  

yr = c x ,  

J = L W ( z T Q z  + tiTRzi)dt, 

under the cost criterion 

(2.34) 

(2.95) 
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where z ( t )  is defined as 

(2.96) 

AY(t) !i YT(t) -?A (2.97) 

and y d ,  a constant set point, has been specified. 
The state equations for the system with zi as input and z as state vector can now 

be written. If Q =block-diag{Q1,Q2} then the solution of the above problem takes 
the form 

u = IC's + IC2 (yr(.) - yd)d7- (2.98) Jd 
where the {IC', K 2 }  pairs are calculated from the associated Riccati equations. 

Let the matrix solution to the Riccati equation be partitioned as 

and let 

S = BR-'BT 

Then the Riccati equation decouples into three equations: 

-PTSP3 + Q Z  = 0 

As can be seen, P3 can be calculated from the first equation. Then 

P2 = P,T(A - S P  l)cT(CCT)- ' ,  

and PI can be calculated from the Riccati equation 

T T  ATPI + PIA - PiSPi+ (& + C P3 + P3C) 3 0 .  

The optimal cost is given by 

J" = zT(0)Pz(O). 

(2.99) 

(2.100) 

(2.101) 
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2.5 SUMMARY 

This chapter has surveyed some common control system design methods that will 
be utilized in later chapters. It is by no means meant to be an exhaustive reference 
for most control design techniques in use today. The chapter highlighted nonlinear 
control theory with emphasis on feedback linearization and nonlinear observers. The 
techniques of singular perturbations and sensitivity analysis, which have proven useful 
for both linear and nonlinear systems, were reviewed as methods for the robust control 
of nonlinear systems. The subject of decentralized control was also analyzed and is 
well-suited to the control of large-scale systems. 

Many other control techniques have proven useful in nonlinear and large-scale 
systems but are not included here due to the scope of this report. For instance, 
the theory of sliding modes has been applied to the control of nonlinear systems 
since it was introduced in the West by Utkin [87]. This theory has been effective 
in dealing with modeling uncertainty and external disturbances for both linear and 
nonlinear systems. The idea is to utilize a switching control law to drive the system 
to a sliding mode on which the system is immune to external disturbances. The 
primary disadvantage to this approach is a discontinuous control law that can lead 
to chattering in the system response. 

The theory of adaptive control is also applied to the robust control of nonlinear 
systems. Here, the uncertain parameters are updated on-line until convergence to 
their true values is achieved. The drawback is a nonlinear time-varying feedback loop 
whose dynamical behavior is not always well-behaved. Describing functions are yet 
another approach to nonlinear control. These functions are an analytical tool used to 
predict the existence of limit cycles. The idea is to approximate the nonlinearities in 
question as linear gains with a sinusoidal input signal. This is essentially a nonlinear 
Fourier analysis. It is most useful when input signals are sinusoidal or nearly so. It is 
not as useful in the case of modeling uncertainty. The theory of H" control is dedi- 
cated to a broad range of uncertainty in systems but is primarily geared toward linear 
systems. Some recent results utilizing game theory have been aimed at addressing 
uncertainty in nonlinear systems [88], but this is still in the early stages. 

Besides decentralized control, the techniques of hierarchical control and supervi- 
sory control have been applied to large-scale systems. Though not strictly decentral- 
ized, these methods take advantage of the interconnected nature of large-scale systems 
by applying multi-level strategies to control design. In this report, decentralized con- 
trol was chosen due to the lessening of computational burdens in local control laws. 
However, combinations of decentralized and multi-level control strategies would be 
useful in dealing with large space structures especially when it comes to determining 
control objectives at the subsystem level. 



CHAPTER 3 

FEEDBACK LINEARIZATION RESULTS 

3.1 OPTIMIZATION OF FEEDBACK LINEARIZABLE 
SYSTEMS 

The principal idea behind feedback linearization is to be able to cancel system non- 
linearities in some new coordinate system such that the transformed system behaves 
as a linear one. Much research has focused on techniques for achieving this lin- 
earization as well as methods for handling uncertainty in the plant model (see Refs. 
[89, 90, 91, 921). But very little attention has been paid to performance issues in 
feedback linearizable systems. In particular, the problem of finding a control which 
minimizes a quadratic cost function for a feedback linearizable system has not been 
addressed in a systematic manner. 

The problem of optimizing cost functionals for nonlinear systems has been studied 
extensively for many decades (see the texts of Refs. [93, 941 for details), but for a 
standard quadratic cost criterion the problem is virtually intractable for all but the 
simplest nonlinear systems. However, it should be possible to take advantage of the 
linearizability of some nonlinear systems and solve such a problem. In this section, 
we propose a method which combines feedback linearization with the linear quadratic 
regulator (LQR) problem. On the surface, such a problem would seem fairly simple. 
But when one applies the linearizing coordinates transformation, the cost function 
changes from a quadratic one to a non-quadratic index in general. This new problem 
consisting of a linear system with a non-quadratic cost index can be just as difficult 
to solve as a nonlinear system with a quadratic index. 

There are two simplifying approaches one might attempt in this situation. The 
first is to use operating-point linearization (Le., Taylor series linearization) to  lin- 
earize the nonlinear system about some point of interest and then use the original 
quadratic cost index to solve the LQR problem. Though this approach is mathemat- 
ically tractable, it has the disadvantage of only being applicable in a small region of 
the chosen operating point. This will either necessitate restrictions on the operat- 
ing region or require successive linearization about a series of operating points and a 
schedule for assigning LQR gains. This may be too restrictive for most applications. 
The other approach is to feedback linearize the system and continue using the same 
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Q and R matrices for the new coordinates and control inputs. This approach implies 
the minimization of an altogether different performance index which will very likely 
yield physically meaningless solutions. 

Our approach is to feedback linearize the system followed by an approximation 
on the transformed cost index to yield a quadratic criterion with a cross-term. The 
result is an  easy problem to solve via LQR theory. These new Q ,  R, and S matri- 
ces (the 5' matrix multiplies the cross-term) represent a good approximation to the 
original quadratic cost index in the linearizing coordinates and new input term. In 
addition, the cost of the feedback linearization itself is being accounted for in this 
cost functional. We begin by defining the problem followed by our solution. We end 
by looking at a robotics problem in which it is desired to minimize a quadratic cost 
functional while slewing a payload-carrying link through a given angle. Comparisons 
will be drawn between our approach and the other aforementioned approaches to this 
problem. 

3.1.1 Problem Statement 

Consider the following nonlinear system with outputs 
9n 

i=l 

Yi = k ( X )  

where i = 1,. . . , rn, x E R", and f ,g ; ,h;  are smooth vector functions defined on E'. 
We want to find the control vector u = [ul , u2 , . . . , urn] such that the quadratic cost 
index 

J = J,"(zTQx + uTRu)dt (3.2) 

is minimized. The matrices Q and Rare  of appropriate dimensions and time-invariant. 
We shall refer to this as the Nonlinear Quadratic Regulator (NQR) problem. We 
assume that the cost index (3.2) is a physically relevant quantity (such as energy), 
and its minimization is of practical significance. We concern ourselves with nonlinear 
systems (3.1) that are state space feedback linearizable. That is, we need the following 
assumption. 

Assumption 3.1 The vector relative degree {rl, r2,. . . , rm}  (see Sect. 2.1.1 for a 
definition) satisfies rl + 7-2 + * - - + r,  = n about some point 20. 

Assumption 3.1 guarantees the existence of a diffeomorphism z = @(x) and smooth 
state feedback u = u ( z )  + b(z )v  such that in the linearizing coordinates, z ,  we obtain 
the linear system 

. i = A z + B v ,  y = C z  (3.3) 
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where (A,B,C)  are in Brunovsky canonical form and v = [v i ,  v 2 ,  . . . , vm] is a vector 
of external inputs. 

3.1.2 
We wish to elaborate on several possible solutions to the NQR problem that one 
might attempt. These methods will serve as a basis for our method. 
Method 1. Taylor series linearize the system about some operating point (Le., throw 
out the higher order terms) and solve the subsequent LQR problem. This could be 
done about a series of operating points with a gain scheduling approach. 
Method 2. Feedback linearize the system and set J = JOO(z*Qz + vTRv)dt. Then 
solve the LQR problem in the z coordinates (; .e. ,  the same Q and R as in (3.2) are 
utili zed). 
Method 3. Solve the Euler-Lagrange equations to obtain an exact solution. 

Method 1 implies that the system (3.1) behaves linearly near an operating point. If 
such operating points exist and are of interest then this is a valid method. However, 
restricting the system to operate in a region near these operating points may be 
impractical. Furthermore, higher order nonlinearities are being ignored which implies 
that the closed-loop system will still be nonlinear. Method 2 is a naive approach 
that, though simple, will yield meaningless results except when z is nearly equal to 
2. Method 2 has actually changed the problem into a different one since minimizing 
this cost criterion will not solve the original problem. Thus, the results will have little 
physical meaning. Finally, Method 3 is a mathematically rigorous means of solving 
the NQR problem. However, for most systems of dimension n > 2 the solution will 
be exceedingly difficult to obtain. With this motivation, we propose the following 
met hod. 
Method 4. We proceed as in Method 2 by feedback linearizing the system with 
z = @(x) and u = a ( z )  + b(z)v. But in order to retain the physically meaningful 
performance index (3.2), we substitute x = @-'(z) and u into J to get 

Methods for Solving the NQR Problem 

We then approximate the above by 

J = l m ( z T Q * z  + vTR*v + 2zTS'v)dt (3.5) 

where Q*,R*,S* are constant matrices. These matrices are obtained by expanding 
@-'(z), a ( z ) ,  and b(z)  about an operating point and truncating to first order. These 
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matrices are as follows 

Q' = (E 1 ) -T Q (aQ) -' + (E l z = * o ) T  f2 (2 I*=..) (3.6) dz 5=zo d X  

where xo ( z O  = Q ( x 0 ) )  is the vector of operating points. With the linearized system 
i = Az + Bv, the LQR solution will be 

2, = -R*-' [BTP + st'] z (3.9) 

where P is the positive definite solution to the Algebraic Riccati Equation 

0 = P ( A  - BR*-lS*T) + (AT - S*h?-'BT)P 
- S*F -1 S* T - PBR*-'BTP + Q* 

(3.10) 

The optimal cost is J* = zT(0)Pz(O). We also need the following assumption for the 
LQR problem with cross-term to exhibit a nonnegative definite solution to (3.10) and 
an asymptotically stable closed-loop system [95]. 

Assumption 3.2 (a.) R* > 0 (this will be satisfied if R > 0 since b(z0) # 0 due to 
Assumption 3.1). 
(b.) Q* - S*R"-lS* > 0. 
(c.) The pair ( A ,  B)Ts stabilizable. 
(d.) The pair ( A ,  D) is detectable where DDT = &* - S*R*-'S*T. 

3.1.3 Derivation of the Method 

The purpose of this method is to provide us with a means of choosing a cost index 
for the linearized system that is in some sense close to the original cost index. The 
matrices from above are derived by considering the cost criterion (3.2) with u = 
u ( z )  + b(z)u  and z = a(.). This results in Equation (3.4). The next step is to expand 
the vector fields @(z), a ( z ) ,  and b ( z )  about the operating point zo = @(xo). That is, 

(3.11) 
dcp 
d X  a(.) = a(~0)  + - Iz=zo (Z - 50) + H.O.T. 

dU 
dz 
d b  
dz 

a(.) = ~ ( 2 0 )  + - lz=zo ( Z  - ZO) + H.O.T. (3.12) 

(3.13) b ( z )  = b(zo) + - (z=zo (2 - zO) + H.O.T. 
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where it is assumed that the above vector fields are analytic about 50 and &, respec- 
tively. From (3.11), z can be approximated as 

(3.14) 

for x near 20. Now, (3.11)-(3.14) are substituted into (3.4) resulting in the following 
performance criterion 

- ~ ~ * ( z o ) R  (g z0 + H.O.T.]dt . (3.15) 

Remark 3.1 The formulas for Q', R', and S' can be obtained from the first four 
lines of (3.15) which yields (3.6)-(3.8). The remaining terms from above will not 
affect the minimizing control law since they are either first or zeroeth order in z or 
v. The higher order terms are neglected. Note that the inverse of the Jacobian of 
@(x) will exist since a(.) is a diffeomorphism. The operating point xo can be chosen 
as the equilibrium point of the plant or as a series of operating points. But this is 
still preferable to Method 1 because the system remains linear. Also note that all 
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rnatrices A,B,C,Q*,R*, and S* are time-invariant since f(x),g(x),h(x),Q, and R are 
time-invariant. Finally, the true solution to the NQR problem is in general a nonlinear 
controller. Thus, our method is a means of finding a linear optimal controller for 
a quadratic cost index that closely approximates the original NQR problem. The 
control law is optimal insofar as the quadratic cost index approximates the original 
performance criterion. 

3.1.4 Example 

Consider the one-link flexible joint robot depicted in Fig. 14 [96]. The system is 
described by 

(3.16) 

which is a fourth-order nonlinear system. The nonlinearity is due to gravity. The 
system is placed into state space form by letting XI = 41, 2 2  = 41, 23 = 42, 2 4  = 42, 

y = q1 which gives us 

(3.17) 

where the control u is a scalar representing torque output from the joint motor and 
the output y is a scalar representing the angular displacement of the link with respect 
to the base coordinate frame at the motor. 

We wish to minimize the performance index J = J,"(xTQx + urRu)dt where 
Q = I and R = 1. A check of the system's relative degree reveals r = n = 4 
'dx E R4. Computing the coordinate transformation z = a(.) and the linearizing 
feedback u = u ( z )  + b(z)v results in a linear controllable system of fourth order in the 
Brunovsky canonical form (A ,B ,C) .  To simplify notation, let the physical parameters 
I , J , k , L , M g  be set to one. This yields 

1 
21 

2 2  

- sin51 - (21 - 53) 

-z2 cos 21 - ( 2 2  - 54) 

z = @(x) = (3.18) 

u = u(z )  + b(z).u = - [z i s inq  - (cosz1 + 1)z3 - (23 + sinzl)] + v . (3.19) 

We choose the operating point for the expansions (3.11)-(3.13) to be the same as the 
intended final state, 20 = [0 0 0 0IT which is an equilibrium point. That is, we wish to 
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Fig. 14: One-link manipulator with joint flexibility. 

drive the system from various initial conditions to a state at which there is no torsion 
on the spring joint and all states are at rest. 

The Q*,R*,S* matrices are now computed via the formulas (3.6)-(3.8) utilizing 
the above information 

6 0  5 0 

Q*=[! Po R * = l ,  S * = [  : I .  
0 2 0  1 

(3.20) 

Clearly, the strategy of Method 2 results in quite different matrices than Q* and S* 
above. It i s  easily shown that the conditions of Assumption 3.2 are satisfied. Indeed, 
for (c . )  and (d.) complete controllability and complete observability hold which 
implies that the solution of the algebraic Riccati equation will be unique and positive 
definite. 

Three different LQR designs were carried out representing Methods 1,2, and 4. 
Method 1 was implemented about the operating point 3 0  = [0 0 O Q]*. For Method 
2, Q = I ,  R = 1, and S = 0. Method 4 is outlined above. An initial condition of 
z(0) = [45" 0 35" 01 representing a 10" initial twist on the spring was simulated with 
the desired final state at zero. The simulations were carried out on MATLAB (trade 
name of The Mathworks, Inc.), and the results are tabulated in Table 1. 

Remark 3.2 In Table 1, the approximate cost for Methods 2 and 4 refers to J* 
with the higher order terms neglected. Thus, the true cost includes these terms. 
The approximate cost for Method 1 yields J" for the linearized system. The true 
cost for Method 1 refers to J* with the obtained optimal control law applied to 
the true nonlinear system. As can be seen, Method 2 yielded much higher costs 
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Table 1: Simulation results for flexible manipulator  example 
Approximate cost True cost Closed-loop poles 

Method 1 2.6704 2.6058 -0.6726kj0.7042, -0.2517fj 1.5874 
Method 2 5.3772 4.6435 -0.9511fj0.309, -0.5878fj0.809 
Method 4 2.6755 2.6286 -0.6726fj0.7042, -0.2517kj1.5874 

and closed-loop poles in locations quite different from the other two methods. The 
operating-point linearization method and our method yielded the same closed-loop 
poles. These poles more accurately represent the desired performance implied by the 
original cost function than is the case for Method 2. But it must be pointed out for 
Method 1 that the true closed-loop system is nonlinear, whereas it is exactly linear 
(in 2) for Method 4. The costs of these two methods are nearly equal. Note also that 
the true cost for Method 4 is only 1.8% less than the approximate cost indicating that 
the quadratic approximation of (3.15) was justified for this example. Finally, Method 
3 was attempted, but as mentioned earlier, it proved intractable for a fourth-order 
nonlinear system. 

3.1.5 Conclusions 

We have presented a method for optimal control of feedback linearizable systems. 
This method exactly linearizes the system (in the state space sense) and solves the 
resultant LQR problem by approximating the performance index in the linearizing 
coordinates as a quadratic index. The optimal control law for this method is con- 
siderably easier to compute than would be the case for exact optimal solutions via 
Euler-Lagrange equations. This allows one to compute optimal controllers for much 
higher order systems than otherwise possible. In addition, the method has the advan- 
tage of producing a closed-loop linear system that is globally linear instead of locally 
linear around an operating point (provided that the feedback linearization is globally 
defined). 

It is this last point that provides the principal advantage over Taylor series lin- 
earization. In the case of Taylor series linearization, the closed-loop system remains 
nonlinear which implies that concepts such as closed-loop poles are no longer valid. 
In our method, even though the performance index is approximated, the closed-loop 
system will still be linear making concepts such as pole placement more appropriate. 
A fourth-order robotics example was presented that illustrates the method and its 
performance as compared to more simplistic approaches. 
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3.2 ROBUST FEEDBACK LINEARIZATION 

In this section, we consider the robust control of nonlinear systems that exhibit para- 
metric uncertainty via feedback linearization. The principal difficulty with feedback 
linearization is that the system dynamics must be known exactly for the nonlinear- 
ities to be successfully cancelled. Uncertainty in the system will result in residual 
nonlinear terms which will make the stabilization of the system more difficult. Un- 
certainty in nonlinear systems can arise from many sources: parametric uncertainty, 
unmodeled dynamics, computational errors, implementation details (e.g. sampling), 
etc. We consider the first of these sources. 

Parametric uncertainty can arise from inexact knowledge of system quantities such 
as lengths, masses, material constants, etc. This is a common situation in engineer- 
ing applications. But the elegance and utility of feedback linearization methods make 
it desirable to try to combine a linearizing control law with a stabilizing controller. 
Much work has been done in this area from two primary viewpoints. First, there is 
the adaptive control approach. Work done by Nam and Arapostathis [97] and Sastry 
and Isidori [98] assume that the family of systems characterized by the uncertainty 
is feedback linearizable. That is, that the range of uncertainty does not alter the 
linearizability of the true plant. The works of Akhrif and Blankenship [89], Kanel- 
lakopoulos et al. [99], and Taylor et al. [92] only require the linearizability of the 
nominal plant but additionally assume the satisfaction of a matching condition. 

In parallel with this approach are the Lyapunov based Stabilization methods of 
Spong et al. [91, 961. This method assumes an available (or computable) model that 
is feedback linearizable and further assumes that the uncertainty satisfies a structure 
matching condition. The drawback to this approach is that the linearizing coordinate 
transformation depends on the uncertainty, thus it is unknown. This makes the 
stabilization difficult to implement without an observer (see Sect. 2.1.2 for theory on 
construction of observers for nonlinear systems). But, the method has the advantage 
of not requiring the additional nonlinear dynamics of an adaptive control law. The 
stabilizing control law is based on the idea that the Lyapunov function for the nominal 
linearized system remains a Lyapunov function for the perturbed system provided 
that the matching condition holds and the residual nonlinearities can be bounded 
from above. 

Here, we follow the Lyapunov based approach, but we employ a different param- 
eterization of the system which avoids some of the liabilities of the methodology in 
[91, 961. Earlier work based on this approach appears in Ref. [go]. One of the key 
differences between this work and that in [91,96] is that we show exponential stabil- 
ity is possible instead of just uniform boundedness. We start by expanding the state 
space equation of the uncertain system about the nominal parameter vector. Next, 
we linearize the nominal system (which is assumed to be linearizable) which results in 
a linear subsystem with higher order nonlinear terms. The linearizing coordinates are 
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completely known (assuming the original state is measurable). Furthermore, the up- 
per hound on the uncertain residual terms is much easier to obtain in this framework 
since this bound can be expressed directly in terms of parameter variations. 

This is intuitively appealing for sensitivity analysis studies in which one is inter- 
ested in examining the stability of a system under specific relative parameter varia- 
tions. We also require a matching condition, but only the nominal system need be 
linearizable. Finally, we analyze the case of nonlinear systems with zero dynamics. 
The result with full relative degree is extended when there is a deficiency in relative 
degree. It is shown that exponential stability is still possible, and all bounds can 
be computed a priori or easily measured on-line. Two examples are presented to 
illustrate the methods of this section. 

3.2.1 Problem Statement 

Consider the single-input , single-output (SISO) nonlinear model 

x = f(z,a)+g(z,a).U 
Y = h(4 

(3.21) 

where it is assumed that f(x,a), and g(x,cy) are C" vector fields defined on a dense 
submanifold A4 c R". It is also assumed that h(x) is C" on M .  In addition, x is 
defined on an open set U of R". The vector cy is the unknown parameter vector. It 
is assumed that f and g are smooth vector fields for every CY E B, c R p  where B, is 
an admissible set of unknown parameter vectors. Without loss of generality, we also 
assume that f(0,cr) = 0 and h(0)  = 0. The nominal parameter vector a, is assumed 
known and the perturbations about on are represented as 

cy = CY, + Sa. (3.22) 

Furthermore, the vector fields f and g are analytic in a about a = cy,. 
Our goal is to find a diffeomorphism @(x) on it4 and nonlinear functions a(.) and 

b(z) such that the nominal system is rendered linear in the coordinates z = a(.). 
That is, 

with the nonlinear feedback 

(3.23) 

(3.24) 

u = u(x) + b(z )v .  (3.25) 
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This results in the linear plant 

i = A z + B v  
y = CZ 

(3.26) 

where (A ,B ,C)  are in the Brunovsky canonical form [32]. 
The input w will not only be utilized to stabilize the nominal linear system (which 

has all its poles at the origin), but it will be used to exponentially stabilize the system 
once the parametric uncertainty is introduced. In the following sections, we define the 
Taylor series expansion about cy, and the control approach to stabilizing the uncertain 
system. In this section, all vector norms are assumed to be the usual Euclidean norm, 
and all matrix norms are consistent with this vector norm. 

3.2.2 Modeling of the Parametric Uncertainty 

We begin by expanding j. as a Taylor series in Q about Q = a, 

(3.27) 

where it is noted that we have made no assumption regarding the linearity (or nonlin- 
earity) of the uncertain parameters. We do, however, need the following assumption. 

Assumption 3.3 The relative degree (see Sect. 2.1.1 for a definition) of the nominal 
system 

is r = n. 

Assumption 3.3 implies that the diffeomorphic state transformation 

and the standard linearizing feedback 

21 = +,%) + b(.,a.,)v 

(3.28) 

(3.29) 

(3.30) 
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result in the perturbed system 

(3.31) 

y = c z  
where C f h ( z )  = g j  denotes the Lie derivative of h ( z )  along f ( x ) .  With the exception 
of 6a (which can easily be bounded once relative parameter deviation is considered), 
all terms in (3.31) are known since they are evaluated about a = a,. If the system 
is linear in the uncertainty CY then the expansion (3.31) will be exact to first order in 
6cr. We now make the following assumption. 

Assumption 3.4 The parameter vector a appears linearly in (3.21). 

Assumption 3.4 is reasonable since in most sensitivity studies one will normally 
consider maximal parametric deviations of no more than 15 or 20% which will make 
the second order term quite small, For most of the literature on nonlinear systems 
with parametric uncertainty, the unknown parameters are assumed to appear linearly 
in the system dynamics. However, the work of this section can easily be extended 
to higher order terms in Sa as suggested by the expansion in (3.27). We shall note 
this throughout the section by denoting O((( 6cr 1 1 2 )  where higher order terms can be 
inserted. 

3.2.3 Robust Stabilization 

The first step in the stabilization of the true nonlinear model is to place the poles 
of the nominal linear system (A,B,C)  into the left-half plane. This can be done via 
linear quadratic regulator theory or pole placement methods and will not be further 
discussed here. Instead, we assume the existence of a constant 1 x n matrix I( (which 
is easy to find since the pair ( A $ )  is completely controllable) such that A, = A+ BK 
is stable. Thus, we let v = l i z  + Av which results in the new model 

i = A , z + B A v  

(3.32) 

where Av i s  an additional control term to stabilize the residual nonlinearities. To be 
able to control the above model, we need a matching condition that guarantees that 
the uncertain nonlinear terms lie in the range space of the input. More formally, we 
need the following assumption. 
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Assumption 3.5 
and I,=,, Sa E 

The above assumption simply means that the uncertainty in (3.21) is mapped 
to a reachable part of the input space when transformed by the nominal linearizing 
coordinates. This assumption is less restrictive than some in the literature due to the 
fact that the Span{g(z,a,)} depends only on the nominal value of the parameters 
whereas in some works (e.g. Ref. [91]) it will depend on the uncertainty. It is also 
easier to satisfy than the feedback linearizability of (3.21) V a  f B, (as is required in 
Ref. [98]) because the relative degree of a system can be sensitive to small changes 
in parameters. Furthermore, the second part of Assumption 3.5 can be relaxed by 
replacing it with a condition involving Lie brackets as outlined in Ref. [as]. It is shown 
there that this condition involving Lie brackets is less restrictive than the above. We 
now rewrite (3.32) as 

i = A,z + BAv + q ( z ,  Av) (3.33) 

where higher order terms in Sa have been ignored and 

(3.34) 

Our next assumption concerns the bounds on the uncertainty term q ( z ,  Av). 

Assumption 3.6 We assume the existence of a function p ( z , t )  such that 11 77 I[< 
d . 7  t )  and II Av llL p ( z ,  t ) .  

The second part of this assumption will automatically be satisfied once the control 
law is chosen. The function p ( z ,  t )  is written explicitly as a function of time because 
it depends on the state z.  Utilizing the above and the triangle inequality, we get 

(3.35) 

It is important to note in (3.35) that everything on the right hand side is known 
a priori except for s:pll 5cr 11 which is easily determined once one decides on a relative 
parameter deviation to consider. That is, we have expressed the uncertainty directly 
in terms of the parameter deviations which is physically more meaningful than if the 
parametric uncertainty were embedded within a complicated expression. For instance, 
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if one wishes to determine the effects of 15% relative uncertainty for a scalar nonzero 
cr then cy 11 Sa \I= 0 . 1 5 ~ ~ .  Our next assumption concerns the measurability of the 
state. 

SUP 

Assumption 3.7 The state 5 (hence z )  is available by direct measurement or via an 
observer. 

The key idea is that since the transformed state z is defined about the nominal 
parameters cy,, it will be measurable if 2 is measurable. The exponential stability 
proven in this section is local due to the term in brackets in (3.35) possibly becoming 
unbounded. This determines the set S of admissible initial conditions. From (3.35), 
the term in brackets must be bounded away from zero for all time to avoid a singu- 
larity. Since exponential stability will be proven in Theorems 3.1 and 3.2, we only 
require this inequality to hold at time t = to. Under the conditions of the theorems, 
the inequality will then hold for all time. This is an advantage over Refs. [91, 961 
which can only claim uniform boundedness. 

Assumption 3.8 The inequality 

(3.36) 

must hold at the initial conditions zo = @(xo) and t = to.  

Additional assumptions made on the structure of p(z, t )  in [91, 961 are not needed 
here which leads to a simpler control law to implement. The set of admissible initial 
conditions S is then defined as 

(3.37) 

The theorem that follows gives us the control law for Av and the stability result for 
the full system. 

Theorem 3.1 Under Assumptions 3.3-3.8, the equilibrium z = 0 ofthe system (3.33) 
is exponentially stable with respect to initial conditions lying in S (defined in (3.37)) 
if Av satisfies 

(3.38) 

where 11 B /I= 1 for the SISO case, and P is the unique symmetric positive definite 
solution to the Lyapunov equation 

(3.39) 

with Q a given symmetric positive definite matrix. 
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Proof: We first note that all terms in the above control law are completely known 
except for s&pII 6a 11 which was discussed earlier. Further, the second part of As- 
sumption 3.6 ( 1 1  Av 112 p ( ~ ,  t ) )  is satisfied by the above choice of control law. The 
proof follows some of the steps in the proof of Theorem 1 in Ref. [ lOO] ,  but we show 
exponential stability due to the different assumptions in this section. 

We start with the Lyapunov function for the nominal linearized system, V ( z )  = 
zTPz.  We proceed by showing that V ( z )  is also a Lyapunov function for the system 
(3.33) with respect to the set S in (3.37). Differentiating along solutions of (3.33) 
and utilizing (3.39), we obtain 

V = 
= 
= 

2zTPA,z + 2 z T P B A v  + 2zTPq(z, Av) 
-zTQz + 2zTPBAv + 2rTPq(r, Av) 
-zTQz + 2zTPB(Av + f j ( ~ ,  Av)) ) (3.40) 

where the last line is obtained from Assumption 3.5 (matching condition). This 
condition implies the existence of a function f j (z,  Av) such that 

~ ( z ,  Av) = Bfj(z, Av) . (3.41) 

A bound is obtained on ij as follows. 

II 'I 11=11 Bii 11=1 ii I l l  B 112 P ( Z ) t )  

since fi is a scalar (SISO). From this we get 

(3.42) 

(3.43) 

which leads to 

-zTQz + 2 z T P B  (Av + f$#) , zTPB 2 0 
(3.44) v.( -zTQz - 2 1 zTPB I (Av - w) , zTPB < 0 

With the choice of control law in (3.38), we have 

V I: -zT&z ==+ V 5 - A d n ( & )  11 z 11' . (3.45) 

Since Q is positive definite, all of its eigenvalues are positive. Thus, with reference 
to standard stability texts (e.g. Ref. [loll, pp. 210-211), the equilibrium z = 0 of 
(3.33) is exponentially stable subject to initial conditions lying in the set S in (3.37). 
This completes the proof. 0 

It should be noted that the control law in (3.38) is easier to implement than the 
control laws in Refs. [loo, 91, 961. This is because the bound p(z,t) is simpler to 
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compute, since it can depend nonlinearly on z instead of forcing one to find constants 
that make it a linear function of z as in Refs. [loo, 91, 961. Uniform boundedness 
of all solutions of (3.33) can be shown utilizing the same Lyapunov function. This 
might be useful in the event of more than one equilibrium point contained in the set 
S .  A linear high gain control law is also possible to design. That is, there exists a 
large enough constant y > 0 such that A v  = -yBTPz  will make solutions of (3.33) 
uniformly ultimately bounded with respect to a different set S. The details of this 
approach are to be found in Refs. [102, 1031. Assumption 3.7 can be relaxed (i.e. 
measurement noise) with only minor modifications by implementing some of the the- 
ory in Refs. [102, 1001. Finally, the multi-input multi-output (MIMO) case requires 
some additional matrix manipulations, but the above result can still be extended to 
MIMO systems. 

Example 3.1 We analyze the following second-order system 

(3.46) 

which exhibits linear parametric uncertainty and has the origin as its equilibrium 
point. The nominal value of CY is a,, = 1. The matching condition (Assumption 3.5) 
is also satisfied. We now consider the relative degree of the system 

L,h = O 

L,Ljh = - c Y # O .  

From above we see that for cy = a, = 1, r = n = 2 as required in Assumption 3.3. 
This holds for a dense submanifold M = R2 and the ball B, = {CY E R I a # 0). 

Continuing, we find that the linearizing coordinates and linearizing feedback in 
the nominal parameter is 

21 = 2 1  

2 2  = -22 

u =  - - ~ 2 e - ~ l  - v . 
The Taylor series expansion of (3.46) about Q = 1 in the new coordinates yields 

(3.47) 

Y = z1 

which is in the form of (3.31). To determine the control law, we compute the bound 
p(z,  t ) .  Substituting the above information and cy = 1 into (3.35), the bound 

(3.48) 
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is obtained. In producing this bound, the gain vector I< = [-1 - 11 was chosen 
to place the poles of the nominal linearized plant in the open left-half plane. Since 
11 B I[= 1, the control law is 

(3.49) 

resulting in exponential stability of the origin. This was computed from (3.38) utiliz- 
ing P in (3.39) with Q being the identity matrix. 

Finally, the set of allowable initial conditions S, was calculated utilizing Assump- 
tion 3.8 and (3.48). It can be seen that S = R2 provided that CY - 1 I< 1 VCY E B,. 
That is, the equilibrium x = 0 of (3.46) is globally exponentially stable with the con- 
trol law (3.49) for nearly 100% relative uncertainty in o (;.e., 0 < a < 2). 

3.2.4 Zero Dynamics 

The relative degree condition of Assumption 3.3 is restrictive, and it is of interest to 
investigate the stabilization of uncertain nonlinear systems which do not satisfy this 
condition. We start with the system (3.21) and allow r < n. The same linearizing 
feedback as in (3.30) will be employed, but this will not result in the linearization of 
the full state space. Therefore, we must handle zero dynamics of dimension n - r (for 
a complete definition of zero dynamics, see Ref. [21]). We begin by partitioning the 
state space as follows 

(3.50) 

where an) is as in (3.29) and @+(x, an) is chosen such that Lg(z,rr,,)<P+(~7 C Y , )  = 0. 
This last condition is not a strict requirement. It is always possible to satisfy this 
condition, but it can be relaxed without significantly altering the control strategy in 
this section. The full system is now rewritten as 

(3.51) 

where it is noted that Assumption 3.4 is still enforced. 
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It is desired to stabilize the nominal linearized system, however the full nominal 
system is of order n. This implies that we must extract a linear part from the zero 
dynamics because the full n x n A matrix cannot be stabilized with static state 
feedback. This is true since the bottom n - r rows of this matrix are all zeros until 
the linear part is extracted. Hence, we rewrite (3.51) as 

(3.52) 

where (A,B,C)  are in the Brunovsky form, and Al and A2 are of compatible dimen- 
sions. We have complete freedom to choose AI and A2 such that the pair 

A 0  
A = [ A l  A 2 ] j B C = [ f ]  

is completely controllable, Then we can choose v = K z  + Av such that 

is stable. 
The system is now written in the more compact form 

= Acz + BcAv + Po + P16a + p2hAv + O( 11 1 1 2 )  
where 

1 0 
Lj@+ - Ai< - A2$ P o =  [ 

1 .  

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 



With the above terms, we define our new nonlinear system as 

i. = Acz + BcAv + P(z ,  A v )  (3.59) 

where higher order terms in S o  have been ignored and P ( Z ,  Av)  = /?0+/?1Scr+/?2SaAv. 
Assumption 3.6 is again required to hold with 9 replaced by p .  In the case of zero 
dynamics, the bound is denoted as pz and satisfies the following equality 

(3.60) 

where again it is noted that everything on the right hand side is known except for 
a! 11 ~ L Y  I[ which will be determined once a relative parameter uncertainty is decided 
upon. Assumption 3.8 must be modified slightly to take zero dynamics into account 
and appears as Assumption 3.9 below. 

SUP 

Assumption 3.9 In a very similar manner to Assumption 3.8, it is assumed that 
11 /?z Ils;fpII Sa! 115 1 holds for the initial condition zo = @ ( x o )  and t = to.  

With Assumption 3.9, the set of allowable initial conditions is now 

(3.61) 

The matching condition must be strengthened due to the uncontrollability of the zero 
dynamics. 

Assumption 3.10 We require Vx E M ,  V a  E B, that 

and 

(2) af - 
do Sa E Span{g(s, an)} n N 

(3.62) 

(3.63) 

where N (2) represents the null space of 2. Further, it is assumed that . L j @ ~  is 
linear in z, 

In words, Assumption 3.10 requires the uncertainty not only to lie in the range 
space of the input but also in the null space of the coordinates transformation for the 
zero dynamics. That is, the uncertainty must not be contained in the zero dynamics. 
Further, the zero dynamics must be linear in the z coordinates. Though this is 
restrictive, it does represent a class of systems with insufficient relative degree and 
uncertain parameters that can still be exponentially stabilized. The zero dynamics 
counterpart to Theorem 3.1 follows. 
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Theorem 3.2 Under Assumptions 3.4,3.6,3.7,3.9, and 3.10, the equilibrium z = 0 
of the system (3.59) is exponentially stable for all initial conditions in S, (defined in 
(3.61)) i f  A v  satisfies 

(3.64) 

where 11 B, II= 1 for the SISO case. 

Proof: The proof proceeds exactly as in Theorem 3.1. Assumption 3.10 implies the 
existence of a scalar function ,& such that p = BcBc. Then from Assumption 3.6, we 
have that pc I: w. With the Lyapunov function V ( z )  = zTPz ,  we obtain 

-z'&z + 2zTPB, (Av + 
-zTQz - 2 I zTPB, I (Av - ,lBcll 

(3.65) , zTPBc<O . 

where P and Q are defined with respect to A, in (3.54). From this, the control law 
in (3.64) is obtained, and the exponential stability result follows. D 

Example 3.2 Consider the third-order system 

[ 21 = [ F ]  + [ ;] u ,  y = 5 3  (3.66) 

where cy is a scalar parameter with nominal value a, = 1. This system also exhibits 
linear parametric uncertainty, and it does satisfy Assumption 3.10. A check of the 
system's relative degree reveals r = n - 1 = 2 which holds for the entire state space 
and B, = {a E R I a # 0). The linearizing coordinates and feedback evaluated 
about the nominal parameter are 

(3.67) 

where z3 = @+(z) was chosen such that Lg@+ = 0 and @+(O) = 0. Continuing with 
the analysis, we put the system in the form of (3.52) which results in 

[ "1 = [ 0 0 0 ] [ ::] + [ % ]  v i -  [ ( - Z 1 ~ 3 + v ) ( ~ -  1)  , (3.68) 1 0 1 0  0 

23 -1 0 0 z3 0 
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where AI = [-1 01 and A2 = 0 were chosen to make the pair (A,&) completely 
controllable. Then I< = [-3 - 3 - 11 was chosen to make A, stable. 

Next, the bound pz(z, t )  was computed, yielding 

This results in the control law 

(3.69) 

(3.70) 

noting that [I B, I I =  1. The matrix P was again solved for by using Q = I in 
(3.39). Finally, the set of allowable initial conditions S, was calculated utilizing 
Assumption 3.9 and (3.69). It can be seen that S, = R3 provided that ‘2’1 a - 1 I< 
1 V a  E B,. That is, the equilibrium x = 0 of (3.66) is globally exponentially stable 
Va! f (0,2) with the control law (3.70). 

3.2.5 Conclusions 

We have shown that linearization and stabilization of nonlinear systems exhibiting 
parametric uncertainty is possible via a Lyapunov based approach if certain assump- 
tions (principally a structure matching condition) are satisfied. The principal advan- 
tages of the approach in this section are that exponential stability instead of just 
uniform boundedness can be achieved and a control law that is easier to compute. 
In addition, the linearizing coordinates are known because they are defined about 
the nominal parameters, and systems without full relative degree can also be expo- 
nentially stabilized in this framework. Further, the bounds are expressed directly in 
terms of parametric uncertainty which makes them simple to compute once maximum 
parameter deviations are decided upon. 

The method avoids the feedback linearizability assumption of the whole family of 
uncertain plants as well as the additional dynamics imposed by an adaptive controller 
(as in Refs. [97, 98, 921). The approach also works well with the ideas of sensitivity 
theory due to fact that the uncertainty is expressed directly in terms of the parameter 
deviations. Though many assumptions are made in this section to achieve exponential 
stability results, these assumptions axe no more difficult to satisfy than in the works 
cited herein. In fact, many are easier to satisfy. The relative degree assumption 
was relaxed to include zero dynamics. The matching condition represents the most 
difficult requirement to satisfy. There has been some effort made to relax the matching 
condition for linear systems with parametric uncertainty. For nonlinear systems, 
different forms of this condition exist but all amount to a restriction on the range 
space of the uncertainty. A possible control technique to alleviate the matching 
condition is that of high gain linear feedback. Of course, problems associated with 
high gains would be the tradeoff. 



CHAPTER 4 

CONTROL OF LARGE-SCALE SYSTEMS 

4.1 DECENTRALIZED FEEDBACK LINEARIZATION 

Much attention has been focused on nonlinear systems in recent years due to their 
prominence in such fields as robotics, aircraft, and space structures. With this at- 
tention have come many techniques for dealing with the additional complexities as- 
sociated with nonlinear systems. In particular, the idea of transforming a nonlinear 
system into a linear one through feedback has received a great deal of interest. In 
this section, we consider multi-input multi-output (MIMO) nonlinear systems with 
restrictions on the feedback information available to the controller. The restrictions 
considered here require the use of locally available signals at each input-output chan- 
nel due to communication and/or structural restrictions. This decentralization con- 
straint implies that each input has available for feedback a local input or in the case 
of composite systems, a local state only. 

Most of the decentralized control literature has concentrated on linear systems. 
Decentralized control of nonlinear systems has received some interest by Refs. [104, 
105, 1061 from the variable structure control point of view. But decentralized feedback 
linearization has received little prior attention. In the MIMO feedback linearization 
approach (Refs. [18, 30, 19, 21, 22]), each input is assumed to have the full system 
state available for feedback. Restricting each input to use a transformation of the 
full state vector generally makes the problem more difficult. In the case of composite 
systems, this is due to interactions between subsystems not being canceled. Thus, 
decentralized feedback linearization must focus on the observer problem as well as 
looking at specific classes of systems for which the problem may be solvable. 

In this section, we concern ourselves with several methods for decentralized control 
of nonlinear systems which make use of the concept of feedback linearization. Our 
approach begins by considering the nonlinear observer problem (Refs. [35,107,36,37, 
34, 108, 381) for a decentralized system. If just one input-output pair is successfully 
able to observe the full state then this channel could be used for linearization. The 
first approach we shall introduce is to close a subset of the input-output ports with 
output feedback and choose these output feedback functions such that the conditions 
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for solving the observer problem at one of the remaining open input-output channels 
are met. 

Related to this problem is the decentralized controllability of the linearized system 
obtained upon successful feedback linearization. It is of interest to show that the 
linearized system, which is in Brunovsky canonical form [32], can be asymptotically 
stabilized via decentralized dynamic output feedback. That is, it is desired to show 
that this particular canonical form contains no decentralized fixed modes [82, 83, 
681. Thus, if the decentralized feedback linearization problem can be solved by one 
controller then the task of controlling the linearized system can be relegated to another 
controller. 

The second approach we introduce, addresses the linearization and stabilization 
of coupled subsystems, each of which is nonlinear as well as the coupling terms. 
Each subsystem has its local state available for feedback. If the nonlinear subsystem 
can be linearized except for the coupling terms, then a suitably chosen local linear 
state feedback can exponentially stabilize not only the linearized subsystem but the 
composite system with the nonlinear interconnections as well. This assumes that the 
nonlinear interconnection terms satisfy some norm bounding assumptions. 

Finally, we examine the issue of state space linearization of MIMO systems when 
the conditions for exact linearization are not satisfied. The approach followed is to 
utilize the same idea as in the observer problem of applying feedback at  a subset 
of the input-output channels to enhance the linearizability of the remaining input- 
output pairs. These feedback €unctions are chosen such that the vector relative degree 
condition for single-input single-output (SISO) linearization is satisfied at the open 
input-output pair. Several examples are presented to demonstrate the method. 

4.1.1 Problem Setup 

We start by looking at nth order nonlinear systems with rn inputs and rn outputs 
both of the general 

m 

i = f ( ~ >  + C g i ( x ) u i  9 yi =  hi(^) 7 i = 1,. . . , m 
i=l 

and interconnected subsystems variety 

m 

j=1 
i i  = fij(2j) + g;(z;)u; , y; = h;(s;) , i = 1,. . . , m (4.2) 

where it is assumed that f ( z ) ,  fij(xj), and g i ( z )  are smooth vector fields and h;(z )  
are smooth functions defined on an open set of R”. We seek control laws of the form 
ui = Ki(yi, vi), i = I,. . . , rn which will render the systems (4.1), (4.2) linear with a 
nonlinear change of coordinates. The v; are external inputs available to control the 
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linearized system. In general, the output feedback functions K; will be nonlinear, and 
we assume they are smooth. In the interconnected system case, we also allow for the 
possibility of local state feedback, i.e., u; = K;(si, vi), i = 1,. . . , rn. It is also assumed 
in this section that the individual input-output pairs (ui, y;) are SISO, though this is 
easily generalized to multivariable input-output channels. 

The MIMO exact linearization problem has been solved in [19], and a key concept 
in the proof of this result is that of a vector relative degree. For a SISO nonlinear 
system the relative degree is the number of times one must differentiate the output 
until the input appears explicitly. For a MIMO nonlinear system the relative degree 
is a vector { r l ,  . . . , T - }  wherein each r; is the number of times one has to differentiate 
the ith output to have at least one of the m inputs appear explicitly. The conditions 
for the existence of this relative degree, defined about some point xo, are stated in 
[21] and are not repeated here. The important point is that the state space exact 
linearization problem for (4.1) is solvable (about so) if and only if there exists some 
vector relative degree { T I ,  . . . , r m }  at so and r1 + 1'2 + - - + r, = n. 

If this relative degree condition is not satisfied and one has freedom to choose new 
output functions (say y; = X;(s)) then there exist necessary and sufficient conditions 
to find these Xi(z) such that the relative degree condition is satisfied (see [21] for 
details). If none of these conditions are satisfied then the best that one can do is to 
linearize the input-output response provided that some relative degree does exist at 
a certain point. In this case the state space response cannot be completely linearized 
resulting in zero dynamics [27, 211. We are primarily interested in full state space 
linearization whenever possible. 

To explore the feasibility of decentralized feedback linearization of (4.1), we con- 
sider the following 2-input, 2-output, second-order nonlinear system 

Y1 = h,(z) 
Y2 = h2(z). 

(4.3) 

Our strategy here is to close the loop of ul/yl  with output feedback to enable the 
second input-output channel to perform the linearization. That is, we let u1 = Kl(y1)  
thus obtaining 

Y2 = h2(4 

which is effectively a SISO nonlinear system. Note that this strategy of closing the 
loop at all but one of the 1 / 0  channels is a known tactic in the theory of linear 
decentralized control [ 1091. 
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A SISO system has a relative degree I" at a point xo if [Zl ]  

L,Lkfh(z) = 0 

for all x in a neighborhood of xo and all k < r - 1 and 

(4.5) 

L,L;-'h(xO) # 0 (4.6) 

where Lgh(x) is the Lie or directional derivative of h ( x )  along g(s) and is written as 

and the iterated Lie derivative L:h(x) is written as 

a( Lg"-l h )  
L,Ah(x) = d X  h ( 4  

with L,Oh(s) = h ( s ) .  
From (4.4) we have 

which will be nonzero for most systems. This implies a relative degree of v = 1 
indicating that for most systems of the class (4.3) exact state space linearization will 
not be possible. If one desires to do input-output linearization the state feedback 
119, 1101 

(4.10) 

transforms the nonlinear system (4.4) from u2 to y2 into the linear system W ( s )  = -$ 
where f is the vector field in (4.4) containing the feedback term Kl(yl )  and 'u2 is 
an external input to the 212/y;1 port. For most general systems of the form (4.3), 
the linearizing u2 above will depend on the full state x. In fact, for all but the 
most special cases of (4.3), there is no choice of feedback Kl(y1) that can allow the 
linearizing feedback u2 to  depend on y2 only or even on 2 2  only. This means that the 
nonlinear interconnections cannot be linearized via local feedback. 

However, there are several approaches that can yield satisfactory results. One 
relies on estimating the state 5 for at least one input-output channel to allow the 
use of the above linearizing feedback. Furthermore, interconnected systems can be 
stabilized using feedback linearization and local state feedback. These approaches are 
detailed in this section as well as several other strategies to designing decentralized 
control laws for nonlinear systems. 
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4.1.2 Decentralized Nonlinear Observers 

Consider the nonlinear multichannel system as given in (4.1). The Decentralized 
Observer Problem is to  be able to generate the full system state at a minimum of 
one input-output channel (say j )  using only local output measurements ( y j )  and 
knowledge of the local input (u j ) .  

Consider the linear differential operator for channel j, defined as 

(4.11) 

with f ax = ax and tij = [uj ,  G j ,  . . . , up-1)]*, is repeatedly applied to the gradient 

3. The vector f denotes the right hand side of (4.1), that is, = f(x)+CEl g;(x)u;. 
Now define the j t h  channel observability matrix 

(4.12) 

The following statement is proposed as a basis for solving the Decentralized Observer 
Problem and is illustrated in Fig. 15. 

Proposition 4.1 The Decentralized Observer Problem can be solved for  channel j if 
there exists an index set I? c (1 , .  . . , m} and a channel j g' l? and a set of output 
feedback functions, {K; (y ; ) } ,  i E I? such that Qj (5 ,  iij) is of full rank. The state 2 is 
defined b y  the system 

i = ~ ( 2 )  + Cgi (5 ) Ic i ( y i )  + gj(2)uj (4.23) 
iEr 

y .  3 = h j ( 2 ) .  

The proof of Proposition 4.1 is a direct extension of the following lemma found in 

Lemma 4.1 The SISO observer linearization problem for i = f ( x ,  u),  y = h ( x ,  u )  
with output injection is solvable in a neighborhood of the point d' if and only if the 
n x IZ matrix 

[381. 

(4.14) 

has full rank in a neighborhood o f x " .  
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NONLINEAR 

Fig. 15: Decentralized strategy to observer design. 

To see how Proposition 4.1 is applied, consider the two-input, two-output, nth 
order nonlinear system 

(4.15) 

To solve the Decentralized Observer Problem, let u1 = K 1 ( ~ 1 )  (note that either 1/0 
channel can be used for feedback) and obtain 

(4.16) 

Finding the solvability conditions for (4.16) utilizing Proposition 4.1 and Lemma 4.1 
simply involves substituting hz(ii) for h ( z ,  u )  and f(2) + gl(Z)Kl(yl) + g2(2)u2 for 
f (x ,  u )  respectively into the matrix &(z, 6). 

Remark 4.1 If the SISO observer problem is solvable at one or both input-output 
channels without any input-output feedback (;.e., I<&) = 0) then one does not need 
to close the loop at the remaining input-output channel. Thus, we are interested in 
problems that are not a priori solvable. 
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R e m a r k  4.2 In the linear case, if the centralized observability rank condition is 
satisfied before linear output feedback is applied then almost any output feedback 
gain will suffice provided that it does not cancel a pole of the A matrix. 

R e m a r k  4.3 The actual construction of the observer utilized in Ref. [38] is omitted 
here since the same steps can be followed for the above. The approach utilized in Ref. 
[38] relies on the concept of extended linearization to linearize the transformed system 
about the reconstructed state. The observer has the features of being dimensioned 
by an eigenvalue assignment without solving partial differential equations (as in Refs. 
[36, 37]), and it does take into account the input term of the original system. 

Once the observer is constructed, the estimated state can then be utilized in 
whatever capacity the control designer wishes. In particular, we are interested in the 
possibility of feedback linearization at this chosen input-output channel. Since the 
observer is constructed strictly by decentralized means, then this would constitute 
a method of decentralized feedback linearization. The following theorem states the 
conditions under which this is possible. 

Theorem 4.1 The nonlinear system (4.1) can be rendered linear via decentralized 
feedback at some channel j i f  

I. the Decentralized Observer Problem can be solved for channel j and 

2. the system (4.13) is state space linearizable. 

Proof: The solution of the Decentralized Observer Problem makes the full system state 
available at channel j by the use of purely local signals. The observer construction 
of Ref. [38] involves a transformation into observer canonical form which is a one-to- 
one mapping and thus preserves the linearizability properties of the original system. 
Therefore, if (4.13) is feedback linearizable then the transformed system after observer 
construction will also be feedback linearizable. Then, (4.13) can he feedback linearized 
with the observer state. 0 

Example 4.1 Consider the following third-order, two-input7 two-output system 

j : =  

Y1 = 

Now we let 

e x =  

Y2 = 

[ 1 0 o ] x ,  y 2 = [  0 0 

2 1  O l u 2  

0 

11" 
he new SISO system 
-i 

(4.17) 

(4.18) 



69 

Applying the definition of QZ(x, iz,) in (4.12), we obtain 

0 0 
2x2 

- 2 ~ 2 e - = ~  + li;(yl) 0 
Q2(5, G2)  = 

which has full rank if and only if 

arc, 
2x;- # 0 .  

8Yl 

(4.19) 

(4.20) 

Thus, the extended Luenberger observer of [38] can be constructed for (4.18) about 
any point zo such that x: # 0 and E # 0. Of the infinitely many possible solutions 
for Kl(yl) ,  the simplest is u1 = Kl(yl) = yl. With this choice of output feedback 
at the u l / y ~  pair, the full state 5 is observable at the uz/y2 pair via the observer 
construction of Ref. [38]. It is also easily shown that for the above choice of ICl(yl), 
the relative degree of the u2/y2 pair is T = n = 3. Hence, from Theorem 4.1, the 
system (4.18) is state space linearizable via decentralized feedback. That is, the input 
u1 depends only on yl, and the observer constructed at the u2/y2 pair will depend 
only on the output y2. 

4.1.3 Decentralized Control of the Linearized System 

We will assume in this subsection that a centralized or decentralized control strategy 
has succeeded in linearizing the system and focus on a decentralized control strategy 
for the linearized system. We assume that the vector relative degree of (4.1), (4.2) is 
such that T I +  7-2 + - - + T,  = n or that output functions can be found to achieve this. 

The linearized system is linear with respect to a nonlinear change in coordinates 
z = @a(.). This coordinate transformation consists of the set of functions [19] 

 XI = ~ j - l h i ( x > ~  1 5 j 5 Pj 1 5 i 5 m (4.21) 

where 
T 

@(x) = [&), - - f 4;&)f - * - 7 4 n 4 ,  * ,  4L(4] * (4.22) 

The state feedback required to perform the linearization (though it may consist of 
the observed state) will always have the form 

u = a(.> + P(+ (4.23) 
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A ; =  

where u and v are the control and external input vectors respectively. The linearized 
system is such that 

- 
0 1 0 e . .  0 
0 0 1 . - -  0 

0 0 0 * . .  1 
0 0 0 ... 0 

: : : e .  : . . .  . .  

L. 

(4.24) 

(4.25) 

where ( A ,  B )  are in the Brunovsky canonical form [32, 19, 211. In these new coordi- 
nates the linearized system has the form 

0 

c, o ] [  2" :] 
0 ... 

(4.26) . .  

(4.27) 

(4.28) 

(4.29) 

and v;, i = 1,. . . , rn, are the rn inputs to the linearized system. 
The above linear system is decoupled in the sense that the ith output depends 

only on the ith input. We can see this more clearly by viewing the transfer matrix of 
the system 

(4.30) 
1 

X ( s )  = - - V , ( s ) ,  spi i = 1,. . . ,m 
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which is just m chains of r; integrators each. In fact, the linearizing feedback law 
(4.23) also solves the noninteracting control problem (input-output decoupling) [33]. 
Our goal is to control this system via rn decentralized control laws. The primary 
issue of concern in such a control strategy is that of decentralized fixed modes. A 
decentralized fixed mode [82, 83, 681 is an eigenvalue of the open loop system that is 
invariant under static output feedback. To determine the existence of fixed modes in 
the above system, we consider the following decentralized control laws 

v;==K;y; ,  i = l ,  ..., m (4.31) 

where K; is a scalar real number. We now state the following theorem. 

Theorem 4.2 The  linearized system (4.261, (4.27) has n o  decentralized fixed modes 
and can be asymptotically stabilized via the following decentralized dynamic output 
feedback 

vi = Hj5, -+ K,y; 
5; = F;Z; + S;y;, i = 1 ,..., m. 

(4.32) 

Proof; The eigenvalues of the closed loop matrix A +  BKC are the n solutions to the 
equation 

A r * - 1 C ; = O ,  i = l ,  ..., m (4.33) 

which implies that all the eigenvalues lie on a circle in the complex plane. Thus, 
there are no decentralized fixed modes. It is also true that the above system can- 
not be stabilized through static decentralized output feedback since at least some 
eigenvalues will always be in the right half plane or on the j w  axis. The exception 
is if all r; = 1 then the eigenvalues can be placed in the left half plane via static or 
dynamic decentralized output feedback. A theorem in Ref. [68] states that if all fixed 
modes lie in the open left half plane then dynamic decentralized output feedback will 
asymptotically stabilize the system. Hence, for the above linear system the control 
law (4.32) will achieve the desired result. 0 

The feedback law (4.32) consists of m local output feedback laws each with its 
own dynamic compensator, and 5 is the state of the dynamic compensator. With 
(4.32) as the control law, one obtains an augmented closed loop matrix which we 
can asymptotically stabilize. The specific design of this dynamic feedback is omitted, 
and the reader is referred to Ref. [68] for more details. The important point here 
is that the linearization can be relegated to one controller, and the decentralized 
stabilization of the resulting linearized system can be relegated to a different set of 
controllers. Figure 16 demonstrates this approach. 
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Fig. 16: Multi-level approach to linearization and stabilization. 
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4.1.4 Stabilization of Interconnected Subsystems 

In this subsection, we consider nonlinear interconnected subsystems of the form (4.2) 
where 2; E R". and u; and y;  are scalars. Each subsystem has its own input and 
output (;.e., SISO subsystems) with the outputs depending on the local state only. 
Our strategy is to linearize each subsystem (ignoring the coupling terms) using only 
the local state for feedback. Then each subsystem will employ local state feedback (in 
the linearizing coordinates) to achieve a prescribed degree of exponential stability y 
for the full system. The coupling terms must satisfy a norm-bounding inequality for 
the strategy to succeed. This is a decentralized control strategy because each input 
requires only the state available at its own subsystem. Earlier work on stabilizing 
linear large-scale systems appears in Refs. [69, 1111. To achieve this control strategy, 
we make the following assumption. 

Assumption 4.1 The relative degree of the ith subsystem (ignoring the coupling 
terms) is ni with respect to the output y; = h;(a;). 

Theorem 4.3 The interconnected system model (4.2), under Assumption 4.1, can be 
exponentially stabilized to prescribed degree y in the linearizing coordinates provided 
the coupling terms 

satisfy the inequality 
m 

(4.34) 

(4.35) 
j=1 

for all x; E Rnl, for  some nonnegative Q i j ,  where @,(xi) is the linearizing coordinate 
transformation of the ith subsystem. 

Proof: We begin by employing the SISO linearizing feedback. That is, 

1 + V i  
Lg,L;;,-' hi( xi) 

-Ly;, hi (s i )  

Lg, L;it-' h ( x i )  
11; = 

= fY;(x;> + P,(x:,)v, , e' = 1 , .  . . ,972 
where v; is our new input. Next, we construct the linearizing coordinates 

(4.36) 

(4.37) 
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i = 1,. . . ,m. Utilizing Assumption 4.1, we obtain [21] 

with x; = @pT'(z;). This gives us in the new coordinates 

(4.38) 

(4.39) 

(4.40) 

y;  = Cizi , i = l , . . . ,m  

where Ai;, B;, and Ci are in the Brunovsky canonical form [32], and the above system 
is completely controllable and completely observable. For convenience we shall refer 
to the nonlinear interaction term as e ; ( z )  where z is the full system state vector. 

Consider now the system (4.40) with no interaction term (i.e., e; (z )  = 0). It is well 
known [95] that this linear subsystem can be exponentially stabilized by a prescribed 
degree y (that is, z;(t)exp(-yt) + 0 as t --f QO) by the feedback 

V ;  = -BTK;z~ (4.41) 

where K; is the n; x ni symmetric positive-definite solution of the algebraic Riccati 
equation (ARE) 

(Ai,  + TIi)TIii  + Iii(Aii + 71;) - KiSiIC; + Qi = 0 (4.42) 

where Si = BiBT, Qi = C:Ci, and I ,  is the n; x n; identity matrix. Then the closed 
loop subsystem 

i; = ( A ;  - S i K i ) ~ i  , i = 1,. . . , m (4.43) 

is exponentially stable with prescribed degree y. The following result found in Refs. 
[69, 1111 will help us in our proof. 

Lemma 4.2 If the  coupling t e r m s  ei(z)  sat is fy  the inequality 

m 

I I e i ( z ) 1 1 < ~ ~ i j  I I z i I ) ,  i = l , * * - , m  
j=1 

for all zi E R"', where aij 2 0 and if u = Czl Cy=l oij sat is fy  

(4.44) 

(4.45) 
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whew Pi = Q; + IC;S;IC; for  i = 1,. . . , m and 11 - 11 is the usual Euclidean vector norm 
then each subsystem 

i; = (A;  - S;IC;)z; + e ; ( z )  (4.46) 

is exponentially stable with degree y. 

The result in Theorem 4.3 follows by setting z; = @;(xi) in the above lemma. 
Lemma 4.2 also provides a means for determining the C T , ~ .  

Remark 4.4 Theorem 4.3 provides a composite control strategy for nonlinear in- 
terconnected subsystems. This strategy combines feedback linearization with linear 
quadratic control to partially linearize and exponentially stabilize the system subject 
to the stated assumptions. It should be noted that the interconnection nonlinearity 
e i (z )  can depend explicitly on time t with the above result still valid. Also note that 
even if the coupling terms in (4.2) were linear, the interaction effects in e,(z) will still 
be nonlinear due to the change in coordinates. 

Remark 4.5 If one assumes weak interactions (i.e., €-coupling) and a shortcoming 
in relative degree (r; < n;) then one can get perturbations in the zero dynamics for 
sufficiently small c. That is, for = 0, the only zero dynamics obtained are related 
to the insufficient relative degree. The zero dynamics that disappear for 6 = 0 are 
related to the coupling terms. The next subsection contains a derivation of these zero 
dynamics and shows under what zeroing inputs and initial conditions they can be 
obtained. Similar results already exist (see Ref. [112]) in which it is shown that the 
zero dynamics of a regularly perturbed SISO nonlinear system is singularly perturbed. 

Remark 4.6 This result differs from most other decentralized stabilization schemes 
in that others assume either linear interactions or linear subsystems or both. The 
primary issues of concern in this result are the ability to satisfy the relative degree 
assumption and the interaction inequality assumption. The next subsection deals 
with the issue of insufficient relative degree. The norm bounding assumption on the 
coupling terms will be easy to satisfy for weakly-coupled systems but more difficult 
to satisfy for strongly-coupled systems. Thus, applications involving weak coupling 
(e.g., chemical processes, space structures, power systems) may be more amenable to 
the methodology of this subsection than strongly-coupled systems. 

0 

4.1.5 Weakly Coupled Systems 

In this subsection, we derive the zero dynamics equations and the conditions governing 
their existence for weakly-coupled nonlinear systems. For ease in notation, we consider 
the two-channel weakly-coupled nonlinear system 

(4.47) 
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where 6 is a small positive constant representing strength of coupling between the 
subsystems. To derive the system's zero dynamics, we first put the system into normal 
form using the local coordinates transformation utilized in the proof of Theorem 4.3. 
We also relax the relative degree requirements and let r; < n;. The new coordinates 
are 

2; = 

where $;(x;) are chosen such that Lgi4;(xi)  = 0. 
From these new coordinates, we get the following normal form 

(4.48) 

(4.49) 

04% 
d X ;  

&,n, = Lj,$n,(xi) + c-fij(xj) 

y; = Zi' . 
To determine the system's zero dynamics, we require y;(t) = 0 for all time. This 
implies the following constraint equations 

(4.50) 

At  this point we make the assumption that the output functions are linear in xi. This 
is reasonable since one often assumes the local state is measurable in complex systems 

ah; 
= 0 3 212 + €- f j j ( X j )  = 0 . 

d X ;  
z;1 = 0 3 
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such as (4.47). Now we differentiate further to get a condition on the input functions 
to zero the output. The inputs must satisfy 

for all time. The initial conditions must satisfy 
0 

Zil = 0 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

with the rest of the initial conditions chosen arbitrarily. The zero dynamics are then 

8L;i - h; ( X i )  

85; i i r r i  = U ; ( Z ; )  + b;(z;)uP + € f i j ( x j )  (4.55) 

k , r i + l  = Pil( . i )  + W l ( Z t )  

k ,n ,  ~ i , n i  -ri ( 2 ; )  + Eqi,n,-r; (2;) 

subject to the above initial conditions and zeroing input. 

Remark 4.7 The dimension of the zero dynamics is n; - 1 for each subsystem. How- 
ever if e = 0, the dimension reduces to n; - ri. Thus, the order of the zero dynamics is 
perturbed by the coupling parameter e .  Each subsystem has its own zero dynamics, 
thus this represents a limitation in feedback linearization using decentralized control. 
That is, even if ri = n; one still cannot exactly linearize the subsystems for nonzero 
E using local state feedback. 

4.1.6 Relative Degree Enhancement of Multichannel Sys- 
tems 

The MIMO linearization problem requires the system's vector relative degree (some- 
times called characteristic numbers) to be satisfied such that rl + - - - + rm = n. Then 
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the standard MIMO linearizing feedback (see Ref. [21] for details) can be chosen to 
exactly linearize the state space as well as the input-output relationship in appro- 
priately chosen coordinates. In this section, we're interested in systems of the form 
(4.1) that do not satisfy this relative degree condition. It has been shown [21] that 
this vector relative degree condition is necessary and sufficient for exact state space 
linearization. Our approach, however, is to transform the MIMO system to a SISO 
system via state feedback at all but one of the input-output pairs. The feedback 
functions are chosen to satisfy the necessary conditions to achieve the proper relative 
degree for the SISO linearization problem. 

We present two examples of multi-input systems that are not feedback linearizable 
in a MIMO sense, but with our method they can be linearized in a SISO sense. It 
should be noted that the idea of feedback to all but one input/output channel to 
enhance some property (e.g., controllability, observability, etc.) from the standpoint 
of the remaining input/output channel is well known in decentralized control for linear 
subsystems (see Ref. [log]). 

The method takes systems of the form (4.1) for which linearization is desired and 
transforms them to SISO systems via state feedback. The principle is as follows. 
Choose feedback functions u; = I<;(.), i = 1,. . . , rn - 1 such that the SISO relative 
degree of the mth output channel is equal to n. We formally state this as follows. 

Definition 4.1 The Feedback Linearization Enhancement Problem for (4.1) is to find 
feedback functions u; = I{;(.), I? is the index set of all such i, I' c (1,. . . ,m} ,  such 
that the SISO system 

j. = f(x) + C g i ( x ) I { i ( x )  + gj(z)uj 9 Yj = hj(x) 
icr 

has relative degree r = n about some point xo for at least one j # r. 

(4.56) 

Remark 4.8 The above problem seeks to linearize the input-state response and the 
input-output response with respect to the j t h  input-output pair in a neighborhood 
of xo. Thus, the input-output responses at  the other rn - 1 input-output pairs will 
remain nonlinear in the linearizing coordinates. Presumably one would choose the 
j t h  input-output pair to  be the channel of most interest to the designer. That is, one 
may wish for one particular input-output response to be linearized while the others 
are employing state feedback to enable this linearization. This structure is illustrated 
in Fig. 17. 

The main idea behind the solution of the problem is to choose the feedback func- 
tions I ( ; ( x )  to  solve the partial differential equations (4.5), (4.6). One normally would 
only attempt to solve this problem if the MIMO exact linearization problem is not 
solvable. If the vector relative degree condition for state space linearization is met 
then one can obtain linearization of all input-output pairs via the MIMO linearizing 
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LINEARIZED SYSTEM 
\ /-------, 
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NONLINEAR 

Fig. 17: Illustration of the  feedback me thod  for linearization. 

feedback (see [21]). The following theorem states the conditions for solvability of the 
feedback linearization enhancement problem. 

Theorem 4.4 Necessary conditions f o p  the solvability of the Feedback Linearization 
Enhancement Problem for  (4.1) (n > 1) are: 
in) there must exist at least one i E (1,. . . , m) such that L,,h; = 0. 
ii.) for  at least one of these i, there must exist at  least one j E (1,. . . , m) ,  j # i such 
that L,, h, # 0. 

Proof: Consider the system (4.1). Without loss of generality, choose i = m as the 
open input-output channel. We then obtain the equivalent SISO system 

(4.57) 



Unless tlie system is first order (which is unrealistic for a MIMO system), the relative 
degree conditions for state space linearization require Lgmh, = 0. This would have to 
be the case for any i E { 1,. . . , m} one would wish to choose as the open input-output 
channel. If not the case, then no feedback functions, K i ( x ) ,  can enhance the relative 
degree since r = 1 in this case. This proves condition i.) is necessary. 

Assuming condition i.) is true (with i = m),  we continue to the function L j h ,  
where 

m = f ( X) +g1(x)1(1(x)+.** +grn-~(x)l(rn-~(x)- (4.58) 

Again, assuming that the relative degree of the mth input-output channel is in- 
sufficient, we require that at least one K i ( x )  be able to satisfy the relative degree 
conditions. That is, we require Lib, # 0. This implies Ljh,  + E7=<'(Lg,hm)Kj # 0. 
From this it can be seen that at least one j E { 1,. . . , m - l} must exist such that 
L,,h, # 0 otherwise no IC, will be available to enhance the relative degree. This 
shows that condition ii.) is necessary. 0 

Remark 4.9 The necessary conditions in the above theorem are easy to check on 
most systems, however they are not sufficient. The above theorem is meant to elimi- 
nate classes of systems for which the method would prove fruitless. The problem of 
relative degree enhancement is most effectively demonstrated by example. 

Example 4.2 Consider the following third-order nonlinear system 

sin x1 + x; 
2 =  [ x x + e - x 3  ] + [ :dl,,+ [ i ] u 2 ,  y l = x l ,  y 2 = x 3 .  (4.59) 

x :  + 1 3  

A check of this system's relative degree yields rl = 1 and 7-2 = 1 which is not sufficient 
for the MIMO feedback linearization problem to be solvable. However, L,,h2 = 0, 
thus let 111 = K ~ ( x ) .  This results in the new SISO system 

(4.60) 

where lj = [_1 0 0 1' and = 2 3 .  

which requires 
Since Lih = 0, we proceed to the next step of the SISO relative degree definition 

(4.61) 
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This can be satisfied by letting K ~ ( x )  = -x: + K;(x2,13). Finally, we require 

arc; 
g f  8x2 

L - L ~ - ? ~  = 2x1- # o (4.62) 

which can be solved with (among infinitely many solutions) l i ' i ( x 2 , 5 3 )  = eVz2. This 
results in the feedback function 

K,(x) = -x: + e-Q . (4.63) 

Substituting (4.63) into (4.60) does indeed yield r = n = 3 its required. Furthermore, 
the point xo about which this result holds is any (x:, x:, x:) such that xy # 0. 

Remark 4.10 The above example shows that the feedback function Ii-;(x) that solves 
the problem (if one exists) is far from unique. One may have a great deal of freedom to 
choose feedback functions that are easier to compute or require only readily available 
states. For instance, in the above example, one could have chosen I<; = x2 which 
is less expensive to compute than an exponential in a real-time control situation. 
However, one would then have to impose xg # 0 as an additional requirement on the 
operating point xo. 

Example 4.3 Next, consider the fourth-order system 

Determination of the system's vector relative degree yields rl = 2 and r2 = 1, but the 
input-output decoupling matrix as defined in Ref. [21] is singular. Thus, this system 
has no relative degree, and the state space response cannot be exactly linearized. 
However, L,,h; = 0 for i = 1,2.  We choose to let u 1  = K l ( x )  which results in the 
SISO system 

x; + 5 2  

5: + 53x4 

212' Y2 = 53 (4.65) i =  [ 3 2 5 3  + 3: + 221{1(5) ] + [ i ]  
T 

xl + 2 2  + xlx4 + -fcl(z) 

where 3 = [ 0 0 0 1 ] and = 5 3 .  

Again, we have Lsh = 0. Proceeding as before, we require 

(4.66) 
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which has the solution K l ( s )  = -212.4 + K;(x1, 2 2 ,  x3). Continuing the calculations, 
we get 

(4.67) 

which results in I(; = - 5 2  + Ii'f(xl,x3). Finally, we have the condition 

L ~ L ; ~  = 2x4 - X 1 x 2  # o (4.68) 

which does not place a condition on Kl(x) .  The simplest feedback then that we can 
apply is 

(4.69) 

This yields r = n = 4 as we require, and the operating point xo can be any (xy,. . . , x i )  
such that 

K ~ ( x )  = -21x4 - ~ 2 .  

25: - x:x; # 0. (4.70) 

Remark 4.11 In both examples it is important to note that the state space and 
input-output responses have been linearized for the u2/y2 input-output pair only. 
To realize this linearization, one must carry out the coordinates transformation and 
linearizing feedback for the SISO system (u2/y2) as detailed in Ref. [21]. The ul/yl 
response will remain nonlinear in general. 

Remark 4.12 We assume that each input-output pair has the full state x available 
for feedback. Thus, this is not strictly a decentralized technique, however the observer 
result of Section 4.1.2 could be combined with this result to produce local control laws. 
This can be done in the following way. Suppose we are interested in SISO state space 
linearization at the l th  input-output channel for the system (4.1) with the conditions 
of Theorem 4.4 satisfied. Let be the index set of input-output channels utilizing 
output feedback to allow observer construction at certain channels. Let R be the 
index set of these certain channels. Then the input-output channels in IR will apply 
full state feedback (from the observed state constructed at these channels) to enhance 
the relative degree of the l th  channel. This system is written as 

2 = J ( x )  + gi(x)l(;O(yi) + C gi(x)l(:(z) + g[(x)ut (4.71) 
ier jEfl 

Yc = h&) 

where lir;O(yi) is the output feedback necessary to allow observer construction at all 
j E R, and Kf(x)  is the state feedback that enhances the relative degree at the l th  
input-output channel. Since the observer construction at a l l ' j  E $2 requires only 
signals at those channels, the result is completely decentralized. 
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4.1.7 Concluding Remarks 
We have presented several methods for carrying out decentralized control strategies 
for nonlinear systems. Our goal has been to show that there exist classes of nonlinear 
systems for which local feedback laws will be able to achieve stabilization of the 
overall system. For most large systems with nonlinear coupling terms, a decentralized 
feedback law cannot completely linearize the system. However, via observers or a 
combination of linearization and local state feedback, the nonlinear system can be 
asymptotically stabilized. 

We have developed a method to design decentralized observers for nonlinear sys- 
tems. Once this observer problem is solved, one obtains a linear MIMO system in 
Brunovsky canonical form. This form was shown to contain no decentralized fixed 
modes thus assuring that decentralized dynamic output feedback will asymptotically 
stabilize the system. Next, a large system with nonlinear subsystems coupled with 
nonlinear interconnections was shown to be partially linearizable with local state 
feedback. Then the system with the nonlinear interconnection terms in the new co- 
ordinates can be exponentially stabilized with appropriately chosen linear local state 
feedback assuming norm bounds on the nonlinear interconnections. 

Finally, a new method has been presented for linearizing a nonlinear MTMO system 
by utilizing feedback at all but one of the input-output channels such that the SISO 
linearization problem is solvable at the remaining input-output channel. The method 
has been shown to work via example for systems that are not feedback linearizable in 
a MIMO sense. Thus, the feedback functions at these input-output channels can be 
viewed as enhancing the solvability of the SISO feedback linearization problem. The 
examples show that it is not computationally difficult to find these feedback functions 
for low-order systems, but becomes more difficult as the system order and the number 
of input-output pairs rise. 

Applications for these strategies would include large-scale nonlinear systems such 
as flexible structures undergoing slewing maneuvers, power systems, aircraft , auto- 
motive systems, and space structures. 

4.2 SENSITIVITY MODELS FOR INTERCONNECTED 
SYSTEMS 

The use of sensitivity functions in control theory to make the closed loop system less 
susceptible to changes in plant parameters has been studied for several decades (see 
survey by KokotoviC and Rutman for an early history 1671). In particular, methods 
of generating sensitivity functions such that they can be utilized on-line in a control 
system have been extensively researched. Sensitivity models are a means of gener- 
ating these sensitivity functions from the nominal plant model. However, very little 
effort has been spent in generating sensitivity models for coupled subsystems in a 
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decentralized manner. 
But, as an additional tool for decentralized control, it is of interest to determine 

the feasibility of generating these models using only local signals for interconnected 
systems. That is, we wish to investigate the possibility that the ith subsystem's 
output sensitivity function can be generated using only plant signals from the ith 
subsystem. This is important if one wants to use sensitivity functions in a decen- 
tralized control environment. For instance, one could use decentralized sensitivity 
functions for self-tuning control (tuning the gains of a control law when some of the 
plant parameters are unknown) as is done in the work of Hung [113]. 

In this work, decentralized sensitivity models are suggested for certain classes of 
linear systems. It is the intent of this section to show that decentralized sensitivity 
models are possible for nonlinear systems as well under some assumptions. Ultimately, 
the importance of this section is to show that any control law that utilizes sensitivity 
functions (e.g. adaptive or optimal control laws) can be done in a decentralized 
framework even for nonlinear systems. Thus, the results of this section could be very 
practical provided one wishes to employ control laws that make use of sensitivity 
functions. 

4.2.1 Decentralized Sensitivity Models 

Consider Fig. 18 which depicts two interconnected MIMO linear systems. The out- 
puts, x, are of dimension p ; ,  i = 1,2. The inputs, U;, are of dimension m;. The 
unknown parameter vectors, cy;, p;, 7;' are of dimensions n;, T; ,  and q;, respectively. 
The transfer matrices, Q;, Wi, W;j, are of compatible dimensions. All vectors and 
matrices are functions of the Laplace Transform complex variable, s. The transfer 
matrices, Q;, represent dynamic feedback from the outputs to the inputs. The trans- 
fer matrices, W;j, represent coupling terms between the subsystems. The transfer 
matrices, Wi, represent the primary dynamics between plant inputs U; and plant 

The block transfer matrix of the entire system can be obtained by writing input- 
outputs x. 
output relationships as follows 

Letting 

(4.72) 

(4.73) 

(4.74) 
(4.75) 

where I is the identity matrix, we obtain the input-output description of the system 
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Fig. 18: MIMO system with coupled linear subsystems. 

(after some algebraic manipulation) 

with 

(4.76) 

(4.77) 

(4.79) 
(4.78) 

(4.80) 

We are interested in output sensitivity vectors of the system with respect to the 
unknown parameter vectors, ai, p;, and "I;. It is sufficient to study sensitivity vectors 
of the first subsystem since the two subsystems are symmetric as is easily observed. 

with respect to a1 which begins by utilizing 
(4.72) 

We proceed with the sensitivity of 

(4.81) 

where a 1 i  is the e'th component of the unknown parameter vector. It is important to 
note here that the commutativity of SISO systems that yielded the Wilkie-Perkins 
result [58] of just one sensitivity model (plus the plant itself) to simultaneously gen- 
erate all the sensitivity functions does not apply. This means that the process of 
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applying Yl(s) as an input to a sensitivity filter-sensitivity model pair must he exe- 
cuted nl times (for the al parameter vector). Thus, the output sensitivity vectors of 
this section will be with respect to the i th parameter of the vector in question. This 
in no way affects the versatility of the decentralized models in this subsection since 
it would apply to SISO systems as well. 

Continuing with the analysis, the sensitivity of Fll with respect to the parameter 

where 

(4.82) 

(4.83) 

With this equation, we can rewrite as (after some algebraic manipulation) 

- aQi - - -F11-F11. 
dF11 

dali doli 

- = -F11---F12. 
dFl2 
8%; doli 

Likewise, via similar steps, one can obtain 

aQi 

This leads to 

(4.84) 

(4.85) 

aQi I (4.86) 
aY, 
- = -Fll-(Fllul + F12U2) - 
8%; dali 

Noting that the term in parentheses is merely (4.72), we have the result 

(4.87) 

which is a completely decentralized result. The output sensitivity vector depends 
only on the output signal itself plus some transfer matrices. 

Several comments are in order at this juncture. First, one would normally be 
interested in the sensitivity functions evaluated about some known nominal parameter 
values. In this case, the above partial derivatives are all evaluated about these nominal 
values. This dependence on the nominal values is suppressed in the analysis to make 
notation simpler, but it should be assumed. Second, the above result and the ones to 
follow are decentralized in the sense that only local (i.e., within the given subsystem) 
signals are needed to compute the sensitivity functions. This is generally what one 
means by decentralized. The fact that transfer matrices from other subsystems are 
needed to compute these sensitivity functions does not detract from the decentralized 
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nature of these results. It is generally assumed in the decentralized control literature 
that models can be exchanged across subsystems even though signals are not. This 
is because in a real-time environment, the nominal models will have been known for 
some time whereas the signals are being generated at the moment (though there are 
some results that do use only local models). 

Proceeding in a likewise manner for the output sensitivity vector with respect to 
Pl 9 

ax aFll aF12 

aP1i Wl i  
-u1 + -u2 -- - 

where (after some manipulation) 

Finally, we obtain 

(4.88) 

(4.89) 

(4.90) 

(4.91) 

where 

V , = U i - Q i K  (4.92) 

and represents the error signal between the reference inputs and the feedback signal. 
Thus, this sensitivity vector can also be generated via a local sensitivity model. 

The sensitivity of Y1 with respect to y1; is also of interest since one might want to 
know how the output of the first subsystem is aflected by parametric uncertainty in 
the cross-coupling from subsystem 1 to subsystem 2. We start as before with 

Combining these equations with (4.93) yields 

(4.93) 

(4.94) 

(4.95) 

(4.96) 



88 

which again shows that it can be generated in a decentralized manner. 
The three remaining output sensitivity vectors of the first subsystem do not possess 

the same decentralized features as the above sensitivity vectors. However, they are 
of interest to us since they still maintain some elements of a decentralized structure. 
Since the procedure for generating these sensitivity vectors has been established, the 
results are simply stated as follows 

(4.97) 

(4.98) 

(4.99) 

From above, one can see that each of these sensitivity vectors requires signals from 
only the second subsystem. In this sense, they can be generated by decentralized 
sensitivity models, but they would only be available at the second subsystem. Pre- 
sumably, one would want these sensitivity vectors at the first subsystem since they do 
reflect x’s dependence on unknown parameters in the second subsystem. However, 
in some cases one may be able to use this information at the second subsystem where 
it can be generated via local sensitivity models. This might be the case in adaptive 
control where the sensitivity of the other subsystem’s output to local parameters is 
needed to update a decentralized control law. 

Figure 19 shows the configuration for generating the sensitivities of the first sub- 
system for the plant model in Fig. 18. Some of the sensitivity models can serve for 
two different sensitivity vectors, but each of the sensitivity vectors requires a different 
sensitivity filter. One drawback of decentralized sensitivity models over the central- 
ized case is that the sensitivity models are no longer just a copy of the plant model. 
As is apparent in Fig. 19, the sensitivity models cannot be written as just a plant 
model, but some do have physical meaning. For instance, the sensitivity models for 
fi salt and 2 which are F11 and F12, respectively, represent the plant evaluated at the 
nominal parameter values with U2 = 0 and U1 = 0, respectively, and the other input 
coming from its respective sensitivity filter. The other sensitivity models are more 
complicated and are not able to be generated from a copy of the plant model in any 
obvious way. 

As mentioned earlier, the sensitivities of Y2 with respect to all of the unknown pa- 
rameter vectors can be generated by exactly the dual of the above sensitivity models. 
With this figure one can utilize sensitivity-based control designs in a decentralized 
framework. Thus, well-known sensitivity control schemes (see Ref. [65] for examples) 
can be utilized at each subsystem. In particular, gradient adaptive control techniques 
utilizing sensitivity functions would enable one to update subsystem parameters in a 
completely decentralized setting. 
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Fig. 19: Sensitivity model configurations for linear coupled subsystems. 

The next logical step in generating decentralized sensitivity models is to look at 
the nonlinear case. It is much more difficult to produce local sensitivity models for 
coupled nonlinear systems because first-order partials of vector fields will still depend 
on the state. This implies that partials of coupling terms will require the use of the 
state vector from another subsystem which cannot be measured or generated locally. 
This motivates the analysis of less general nonlinear systems where perhaps only one 
subsystem needs access to a sensitivity model. Consider the following two-channel 
system depicted in Fig. 20 

(4.100) 

where only f1 and hl axe assumed to  be nonlinear. These functions are also assumed 
to be smooth in their arguments, 21 and ~ 1 .  The second subsystem is completely 
linear and the coupling terms are linear as well. The terms B; and A;j are assumed 
to be independent of a;, 

To generate the sensitivity model for 91 with respect to 01, we need the sensitivity 
models for both 5 1  and z2 with respect to cy1 due to the cross-coupling. Differentiating, 
we obtain 

(4.101) 
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where it is noted that u; is assumed independent of a;. 

Fig. 20: Two-channel coupled nonlinear system. 

From the model (4,101)’ it can be seen that the output and state sensitivities 
can all be generated in a decentralized framework. This is because state/output 
sensitivities form a system with a model requiring only matrices and signals that can 
be computed locally. The cross sensitivity e can be calculated at subsystem 1 since 
the above model shows that it too does not require any signals from subsystem 2. 
The same will not hold true for the sensitivities with respect to a2 at the second 
subsystem since they will depend on 2 which in general is a nonlinear function of 
2 1 .  Thus, the state x1 would be needed at subsystem 2 to compute the sensitivities 
with respect to a2 violating the decentralization constraint. Figure 21 illustrates the 
manner in which the sensitivity functions of the system in (4.100) are computed. 

If the control vector fields B; are not constant (e.g., g;(z;) or g;(x;,a;)) then 
the terms 2 will be multiplying u; making it impossible for the cross sensitivities 
to be generated locally (i.e., uj would be needed in the ith subsystem’s sensitivity 
model). Note also that the sensitivity model (4.101) is a linear system dependent on 
Jacobians of the f;cj, vectors with respect to ai. The model is, however, time-varying 
since the Jacobians will depend on x; in general. But the model will not depend 
on the unknown parameters since all parameters will be evaluated at their nominal 
values. 
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Fig. 21: Sensitivity models €or coupled nonlinear systems. 

4.2.2 Decentralized Optimal Control via Sensitivity Func- 
t ions 

It is now of interest to apply the above decentralized sensitivity models to performance 
issues associated with decentralized control. In particular, we concern ourselves with 
locally optimal control laws which include sensitivity functions in the feedback loop 
as a means of desensitizing the system from parameter variations. The framework 
pursued here is that of linear subsystems with linear couplings similar to that of Ref. 
[80] but utilizing sensitivity functions to address parametric uncertainty in an optimal 
manner. A version of the centralized case appears in Ref. [65] .  The performance index 
consists of a sum of N local cost criterions where N is the number of subsystems. 

Formally, we have 
N 

2i = A;(cY;)x; + A ; j ~ g  + B;u; , i = 1,. . . , N 
j =  1 
j # i  

(4.102) 

with x; E Pi, u; E R"', and ai E Izp, where a i  are the vectors of unknown parame- 
ters. It is desired to minimize the quadratic cost criterion 

(4.103) 

via local state feedback where Q;,S;j are positive semidefinite matrices, R; are positive 
definite matrices, and A i j  = 2 IQt=CY: are the sensitivity vectors associated with the 
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i th subsystem with CY: the nominal parameter values. As was demonstrated in the 
previous section, the cross-sensitivity functions X i j ,  j # i can be generated at the ith 
subsystem with only local information needed. 

The sensitivity models are described by the following linear time-invariant differ- 
ential equations 

N aA; 
A;; = - X i  + + A;jA;j acui (4.104) 

(4.105) 
;=& 

which again demonstrate the decentralized nature of sensitivity models for the system 
(4.102). Define the augmented state vector 

and one obtains the following linear time-invariant system 

(4.107) 

Aij 0 0 

where the outputs are defined accordingly but not needed in this analysis. 
compact form 

The 

(4.108) 

which immediately follows from (4.107) leads to  the full augmented state space de- 
scription 

i = A? + Ac? + Bu (4.109) 
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The performance criterion (4.103) can be re-expressed in these new coordinates 
as 

", 

where Qi  = block-diag [Q; Sij Sij]* This is written in the full state space as 

J = Jrn ( Z T Q Z  + uTRu) dt 
0 

(4.110) 

(4.111) 

where Q = block-diag [Ql - - - QN] and R = block-diag [RI - RN].  Note that Q and 
R will be positive semidefinite and positive definite, respectively, if Q;,S;j and Ri are 
positive semidefinite and positive definite, respectively. 

It is assumed that the decoupled subsystems 

2 = A $ + + U  (4.112) 

are controllable, ;.e., (A,f l )  are a controllable pair. Thus, the cost criterion (4.111) 
can be minimized by solving the linear quadratic regulator separately for each sub- 
system. That is, let 

u = -Ki (4.113) 

where K = block-diag [Kl - - KN]. These IC; are computed by solving the algebraic 
Riccati equation 

ATP + P A  - PBR-'BTP + Q = 0 (4.1 14) 

for the unique positive definite matrix P = block-diag[Pl...PN]. Because of the 
structure of A, B, Q, R, the solution P will automatically be in this block-diagonal 
form. The feedback IC is given as 

K = R-'BTP (4.115) 

which produces the optimal cost 

J* = ZT(0)P5(O) (4.116) 

where it is noted that the initial conditions on the sensitivity vectors are always zero. 
The control law (4.113) is completely decentralized, u = -I{;&, which means 

that each subsystem can be regulated with only locally available information even 
in the presence of parametric uncertainty. Indeed, it is the use of locally generated 
sensitivity functions that sets this strategy apart from others. Figure 22 illustrates 
this method. Of course, since the interconnections are ignored in the Riccati equation 
(4.114), the control law (4.113) will generally be suboptimal. However, because each 
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I 

Fig. 22: Decentralized optimal control with sensitivity models. 

subsystem is autonomously driven, this strategy will be robust to a wide range of 
uncertainties in the interconnections. Since the closed loop system is given by 

i =  ( A - B K + A , ) Z ,  (4.117) 

the interconnections will behave as regular (as opposed to singular) perturbations. In 
the event of weak coupling, their impact will be small making this suboptimal strat- 
egy quite effective. The coupling matrix AC can be taken into account by applying 
functional minimization schemes (e.g., see Refs. [74, 841) that involve coupled Lya- 
punov equations and iterative procedures. All the necessary terms and definitions for 
including the interconnections are present in this analysis. This is a straightforward 
extension of the above method but is omitted here. Finally, if the subsystems are non- 
linear then the sensitivity models can be decentralized under the structure in the last 
section. However, the optimal control strategy pursued would have to involve solving 
the Hamilton-Jacobi equation unless some linearization procedure were implemented. 

4.2.3 Example 

We consider a system consisting of two inverted penduli coupled by a spring subject 
to two independent torque inputs as shown in Fig. 23. Physically, this system is 
analogous to two one-link manipulators joined together by a string, cable, or other 
spring-like medium. The deflections from vertical are assumed to be small enough 
such that the gravity term can be linearized. The equations of motion are [80] 

(4.118) 
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i =  

where all parameters are defined in Fig. 23 except for g which is the gravitational 
constant. The state vector is chosen as 5 1  = ( B 1 , j l ) T ,  the input vector is u = 
( u I , u ~ ) ~ ,  and the uncertain parameters are cui = t .  These parameters physically 
represent the squares of the natural frequencies of oscillation of the decoupled penduli. 
We assume some uncertainty from their nominal values. With this notation the 
system 

r - r - 
0 1 :  0 0 o i o  

1 : o  

0 o i  0 1 0 : o  
ka' ka2 0 * l  

0 q .  ka2 0 : ka2 
Q1 - zq "p: 

u (4.119) ... ... ... ... ... x+ ... ... ... 

- * 0 : " 2 - q  - 
is written which falls into the format of (4.102). 

I m 

Fig. 23: Inverted penduli coupled by a spring. 

The next task is to generate the sensitivity models of the system (4.119). Utilizing 
(4.104)- (4.105), the sensitivity vectors 

(4.120) 
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are generated. The augmented state vector 2 is formed as follows 

T T  T T T  T T  
5 = [ I 1  A l l  A12 5 2  4 2  4 1 1  (4.121) 

which is 12th order. Choosing ka2 = lN.m, me: = lkg.m2, me; = 0.5kg.m2, a: = 
= l$, and a; = 2 = 2$. This leads to the nominal augmented state space 

description in the form of (4.109) 

x =  

+ 

0 1 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 1 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0  
0 0 2 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0 0 0 2 0  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 1 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
2 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0  

- 
X 

s +  

0 0  
1 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 2  
0 0  
0 0  
0 0  
0 0  

(4.122) 

21 

which has been evaluated at the nominal values of the uncertain parameters. 
The quadratic cost criterion is chosen such that all states and sensitivity functions 

are weighted equally, i.e., Q is a 12 x 12 identity matrix. Likewise, R is selected to 
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be a 2 x 2 identity matrix. Analysis simulated on MATLAB (trade name of The 
Mathworks, Inc.) solves the Riccati equation (4.114) and implements the decentral- 
ized control strategy of the last section. For comparison purposes, a decentralized 
design is carried out on the same system without using sensitivity models. That is, 
the nominal parameter values were taken as exact in the control design. The uncer- 
tainties tested were 10% and 20%, respectively, i.e., the true values were a1 = 1.1, 
02 = 2.2, and a1 = 1.2, = 2.4 for the two simulation runs. For both designs, the 
controllability assumption is satisfied. 

Table 2: Closed loop poles with no uncertainty 

N o  sensitivity model Sensitivity model 
-0.233fj1.255 

-0.866fj0.5 -0.924fj0.582 

-1.414 -0.23fj1.206 
-1.196fj0.41 

No interconnections -1.414 -1.376, -1.058 

-1.79, -1.036 

-2.957fj 1.52 
-1.116kj 1.207 -0 .53f j  1.724 

Interconnections -2.329 -0.136fj1.259 
0.0 -0.182fj 1.04 

-0.22ij0.301 
- 1.189fi0.003 

The results are summarized in Tables 2 to 4. The first column of numbers of 
each table represent the closed loop poles for the 4th order decentralized design with- 
out sensitivity models. The second column of numbers of each table represent the 
closed loop poles for the 12th order decentralized design with sensitivity models. The 
first row of each table corresponds to the case of ignoring the interconnection terms 
whereas the second row includes these terms in the closed loop analysis. The re- 
sults show that the lower order design without sensitivity models fails to stabilize the 
closed loop system once inaccuracies in the parameters are introduced. In fact, even 
with no uncertainty in the parameters, one of the closed loop poles is at the origin 
once the' coupling matrix is included. As the uncertainty is increased this pole moves 
further into the right half plane. But for all three cases of uncertainty (0, lo%, 20%), 
the higher order design with sensitivity models maintains closed loop stability. The 
price paid is a higher order system, but the gain is a significant amount of stability 
robustness with respect to parametric uncertainty. Of course, it must be noted that 
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Table 3: Closed loop poles with 10% uncertainty 

No  sensitivity model Sensitivity model 
-0.249fj 1.445 

0.056 -0.193fj0.836 

0.069 -0.301fj1.542 
-2.898 -0.13 1 fj0.904 

No interconnections -1.788 -2.678, -3.629 

-1.186, -1.187 

-3.405fj0.995 
-0.2051tj 1.78 

Interconnect ions -3.059 -0.168fj 1.332 
0.559 -0.072fj 0.978 

-0.177fj0.648 
-1.188fi0.001 

- 1.03fjO. 3 1 

the true optimal cost J* will be infinite for all three cases for the lower order design 
whereas it remains finite for the higher order design. 

4.2.4 Concluding Remarks 

In this section, we have shown that sensitivity models of linear interconnected systems 
can be generated at each subsystem using only local signals. This has even been shown 
for special cases of nonlinear systems. The utility of this result is that any control 
algorithm that calls for the use of sensitivity functions to alleviate the problems of 
parametric uncertainty can be implemented in a decentralized setting. Thus, adaptive 
control, optimal control, system identification, etc., that call for the use of sensitivity 
functions can be done on interconnected systems using only the local state or output. 

In particular, a decentralized optimal control strategy was presented that incor- 
porates sensitivity functions in an augmented state vector. A cost criterion that 
penalizes these sensitivity functions is utilized which makes the closed loop optimal 
control law less sensitive to parameter deviations at each subsystem. Moreover, the 
control is completely decentralized requiring only the solution of algebraic Riccati 
equations for the feedback gain matrices. 

This scheme is applied to a system consisting of two inverted penduli coupled by a 
spring. It is compared to the same decentralized control law without the use of sensi- 
tivity models. When the true natural frequencies of oscillation are allowed to deviate 
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Table 4: Closed loop poles with 20% uncertainty 

No sensitivity model Sensitivity model 
-0.24fj1.459 

0.109 -0.173fj0.841 

0.135 -0.28 1 f j  1 -563 
-2.963 -0.1 13fjO.908 

No interconnections -1.84 -2.736, -3.707 

-1.186, -1.187 

Interconnections 

-3.45fj0.959 
-3.114 -0.183fjl .784 
0.601 -0.168fj1.341 
-0.871 -0.063fj 0.979 
-1.177 -0.163fj0.669 

- 1.188kj 0.001 

from their known nominal values, the scheme with sensitivity models maintains closed 
loop stability even up to 20% variation in parameters. The strategy without sensi- 
tivity models fails to stabilize the true system when the parameters are varied. The 
price paid is a higher order system, but the robustness to closed loop stability with 
sensitivity models makes it very useful for uncertain systems under decentralization 
constraints . 



CHAPTER 5 

APPLICATIONS O F  NONLINEAR CONTROL 

5.1 FLEXIBLE MANIPULATOR CONTROL VIA SIN- 
GULAR PERTURBATIONS 

This section is concerned primarily with the application of singular perturbations and 
distributed vibration damping to a two-link flexible manipulator. This result is an 
example of decentralized nonlinear control with the feedback linearization done by 
integral manifold methods. Each link only requires its own local measurements for 
feedback at its joint. In addition, the result takes advantage of new “smart” materials 
such as piezoelectrics that can significantly dampen vibrations without adding much 
weight to the structure. The result begins by developing the integral manifold equa- 
tions of the two-link structure which are needed to determine the linearizing control 
laws. The appendix contains the dynamical equations of the model as well as the 
structural data. 

5.1.1 Control via the Integral Manifold Approach 

According to Sobolev [114], a manifold M, defined by the equations 

z = h(0 ,8 ,G ,e , c )  (5.1) 

i = k ( e , t j , f i , i , E )  ( 5 4  

is an integral manifold for the system (A.1)-(A.4) if it is invariant under solutions 
of (A.1)-(A.4). That is, if the system lies on the manifold M, at some time t o  then 
the solution trajectory remains on the manifold M, for all t > to .  If in addition, the 
flexible dynamics as represented by the flexural vibration equations, (A.3)-( A.4), are 
asymptotically stable then the solution of the full system, (A.l)-(A.4), will rapidly 
converge to the integral or slow manifold M, on a fast manifold and remain on this 
slow manifold for all time. In addition, the stability of the overall system for small 
enough E is determined by the stability of the slow subsystem, i.e., the system obtained 
with E = 0 if the fast dynamics are asymptotically stable (see Refs. [a] and [3]). 
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In order to apply integral manifold theory, the system model (A.l)-(As4) must 
be in singularly perturbed form. This model has been shown to be singularly per- 
turbed in Khorrami and Ozguner [50] for the one-link case and Khorrami [115] for 
the two-link case. Thus, we concentrate on deriving the slow and fast manifold equa- 
tions describing the two-link manipulator's behavior. These equations have not been 
developed previously. To do this, a normalized model of the system is derived. 

First, we normalize the link deviations and spatial variables with respect to link 
lengths. That is 

e2 a1 Q2 4 
L1 LZ L1 LZ 7 y1=-, y2=-. , x 2 = -  21 = - (5.3) 

To make use of these normalized variables we divide both sides of (A . l )  by L;L:, and 
we divide both sides of (A.2) by L1L;. then we divide both sides of (A.3) by PILI, 
and we divide both sides of (A.4) by p2L1L2. Next we define several variables for 
convenience in notation. Our new control variables become 

and we define 

(5 .5 )  

The small parameter E is introduced in the following manner: Since e must be 
related to the stiffness properties of the links, a natural choice (Khorrami and bzgiiner 
[50], Khorrami [115], and Siciliano et al. [116, 1171) is to let E be inverselyproportional 
to the square of the lowest frequency of oscillation due to flexure of the links. Because 
there are two links, there are two such parameters, €1 and €2: 

This choice of E shows that as the bending stiffness EiIi becomes larger ei becomes 
smaller which implies that the links behave more like rigid links. Since the y; terms 
represent the flexure effects, it can be shown that (Khorrami and Ozguner [50] and 
Khorrami [115]) y; is of order e; .  Thus, we let 

y; = E&, i = 1,2  (5-7) 

where z; is our new variable for flexure effects. It can also be verified (Khorrami and 
6zgGner [50] and Khorrami [115]) that as vanishes, the dynamics of the rigid body 
motion are recovered. Working with two different small parameters greatly increases 
the complexity of the integral manifold equations. Thus, we make the following 
assumption. 
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Assumption 5.1 O(q)  = O(c2) = O ( E ) .  

This allows us to deal with just one small parameter representing the flexibility 
of the two links. It is important to note that this does not mean that €1 = €2. 
Indeed, these two parameters can differ significantly provided they are of the same 
order for approximation purposes. Physically, this assumption means that both links 
have roughly the same order of magnitude in elasticity properties. As long as one 
link is not a great deal more flexible than the other, Assumption 5.1 will hold. This 
assumption does not force any requirements on the relation of the length of one link 
to the other. If it turns out that one of the links is stiff, say link 1, then €1 = 0 
and in fact the dynamics are even simpler since all terms containing cy1 disappear 
(see Khorrami [llS]). If Assumption 5.1 does not hold and neither link is rigid then 
one obtains a multi-parameter singular perturbation problem. This corresponds to a 
three time-scale system which would require additional subsystems to describe (see 
KokotoviC et al. [46], p. 34). 

With the terms from above, we can now define the integral manifold: 

= {(el,e2,d1,e2,~1122,il,i2)12; = h i ( e i , e , , u i , z a , c ) ,  (5.8) 
2; = iL;(O;, e;,  u;, z;, e ) }  

for i = 1 ,2  where h; represents the effects of flexure on the rigid body motion. The h; 
variables are obtained by solving a manifold condition which is simply the substitution 
of z; = hi into the transverse motion equation for link i. However, these equations 
are very difficult to solve so the manifold terms h; and the torque control terms u; 
are expanded in the parameter E as follows: 

ui = uio + + O(c2) (5.9) 

where hij = h;j(O;,d;,u;,z;). It should be noted that in the equations to follow, we 
simplify notation by writing h;j = h;j(s; ,  t )  to reflect hij’s dependence on length (x;) 
and time (0;) d;, u;). The hjj terms do not depend on E since this is now assumed in 
the power series. 

Substituting (5.3), (5.4), (5.6)-(5.10) into (A.3) and (A.4), and equating like pow- 
ers of €, we obtain the following manifold conditions: 
Manifold equations for link 1: 

(5.11) 
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Manifold equations for link 2: 

(5.12) 

where O(c2) terms have been ignored. 
Substituting (5.3)-(5.10) into (A.1) and (A.2), and again equating like powers of 

e ,  we obtain the following corrected slow manifold equations representing the rigid 
body motion on the slow manifold. These equations are corrected in the sense that 
the flexibility effects from the manifold equations are included to increasingly higher 
powers in e. 
Corrected slow manifold equations for link 1: 

(5.13) 
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Corrected slow manifold equations for link 2: 

(5.14) 

where again the O(c2) terms have been ignored. It should be noted that the O(1) 
equations of the slow manifold represent the equations of a two-link rigid manipulator 
as expected. These equations are the slow subsystem of the flexible manipulator, 
and in Sect. 5.1.3 we explain the strategy for asymptotically stabilizing the slow 
subsystem. This terminology is important since it is the slow subsystem that must 
be stabilized to ensure stability for the full system for small enough e .  

Also of interest are the fast manifold equations. To derive this, we introduce the 
fast or stretched time scale 7 = t / &  We also define the deviation of the flexure 
variables from the integral manifold as 

q; = Z; - hi. (5.15) 

Substituting (5.15) and the fast time scale into the flexible dynamics (A.3)-(A.4) and 
letting t --+ 0 (see KokotoviC et al. [46], pp. 17-20) we get the boundary layer system 

(5.16) 

(5.17) 

d" 171 - 
__ dr2 

- -171,z,z1z1z1 - hl,zlzlzlzl - Xl(OJ 

-72,zzzzz2t2 - h2,z2z2z2z2 - X2((8,)O + (B2)O) 
- - dL11, 

dr2 

(5.18) 

(5.19) 

The above system describes the trajectories (O, ,  vi),  which, for every given initial 
condition (Op, t9p, e:), lie on a fast manifold defined by 6; = 0: =const, and rapidly 
descend to the slow manifold Mo (;.e., A& with c = 0). 

. .. 
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The above model does not include any viscous damping in the links. If one desires 
to include this in the model, one will obtain an additional equation of O(e3) which 
results from the fact that the damping coefficient is proportional to the square root 
of the stiffness term E l .  The important point of this is that the O(ei) equation will 
be linear and thus does not need a torque control term for feedback linearization. Of 
course, without damping, the system equations will never converge to the integral 
manifold since the fast subsystem (the vibrational dynamics) are not asymptotically 
stable. But at least some viscous damping will always be present, thus the above 
slow manifold will exist. The important point here is that the presence or absence of 
damping does not alter our control strategy. 

5.1.2 Distributed Actuator Control 

Though flexible manipulators have advantages in terms of speed, mobility, and re- 
duced energy consumption, their vibrational characteristics make control more dif- 
ficult. Passive damping of flexible robot arms is not adequate due to its additional 
mass and its inability to adjust to changing flexibility effects. Hence, some kind of 
active damping is desirable to control the vibrations. In Spong et al. [2] and Siciliano 
et al. [116], only torque control is used to cancel the vibrational motion. But because 
of the dynamical complexity of flexible links versus flexible joints, it would appear ad- 
ditional control effort is needed. Current design practice in general flexible structures 
is to use discrete or point actuators to actively dampen vibrations. However, these 
flexible systems have an infinite number of degrees of freedom forcing most designs 
to truncate the system model to a finite number of discrete modes. Choosing which 
modes to represent the system and where to put the actuators is a difficult problem. 
In Chassiakos and Bekey [119], an optimal scheme for locating ideal point actuators 
on a vibrating beam is proposed, and in Barbieri [120], the dynamics of a particular 
proof mass actuator are incorporated into the system model. 

But in Bailey and Rubbard [8], Burke and Hubbard [9, IO], and Crawley and de 
Luis [ll], a distributed actuator which has the possibility of controlling an infinite 
number of vibrational modes and adds a minimum of dynamical complexity to the 
system model is proposed. The actuator is spatially distributed and makes use of 
a polymer film. When a voltage is applied spatially across the faces of the film, 
it results in a longitudinal strain over the entire plated area of the film, making it 
a distributed parameter actuator. If this voltage is varied spatially, the strain will 
also vary spatially and in Bailey and Hubbard [8] candidate voltage functions are 
revealed as able to control all the vibrational modes of flexible beams with many 
different boundary conditions. There are other distributed actuators. In Edberg 
(1211, a thermal actuator when applied with a voltage acts as a heat pump producing 
a temperature gradient that induces a deflection in the beam. Results in Edberg 
[121] show that if the voltage is chosen properly it can significantly dampen the first 
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vibrational mode of a cantilever beam. 
The dynamics and hardware details of various film actuators are explained in 

Bailey and Hubbard [SI, Burke and Hubbard [9, 101 and Crawley and de Luis [ll] 
and will not be repeated here. Instead, the new equations of the two-link structure 
with distributed actuator control are derived by adding the polymer actuator to the 
manifold equations which are essentially Euler-Bernoulli beam models with slewing 
effects (Schoenwald et al. [51] and Schoenwald and Ozgiiner (1221). The film type 
distributed actuator will effect the manifold equations as well as the boundary con- 
ditions. This actuator will also impact the corrected slow manifold via the solution 
of the manifold equations (i.e., the h;j terms). But it will not affect the rigid link 
motion (;.e., the 0 ( 1 )  corrected slow manifold equations). The primary difference in 
this section from Bailey and Hubbard [SI, Burke and Hubbard [9, lo], and Crawley 
and de Luis [ll] in implementation of the film is that the flexible links are slewing 
(rigid body motion) as well as vibrating. The new system equations can be stated as 
follows: 
0(1) manifold equation for link 1: 

0(1)  manifold equation for link 2: 

(5.20) 

(5.21) 

where k ( x i , t )  is the voltage applied to the film on the i th link which can vary in 
both space and time and m; is a physical constant representing stiffness and other 
parameters of the film. 

The boundary conditions for the system will change with the application of the 
film voltage k ( x i , t )  and can be stated as follows: 
Boundary conditions for link 1: 

hlO(0, t )  = hl0,Xl (0, t )  = 0 
L3 

h l O , Z , X , ( l , t )  = - 4 J U 2 0  P1 L, + * A ( l , t )  

~ ~ O , x l x l z l ( ~ ~ ~ )  = (2 -4- *) Sl+ 

%(& + 8,) cos 02- 

(5.22) 
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Boundary conditions for link 2: 

(5.23) 

In Bailey and Hubbard [81, it is shown that a uniformly spatially varying voltage 
distribution fails to control even-numbered modes of many types of vibrating beams. 
But in this section, we propose a uniform distribution for the film since our assumed 
geometric boundary conditions are clamped-free which are controllable via this dis- 
tribution (Burke and Hubbard [lo]). The shape of the actuator's spatial component 
is obtained by cutting the film into the desired shape and adhering it to the longitu- 
dinal faces of the beams. This implies that only the temporal component of the film 
voltage can be varied since the shape of the film must be determined a priori. Thus, 
our control strategy focuses on the type of control that would be most effective for 
the temporal component of the film distribution. 

It is proposed here that feedback for this time-varying voltage will enhance the 
damping properties of the actuator. There are two primary types of feedback cur- 
rently being considered: (a.) feedback of position error obtained from hub angle 
measurements and (b.) feedback of endpoint acceleration as is done in Kotnik et 
al. [123] for a one-link flexible manipulator. Strategy (a.) showed the most encour- 
aging results of the two, however, both methods proved feasible. Results of these 
simulations appear in a later section. 

5.1.3 Approximate Feedback Linearization 

From (5.13) and (5.14), we choose the control terms uio to linearize the O(1) slow 
subsystem dynamics. This is simply the linearization of the rigid manipulator dy- 
namics and can be done via the well-known computed torque method as is suggested 
by Spong et al. [2] and Siciliano and Book [3]. Because of the reliance on the rigid 
link angles and their derivatives in the calculations, the following assumption is made. 

Assumption 5.2 0i7 6; are assumed to be measurable. 

Assumption 5.2 is quite reasonable since fairly inexpensive hardware is available 
for such purposes, e.g., shaft encoders and tachometers. The computed torque method 
will not require the measurement or estimation of joint acceleration, O;, thus negating 
the need for differentiation of measured signals. With the rigid linearizing control 
law, the O(1) equations for the corrected slow manifold (Le., the slow subsystem) are 
as follows: 
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0(1) rigid body motion equation for link 1: 

0(1) rigid body motion equation for link 2: 

(5.24) 

(5.25) 

where v, are the external inputs needed to implement the desired slewing behavior. 
The above equations imply that the O( 1) feedback linearization strategy results in 

two double integrators which are well known to be controllable through PD feedback 
(;.e., joint angle and velocity feedback). We now briefly discuss how the PD control 
gains can be chosen from the linearized model. First, we put the linearized model 
into state space form by defining the following states 

t1 = el - e; , t2 = e, 
t3 = e2 - e ; ,  t4 = e, 

(5.26) 

where Sf is the desired slewing angle for the ith link. Next, we define two physical 
constants 

(5.27) 

m2 = -pa& 1 3  (5.28) 
3 

which allows us to express the linearized model as 

0 1 0 0  0 0 

0 0 0 1  (5.29) 
-1 

ml -m2 mz(m1 -mz)  

This system has four poles at the origin and its controllability matrix has full rank. 
Now we define the decentralized feedback laws 

v1 = g i l t 1  + $71212 7 0 2  = g 2 1 1 3  + 9 2 2 1 4  (5.30) 

where the goal is to  choose the gains to obtain moderately damped poles without 
choosing the gains too high so as to excite vibrational modes through the effect of 
higher order nonlinearities. 
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Following standard pole placement design techniques, it was decided to place the 
poles such that two of them are a complex conjugate pair with approximately 3% 
damping with the other two on the negative real axis. With physical constants of 
ml = 2.02 kg-m2 and m2 = 0.0046 kg-rn2, the gains obtained were g11 = 9 1 2  = -10, 
gzl = -0.5, and 9 2 2  = -0.02. Other pole placements were analyzed, however as 
damping increases so do the gains which results in the excitation of higher order 
nonlinearities. The oscillations in the joint trajectories were particularly sensitive 
to the velocity gains gi2. Smaller gains resulted in longer settling times. Thus, to 
achieve greater damping without exciting higher order nonlinearities, the corrective 
(O(6)) control is needed. 

The remainder of the feedback linearization strategy is to choose the control terms 
u;j to cancel nonlinearities in the O( € 3 )  equations. This can be done to an arbitrary 
power of E. In the appendix, a detailed description of the O(c)  linearizing controller is 
presented. This control law represents a higher order correction to the rigid linearizing 
controller. The decision as to when to incorporate the higher order control law will 
depend upon the particular structure involved. Generdly, flexible structures with 
principal vibratory modes under 10 Hz will benefit from higher order control laws. 
But, only very flexible structures (c’s greater than 0.1) would require anything more 
than the O(c)  control law. The addition of the distributed actuator will alleviate much 
of the elasticity problem, but the higher order control law may reduce the amount of 
energy the distributed actuator is required to add to the system. 

5.1.4 Simulation Results 

In this subsection, results of our computer simulations on a two-link flexible manipu- 
lator are presented with plots of the system’s performance appearing at the end of the 
section. The computer program which handles the simulations implements a finite- 
dimensional model of the system using the assumed modes method. This method 
and the derivation of the model are illustrated in the appendix. Also included in 
the appendix are the structural dimensions of the OSU two-link flexible manipulator 
upon which this model is based. Gravity effects are not incorporated in the model, 
but viscous damping is present in the model. The simulated sampling time was 10 
milliseconds and a 5th order Runge-Kutta differential equation solver with adaptive 
stepsize was utilized for solving the system differential equations. 

The program simulates a one-mode expansion for each link as derived in the 
appendix. The first link is modeled as clamped at one end with a mass and moment 
of inertia at the other end representing the second joint/link assembly. The second 
link is modeled as clamped-free. These assumed mode shapes represent our effort 
to accurately include the analytical boundary conditions (5.22),(5.23). The details 
of these mode shapes are discussed in the appendix. The experimental results in 
Yurkovich et al. (131 indicate only one mode is apparent in each link, thus a one- 
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mode approximation is justified. The modal frequencies obtained from FFT plots of 
tip position are 1.6 Hz for the first link and 1.5 Hz for the second link. From (5.6), 
€1 = 0.0282 and e2 = 0.0315 using data from the appendix. Since ci cx -$, the ratio 
predicted by the 6 values is 2 = 0.946 which is very close to the siniulation results 
of = 0.938. 

The torque control consisted of a PD component plus the O(1) linearizing control 
described in the last section. The PD controller consists of constant feedback of the 
shaft velocities and constant feedback of the position error of the rigid link angles. The 
procedure for choosing the gains for the PD control was explained in Sect. 5.1.3. The 
distributed actuator control consists of a spatially uniform component and a temporal 
component consisting of constant position error feedback as described in Sect. 5.1.2. 
Several other types of feedback were implemented including tip acceleration and tip 
deflection, however the position error feedback achieved the most encouraging results 
and in a physical system it would be easy to measure. The boundary conditions 
(5.22) ,(5.23) are incorporated in the distributed control law via distribution theory 
since the uniform spatial distribution must be differentiated twice at  the boundaries 
(which involves taking derivatives of delta distributions). 

In all plots the first link is initially displaced 45 degrees above a reference line and 
the second link is initially displaced yet another 45 degrees from the first link. All 
angular velocities and accelerations are initially zero and so is the initial tip deflection, 
velocity, and acceleration. The desired final position is for the two links to be on a 
straight line with each other at the reference line, i.e., 01 = 8 2  = 0 and both links at 
rest. That is, both links are slewed through an angle of 45 degrees. The film actuator 
simulated here is a normalized model of the one described in Bailey and Hubbard 
[8] and Burke and Hubbard [9, 101. This implies that the film physical constants are 
simply embedded in the applied voltage. Thus, the results obtained are applicable to 
many types of film actuators. 

Figures 24 and 25 show the joint angles and velocities vs. time for the above 
described torque control and slewing maneuvers but without the film actuator. It can 
be seen that the links achieved their desired positions in about 3 s. The joint angle 
and velocity responses of link 2 oscillate as is seen in Figs. 24 and 25 but this is not the 
case for link 1. The first link has a much heavier mass than the second link (about 10 
times as heavy as link 2) making it more difficult to oscillate. Also, nonlinearities of 
O(e) (which are not cancelled by the torque law) create a more overdamped response 
at the joint of link 1. Figure 24 shows the hub angle responses with PD control and 
the 0 ( 1 )  linearizing control. Plots not shown here indicate that PD control by itself 
has a very similar response to Fig. 24, but the responses take approx. 0.5 s longer to 
settle down. Thus, the linearization helps but not substantially. The addition of the 
distributed actuator has little effect on the hub angle profiles. 

Figures 26 and 27 illustrate the tip deflections with and without the film actuator. 
The torque control applied is exactly the same as in Figs. 24 and 25. As can be seen, 

wt 
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the maximum absolute deflection has been reduced in the first link from 3.9 cm to 
2.4 cm, and in the second link from 8.7 cm to 3.7 cm. The improvement is most 
noticeable in the second link (approx. 60% reduction) which would normally be the 
payload-carrying link. The distributed actuator force for link 1 is overdamped, thus 
the reason for the reduction of deflection in link 1 on the positive side but not on 
the negative side as is apparent in Fig. 26. The small phase shift evident in the tip 
deflections of the second link is due to the position error feedback of the film actuator. 
The film feeds back the position error in a decentralized fashion, i.e., the ith link’s 
film feeds back the ith link’s joint angle error. Because of the nonlinearities in the 
flexure equations (which are of O ( E )  and are not linearized by the torque controller 
here), there is a small phase shift between the joint angles and tip deflection. 

Also important in vibrational dampening is the reduction of tip velocity. One 
can imagine a payload on the tip of the second link and the importance of keeping 
the endpoint speed at a minimum. The plots in Figs. 28 and 29 indicate that the 
tip velocities are reduced particularly in the second link whose maximum endpoint 
velocity has been reduced by a factor of 6. The tip velocities also settle faster with 
the film actuator than without it. The final plots illustrated in Figs. 30 and 31 show 
the applied control energy at the hubs as well as the applied film actuator force. As 
expected, the torque applied at the first joint is more than that applied at the second 
joint due to the heavier mass of the the first link. The film actuator force applied to 
the links is similar in shape to the joint controls (due to the position error feedback) 
but on a different scale. 

5.1.5 Conclusions 

In this section we have proposed a design methodology for the control of a two-link 
flexible robot. Our approach differs from others in that we combine an approximate 
feedback linearization strategy via hub actuation with distributed vibration control. 
The distributed actuator consists of a thin film that can theoretically dampen an 
infinite number of vibrational modes of flexible beams if a properly chosen spatial 
distribution is applied to the polymer. The time-varying component of the actuator 
voltage may incorporate feedback of the position error or possibly the tip acceleration 
of each link in a decentralized fashion. The film actuator acts as a kind of fast control 
which speeds convergence to an approximate slow manifold and thus, allows more 
accurate rigid body control. We also consider the distributed parameter model of the 
dynamics of the flexible links to design the approximate linearizing control laws. The 
simulation results show that the film actuator does reduce flexural vibrations as com- 
pared to joint control alone. Further research should be focused on improvements in 
feedback schemes for the distributed actuator as well as incorporating other strategies 
for the rigid body motion control such as sliding mode control and pointwise optimal 
control (see Young and Ozguner [124] and Tadikonda and Baruh [125]). 
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Fig. 24: Joint angle plots with PD feedback and 0(1)  linearizing control. 
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Fig. 25: Joint velocity plots with PD feedback and 0(1)  linearizing control. 
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Fig. 26: Tip deflections of link 1 with and without distributed actuator. 
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Fig. 27: Tip deflections of link 2 with and without distributed actuator. 
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Fig. 28: Tip velocities of link 1 with and without distributed actuator. 
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Fig. 29: Tip velocities of link 2 with and without distributed actuator. 
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Fig. 30: Profiles of hub actuator energy. 

Fig. 31: Profiles of distributed actuator force. 
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5.2 APPLICATIONS OF SENSITIVITY MODELS T O  THE 
SPACE STATION 

Space Station Freedom is one of the largest collaborative space projects ever under- 
taken by NASA. It involves not only NASA but several large aerospace corporations 
as well as other countries including the European Community and Japan. The goal of 
this structure, when complete, is to orbit the earth as a permanently manned station 
for space experimentation and exploration of man-space interaction issues. It will 
also serve as a docking station for the space shuttle. Since it will have to  supply its 
own power generation, the issue of self-sustaining power systems in space will be dealt 
with as well. Figure 32 shows a diagram of the space station with many of its most 
important components labeled. 

The primary attitudinal control element of the station is the control moment 
gyro (CMG) near the center. Also located at the center is the guidance, navigation, 
and control (GNC) unit. This will determine the location of the sun and provide 
information to  each solar array panel as to its correct orientation to track the sun. 
The control elements that position the array panels are the alpha and beta gimbals. 
Each of these gimbals is a large brushless, direct drive dc motor that turns about 
a single axis. The combination of these gimbals enable the array panels to track 
virtually any sun trajectory. The center of the station will also house the astronaut's 
quarters and experimentation areas as well as the shuttle docking port. The primary 
focus of this section, however, is on the beta gimbals which are attached to the 
solar array panels. The control of this gimbal is hampered by many factors such as 
station vibrations, array panel flexibility, plume impingement from shuttle dockings, 
and friction to name just a few. It is this last factor that motivates the work of 
this section. In particular, the uncertainty surrounding the magnitudes and types of 
motor friction at the beta gimbals make the area of sensitivity analysis a natural one 
for consideration. 

The problem of motor control in the presence of friction has been a subject of 
considerable interest for many years. Most large systems require some kind of actua- 
tion, and these actuators are often plagued by friction. A principal issue in pointing 
control is the modeling of friction in the motors and bearings (for a survey on friction 
see Ref. [126]). In a report by Rocketdyne [127], the dynamics of the beta gimbals 
are described with the inclusion of three types of friction: Coulomb, Dahl, and vis- 
cous. Both Coulomb and Dahl friction are nonlinear which necessitates the use of 
linearization in obtaining linear models for control designs. It is desired to control 
the beta gimbals optimally with respect to a quadratic cost criterion that penalizes 
tracking deviations as well as energy output from the motor. 

Since friction models are difficult to experimentally derive, it is useful to include 
a term in the cost criterion which will take into account uncertainty in the friction 
parameters. This is done by including a sensitivity model in the feedback loop. The 
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Fig. 32: Illustration of Space Station Freedom. 

sensitivity model derives the partial derivative of the state with respect to uncertain 
friction parameters. These functions provide a measure of how the system state will 
change if the uncertain parameters deviate from their nominal values. We include 
a quadratic penalty on these functions which will induce control laws that are less 
sensitive to deviations from nominal friction parameters. While pursuing sensitivity 
analysis with respect to these parameters, the small deviations are for these parame- 
ters only. The overall model continues to be nonlinear. 

The friction models incorporated in the beta gimbal dynamics are based upon 
theoretical and experimental analysis done at both the NASA Lewis Research Center 
and the Rocketdyne division of Rockwell International. Coulomb and viscous friction 
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are present in the motor itself whereas Dahl friction is primarily in the bearings. 
Viscous friction is a form of linear damping and is simple to model, but Coulomb 
friction is a function of the sign of the relative angular velocity between the array 
panel and the station inertial frame. The Dahl model [128] is a first order dynamic 
model that depends on not only the sign of the relative velocity but also the square 
of a more complicated expression. Thus, it will be highly nonlinear. Nonetheless, 
the tools of sensitivity analysis are still applicable. Furthermore, a fourth type of 
friction, namely static friction, is also included in this model. This is the amount of 
torque required to overcome the inertia in the motor and its load to get the rotor 
moving. It does not enter the dynamics directly but rather as an inequality, and thus 
no sensitivity function for static friction is computed. 

The procedure outlined in this section is as follows. First, the beta gimbal dy- 
namics are utilized to derive a sensitivity model for each of the uncertain friction 
parameters. Second, an optimal control law is designed via linear quadratic regulator 
theory with the incorporation of a term penalizing the sensitivity functions. This 
control law is based upon a linearized model of the beta gimbal dynamics. Finally, 
some discussion of future analysis and simulations is presented. 

5.2.1 Generation of Sensitivity Models 
The beta gimbal dynamics as detailed in Ref. [127] are arranged in block diagram 
form in Fig. 33. From this diagram, the equations governing the beta gimbal/solar 
array panel assembly can be obtained. 

If TS >( KTIM + J T ~ R  1, then 

K B E M F -  RM 1 
IM = I eR - -IM + - v ,  

L M  L M  L M  

else 

I(T I - v s ’  Tc 1 
OR = -IM - ----OR - --sgn(BR) - -TO - Os 

JT JT JT JT 

To T D  To = {u I 1 - -sgn(jR) l2  sgn(1- ---sgn(iR)))hR 
TDL TDL 

where the terms are defined in Table 5. The sign function is defined as 

1 z > o  

-1 z < o  

(5.31) 

(5.32) 

(5.33) 



Fig. 33: Dynamics of beta gimbal and solar array panel. 

The Dahl friction term To represents bearing friction in the beta gimbals and is 
hysteretic in nature. In the paper by Dahl 11281, several models of solid friction 
damping in mechanical vibrations are proposed to explain bearing friction. The 
above first order nonlinear differential equation for TO is one such model which has 
achieved wide use in simulation studies involving ball bearing friction. Other simpler 
(i.e., nondynamic) models of bearing friction exist, but currently we pursue the more 
rigorous model above. 

The state space description is obtained by letting x1 = IM, x2 = 0~ - 6k, z3 = OR, 
and 2 4  = TD where 6; is a constant setpoint that represents the desired tracking 
angle. The unknown parameters are defined as a1 = KVS,  a2 = Tc, and cy3 = T'L 
which are the friction parameters. Concentrating on the case when the gimbal joint 
is moving (thus ignoring static friction), results in the state space equations 

- :.j 0 V M  (5.34) 

0 
with the compact form 

i = f (a7a78is )  +g(x)u (5.35) 
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Table 5: Terms used in gimbal and array panel dynamics 

Solar array inertial angle and rate 
Relative solar array angle and rate 
Station inertial angle and rate 
Current applied to motor 
Solar array mass moment of inertia 
Motor armature inductance and resistance 
Back EMF constant 
Motor torque to current constant 
Motor viscous friction constant 
Torque applied to base of array 
Motor Coulomb friction 
Dahl bearing friction 
Dah1 friction slope 
Dahl friction limit 
Static friction torque 
Total friction torque 
Drive motor torque 
Motor viscous friction torque 
Input motor voltage 

where u = V M  is our control and CY =   CY^  CY^ * S I T .  

The state trajectory sensitivity functions are defined as the partial derivative of 
the state with respect to the parameter of interest (see Sect. 2.3 for a survey on 
sensitivity analysis). These sensitivity functions can be generated by simulating the 
following linear differential equation 

where 

(5.36) 

(5.37) 
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(5.38) 

(5.39) 

0 

(5.40) - af = j+3] 

- = [  a03 af 

aw 

- aa2 af = [ -sg;(x3)] 

0 

(5.41) 

(5.42) 1 
0 
0 
0 

20 (1 - ~ s g n ( x 3 ) )  T J s g n  (1 - zsgn(x3)) 2 3  

which is obtained by differentiating (5.35) with respect to cy;. This model is linear in 
the sensitivity functions even though the right hand side of (5.36) is nonlinear in x. 
In this case, (5.36) is a linear time-varying differential equation. The above equation 
also assumes that u and 8, are independent of a,. 

Ordinarily, one is interested in the behavior of the state trajectory sensitivity 
functions in a neighborhood about some nominal parameter values. This implies 
that one would evaluate all instances of CY; with their known nominal values on the 
right hand sides (5.36)-(5.42). Thus, all parameters of the sensitivity model would 
be known. The above model is most useful for rather small deviations in the friction 
parameters from their nominal values. Relative parameter deviations of more than 
20% probably require the inclusion of second order sensitivity functions (see [65]) 
which are a straightforward extension to the above model. 

5.2.2 Optimal Control Design 

It is desired to control the positioning of the solar array panels via optimal control. 
The standard linear quadratic regulator is a useful tool to achieve this goal, but the 
model described by (5.34) possesses uncertainty in its parameters due to unknown 
friction models. It is of interest here to include an additional term in the cost criterion 
that penalizes nonzero sensitivity functions. This would have the effect of inducing 
control laws that minimize the influence on the system state by uncertainty in friction 
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model parameters. This motivates the following performance criterion 

(5.43) 
i=l J U  

where A; = e, R is positive definite, and Q, Si are positive semi-definite matrices. 
To find the control law that minimizes J will require an augmented state vector 

2 = [x T A, T A, T A 3 ]  T T  

which has the following dynamical description 

or more compactly 

i = j ( 2 )  + i j(2)u . 
The above transforms (5.43) to 

J = Jo”(ZTQ2 + uTRu)dt 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

where Q = block-diag [Q SI - 
Now all that remains to be done is to linearize the system in (5.45). Once lin- 

earization is accomplished, the quadratic regulator can be set up to solve for the 
control gains. The approach utilized is that of Jacobian or Taylor series linearization 
which is done about an operating point. The linear quadratic regulator is then solved 
with this linearized system and the Q and R matrices from above. A Riccati equation 
[95] will then be solved to obtain the gains for the optimal control law. Figure 34 
illustrates this approach. 

A linearized model can be obtained about the point 5’ its follows (if 2’ is not an 
equilibrium point of (5.45) then minor modifications must be made) 

531. 

(5.48) 

The optimal control analysis is carried out by combining the cost criterion (5.47) with 
the above model. A Riccati equation utilizing the A and B matrices from (5.48) will 
yield the optimal control gains for the full system (5.45). 
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Fig. 34: Block diagram for optimal control with sensitivity functions. 

Remark 5.1 The only reason for the linearization is to obtain a set of feedback gains 
for the control strategy. If one desires to utilize the nonlinear model to obtain gains 
the implementation of the control law is still the same. In addition, a PID control 
law can be realized with the PID gains obtained from the linear quadratic regulator. 
All that is needed is the addition of 2 5  = J,"(~R - e;)&, ?s = 22 to the state space 
dynamics (5.34). 

Remark 5.2 Once physical parameters are included in the sensitivity model as well 
as the gimbal dynamics, computer simulations can be carried out to determine the 
choice of &, R, and Si matrices in the cost criterion. The simulation results may 
suggest further refinements to the control design depicted in Fig. 34, but the concept 
of sensitivity functions is a useful means to alleviate uncertainty in model parameters, 

Remark 5.3 A reduction in model order can be achieved by utilizing singular per- 
turbation theory. If the motor inductance LM is small relative to the motor resistance 
RM the first state c m  be eliminated by setting LM& = 0. This will result in an alge- 
braic equation for 51 which can be substituted into the equation for &. This reduction 
in model order not only saves on feedback terms but also improves simulation studies 
by eliminating the numerical stiffness of the dynamics (5.34) for small LM. 



CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

In this report, new results combining decentralized and nonlinear control techniques 
are developed. Performance issues such as optimality and robustness to parametric 
uncertainty are investigated as well. The goal of this work was to develop effective 
control schemes that could be utilized for the multi-body dynamical systems one of- 
ten encounters on space structures, robotics, automotive systems, and automation 
devices. Since these systems often have multiple input-output ports and nonlinear 
dynamic behavior, decentralized nonlinear control was a natural field of endeavor. 
But often ignored in the study of nonlinear systems are the subjects of optimization 
and robustness. In Chap. 3, we introduced new methods for optimizing nonlinear sys- 
tems and reducing parameter uncertainty effects in nonlinear systems. Both methods 
utilized feedback linearization which was a major theme of this dissertation. 

Further research on optimization of nonlinear systems may involve investigation of 
more general nonlinear systems including those with zero dynamics, discontinuities, 
and partial differential equations. This may require the use of different methodologies 
including that of sliding mode theory and distributed parameter systems. Optimiz- 
ing general nonlinear systems is a very computationally intense procedure, and any 
additional work on this subject should involve some numerical analysis of developed 
techniques. Parametric uncertainty is only one type of uncertainty encountered in 
dynamical systems. Unstructured uncertainty or unmodeled dynamics would be a 
next step of investigation. Very little has been done in this area. The standard tool 
for linear unstructured uncertainty is that of H" methods. These methods have not 
been extended to nonlinear systems in any substantial way, but preliminary work 
by van der Schaft [88] has attacked the problem by applying H" methods to the 
linearized system. 

In Chap. 4, large-scale nonlinear systems are studied. The strategy was to convert 
these systems into linear ones and apply standard decentralized control techniques. 
But decentralized feedback linearization proved impossible to solve due to the ab- 
sence of the full state for feedback. This led to the decentralized nonlinear observer 
problem as outlined in Chap. 4. It also motivated decentralized stabilization schemes 
in which the full system is not linearized, but instead a nominal linear system plus 
nonlinear perturbations is shown to be exponentially stabilizable. Further results on 
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enhancing the linearizability of multichannel nonlinear systems via partial feedback 
were presented. 

A possible extension of these results could be achieved with sliding mode theory. In 
particular, the theory of nonlinear sliding observers could be extended to decentralized 
systems by applying the equivalent control method [87]. Another possibility looked 
into but not included in this report is that of decentralized nonlinear invertibility 
to allow reconstruction of the  full state at each input-output channel. This idea 
would involve combining the concepts of decentralized linear observers and inversion 
of nonlinear systems. Mathematically, this would be difficult to implement but it 
may be possible to arrive at approximate methods. 

The rest of Chap. 4 focused on sensitivity-based methods of handling parametric 
uncertainty in large-scale systems. Both linear and nonlinear systems were analyzed, 
but primary attention was paid to linear systems due to the difficulty in generating 
local sensitivity models for general nonlinear systems. An easily obtained extension 
to the decentralized optimal control result in that chapter is to take into account the 
interconnection terms by solving coupled Lyapunov equations [74]. Additional work 
on this topic might involve more thorough investigations of generating sensitivity 
models for nonlinear systems perhaps by using feedback linearization. Applications 
of this work could involve automotive systems where it may be desirable to handle 
robustness issues in a decentralized framework due to the expense in exchanging 
information over the whole car. 

Chapter 5 focused on two applications of theory developed in this report with 
some modifications due to the nature of applied control. First, a two-link flexible 
manipulator is controlled via decentralized feedback linearization and decentralized 
distributed control. The feedback linearization is based on a singular perturbation 
approach. An asymptotic expansion of the manipulator dynamics as a power series 
in a small parameter representing stiffness of the links is carried lout to determine 
the approximate feedback linearizing control laws. Each torque controller has its own 
feedback law requiring the use of only locally measurable signals. The distributed 
vibration control is carried out by a polymer actuator and also depends on signals 
available at  its own link. This control strategy required extensive modeling effort to 
obtain equations solvable on a computer. This is detailed in the appendix. Though 
this control strategy is not an explicit application of the theory in Chap. 4, it does 
show how decentralized nonlinear control can be applied on a real system via ap- 
proximate techniques and theoretical tools such as singular perturbations. Indeed, 
for most real-world applications, combinations of well-known control methods and 
approximate means will be needed to obtain satisfactory results. 

Finally, Chap. 5 closed with a look at sensitivity analysis of the gimbal motors on 
Space Station Freedom. It was proposed that an optimal control law include feedback 
of the sensitivity functions to reduce the effects of friction parameter uncertainty on 
closed-loop performance. Much work remains to be done on this approach. As of 
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now, each gimbal motor will have a control law designed as though the gimbals 
are decoupled from each other. This strategy has been necessitated by the absence 
of simple control methods that would take into account interconnections between 
subsystems. This is i ~ s  much a modeling problem as it is a control problem. Perhaps 
decentralized control can alleviate these interaction issues. Indeed, future work could 
apply the decentralized sensitivity results of Chap. 4 to larger parts of the space 
st ation. 
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Appendix A 

THE TWO-LINK FLEXIBLE STRUCTURE MODEL 
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Fig. 35: G e o m e t r y  of two-link flexible manipulator.  

Table 6: Two-link dynamics t erms  

hub inertia 
length of link i 
stiffness term for link i 
mass density of link i 
mass of hub i 
spatial variable for link i 
flexure of link i at location e; 
rigid link angle of link i 

i i j  input torque at joint i 
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Second link: 

A.2 CORRECTIVE CONTROL DESIGN 

To determine the O ( E )  control law, the h;o terms must be computed from the 0(1) 
manifold equations (5.11)-(5.12) along with the boundary conditions. These terms 
are then plugged into the O(c) slow subsystem equations which will then yield the 
linearizing control law. The O ( E )  control law will not depend on x1 or z2 since all the 
h;o terms will either be integrated with respect to z; or evaluated at the endpoints. 
Integrating (5.11) four times with respect to z1 and using boundary conditions from 
Sect. A. l  to solve for constants of integration, one obtains the following power series 
in xl for hlo 

where the O( 1) linearizing control law has been plugged into the boundary condition 
that contains 742. Likewise, the same procedure can be followed to obtain h2o 

Since all terms in the O ( E )  slow manifold equations are nonlinear in 6,, the u;1 
control terms will need to cancel everything. This will result in a linear system to 
O ( t 2 ) .  The specific control laws are as follows 

1 1 
611 = [5p2L1 Lihlo(1, t )  sin 62 - p z L l  Li sin 0 2  1 h z o d ~ ] 8 ~  



Appendix A 

THE TWO-LINK FLEXIBLE STRUCTURE 
MODEL 

As stated in Chap. 1, most derived dynamical models of flexible structures are based 
upon a finite-dimensional approximation of the exact model. In this appendix, the 
model dynamics are derived as in Khorrami and 6zgGner [l] and Khorrami [2] via the 
Hamiltonian formulation. Due to the brevity of this work, the reader is referred to 
Khorrami [2] for a more thorough treatment of the derivation of the dynamics. The 
following assumptions are made in the development of this model. 

Assumption 1.1 All motion is restricted to the horizontal plane. Thus, gravity 
effects are ignored. 

Assumption 1.2 In the formulation of the potential energy term, shear, torsion, 
and axial displacement have been neglected. 

Assumption 1.3 It is assumed that there is no payload at the tip of the second link. 

Figure 35 illustrates the geometry of the two-link manipulator. It should be noted 
that 8; represents the angle between the line tangent to the ith hub ( X i )  and the line 
tangent to the i - l t h  hub (Xi-1). The quantity ai is the deflection between X ;  and 
the link itself as a function of the position along the ith link (&). The following terms 
are defined in Table 6 to obtain the dynamical equations which follow. 
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1 .  1 

- 2p2L1L:(& + 92) sin d2 1 h20dx2 - p2L1Li02(2d + 8,) cos g2 1 hzodx2 

where u11 and 1421 are obtained via (5.4). 

A.3 FINITE-DIMENSIONAL REPRESENTATION 

In this section, an assumed modes representation of the flexure variables a; is chosen 
and a one mode expansion of a; is inserted into the system equations to obtain a finite- 
dimensional representation of the dynamics. The resulting equations are programmed 
on computer to model the two-link structure. As in many studies of one link cases, a 
"good choice" of trial functions for the solution is required. This is further complicated 
due to the moving boundary condition at the tip of the first link. One choice may be 
the eigenfunctions used in the single link case. Another choice may be to treat the 
first link as clamped-pinned and the second one as pinned-free. But here, the first link 
is modeled as clamped at the hub and carrying a mass with an inertia at the free end. 
Hereafter, these mode shapes will be referred to as CLTI mode shapes (cantilever 
with tip inertia). The second link is modeled as clamped-free. The assumed modes 
method requires that the flexure be expanded as 

where i is the link number, j is the mode number, is the mode shape, and q is the 
modal displacement. 

The usual clamped-free mode shapes fail to account for the loading effects the 
second link has on the first link. This was deemed to be a significant problem in 
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determining modal frequencies for the first link based on comparisons between exper- 
imental and simulation results. CLTI mode shapes have been used in flexible robotics 
before to model links with a payload (see, for instance, Oakley and Cannon [3]), But, 
here they are used to model a link with another attached link as the payload. The 
assumed modes boundary conditions for the two links are 

al(O,q = 0 , %,e,(OJ) = 0 (A.lO) 

EII1~l ,c lc l (Li , t )  = - ( ~ p l ~ ~ l  + Ipl)&,tl(&,i) - ~ p l ~ p l & ( h , t )  (A.11) 
~ i ~ i q t l t l e l  (Li , t )  = Mpl 61 (Li , t )  + Mpl op, &,tl (Li, t ) (A.12) 

Q2(0 , t )  = 0 , a 2 , e 2 ( O , t )  = 0 (A.13) 

a2,e2t2(L2, t )  = 0 , a 2 , t 2 e 2 e 2 ( L 2 ,  t )  = 0 (A.14) 

where Mpl is the mass of the attached joint and link, Ipl is the mass moment of 
inertia of the joint plus link, and O,, is the distance from the endpoint of link 1 to 
the center of mass of the joint plus link 2 attachment. The first equation represents 
the clamped boundary condition at joint 1. The next two equations correspond to 
the mass plus inertia attached to the endpoint of the first link. The fourth and fifth 
equations model the clamped-free boundary conditions of the second link. 

The clamped-free mode shapes for the second link can be found in many books 
such as Blevins [4] and are written as 

(A.15) 

cash i 2 i  + COS L i )  ( (A;:) (A;?)) 
where j\,i is the eigenvalue obtained from the characteristic equation 

sinh - -sin - 

cash i 2 i  COS A2; + 1 = 0 ,  i = 1 ,2 , .  . . . (A.16) 

The CLTI mode shapes for link 1 can be expressed as (Bhat and Wagner [5]) 

(A.17) 
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Cdeni = sinh i l i  + sin xl; - (cosh i l i  - cos i l i )  (A.19) 
P1 

2 

(sinh - sin ili) - 
P1 

and i1 i  is the solution of the characteristic equation 

(A.20) 

From the OSU manipulator structural data, it was determined that Mpl = mass 
of joint 2 + mass of link 2 = 0.721 kg, OP, = distance from point of attachment to 
center of mass of second joint/link = 4.64 cm, and Ipl = mass moment of inertia 
of cylindrical hub and rectangular link = 0.0016 kg-m2. Solving the characteristic 
equation, we obtained = 1.153 and from the tables in Blevins [4] 1 2 1  = 1.8751. 

The resulting model will be of the following form: 

M ( X ) X  + K X  + F ( X , X )  = U (A.21) 

where x = [el 02 I Ql,l 41,2 * - .  Q1,NI Q2,l Q2,2 - * - Q2,Nz], Nl and N2 are the number 
of modes retained in the model from flexural effects of each link respectively. The 
following expressions can be defined in terms of the variables of the above approxi- 
mation: 

(A.22) 

(A.23) 



This will allow one to calculate the following terms: 
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(A.24) 

(A.25) 

(A.26) 

(A.27) 

The one-mode approximation results in the following dynamic equations: 

where the first term on the left hand side is the inertia term, the second and third 
terms are the Coriolis and centrifugal force vectors, the fourth term is the viscous 
damping plus stiffness elements, and the vector on the right hand side is the control 
term. The first two elements of the control vector are the torque controls, and the 
second two elements are the film actuation forces (physical constants embedded within 
these two terms). The elements €or these matrices are obtained from the following 
spatially discretized equations of motion (with N1 = N2 = 1). 



1 SO 

(A.29) 
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(A.30) 

(A.32) 
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The last two equations are partial differential equations, i.e., these equations are 
not only valid for all t 2 0 but for all 0 5 I; 5 L;, whereas the first two equations 
are just ordinary differential equations since the mode shapes are evaluated inside 
known integrals. To convert the last two equations into ordinary differential equations, 
multiply through by q$k, i = 1 , 2  and integrate from 0 to Li. Since the 4ik’S are 
orthogonal (the integral from 0 to L; is an inner product, i.e., the &k’S belong to the 
space &[0, Li]) ,  all the terms drop out except the $i&ik integral, thus one is left with 
N; ordinary differential equations, one for each mode for each link. 
The flexure of the first link (el): 

(A.33) A l k  
A181 + B l k i l k  + ElIl-Blkqlk - Blkql/& = 0, = 1729. - 7 N1 

P1 

The flexure of the second link ( ~ 2 ) :  

A 2 k j l  + A 2 k &  + B 2 k 4 2 k  + E 2 1 2 2 B 2 k q 2 k  - B 2 k q 2 k e t -  

2B2kq2ke182 - B 2 k q 2 k b i  + L1 COS m k 0 1  -t COS & c 2 k  

cos &C2k ~ 2 ,  C1iq& + ~1 sin 82C2k@ + 2 sin &C2k xzl c,ii&+ 

sin&C2k CZ, Cliqliel = 0 ,  k = 1 , 2 , .  . . , N2. 

Cl;Gli- 
(A.34) 

The following parameters were assumed for the simulation: 
L1 = 0.75 m, L2 = 0.5 m; 
p1 = 0.792 kg/m, p2 = 0.11 kg/m; 

Ih = 1.5 kg - m2; 

/.LI = 0 . 3 7 3 2 ,  N / . ~ 2  = 0.373+; N s  
E111 = 8.8778 N-m2, &I2 = 0.2183 N-m2. 

Mi = 2.84 kg, M2 = 0.666 kg; 

A.4 REFERENCES 

[l] F. Khorrami and U. Ozgiiner, “Singular perturbation analysis of a distributed pa- 
rameter model of flexible manipulators,” in Proceedings of the American Control 
Conference, (Atlanta, GA) ,  pp. 1704-1709, 1988. 

[2] F. Khorrami, Asymptotic perturbation and Lyapunov stability based approaches 
for control of jexible and rigid robot manipulators. PhD thesis, The Ohio State 
University, August 1988. 

[3] C. M. Oakley and It. H. Cannon, Jr., “End-point control of a two-link manipulator 
with a very flexible forearm: Issues and experiments,” in Proceedings of the 
American Control Conference, (Pittsburgh, PA), pp. 1381-1388, 1989. 



153 

[4] R. D. Blevins, Formulas f o r  Natural Frequency and Mode Shape. New York: Van 
Nostrand Reinhold, 1979. 

[5 ]  B. R. Bhat and H. Wagner, “Natural frequencies of a uniform cantilever with a 
tip slender in the axial direction,” Jouiraal of Sound and Vibration, vol. 45, no. 
2, pp. 304-307, 1976. 





155 

0 ~ - 1 2 1 8 1  

1. R. L. Anderson 
2. S. M. Babcock 
3. H. R. Brashear 
4. C. R. Brittain 
5. C. L Carnal 
6. N. E. Clapp 
7. R. k Dory 
8. B. G. Eads 
9. D. N. Fry 

10. J. M. Googe 
11. W. R. Hamel 
12. J. E. Hardy 
13. J. H. Harris 
14. R. k Hess 
15. J. 0. Hylton 
16. J. M. Jansen 
17. S. W. Kercel 
18. R. L. Kress 
19. R. F. Lind 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 
57. 

58-59. 

20. D. W. McDonald 
21. J. A. McEvers 
22. k C. Miller 
23. G. N. Miller 

24-33. D. k Schoenwald 
34. J. 0. Stiegler 
35. P. k T a p p  
36. K W. Tobin 
37. R. E. Uhrig 
38. G. R. Wetherington 
39. J. D. White 
40. D. F. Craig 

43. Y-12 Technical Reference Library 

46. Laboratory Records-Record Copy 
47. ORNL Patent Section 
48. I&C Division Publications Office 

41-42. Central Research Library 

44-45. Laboratory Records 

Professor Dr.-Ing. Michael Zeitz, Institut fuer Systemdynamik und Regelungstechnik, 
Universitaet Stuttgart, Pfaffenwaldring 9, D-7000 Stuttgart 80, Germany 
Professor Gonzalo Arm, Department of Electrical Engineering, University of 
Delaware, Newark, DE 19716 
Professor T. W. Wang, Department of Chemical Engineering, University of 
Tennessee, Knoxville, TN 37996-2200 
Professor J. D. Birdwell, Department of Electrical Engineering, University of 
Tennessee, Knoxville, TN 36996-2100 
B. Chexal, Electric power Research Institute, 3412 Hillview Avenue, Palo Alto, 
CA 94303 
V. Radeka, Brookhaven National Laboratory, Instrumentation Division, 535-B, 
Upton, NY 11973 
M. M. Sevik, Carderock Division, Naval Surface Warfare Center, Code 1900, 
Bethesda, MD 20084-5000 
R. M. Taylor, keds and Northup, Sunneytown Pike, North Wales, PA 19454 
Assistant Manager for Energy Research and Development, U.S. Department of 
Energy, DOE-OR, P.O. Box 2001, Oak Ridge, TN 37831-8600 
Office of Scientific and Technical Information, U.S. Department of Energy, 
P.O. Box 62, Oak Ridge, TN 37831 




