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ABSTRACT 

A disease exists that affects pilots and aircrew members who use Navy Operational 
Flight Training Systems. This malady, commonly referred to as simulator sickness and 
whose symptomatology closely aligns with that of motion sickness, can compromise the use 
of these systems because of a reduced utilization factor, negative transfer of training, and 
reduction in combat readiness. A report is submitted that develops an artificial neural 
network (ANN) and behavioral model that predicts the onset and level of simulator sickness 
in the pilots and aircrews who use these systems. It is proposed that the paradigm could be 
implemented in real time as a biofeedback monitor to reduce the risk to users of these 
systems. 

by developing a structure that maps the associative and nonassociative behavioral patterns 
(learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and 
tactile interaction, derived from system acceleration profiles, onto an abstract space that 
predicts simulator sickness for a given training flight. 

The model captures the neurophysiological impact of use (human-machine interaction) 

xi 





1. INTRODUCTION 

The usefulness of a major innovation in the history of flight training is being 
compromised by a rather poorly understood phenomenon known as simulator sickness, 
whose symptoms closely parallel those of motion sickness. This disease creates a negative 
environment where the undesirable reputation of a simulator to cause sickness/discomfort is 
enhanced and the utilization decreased by the lack of training conformity. Experts have 
noted an increase in the incidence of this malady and believe it to be the result, at least in 
part, of the increase in sophistication or fidelity of flight simulators. This report discusses 
the phenomenon of simulator sickness and develops an artificial neural network (ANN) 
method to measure and predict the onset and level of the disease in pilots and aircrews who 
use these systems. By providing a capability such as an on-line feedback monitoring 
system, the discomfort and risk for those who train on these devices can be reduced or 
eliminated. 

Simulator sickness is defined as the sickness that is produced in the simulator, but not 
in the aircrafi, while performing particular flight profiles or training hops. Interestingly, in 
the past it has been assumed that more experienced pilots have a higher incidence of 
simulator sickness than do less experienced pilots. (This assumption has come under 
scrutiny in light of this research.) On the surface, this statement may appear paradoxical. 
However, intuition provides an explanation: the more experienced pilots have a greater 
neural store of expectations and therefore are more sensitive to subtle differences between 
aircraft and simulator motion and visual cues. These expectations and awareness create an 
environment of sustained sensitivity to those stimuli that act as a genesis of the disease. 
This finding is particularly disconcerting to military training commands responsible for these 
devices because experienced pilots usually are in the more influential position to create 
negative impressions of simulators. Figure 1 . 1  is a diagrammatical representation of the 
attributes of simulator sickness whose interactions impact the fidelity and training 
effectiveness of these devices. The quadrants represent three hnctionai attribute classes 
[system dynamics (motiodvisual), behavioral (situational awarenesdassociative behavior), 
and training (flight syllabus)] that can alter the human’s environmental perception, 
combining to enhance or degrade the interpretative capabilities of the human during training 
sessions. 

Other concerns are associated with the use of these systems. Adaptation, a process by 
which the neural store of information is altered, can lead to a negative transfer of training to 
the aircraft in the form of inappropriate control responses. Afker-effects including postural 
instability, dizziness, and flashbacks can influence product liability of use. Flashbacks are 
particularly problematic because of their sudden and unexpected onset manifested by illusory 
sensations of climbing and turning, sensations of negative gravity (g), and perceived 
inversions of the visual field. 

sickness resemble those of motion sickness, they are not identical. While the most explicit 
sign of simulator sickness is vomiting, a constellation of signs and symptoms exist: 
dizziness, drowsiness, postural changes, confusion, headaches, apathy, fatigue, and 
disorientation. Reports suggest that the incidence rate for simulator sickness, depending on 
the specific device, can reach as high as 60% (Aligood et al. 1987b). Figure 1.2 shows an 
overall incidence of simuiator sickness vs six helicopter simulators studied (Kennedy, 
Allgood, and Lilienthal 1989). The incidence reporting is based on at least one minor 

Investigators researching this problem note that, while the symptoms of simulator 
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symptom reported on a motion sickness questionnaire. As indicated. simulator sickness 
exists at some level in several of these systems currently active in the U.S. Navy‘s training 
inventory. Since these devices represent large capital outlays, the presence of the malady in 
any system can translate into a reduction in the use recovery cost. 

sickness (Essex Corporation, Orlando, Florida), confinned agreement that among field 
experts the satisfactory solution to the problem will not be in the form of one fix, but many. 
They base their conclusions on the belief that simulator sickness is a convolution of system 
dynamics and behavioral processes, each requiring its own solution. Current research efforts 
are directed toward the systematic identification of these causal relationships and 
establishment of corrective actions for each. The causes include, among others: (1) 
engineering performance of both visual and motion system(s), (2) properties of the 
visual/motion coordination (synchronization and transport delay), (3) nature of flight profiles 
for simulated mission scenarios, (4) length and scheduling of sirnulator exposure and 
recovery periods, and ( 5 )  pilot associative and nonassociative behavioral patterns. Previous 
attempts to identi@ these simulator sickness attributes have omitted the most important 
relationship that exists in these systems-the human-machine interaction-in support of a 
classical systems approach to identification. Figure 1.3 is a diagram of the overall system 
showing the pilot as an integral part of the cascaded loop. By ignoring the pilot, his skills 
level, and taskhyilabus structure, the feedback path is cut, reducing the system to a simple 
feedforward network (G2*G3). This omission will not excite the unstable modes of 
operation that exist with the pilot-in-the-loop. These instabilities are a result of 
pilot-induced oscillation (PIO) that occurs when excessive time delays (nonminimum phase 
system) are present in the system. 

characterize and predict in real time the effects of human-machine interaction as it relates to 
simulator sickness. This emphasis infers a capability to implement the paradigm in an 

Conversations (1988) with R. S .  Kennedy, recognized expert in the field of simulator 

The emphasis of this research is on supplementing these efforts by providing a means to 
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existing or deployable system. The benefits from this research can extend to areas in which 
humans are exposed to environments such as ships, amphibious craft, tanks, personnel 
carriers, and aircraft that may induce motion-type sicknesses. The results also have 
applicability for test and evaluation criteria for systems (information feedback providing 
revisions of standards for human limits to vibration exposure). 

An interesting exercise supporting this research outlines the potential payoff as outlined 
by Kennedy. Training a single combat pilot costs upwards of $1M. The cost distribution is 
60% for the simulator and 40% for the aircraft. The average cost ratio of military aircraft 
time to simulator is lO:l, indicating that an hour of aircraft time costing $1500 is equivalent 
to an hourly cost of $150 for the simulator. This cost ratio equates to a potential savings of 
$4.2M through the use of training devices. 'This is based on a 6-day-week, IO-hour-day 
usage rate. The cost ratio for commercial airline simulators ranges between 15: 1 and 20: 1, 
resulting in an increasingly larger payoff. Unfortunately, depending on the device, simulator 
sickness can affect from 25% to over 60% of the pilots who train in them, which can 
substantially reduce the savings realized by the government and industry through a reduced 
usage factor. The impact will be increased training costs; a higher at-risk use for training in 
the aircraft instead of in the simulator; reduced pilot readiness; and poor training that will 
jeopardize pilots, aircrews, and passengers. In support of simulator training, the ANN 
paradigm could provide a real-time assessment of the probability of the onset and level of 
simulator sickness and allow a means to institute safeguard policies for simulator training. 
This information could be extended to provide an ongoing quality assurance assessment. 
Major simulator manufacturers such as CAE, Link, and Redifision are extremely interested 
in how the simulators they produce impact pilot operational readiness. 

1.1 A HISTORY OF SIMULATOR SICKNESS (KENNEDY 1989) 

Flight training is a multimillion-dollar-a-year business that draws its technical talent 
from the fields of experimental and behavioral psychology, human factors, engineering, 
mathematics, artificial intelligence, and medicine. As such, it has many facets that span a 
multitude of requirements. One is wargaming, where predictive models of combat are 
integrated to provide a learning environment for tactics, strategy, and logistic support for 
military personnel. Another is interrogation and diagnostic systems to train personnel to 
repair complex devices. These systems provide an interactive computer environment where 
the user asks questions, reviews literature, and views video images to train and/or repair 
these systems. A third is part-task trainers. These systems provide selective elements of 
training and present them to the user. An example is the Stand-Off Land Attack Missile 
part-task trainer, which provides an ability for the pilotlweapons officer to practice weapon 
deliveries on selected targets by using a portable computer. A fourth system is the static 
instrument trainers used to teach switchology to personnel. For the future, virtual 
environment trainers exist where humans train in a projected three-dimensional world. 
Finally, there are simulators. In this context, simulators are defined as those systems that 
provide visual cues, motion cues, or combinations of the two for training purposes. These 
systems provide a mechanism by which pilots and aircrews can train for tactics, emergency 
procedures, basic flight skills, or even transition to new systems without the need of the real 
aircraft. Their strengths are in an ability to simulate the motion, visual, acoustic, and 
environmental parameters that would accompany the pilot's interaction with the aircraft and 
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the world. In addition, they provide a platform where mistakes are not measured in terms of 
aircraft and pilot loss-only in terms of training effectiveness. 

simulators, aircraft simulators for both helicopter and fixed-wing aircraft, air cushion 
devices, NASA shuttles, tanks, and ship navigation. The importance of these systems is 
described in a recent article in a trade magazine (PM Trade 1991) that alludes to the fact 
that the success of Desert Storm can be attributed to the training that our military personnel 
received on these devices. In view of this, these systems will become more important in 
light of declining training dollars. 

The development of these flight and automobile simulators appears to have been guided 
by an assumption that the more realistic a simulation is, the better training will be (Kennedy, 
Hettinger, and Lilienthal 1990). Early flight simulators (1950s) were fixed base with limited 
noise and vibration cues (Kennedy et al. 1991). Cockpits were open with limited projected 
screen visuals (260 x 75"). Luminance was dim and resolution was poor. Their visual 
model was based solely on sky and earth. Current simulators are fixed based or motion with 
6-degree-of-freedom @OF) movement. Their cockpits are enclosed with computer imaging 
graphics provided by CRTs. The visual model incorporates sky/earth and targets. These 
systems have good contrast luminance and can have a visual projection > 300" horizontal x 
180' vertical. The early driving simulators ( I  960s) had terrain-board closed-circuit TV 
systems for visuals with a field-of-view projection of 50" horizontal and 39" vertical and 
were fixed based (Barrett and Nelson 1965). Current conceptual designs by the U.S. 
Department of Transportation (Allgood 199 1) call for wide-field-of-view computer imaging 
graphics or head slaved projection with the possibility of a full 6-DOF motion base. As 
seen, technology has focused on creating a higher fidelity simulation environment. This 
does not materialize without cost. There is strong belief that increased realism results in an 
increase in the incidence of simulator sickness (Kennedy, Hettinger, and Lilienthal 1990). 
Although the relationship between fidelity, training effectiveness, and simulator sickness is 
not well known, empirical evidence (Casali 1986) supports this assumption. 

The presence of simulator sickness is accompanied by concerns for safety and health, 
compromised training, and operational readiness (Kennedy et al. 1991). Among the 
implications of simulator sickness for safety and health are the presence of physiological 
discomfort, visual aftereffects, flashbacks, and interference with motor skills. AfterefFects 
are of particular importance because they bear a strong resemblance to the disturbances 
individuals experience when wearing reversing, displacing, or inverting lenses 
@olenil 1982) and also resembles astronauts's experience with space adaptation 
(Homick 1982) or space sickness. The occurrence of these symptoms poses a significant 
threat to pilot safety following the use of the simulator. To alleviate this, mandatory 
grounding policies have been enforced in some training commands (FITRON 1981). For 
compromised training, the impact is poor training and the development of an adverse attitude 
toward the use of a simulator. The presence of symptoms can interfere with learning 
because of distractions caused by physiological disturbances. Finally, the impact on 
operational readiness is flying downtime and the acquisition of habits inappropriate in the 
control of the environment. In some U.S. Navy and Marine Training Commands, a pilot is 
required to be grounded for 12-24 hours foliowing a simulator exercise. As an example of 
inappropriate behavior, in an effort to minimize the effects of the pseudo-Coriolis effects 
(Dichgans and Brandt 1973), a pilot may restrict head movement in the simulator. I f  this 
behavior is taken into a combat situation, it could result in pilot death. As seen, the 
presence of simulator sickness has significant implications for training and pilot safety. 

The number and types of these devices are quite numerous and include driving 



Most literature on simulator sickness consists of surveys documenting the occurrence of 
the malady during simulator training. The earliest reported case is the Bell HTL-4 
helicopter simulator (Havron and Butler 1957). This fixed-base device was designed to train 
pilots in hovering and other close-to-ground plane coupling events. An evaluation was 
undertaken to study training effectiveness in the device. It was determined, though, that the 
lack of fidelity in a number of display-control relationships contributed to simulator sickness 
(78% of 36 student pilots) and negative transfer of training. Although the study was not 
targeted for simulator sickness, it was such an acute problem that a questionnaire was 
developed to determine the severity and occurrence of the malady. 

number of potential hypotheses for the sickness problem. (An important point about this 
study is that the observations are based on personal experiences.) One was that the cyclic 
control input/output lag was two to three times that of the actual helicopter. Another 
observation was visual disparity in low-altitude flight. In all cases, the resulting simulator 
sickness problem was attributed to conflicts within the visual presentation. 

In a 1967 report, Sinacori identified the V/STOL simulator, a fixed-based system, as 
problematic because of the incidence of simulator sickness. Later, a motion base was added 
(roll, pitch, and yaw) to alleviate the sickness and improve simulator utility. Overall, the 
addition of the motion base appeared to reduce the incidence of simulator sickness. In 
addition to identifying the presence of the malady, this study also offered countermeasures to 
reduce the level of the disease. These included eyeshades, procedures for pilots, and 
operational considerations for the system. 

until a study (Hartman and Hatsell 1976) was undertaken to document the occurrence of 
simulator sickness in the U.S. Air Force Simulator for Air-to-Air Combat (SAAC) at Luke 
Air Force Base. It was determined that as high as 50% of the pilots experienced some form 
of simulator sickness while training. Further analysis identified that most of the moving 
base energy was in the 0.2-Hz energy range. In a subsequent survey of the sirnulator 
(Kellog, Castore, and Coward 1980), it was found that 88% of the pilots who used the 
simulator experienced some symptoms. 

sickness-like symptoms were recorded during both on- and off-motion conditions. The 
Canadian counterpart of this simulator was also studied (Money 1980) with published 
guidelines to minimize the symptoms. 

identified that the F-14 Weapons Systems Trainer (WST) had an incidence rate of 10% for 
the users. Based on this readjustment, guidelines for use were issued. For the Navy Air 
Combat Maneuvering simulator, sickness symptoms were experienced by both the pilot and 
the radio intercept officer. As with the F-14 WST, guidelines were issued to reduce or 
eliminate the incidence of simulator sickness. 

differences among subjects (Barrett and Nelson 1965; Barrett and Thornton 1968) as related 
to driving simulators. These experiments were aimed at determining the relationship among 
perceptual style, simulator sickness, and other related issues. Based on this rationale, it was 
hypothesized that simulator sickness was due to sensory conflict between the visual 
presentation of motion and the lack of any corresponding body motion. By using field 
independence-dependence as a measure of sensitivity for the human test subjects, the study 
showed that those more susceptible to motion cues did, in fact, experience a higher 

A subsequent study of this same simulator (Miller and Goodson 1960) identified a 

During the following 10 years, very little research was carried out on simulator sickness 

In a training evaluation of a P3-C simulator (Ryan, Scott, and Browning 1978) motion 

Investigations of Air Combat Maneuvering fighter simulators (Frank 198 1 ; Casto 1982) 

True simulator sickness research in the early 1960s concentrated on individual 
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incidence of simulator sickness. In another experiment (Reason and Diaz 1971), subjects 
were asked to rate the fidelity or realism of the simulator. In this, a negative correlation was 
shown to exist between reported sickness and rated simulator realism. 

Other research efforts addressed simulator sickness in an experimental fiamework. One 
looked at the causal relationship between retinal disparity and poor depth of convergence in 
a fixed-based simulator (Miller and Goodson 1958). The study found that distortion in 
distance cuing was probably insufficient in itself to elicit simulator sickness. In an 
experiment designed to determine the effects of driving simulator design variables on 
simulator sickness (Casali and Wienville 1980), it was determined that computational delays 
have an influence on the incidence of the disease and that enclosures (cab design) can also 
influence the onset of symptoms. Another experiment was developed to determine design 
parameter impact on simulator sickness (Hartman and Hartsell 1976), in which a structured 
rating scale was administered to instructor pilots after they flew the SAAC simulator. It was 
determined that SO% of the pilots experienced eye strain, possibly due to CRT raster line 
generation; 33% experienced headaches, possibly a result of eye strain; 3 8% experienced 
tiredness due to workload; and 14% reported nausea with or without motion. In the P3-C 
studies mentioned earlier (Ryan, Scott, and Browning 1978), one was conducted to 
investigate the effects of cockpit motion vs no motion on simulator sickness as measured by 
a Motion Sickness Questionnaire (MSQ). According to the MSQ, subjects in the motion 
and no-motion groups appeared to be about average among pilots with regard to simulator 
sickness. Neither group produced significant evidence of simulator-induced sickness during 
training. Experiments were designed to investigate the incidence of symptoms 
accompanying purely visual stimulation (Crampton and Young 1953) and wide-field-of-view 
displays (Parker 1971). Included in this group was an experiment which showed that 
large-fieid patterns of high-velocity linear motion created disturbing effects in the test 
subjects (Lestienne, Soechting, and Herthoz 1977) and one which showed the effects of 
visual influences on vestibular function (Precht 1979). 

parameters on simulator sickness. In one study (Uliano et al. 1986), the effects of a 
synchronous visual delay on a simulated helicopter hover and air taxi were investigated. 
The results indicated that no effect on either illness or performance was observable over the 
testing parameters (215, 177, and 126 ms). In another experiment, in which the role of 
visual-motion coupling delays and cuing order was investigated (Frank, Casali, and 
Wierwille 1987), it was observed that visual delay was far more disruptive to control 
performance and physical comfort. Furthermore, it was observed that performance was 
increased and a better feeling of well-being observed when the visual system led the motion 
system. Another experiment investigated the effects of energy spectra in moving- base 
simulators on simulator sickness (Allgood et al. 1987b). The results showed that the 
incidence of simulator sickness was greater in a simulator with energy spectra in the region 
guarded against by MILSTD 1472C (see Fig. 1.4) (McCauley and Kennedy 1976). 
Although a significant finding, there was no extension of the arguments to include the 
time-domain dependencies (see Fig. 1.5). There was also an experiment to determine what 
effects dynamic visual distortions had on the incidence of simulator sickness (Rosinski 
1982). This study investigated the effects of viewing visual displays from other than the 
design eye of the system. The results supported a previous conclusion that aircrew who 
viewed a simulator’s visual display from off-axis experienced a greater incidence of 
simulator sickness. 

Experiments were also conducted to determine the impact of simulator system design 

7 



As seen from this literature review of simulator sickness, the research has focused 
primarily on simulator site surveys or partitioned elements of the causal parameters that are 
implicated in simulator sickness. What is missing is a unifying model that acts as a stable 
predictor of simulator sickness incorporating all available information. This model must 
provide a memory of the time history of interactive dynamics between subject and simulator 
and account for such. I base this model hypothesis on my own experience in the simulator. 
As I flew the device, I became more aware of the neural-physiological sensitivities of 
dynamic events that occurred during the flight. Events that happened at the beginning of the 
hop did not affect me later if I maintained the simulator’s acceleration profiles below some 
subjected level that was accommodating to me (a forced control action driven by the task at 
hand), In instances such as this, I flew the simulator without any physical problems. If I 
exceeded this perceived threshold during the flight and continued to do so, then I 
experienced a cumulative effect that I was unable to shed before departing the simulator. At 
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Fig. 1.5. Comparative acceleration vs frequency profiles for the 2F64C and 2F87 
simulator systems. 

these times, I flew the simulator with symptoms. In the course of my recovery, I also 
noticed that my recovery period was directly related to the amount of acceleration energy 
(defined as the integral of acceleration squared) I absorbed during my simulated flight, This 
experience led to the basic structure of the model, a charge/discharge relationship 
functionally related to the activity of the simulator. By providing two of these models in 
cascade, the nonlinear interaction between visual and vestibular systems could be 
accommodated, It was also known from previous experiments (Allgood et al. 1987b) that a 
strong correlation exists between distinct elements of the energy spectra of each linear axis 
of acceleration and simulator sickness. To develop this in the model, a frequency domain 
integration was performed over defined limits and for select center frequencies of the 
acceleration-per-hertz squared for each axis. This variable was then used as the input to the 
second filter at each discrete time step. This model forms the structure for what the author 
classifies as the Whole Body Energy Absorption Model for simulator interactive dynamics. 

The dynamics of this model will provide the time history of events for each flight and 
provide the select features needed to capture the nonlinear aspects of human-simulator 
interaction. 
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1.2 DEVELOPMENT OF THE NEURAL NET PARADIGM 

The complex system interaction between pilot and simulator has created problems when 
attempts have been made to characterize the relationship in terms of simulator sickness. 
Difficulties have arisen when time has been taken into account. Most paradigms assume 
that temporal sensitivity is uniform across the event, that is, initial events have as much 
impadweight as those that occur at the end of a training session. What has been 
overlooked is that the human is a variable gain system whose sensitivity increases with both 
magnitude and temporal occurrence of stimuli. It is my hypothesis that humans exhibit a 
form of interpretive memory for whole-body energy absorption, which we continue to 
accumulate as long as the stimuli competing for attention remains above a threshold 
functionally related to the individual. Once the energy spectrum drops below the threshold, 
the body begins to shed or discharge the effects of interaction with the simulator, forcing the 
body into a recovery period and reducing the level of sickness. This threshold, 
charge/discharge, and variable sensitivity compound any attempt to characterize the malady 
since no efforts have been made to experimentally validate these attributes. 

This hypothesis for a functional model of the human-machine interaction led to the 
development of a set of nonlinear difference equations whose dynamics are characterized by 
temporal differences associated with the charge/discharge time constants [functionally related 
to behavioral differences (Allgood 1989)]. This model overcomes limitations associated 
with paradigms that ignore magnitude and temporal influences of stimuli that act as a 
genesis of the disease, and it possesses accountability, in a limited sense, for the behavioral 
differences in pilots. 

Although the model identified the temporal aspects of stimuli overlooked in previous 
works and functionally described behavioral class structures that could provide predictive 
capabilities for measures of simulator sickness, it still lacked the formalization of the 
biological process that is active in the human-machine interaction. Particularly missing are 
how a pilot’s associative and nonassociative behavioral patterns (or learned expectations and 
sensitivities and previous experience in a particular simulator) color that pilot’s perceptions 
of the simulator environment and how these perceptions, in turn, are affected by situational 
awareness. An example would best serve to point out the implications of this statement. 

Most people have extensive experience with driving cars and, as such, a strong neural 
store of expectations or memory of this activity. If this experience is taken to an arcade 
where a driving simulator (game) exists, the probability of invoking stimuli that induce 
simulator sickness due to cue conflict are minimal (although anecdotes are reported of 
induced sickness, which may be extreme cases). This is largely because the system presents 
such a gross approximation of a car that our experiences, reinforced by our situational 
awareness, do not lead us to assume anything else. In addition, our senses collaborate the 
assessment that, indeed, we are in a world of make-believe and should not expect it to be 
otherwise. For the full-motion base driving simulator, this is not the case. Because of its 
fidelity in replicating our driving experience, we subconsciously expect a collaboration 
between our visual, vestibular, and proprioceptive senses. And unless overridden by a 
conscious thought process, these expectations, which do not match our neural store, create 
an environment of cue-conflict. Our senses are bombarded with discordant information that, 
when mapped to the cerebral cortex, creates conflicting sensory experiences. Compounding 
this conflict are engineering attributes that are artifacts of the system’s performance and/or 
poor design. Included are excessive time delays, asynchronous motion and visual systems, 
display problems (e.g., convergence, resolution, and alignment), and minimal cue capabilities 

10 



(e.g., simulator washout where the system returns to a neutral position and propreoceptic 
feedback), all of which contribute to providing inappropriate cues or information. 

Figure 1.6 is a behavioraVsystems paradigm developed to model the interactive 
processes of a pilot and simulator. This paradigm is used as a basis for the proposed 
research and represents the model simulated by the neural network. The physiological 
aspects of the model are developed around the visual and vestibular systems interaction 
coupled with tactile senses feedback. This model provides the experience modifying the 
nervous system that reveals itself later as altered behavior. 

conjunction with the visual system about the head’s angular and linear acceleration and to 
signal its attitude relative to gravity vertical. This regulation of motor activity is at a 
subcortical level. The visual system also plays an important role in the equilibrium system, 
becoming the overriding input in the control hierarchy in certain situations. Certainly, the 
visual and vestibular mechanisms are interdependent. Information about head movement 
from the vestibular system is used to stabilize eye position and preserve vision during 
transient head movements, while the detectors of retinal motion project to the vestibular 
nuclei and contribute both postural adjustments and perception of body attitude and motion. 
Thus, the sensory precepts of the visual and vestibular systems along with tactile feedback 
provide the pilot with an environmental interpretation of world, aircraft, and cognition. In 
the real world, the learned expectations reinforce this perception, which is not the case in the 
simulated environment. Cues are perceived as discordant information violating expectations. 
The pilot is then forced to deal with the new information in one of two ways: (1)  it can be 
interpreted as new information about the environment and dealt with as altered behavior [it 
can also be considered nonassociative behavioral adaptation (habituation and sensitization)] 
or (2) it can be interpreted as a “poisoning” of the pilot’s system. In the latter case, the 
result would be simulator sickness. 

The form of the neural network and the development of the behavioral/system model 
are the major emphases of this research. A possible biological structure is shown in 
Fig. 1.7, in which levels of abstraction account for the associative behavioral patterns 
(categorization level), vestibular and visual (tactile) interdependence (interpretive level), 
perception (perception level), nonassociative behavioral patterns (adaptation level), and the 
abstract space associated with prediction of simulator sickness (predictive level). This 
particular net is presented for discussion only but is realized in some form as the model 
structure. 

Input for the associative and nonassociative behavior is gathered from syllabus hop 
dynamics and questionnaires administered at simulator test sites which include answers to a 
Motion History Questionnaire and a Motion Sickness Questionnaire (developed in 1987 by 
R. S. Kennedy, Essex Corporation). A behavioral structure is developed after a literature 
search where input stimuli are categorized and a proper sense for the sensory interaction is 
developed. The vestibular and tactile information is the recorded output from the feed of 
linear acceleration data, recorded for each syllabus hop, to the set of nonlinear difference 
equations representing the whole-body energy absorption model. Since no visual 
information exists (except in the form of CPU timing signals), the functional aspects of 
interaction are inferred fiom the model’s response to the acceleration data. Although this 
may seem lacking, close examination of the operational characteristics of a simulator shows 
a strong correlation between motion dynamics (stick movement) and visual screen projection 
(especially in the absence of any dynamics data). 

The primary function of the vestibular apparatus is to provide information in 
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The N-tuple is chosen as the net structure for the paradigm. Its capability for feature 
extraction and ease of mapping for temporal, spatial, and spectral attributes makes it ideal 
for real-time applications. It also overcomes issues of saturation, convergence/stability, 
scale-up, and speed that eliminate most other nets. 

The remaining chapters are devoted to the development of the neural network paradigm 
and behavioral model and its predictive capabilities. Chapter 2 describes, in some detail, the 
simulator where experiments were conducted and outlines, in a broad sense, the data 
acquisition techniques employed. Chapter 3 analyzes the biological neural structure of the 
human central nervous system and develops supporting arguments for the structure/form 
correlates that must exist in the artificial neural network. Chapter 4 describes additional 
analytic techniques, including the whole-body energy absorption model, employed as 
supportive work, correlating findings with the development of the simulator sickness 
predictor. Chapter 5 provides a description of artificial neural nets with emphasis on the 
N-tuple formulation. Chapter 6 discusses issues associated with the development of the 
simulator sickness N-tuple. Finally, Chapter 7 presents the results and conclusions from the 
application of data collected at a simulator site to the predictor. 
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2. FACILITY, EXPERIMENTAL DESIGN, AND DATA 
ACQUISITION TECHNIQUES 

s 
I 

120 

2.1 INTRODUCTION 

-........ ...................................................................................................................... 

In August 1987, an evaluation was performed on the U.S. Navy's TH57C (2B42) 
Operational Flight Trainer (OFT) to assess the health of the simulator through tests designed 
to correlate system dynamics with reported (incidence of) simulator sickness. At issue was 
the perception by instructor pilots that the simulator induced a high incidence of simulator 
sickness in the user community. 

symptomatology, defined as the presence of at least one minor simulator sickness symptom, 
was indeed present in the student pilot population. The tests were conducted under normal 
training procedures for student pilots: 72-min flights, one student each in the left and right 
seats, and a normal training syllabus (cal-sites, shipboard, and field landings). The results 
pointed to the inability of the device to protect sensory modalities fiom conflicting 
information (cues) that act as the genesis of the disease. 

Figure 2.1 compares the 2B42s incidence of simulator sickness (total severity score) 
against those of other systems that have been investigated. As shown, the 2B42 has the 
second highest reported incidence. In this figure, the ordinate represents an overall 

The results of the experiment confirmed the suspicion that a high incidence of 

Wn2 2F132 2E7 2FlV 2F121 2F120 2F110 2F87F 2840 2B42 2F64C 
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Fig. 2.1. Severity score comparisons of 2B42 operational flight trainer study with 
other investigated simulators. 
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discomfort across all events (syllabus training hops) and is a performance variable indicative 
of simulator sickness. The scale is normalized to a score of 100 (absence of 
symptomatology) to values presented, with severe cases of simulator sickness scoring in 
excess of 107. In this study, the sample population was represented by 32 distinct test cases 
distributed over 16 student pilots on 2 different training hops, all under instructor pilot 
supervision. 

and results of this study. In it, fatigue, sweating, nausea, dizziness, vertigo, fullness of head, 
and stomach awareness were identified as the most prevalent symptoms in the students. 
These data were correlated with system anomalies, resulting in recommendations for system 
upgrades and enhancements that would alleviate or reduce the incidence of simulator 
sickness in the user community. These recommendations were taken under advisement by 
the Navy and issued as 2B42 system upgrades to be implemented by the manufacturer 
before the device was accepted into the Navy’s training inventory. 

Station (NAS) Whiting Field, Pensacola, Florida, for Navy acceptance testing. The Navy 
requested that another experiment similar to the one employed during the evaluation be 
developed and implemented. This plan, in addition to a behavioral study, would check for 
compliance of all system upgrades. After review of the evaluation test, an enhanced 
experimental plan was recommended to take advantage of the system’s availability. This 
new test would not only provide baseline symptomatology scores, spectral energy 
distributions, and conformity checks on all upgrades but also extend the test to provide for a 
comparative analysis between the Bell Ranger Helicopter and the TH57C (2B42) simulator. 
A plan along with a flight syllabus profile for the study were submitted to the Navy and 
approved as the NAS Whiting Field Acceptance Test. 

the philosophy employed for the behavioral study. Instead of implementing the baseline test 
case as before, testing would attempt to identify operational profiles (syllabus hops) that 
would alleviate enforced restrictions (movements) on the student pilots after training. This 
philosophical departure from the original behavioral study would negate any valid 
comparison between the two and prohibit extrapolation of reduced symptomatology to any 
system enhancements. A diagrammatical representation can best describe the impact of this 
decision. Figure 2.2 is a slice through the R” operational space of the simulator, showing 
four possible (but not all-inclusive) operating regimes. The hypothesis is that the system can 
exhibit a reduction in the incidence of simulator sickness by simply eliminating from 
training those hops that act as the genesis of the disease-in this case, elements requiring 
close ground-plane coupling. Thus, any scenario that requires a high degree of interaction 
between the human’s visual, tactile, and vestibular systems for extended periods of time 
would be eliminated from training. The dichotomy that results is one in which the simulator 
can exhibit a reduction in the incidence of simulator sickness without significant changes to 
the system’s operational performance. 

This hypothesis cannot be completely substantiated by the 2B42 simulator tests, but 
it can be supported by the results of the Acceptance Test experiment. As shown in 
Fig. 2.3, the incidence was reduced from a high of 118.1 (second worst) to a level of 106.2 
(third best). When considering secondary and higher order effects, it becomes increasingly 
difficult to determine whether engineering enhancements, if performed, contributed solely to 
the reduction in symptomatology or whether changes in the syllabus structure were the 
primary cause. What is known is that the initial data set evaluation represents a baseline test 

An executive summary (Allgood et al. 1987a) was issued outlining the procedures 

In the spring of 1988, the TH57C simulator was delivered to the U.S. Naval Air 

This experiment, when compared with the previous one, had a major difference in 
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Fig. 2.2. Simulator sickness dichotomy-results of transitioning from one 

operational space to another. 

case for the neural net predictor since the paradigm would reflect those compounding effects 
due to sensory conflict in the pilots. 

2.2 FACILITY 

The 2B42 was originally developed as a flight instrument trainer (FIT) to provide 
student pilots the basic skills in instrument training. As such, the simulator was designed 
with a full six-degree-of-freedom motion base [roll, pitch, and yaw angular acceleration and 
x,  y, and z linear acceleration (see Fig. 2.4)]. (The importance of these systems is seen in 
the skills acquired by the student and the fact that human andor equipment are not put at 
risk in the training environment.) A decision was made during the system's development 
cycle to expand its definition to an operational flight trainer (OFT) through the addition of a 
coior graphics image (CGI) visual system (fuil right-seat visuals). This enhancement would 
provide skills acquisition by the students in close ground-plane coupling tasks such as 
landings and approaches. This added dimension would require the student to process 
sensory information at levels not previously encountered in training-in particular, the 
interaction of the visual, tactile, and vestibular systems. This interaction and the resulting 
sensory cunfict are widely believed to cause simulator sickness, partly because of the 
latency in the system and the asynchronous operation between the visual and motion base 
subsystems. 
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Fig. 2.3. Comparison between 2B42 simulator severity scores for testkheckout and 
Acceptance Test. 

Latency is defined as the time delay in the response of a system or subsystem and is 
normally independently characterized for both the motion and visual systems. That is, 
measured dynamic responses from stick (longitudinal and lateral) movements will include 
onset of acceleration (measured for the motion base), graphic image updates (for the visual 
system), and the difference between the two. The reader is referred to Chap. 1 and Fig. 1.6 
for review. 

By using analogies from system theory to link system performance with sensory 
processing, an intuitive model can be developed that predicts pilotkimulator instabilities in 
the presence of excessive time delays and relates the prediction through sensory (cue) 
conflict and MILSTD 14721) to the incidence of simulator sickness. For this discussion, this 
paradigm will be labeled the Latency/Cue-Conflict Model. It should be noted that similar 
models based on laboratory data gathered under other than facility operational conditions 
have been postulated by other researchers. 

loop. Of particular importance is the role that the pilot and his task skills play in 
characterizing the system’s dynamic response. Arguments can be made that the pilot, a 
nonlinear controller, has a transfer function that is conditioned upon real-world expectations 
and personal limitations. Thus associative behavior will condition the pilot’s ability to 
maintain and control the aircraft in a stable flight envelope. 

Normally, the cascade system of pilot and simulator is expected to have dominant 
poles located away from the narrow-band, low-frequency region identified by 

Figure 2.5 is a block diagram of the overall cascaded system, showing the pilot in the 
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MILSTD 14721). If excessive time delays (latency) occur, it is argued by the author tkat the 
simulator, acting as a nonminimum phase system, interacts with the pilot i n  such a way as to 
drive the system into an operating regime where the overall gain (sensitivity) is increased 
and instabilities (oscillations) occur at frequencies guarded against by MILSTD 1472D. The 
hypothesis is that the delays introduced by the system's design interact with the hunian to 
create an environment of sustained sensitivity to interpretative errors. Since the human 
sensory modalities (visual, tactile, and vestibular systems) act as a unifying feedback control 
signal, violation of the conditional expectation acts as a positive feedback sending the 
system into sustained oscillations. The oscillations that result have been categorized by the 
simulator community as Pilot-Induced Oscillations (PIO). This anomaly has the undesirable 
effect of reducing the system's fidelity, known to be suboptimal when compared with the 
actual aircraft, to a point where system performance resulting from the humadmachine 
interaction is unacceptable. 

Ranger helicopter analysis and presents supporting evidence for the hypothesis stated above. 
It should be noted that this is not the complete analysis but only those elements that are key 
to the arguments presented above. 

Figures 2.6-2.8 are the x-, y-, and z-axis acceleration step response to cyclic inputs for 
the simulator. These inputs were created by using a software patch in the aeromodel, which 
initiated a defined g-loading in one of six axes of the motion base. It is obvious from these 
response curves that the system has excessive delay times in the x- and y-axes. (Excessive 
delay times are defined as >60 ms, a figure of merit developed from the Bell Ranger 
helicopter study presented later). The latencies (>500 ms) create cue conflicts in the sensory 
input channels of the human, a qualified statement supported by the 2B42Bell Ranger 
helicopter comparative analysis. 

The following series of figures provides an overview of the 2842 simulator and Bell 
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Fig. 2.6. The x-axis acceleration step response to cyclic inputs. 
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Fig. 2.7. The y-axis acceleration step response to cyclic inputs. 

The Comparative Srudy was developed around a flight syllabus that would exercise 
perceived anomalies that exist in the simulator. Although it would not help identify the 
contributing elements of each subsystem (e.g., aeromodel, signal path delays, and hydraulic 
response), it would provide an overall system characterization. Each event (1 in. lateral left, 
0.5 in. lateral left, 1 in. longitudinal aft, 0.5 in. longitudinal aft) was designed to characterize 
temporal responses initiated through the movement of the cyclic (stick). Flight Test School 
located at Patuxent Naval Flight Center flew the test syllabus in both systems. Their 
participation ensured replication of tasks across all events and systems. The tests were 
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conducted under ambient weather conditions. fuel bums, and flight envelopes. The 
combination of pilot and attention to testing ensured the validity of the comparison. As 
shown in Fig. 2.9. the helicopter exhibited an average delay of -45-50 ms across all events. 
The simulator, on the other hand. experienced delay times (statistical average) on the order 
of 125 ms. This difference, according to the LarencyKue-Coniict Model, would establish 
sensory conflict, a result of the error propagation due to inconsistencies in learned 
expectations, and act as a genesis of simulator sickness driving the system (hunian/simulator) 
into sustained oscillations. 

2.3 SYSTEM DELAY TO FIRST RESPONSE-STATISTICAL AVERAGE 

The data that have been presented are necessary but not suficient to support the 
LatencyKue Conflict hypothesis. Corroborating data from the visual system are needed so 
that a sensory stimulus mapping can be developed showing flow of information and its 
convolution in space-time. A test was designed to capture this information using timing 
pulses on the x- and y-deflection amps of the CGI graphic screens. During a preliminary 
test, the simulator motion base system developed errors in the aero model, which drove the 
positioning vectors 180' out of phase. This negated any attempts to correlate visual and 
motion base latency. However, the experiment did provide information on the visual timing 
sequences. These results are shown in Figs. 2.10 and 2.11, where lag time and lag time 
distribution vs events are presented for information purposes only. 
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To establish support for the sensory convolution argument, an additional set of events 
was specified that would require a high degree of visual-ground plane coupling. The 
resulting interaction between the human, the system, and the task skills requirements 
resulting fiom these tasks, would exercise those sensory modes (visual, vestibular, and 
tactile) that, in the presence of perceptual errors, cause simulator sickness. If, as predicted 
by the model, conflicts in sensory input occur, the system will transition into an unstable 
operating regime identified by MILSTD 1472D. The events, normal approach, hover, left 
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clearing turn, and hover/land/hover were flown under replicate conditions in both systems to 
establish a valid comparison base. 

the comparison of the flight characteristics of the simulator and helicopter in the Hover 
Task. Figures 2.12 and 2.13 are plots of the Bell Ranger’s x- and y-axis acceleration and 
y- and z-axis stick acceleration vs time respectively. (The stick was instrumented with PCB 
accelerometers to measure acceleration. The configuration is described in the Data 
Acquisition Techniques subsection.) Very little movement in either the stick or helicopter 
platform is shown. Some cycling of the ship does occur (more prevalent in the x- than in 
the y-direction), but this is to be expected under normal flight operations. On the other 
hand, the simulator (see Fig. 2.14) shows a pronounced oscillation coupled with dead time 
(the estimated delay is on the order of 860 ms). Figure 2.15 compares the spectral 
components of y-acceleration for both systems. As shown, the simulator has a peaked 
narrow-band distribution in the low-frequency range between 0.080 and 0.380 Hz, the peak 
occurring at -0.16 Kz. This energy distribution occurs in the region guarded against by 
MILSTD 1472D (see Fig. 1.4). The helicopter, on the other hand, shows no significant 
contributions in this region. It is characterized by a flat, uniform distribution two orders of 
magnitude down fiom the peak value of the simulator. The other event, hover-land-hover, is 
shown in Figs. 2.16 and 2.17, where the spectral estimates of the x- and y-acceleration of 
the helicopter and simulator are compared. Similar to the hover task, the simulator has a 
peaked distribution of energies in the guarded region where the helicopter does not. 

The results of the experiment are shown in the following series of figures. The first is 

TH57C HELO. TEST DOEPPNER STUDY HOVER 

0 4 8 12 16 20 
SECONDS 

Fig. 2.12. The TH57C helo test Doeppner study hover (x- and y-axis acceleration vs 
time). 
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Fig. 2.13. The TH57C helo test Doeppner study hover (y- and z-axis acceleration vs 
time). 
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It is obvious fiom the preceding analysis that the simulator exhibits characteristics 
predicted by the LatencyKue-ConJlict Model. This result, coupled with the high incidence 
of simulator sickness, supports the arguments that sensory modalities are in temporal 
conflict, creating an environment of sustained sensitivity to those factors that cause simulator 
sickness. These anomalies can be attributed to the interaction of the human and sirnulator 
where perceptions based on learned expectations are violated. These precepts can be 
classified as either associated with learned pilot skills or formative interaction. 

2.4 EXPERIMENTAL DESIGN 

The experiment was designed to support two parallel tasks: (1) an engineering study 
and (2) a field evaluation of simulator sickness. The engineering study required measuring 
the motion base dynamics (angular/linear acceleration) and performing a complete analysis 
of data in support of the behavioral analysis. This study included visual data in the form of 
logic signals and recorded visual scenes captured during the hops (to be measured during 
off-test periods). The simulator sickness field evaluation required incorporating into the 
testing syllabus two scenarios with theme variations to establish bounds for simulator use. 
In each, a 72-min hop with students in right and left seats were simulated. In the initial hop, 
students used instruments with visuals for only 20 min. In the second, they performed tasks 
requiring a high degree of sensory information coupling, as in shipboard and cal-site 
landings. The theme variations were day, night, and twilight conditions. To facilitate this 
variation, the experimental design was developed to (1) evaluate whether the initial 
instrument flight simulation provided some protection fiom sickness during the second hop, 
(2) compare day and twilight scenarios to determine whether twilight hops are less 
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provocative of sickness, (3) make comparisons of pilots who sit in the left vs right seat, and 
(4) correlate simulator engineering and dynamic traits with incidence and severity of 
simulator sickness to determine attribute effects and causal relationships that exist. 

To accomplish the first objective, all student pilots made the first hop (initial hop 
included 20 min of visuals) under daylight illumination. On the second, a day later, they 
made the shipboard landings also under daylight illumination. Half of the pilot pairs 
switched seats on the second hop. A comparison was made of these two pilot groups. To 
accomplish the second objective, the pilots made a shipboard landing under twilight 
conditions, followed by a break of either two or three days and then made another shipboard 
landing with the exception that the hop was under daylight illumination. The break helped 
guard against adaptation. Comparisons were then made among all pilots for both hops, with 
primary interest in those who had no prior visual experience. Finally, comparisons were 
made between pilots in left and right seats across all events. 

and wearing flight gear normally worn during training. Students were requested not to 
discuss testing procedures or outcomes of their hops to eliminate biases introduced by 
associations. The experimental analysis included incidence, severity, and duration of 
simulator sickness symptoms and tabulated symptom clusters to include postural stability 
data. The engineering data package analyzed acceleration profiles (linear and angular) and 
spectral estimates of energy distribution for each syllabus hop and provided measures of 
correlation for these data. 

Pilot requirements were that all participants should be in their usual state of fitness 

2.5 DATA ACQUISITION TECHNIQUES 

2.5.1 Simulator System 

Figure 2.18 shows the basic equipment configuration employed during the testing of 
the 2B42 simulator. As shown, a complete facility for recording, analyzing, and displaying 
system parameters was available that included the ability for real-time and pre- and 
post-processing data. This distributed data acquisition system (DDAS) environment ensured 
data integrity across all events. 

The state of the system is defined by the simulator’s linear and angular acceleration, 
pilot control signals (longitudinal cyclic, lateral cyclic, rudder), gyro-pitch signal, stick linear 
acceleration as measured by the PCB linear accelerometers, and graphic CPU timing 
sequences (i.e., chin, right, left, forward window, and master sync pulse). These parameters 
represent a minimal observable set for the simulator. The equipment was set up in the upper 
bay area of the 2B42 Facility. After a point-to-point continuity check was performed on the 
DACS, the test simulator was brought to an operational state with full motion and visual 
systems. Then, a complete system-integrity check was established for both the simulator 
and test equipment, which required functional tests on all control, visual, and measurement 
signals. The location of the accelerometer packages in the 2B42 cab is shown in Fig. 2.19. 

2.5.2 Bell Ranger Helicopter 

A Bell Ranger Helicopter was instrumented for the comparative study. The Navy 
uses the aircraft to teach basic helicopter flight operations and skills to student pilots. To 
record the flight dynamics of the helicopter, a specially configured instrument package was 
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Fig. 2.18. Equipment configuration for 2342 Acceptance Test, Naval Air 
Station Whiting Field. 

developed. This package consisted of a portable 21-channel FM recorder with power pack, 
complete set of antialiasing filters (gel-cell design), triaxial linear accelerometers for 
measuring the platform, and triaxial solid state (PCB) linear accelerometers for measuring 
stick movement. 

to the original configuration used on the 2B42 simulator. A structural integrity test was 
performed on the aircraft to ensure that no structural resonance would compound 
accelerometer signals. The solid state accelerometers were placed on the pilot’s cyclic for 
correlating stick movements {step inputs) with system response. This nonintrusive 
measurement technique provided a means to ascertain task skills proficiency in each 
particular event identified by the hop syliabus. 

The triaxial accelerometers were located behind the pilot’s seat as close as possible 
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3. BEHAVIORAL ATTRIBUTE SELECTION BASED ON THE BEHAVIORAL 
AM) SYSTEMS MODEL 

3.1 INTRODUCTION 

“You are what you think” is a simple but elegant truth describing the perceptual 
differences that act as contrast elements, separating one person’s behavioral characteristics 
from those of another. In this context, “think” is defined as those elements of reactive 
thought that act as a descriptor of one’s self--colored perception of the environment, 
conditioned response to stimuli, and those particular elements of our “residual memory” 
that make instances of time and space important to us as individuals. Also, behavioral 
characteristics have a broadened scope which includes any and all behavioral elements that 
would serve to distinguish one’s personality. These traits include personal nuances, 
preconditioned expectations, and any physical differences that impact our response 
mechanisms. Of course, this research dismisses any elements of the human population that 
suffer genetic and cognitive impairments. (Although it is known that their 
interaction with the environment will play heavily on their perceptions and response, they 
are excluded to allow a more tractable base for the behavioral model). 

This chapter expands upon the definitions given in the preceding paragraph and, 
using the behavioral and systems model identified in Chap. 1, develops the necessary 
reasoning to support the selection of particular behavioral attributes acquired during the 
simulator sickness study. These parameters form the basis for the associative and 
nonassociative behavioral vector used in the development of the N-tuple neural net. 

This treatise does not, an any way, attempt to uncover the morphological changes 
that occur in the memory trace circuits or address the neurophysiological aspects that 
accompany memory store. Its specific purpose is to elucidate, in a simple manner, those 
attributes of human “self’ that possess the necessary interactive qualities to act as stable 
predictors of simulator sickness in a subject population. Some of the reasoning presented 
extends from basic intuitions developed from the author’s personal flying experiences, while 
other assertions extend from accepted reasoning. 

3.2 NEUROBIOLOGICAL IMPLICATIONS OF LEARNING 

Lasting behavioral traits are the result of environmental interaction and are 
descriptively presented as a process in which humans learn important interactive correlates; 
commit them to memory; and on the occasions where stimuli solicit, respond according to 
this neural store of information. Psychologists claim that this process can exist in several 
forms and that the implications are of great importance when the neural mechanisms of 
learning and its impact on experimental validation are considered. The focus of this 
research is on a single binary categorization of learning (Thompson 1986), which is used in 
developing the behavioral model and, subsequently, the selection process for the behavioral 
attributes. 

nonassociative learning. Nonassociative learning is identified with single-event structures 
that create environments where humans habituate (decrease response in) or sensitize 
(increase response in) themselves to repeated stimuli. Associative learning, on the other 

The paradigm divides learning into two basic processes: associative and 
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hand, is a causal relationship precipitated by events occurring in the environment and is 
usually categorized as Pavlovian (classical) or instrumental conditioning. In Pavlovian 
conditioning, two stimuli-conditioned and unconditioned-are presented with the 
conditioned response onset preceding the unconditioned response onset. The learning model 
integrates particular aspects of nonassociative with Pavlovian conditioning to develop the 
reasoning model. 

3.3 REASONING PARADIGM BASED ON TJ3E BEHAVIORAL AND 
SYSTEMS MODEL 

The behavioral and systems model initially presented in Chap. 1 is again shown with 
modifications reflecting a more formal structure (see Fig. 3.1). A comparison of these two 
systems shows that accommodation has been expanded to include nonassociative behavior. 
This change provided the basis for developing arguments for the behavioral model. 

developed during the formative years. This information provides much of our reactive 
mechanisms that we expect in dealing with any physical system. These data form the 
sensory (visuaVvestibular/tactile) accommodation to walking, running, and the general neural 
and physiological cognitive pairing of information that accompanies our interaction with the 
environment. Our lives continue to support these hypotheses (conscious and subconscious 
thought) and reinforce the resulting expectations. In addition, continued stimuli over the 
years habituate certain reactive elements in the human neuraVphysiologica1 response 
mechanisms. Consider, for example, that walking invokes an oscillatory motion in an x-z 
plane, which is actually considered to be soothing (rocking). Yet, this same oscillatory 
motion for (prolonged) periods of time in the y-axis (lateral) would precipitate a hostile 
reaction and create an environmental imbalance that affects walking or standing. Thus, we 
come prepared for simulator training (or learning) with a complete, intact store of neural 
information and expectations based upon previous experiences. It is this trust in 
expectations that is violated by simulator use. 

what happens to a pilot during a simulator flight. The effects on the pilot are presented 
again with supporting arguments for the paradigm and the generation of perceptual errors 
when events do not match the neural store of expectations. 

sensory information. Figure 3.1 represents this perception as a conformal mapping of two 
interdependent processes onto the pilot’s associative memory store. The first (process) is a 
causal expectation, E[*] ,  a result of (generated) predetermined control inputs [U(t)] to the 
system reflecting a goal task. The second (process) is an interpretive mapping of the 
concordant information from the visual and vestibular systems [ x l ,  x 2 ] ,  which provides a 
feedforward signal in collaboration with the causal expectations. The convolution of these 
two signals provides the interpretive measures by which a pilot establishes continuity or 
perception of reality. 

If differences are detected, a bimodal error signal is generated, passed through a set 
of dynamic gains, and then sent as an estimate of the energy contained in the perceptual 
error to a level of cognitive reasoning where situational awareness [or focused attention] is 
abstracted with environmental awareness. This metalevel inferencing establishes a measure 
of confidence or uncertainty in the error perception. 

A major premise of human experience is that a rich store of neural information is 

The behavioral and systems model presented in Chap. 1 provides some insight as to 

During a simulator hop, a pilot is subjected to what is perceived as discordant 
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Environmental awareness provides the basis for establishing assignment criteria to 
the generated error, with situational awareness conditioning these estimates. If the 
environment is a simulation, as in the case of the OFT, then it would be expected that 
perception is discordant with sensory projections. Any error distribution over events 
(syllabus hop structures) would be accepted by our consciousness. Conflict arises, though, 
when this perception is colored by a conditioning element based on situational awareness, 
wherein conscious thought is overridden by a subconscious diversion directing attention to 
the goal task. In the case of the simulator, the simulator abstraction would be replaced by 
tasks of hovering, landing, or approaches; thus, the corroborating evidence of error is 
eliminated. This diversion has the effect of acting as a genesis of simulator sickness. Thus, 
the onset of the disease will occur even in the presence of supporting evidence (conscious 
thought) that the environment is not real. 

The dynamic gains ( S , , S 2 ) ,  identified earlier, are those elements of nonassociative 
behavior that act to habituate or sensitize the individual events that are orthogonal to 
expectations. These variables have a triplet of attributes associated with them that bind the 
gains with a particular behaviodevent structure and perceptual error. In this paradigm, the 
triplet (event p, threshold, time-constant) provides the information required for the 
subconscious conditioning of the individual. To provide a mathematical description of the 
process, this relationship is formalized in 

({[event p, threshold, time-constant] a [ S ,  S,])n{behavior u event E }  A -+ 

{decision, E [habituation, sensitization]}) . (3.1) 

An example will serve to illustrate the model. To begin, an expected event (event 
E),  based on the neural information store (behavior), is compared with the occurring event 
(event p). If these events are colinear (or nearly colinear), the generated error (A) is 
minimal and below a perceptual threshold value used to condition nonassociative behavior. 
In this instance, the event is noncompelling and provides an environment (decision, = 
habituation) in which habituation can occur (i.e., the dynamic gains are reduced over 
repeated exposures). If event p is orthogonal to event E, the error is large and above the 
perceptual threshold and the nonassociative behavior is sensitized (decision, = sensitization) 
to the event (dynamic gains increase with repeated exposures). Repeated exposures will 
only exacerbate the situation, increasing susceptibility and level of simulator sickness over 
events. In each case, a time constant correlated with the nonassociative behavior provides a 
retention time (or event memory) for the stimulus and gains. This time constant is a 
function of the number of repeated occurrences, event structure, and behavior. 

The model described above serves to provide the basis for the selection of the 
behavioral attributes. A correlation of these parameters with specific elements of the 
paradigm is given in the next section. 

3.4 BEHAVIORAL ATTRIBUTE SELECTION 

Table 3.1 lists the behavioral attributes collected during the experiment. It contains 
29 elements divided into three categories specific to the pilot, syllabus hop, and simulator 
system. In addition, seven of the pilot’s variables (pilot ill in past week, number of beers in 
the past 24 hours, ounces of wine in the last 24 hours, ounces of liquor in the past 24 hours, 
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Table 3.1. Experimental behavioral attributes 
~~~-~ ~ 

Pilot Syllabus hop Simulator system 

Total fixed wing hours 

Total rotary wing hours 

Number days since most recent 
flight 

Number days since most recent 
in simulator 

Usual fitness 

Experience vection 

Preselection variables 

I11 during past week 

Number of beers during past 24 h 

Ounces of wine during past 24 h 

Ounces of liquor during past 24 h 

Medication during past 24 h 

Hours of sleep previous night 

Sleep sufficiency 

Pilotlcopilot seat 

Event structure 

Day vs twilight 

% Time as pilot 

% Time looking out 
windows 

YO Time on 
instruments 

% Time navigating 

YO Time same in 
aircraft 

Simulator on freeze 

Minutes on freeze 

Number freeze 
events 

Unusual events 

SticUthrottle control 

Instruments 
operational 

Wait in simulator 

Minutes in wait 
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medication taken in the past 24 hours, hours of sleep during the previous night, sleep 
sufficiency) were extracted from the attribute list to form a preselection filter. This filter is 
used to eliminate from the model’s data base those individuals already biased toward an 
incidence of simulator sickness. 

correlation between the behavioral attributes and the system paradigm, the following list 
identifies the parameter selection for inclusion in the N-tuple neural net model. 

On the basis of the previous definition of the system model and subsequent 

Associative Behavior 

Total number of fixed wing hours 

Total number of rotary wing flight hours 

Usual state of fitness 

Percentage of time in activities same as in aircraft 

Situational Awareness 

Percentage of time as pilot 

Percentage of time on instruments 

Percentage of time looking out windows 

Percentage of time navigating 

Number of times simulator on freeze, number of minutes 

Unusual event occurrence 

Instruments operational 

SticWthrottle control adequacy 

Nonassociative Behavior 

Number of days since most recent flight 

Number of days since most recent simulator hop 
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4. APPLICATION OF ADVANCED COMPUTATIONAL METHODS AND OTHER 
ANALYTIC TECHNIQUES IN SIMULATOR SICKNESS STUDIES 

Diierences 

4.1 INTRODUCTION 

7 

Temporal 
Activity 
Number 

The current research effort resulted from earlier attempts that used advanced 
computational methods and other analytic techniques to provide insight into the causal 
relationships that exist between whole-body energy spectra and the incidence and level of 
simulator sickness. This research focused, in particular, on quantifying those elements 
identified in Fig. 4.1 and using them in conjunction with other methods to predict the 
occurrence of simulator sickness in a user population. This simple paradigm was developed 
to focus attention on the complexity of issues related to the malady and not just the binary 
aspect of 0.2-Hz acceleration identified in MILSTD 1472D-the prevalent argument used in 
determining causality. The weakness of the single-element argument is that it fails to 
identify the process interdependency of behavior, space, and time as causal elements in the 
evolution of simulator sickness. 

Three analytic techniques are presented, two (energy modelbinary decision tree) 
supporting certain elements of this research, and the third (finite-difference) forming the 

1 
Pilots Spatial 

c 4 x, y, 
Time constants Spatial Dsrribub’on Associative 
(Chrg/Dischrg) Behavior Of Energy 

i 

Sickness 
Predictor 

Susceptibility 
Sensitivity 

Beta Factor 
( Wc, DelW) 

Fig. 4.1. Predictive model for simulator sickness. 
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basis for characterizing the human-system interactive dynamics. The first is an energy 
model correlated with select behavioral attributes that provide a simple decision model for 
class structures. The second is a binary decision tree based on inductive inferencing of 
system and behavioral attributes. The third is a complex, finite-difference model that uses 
spatial, temporal, and spectral arguments to provide a measure of susceptibility for the user 
population based on simulator dynamics. 

4.2 STATISTICALLY CORRELATED ENERGY MODEL 

To determine the validity of a the whole-body energy model, a simple statistically 
correlated paradigm was developed (see Fig. 4.2) to test the significance of energy spectra 
(z-axis using MILSTD 1472D as basis) as a function of simulator sickness susceptibility. In 
this model (developed by R. S.  Kennedy and the author at the Essex Corporation facility in 
Orlando, Florida, in December 1988), pilots where classified as having either high or low 
susceptibility, depending upon their scores on the Motion Sickness History Questionnaire 
(MSHQ). Scores were compared with the median MSHQ score and classified accordingly. 

SICKNESS 

GROUP 1 GROl 

Fig. 4.2. Correlated energy model. 
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Pilots were also grouped according to the number of recent flight hours. The threshold for 
this attribute was set at 20 h, where a pilot whose recent flight-time was above 20 was 
categorized as having high flight hours and low if below this threshold. 

With this characterization, the model predicts that pilots with low susceptibility and 
low practice [recent flight hours] (Group 1) will experience low to moderate sickness. This 
prediction is based on the premise that, although the pilots may experience a high 
whole-body energy spectrum (low practice), they will be relatively unaffected. Accordingly, 
pilots with high susceptibility and low practice (Group 2) will experience the highest level of 
sickness because they will experience a rough ride and be most susceptible to the energy 
spectrum. Pilots with low susceptibility and high practice (Group 3) will experience low to 
medium energy and low sickness. Intuition supports this Group 3 characterization since 
these pilots’ abilities to control the nauseoginic environment are at a maximum, reducing the 
whole-body energy absorption and thus the level of simulator sickness, It should be noted 
that the reduction of the energy spectrum is not necessary for Group 3 to experience low 
sickness. Their low susceptibility compensates for high energy profiles, reducing the need 
for control compensation. The final group includes pilots with high susceptibility and high 
practice (Group 4). Their training will allow for control compensation given simulator 
dynamic anomalies, reducing the energy spectrum and providing a low sickness level. 

A preliminary analysis (Kennedy) of data collected at several simulator sites 
supports, to some degree, the model hypothesis defined in Fig. 4.2. In the case of Group 1, 
an even distribution of high and low energies across the user population resulted in moderate 
sickness: 11 of 20 Group 1 pilots experienced some level of sickness, while 9 did not; in the 
Group 2 category, a 70/30 high-low energy spectra resulted in 21 of 32 users being sick; in 
Group 3, a 5050 split on high-low energy had 29 of 37 users experiencing no sickness; and 
in Group 4, a 45/55 split on high-low energy resulted in 18 of 22 users experiencing 
simulator sickness. 

with the predicted outcome. Group 1 data indicate moderate closure, and Group 4 data 
indicate a high incidence of simulator sickness, even with low energy spectrum. Arguments 
can be made that better closure can be gained by increasing the order of the model 
[including time and space (x- and y-axes)]. But since the intent was to (1) develop a 
first-order approximation and (2) determine whether the model provided significant structure, 
further work was forgone to support a more useful and flexible model. 

Comparing the data with the model shows a strong correlation for Groups 2 and 3 

4.3 INDUCTIVE INFlERENCING MODEL 

One of the major obstacles in studying simulator sickness is the combinatorial 
explosion that occurs in the functional analysis of the behavioral data and process 
measurements collected at a simulator site during an experiment. This is compounded by 
the fact that the data are in both discrete and continuous forms. The discrete forms are the 
answers to questions posed to the pilots (see Chap. 3).  They can be in a yes/no format or 
subjective evaluations of a system’s performance. The continuous data are measurements 
taken from linear and angular accelerometers and are used primarily to characterize the 
simulator’s dynamics. The formulation of such a problem requires that a qualitative as well 
as quantitative analysis be brought into focus to identify those elements important in the 
characterization of simulator sickness. 
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Machine-learning methods have been employed in instances such as this to 
synthesize functional relationships that exist between system parameters. In these methods, 
training examples consisting of attribute values and corresponding class structures are used 
by the machine-learning algorithm to correctly classify (formulate a knowledge base) 
examples on the basis of a sequence of tests performed on the attributes. From this 
knowledge base, a tree (see Fig. 4.3) composed of nodes (tests) and possible outcomes 
(branches) is developed and used as an evaluator to determine class membership of unknown 
samples. This determination is achieved by starting at the top node and moving down the 
branches until a terminal node is reached, resulting in a class membership assignment. 
Generally, the nodes have many branches for the query. For this problem, however, a 
binary decision tree is constructed (i.e., only two possible outcomes are generated from the 
query). 

The technique used in developing the decision tree (Horn, Birdwell, and 
Allgood 1990) is the inductive inferencing method (Quinlan 1986). This method, is a 
recursively applied algorithm that starts at the top node, finds the sample attribute that gives 
the largest information gain, partitions the set on this attribute, and then proceeds in the next 
step to apply this same reasoning to the remaining subset of attributes. This method is a 
heuristic algorithm that constructs a decision tree that completely and correctly classifies a 
sample data set or concludes that correct classification is not possible. 

This method can be applied to the development of a binary decision tree. The 
method uses attributes of a class-labeled sample data set to define queries of the form: 

qj : A,  2 Clu , 

a I p2 c2  

fa l se  A 
c l  c 4  

Fig. 4.3. Binary decision tree example. 
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where q, is the j ’ query to be inserted in a decision tree, A ,  is the 
valued threshold, and the result of the query on the given partition of the sample data set is 
either true or false. For a given partition P, attribute A ,  and query q, the information gain, 

attribute, a,, is a real 

Igan, is 
Igpm(P7 A, 4 )  = Iiequired(P) - E(A, 9) 3 

where lequired(P) is a constant for the particular sample set partition. The conditional entropy, 
E(A, q), is defined as 

where n is the number of data objects in the sample set and, within P; C is the set of data 
classes; n, is the number of objects with query result r; and nr k is the number of objects 
with query result r, which are the members of class k. This formulation makes evident that 
at each node the attribute A,  and threshold a,, that yields the minimum conditional entropy 
provides the largest information gain for the query and thus the best partition of the sample 
set. 

This method was used to investigate the relationship(s) that exist(s) between simulator 
sickness and system motion dynamics, which in turn serve(s) to link associative and 
nonassociative behavior patterns of the user population with the phenomenon. In this 
analysis, the mean-square value outputs of a set of bandpass filters [mapping fiequency 
ranges associated with simulator sickness (MILSTD 1472D)j were used to provide the 
attributes for the training set. 

A subset of the available system data was used in the analysis. Those elements 
considered for inclusion were the x-, y-, and z-axes linear acceleration measurements 
formulated as a weighted vector norm: 

Also selected were particular elements of the pilot’s associative behavior. The two attributes 
chosen were the number of helicopter flight hours and the number of hours of sleep the 
previous night. 

acceleration data fiorn each simulator hop and computing the mean-square value. A total of 
45 digital filters covered a range from 0.1 to 1 .O Hz in increments of 0.02 h. Each filter 
had a Q of 8. 

node and determining the attribute that best classifies (largest change in entropy) the 
25 samples (number of simulator hops) into two subsets. At this and each successive node, 
the inferencing algorithm determines the attribute that best classifies the sample set into 
two subsets. This determination is accomplished by a query of the form, “Is the attribute 
value less than or equal to the threshold?’’ The determination is made only after an 
exhaustive search of the 45 filter mean-square values and the two behavioral attributes. 

The result of applying this inferencing algorithm to the selected attributes is presented 
in Fig. 4.4. Shown are those attributes selected by the algorithm that best assigns 

Before constructing the tree, an attribute data base was developed by filtering the 

The tree is constructed in a stepwise recursive optimal fashion by starting at the top 
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Fig. 4.4. Decision tree producing simulator sickness symptomatology score. 

motion-sickness symptomatology to the x-, y-, and z-axes acceleration data, pilot flight 
hours, and sleep hours. The specific filters selected by the program have center frequencies 
of 0.10, 0.14, and 0.20 Hz. (Threshold values are scaled by a factor of 1000.) 

correlation for the hypothesis set forth in this research effort. Of particular interest is that 
the first test (top node) uses an associative behavior parameter to split the sample set, 
attaching significance to the importance of past experience in the genesis of simulator 
sickness. 

The decision tree developed by the inductive inferencing algorithm provides strong 

4.4 FINTTE-DIFFERENCE MODEL: THE “WHOLE BODY ENERGY 
ABSORPTION MODEL” 

The previous works emerged from the author’s ideas and efforts to develop a 
whole-body energy absorption model that characterizes a pilot’s ability to shedabsorb 
energy over a syllabus hop-in particular, modeling the human as a variable filter that 
fatigues over time, allowing more of the dynamic energy at any instant to be absorbed 
(internally) by the pilot. The effects would be seen as neurophysiological impacts, 
integrated over the time course of the syllabus hop. The importance of such a model is 
characterized in Fig. 4.5, where the whole-body energy dynamics of the pilot is pictured as a 
function of time. 

As indicated in the figure, two extreme possibilities can occur for a pilot, resulting in a 
simulator-sickness dichotomy. In the first (top curve), the pilot experiences most of the 
simulator dynamics (activity) in the early stages of the hop. The pilot, modeled as a simple 
exponential function with charge/discharge time constants, could upon exiting from the 
simulator experience little, if any, symptomatology because of the ability of the human to 
shed the effects of the hop during the next hour as the body recovers from the experience. 
In the second case, the pilot could exit the simulator complaining of discomfort (and other 
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Fig. 4.5. Dichotomy of simulator use acceleration energy vs time. 

symptoms) because the activity in the simulator was in the latter stages of the hop sustaining 
the effects of the ride. In both cases, assumptions are made that (1) the. pilot possesses those 
behavioral attributes that make the pilot susceptible to simulator sickness, (2) the pilot has 
experienced levels of acceleration energies guarded against by MlLSTD 1472D, and (3) all 
other environmental agents that could act as causal elements for the malady are equal. If an 
analysis were performed strictly on the basis of spectral energy content averaged over time 
(ensemble average), both hops would have the same quantitative estimates over the time 
period. Yet, in one instance the pilot could exit the simulator with little or no adverse 
effects and in the second could exit the simulator complaining with symptoms associated 
with simulator sickness. A dichotomy would then exist because the energy spectral 
estimates would be the same but the response (recollection of simulator experience) quite 
different. 

To overcome this problem, a model was developed that took into account the temporal, 
spatial, and spectral interdependencies that impact the human’s central nervous system. The 
model is presented diagrammatically in Fig. 4.6, showing particular elements in block form. 
A basic assumption of the paradigm is that the human acts as a variable filter that fatigues 
over the course of the simulator hop, allowing more of the instantaneous energy to be 
absorbed by the body. In addition, the human is assumed to have exponential characteristics 
that allow for different charge/discharge time constants: ( {tc,, tdc, 
systems). Therefore, a doublet of time constants is required to define both sets of dynamic 
equations that describe the neurophysiological systems. 

I i = physical, neural 
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Since the model is based on the simulator’s imparting dynamic energy to the pilot, it 
must have the capability to discern when the system is active (i.e., movement in x-, y-, and 
z-axes). This is accomplished by performing a noise analysis (Fourier transform) on all axes 
when the system is brought up on rams. This analysis is then stored as a noise spectral 
estimate energy pattern. Then, at each instance of time in the analysis, a comparison is 
made between the Noise Spectral Estimate, F,,, and the current spectral energy estimate, 
F ( O ) ~  for each axis. The difference, defined over a select narrow spectral band, is 
compared with a threshold function, L, which has been calculated and set to a value that 
allows the model to correlate static downtimes with a forcing function, Sr(t), equal to zero. 
This forcing function calculated from the system observance function is then applied to an 
equation modeling the energy-fatigue (physical) filter, CD(t). The chargeldischarge time 
constants ( { t c l ,  tdc,} I i = physical) are set to 7.5 and 45.0 min respectively. (These choices 
were made on the basis of the author’s experience in the simulator). The neurological filter 
is developed in a manner similar to that of the physiological model with the addition of a 
term representing a point estimate for whole-body energy absorption (see Eq. 4.1). The time 
constants ( { t c l ,  tdc,) I i = neural) are equal to 3.5 and 15.0 min, respectively, for 
chargeldischarge. It should be noted that a set of equations will be required for each 
frequency analyzed (Le., o, V i = select frequencies of interest): 

Zk (t, ai) = lim A q+O; 5 E ( t ,  ai, A 5) dq . (4.3) 

The finite-difference equations modeling the interactive neurophysiological process is as 
follows: 

f o r k =  0, 1,2  , . . . ,  r ,  

where P A T  spans the period of activity (Le., T*AT = ten,,,) and AT is the sampling interval; 
and for Fo the Fourier analysis of the noise signal level for a particular axis. 

4.4.1 Energy-Fatigue (Physiological) Filter at Each Time Step 

where A = C a, and j is defined for some select narrow band frequency, then 

(UT) = Unit-Step else , 
i2 (UT) = 0.0 . 

The Physiological model is then defined as 

ak = 0.95*Fk-, + 0.46*R(kAT) (4.3a) 

for C! (MT) = Unit-Step, and 
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Dk = 0.99*Dk-, + 0.008*R(kAT) 

for R (kAT) = 0.0. 

(4.3b) 

4.4.2 Neurological Model at Each Time Step 

for R (UT)  = Unit-Step, and 

pk = 0.99*p,-, + 0.01 l*E,(f, o,)*R(kAT)*D, (4.4b) 

for Q ( U T )  = 0.0. 
This set of equations, developed for each select frequency band analyzed, represents 

the neurophysiological model developed for this research. This is the first set of developed 
equations that incorporate temporal, spectral, and spatial arguments as well as behavioral 
attributes in a closed form specifically to predict simulator sickness from system dynamics. 

The application of this model to two select syllabus hops is presented in the 
following series of graphs. The first, Fig. 4.7, represents the 1R1 x-axis Physiological 
model; three parameters are presented: output, cD(f); observation function; and forcing 
function, !2( f ) .  The output, represented by the bottom graph, shows the physical 
response-or fatigue-wer the duration of a syllabus hop. As shown, activity was sustained 
at levels significant enough to create an environment where the physiological impact of 
whole-body energy absorption was maintained above 0.90 for the hop. (In this model, 
complete fatigue is equal to a value of 1.0; that is, all energies presented to the body are 
absorbed with no attenuation.) The top graph represents the forcing function for the model. 
If it is correlated with the time record for 1R1 x-axis linear acceleration (see Fig. 4 . Q  it 
obviously coincides with the activity on this axis. The middle graph represents the 
observance function and is indicative of the energy present in the low-frequency band. As is 
evident in the latter stages of the hop, the overall energy contributions are diminishing, 
indicating a more stable control of the device (a result of pilot efforts or a change in the 
syllabus hop structure). 

for the x-, y-, and z-axes respectively. Betal, Beta2, and Beta3 (Beta4 = 0.244 center 
frequency is not presented) are representative of 0.097, 0.147, and 0.197 center frequencies. 
Visual analyses of these graphs identify certain elements characteristic of the model. The 
first is the charge/discharge phenomenon that accounts for attenuation in the whole-body 
energy absorption if energies in a select frequency are absent or at a minimum. (See Beta 
function values over latter part of hop; compare Beta function across events.) The second is 
that the high-activity regimes are accounted for by the peaked distributions of the Beta 
function for the defined time periods. The third is that the dynamics of interaction are 
accounted for during the complete time period. The fourth is that contributing elements of 
space, time, and frequency are contained in the model. (Figures 4.12-4.14 are the beta 
function calculations for run 2R10 analyzed using this paradigm, presented for comparison 
only.) 

simulator was generated and used in the formulation of the N-tuple neural network 
(see Chap. 5 ) .  

The next series (Figs. 4.9-4.1 1)  presents the 1R1 x-axis Beta function calculations 

A complete set of Beta curves for each of the 20 syllabus hops flown in the TH57C 
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Fig. 4.9. 1R1 x-axis beta function calculation. 
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5. SIMULATOR SICKNESS PARADIGM: A NEURAL NETWORK STRUCTURE 

5.1 INTRODUCTION 

Real-time state-space estimates for complex systems [in this sense, nonlinear, dynamical 
systems whose state projections are not crisp (simple decision boundaries)] are difficult 
because of the analytic requirements for adequately describing existing functional 
relationships. At issue is the ability to interrogate or monitor a system, apply interpretive 
measures of assessment, and make quantitative and qualitative judgments in real time about 
existing and transitional states. For sirnulator sickness, this translates into an ability to use 
system dynamics, associative and nonassociative behavioral data, and previous simulator 
experience to predict the onset and level of the disease in a user population. Of particular 
importance is the development of a self-organizing mechanism by which the model can 
synthesize and evolve to a solution. 

Analytic models have limited applications to the simulator sickness problem because of 
their inability to accurately model with mathematics or logic that which is so aptly described 
with our own grammar-for instance, pilots who fly these devices describe feeling out of 
balance or uneasy afm the hop. These observations are conditioned on an individual’s 
perception and become context-dependent descriptors for that particular day, hop, pilot, and 
simulator, These descriptors are colored by personal behavioral attributes and experiences 
and give rise to different meanings or interpretations. Other problems encountered are the 
on-line requirements for identifying system parameters and variables and the systematic 
development of consistent structures that accurately model the observed system. 
Considering the nature of simulator sickness and the complex structure that exists, 
developing a strictly analytic predictive model is prohibitive. However, a method exists that 
has had success in tasks similar to this: the artificial neural network. Artificial neural 
networks are connectionist schemes modeled after the biological structures that exist in the 
human’s central nervous system. These paradigms take advantage of the highly parallel, 
selective computing mechanisms that allow the human to be successful at either feature 
extraction or pattern recognition or both. The strength of the paradigm lies in its ability to 
form its own internal representation of the process and make judgements accordingly. These 
models are robust in the sense that the failure of (several) computing elements (neurons) 
andor connection strengths (synapses) do not necessarily degrade performance significantly 
(distributed knowledge). The mechanisms by which these structures are developed lend 
themselves quite readily to the task of real-time and on-line learning or training (adaptive 
mechanisms by which knowledge is acquired). Also, by providing a basic grammar, the 
system can deal with firzzy logic or intuition-as in the case of pilots’ comments. Once 
taught, state assessments can progress in time frames commensurate with system 
requirements when the proper net structure has been selected. It should be noted that a 
hybrid-system configuration to deal with both the front-end and output conditioning is 
usually needed. 

can enhance the capability of the net to project and estimate states and state transitions. 
This ability also provides a mechanism by which, in the classical sense, the probability of 
estimating an interesting state increases as the systems gains more information. 

As with any model, developmental issues must be considered before implementing a 
neural network as an observer. First, time requirements for net convergence must be 

Neural nets have an ability to provide temporal correlation with system attributes, which 
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considered. These times will vary depending upon the number of neurons, connections, 
structure invoked, and learning rule employed, which are serious considerations for proper 
selection. Another issue is the need for front-end preprocessing to overcome nonorthogonal 
data structures that may exist. In some networks such as the ,4daptive Resonance Theory 
(ART) and Kohonen, the input data features are crucial to the net’s classification capabilities 
and become more sensitive as the input is normalized and scaled. The saturation of the net 
in its ability to learn and reason as well as the ability to forget as the net evolves is also 
important. These and other issues can be overcome by an appropriate selection and 
combination of nets whose structures are specifically designed for certain classes of 
problems. 

5.2 BIOLOGICAL MODEL ANALOG: THE ARTIFICIAL NEUR4L NETWORK 

The structure of artificial neural networks (ANNs) is modeled after the organization 
of the central nervous system (CNS). The analogies drawn for development of the ANN 
networks from the neuralphysiological system are slight when the complexities and 
intricacies existing in them are considered. What is known is information about the basic 
building block (neuron), interconnectivity (synapses, dendrites), major pathways, and the 
mechanism by which memory is achieved (morphological changes in synaptic strengths). 
Current research is extending this knowledge through efforts targeting the structure/form 
correlates that exist in the central nervous system. The goal is to better understand how 
cognition and concept formation occur. These studies have provided useful and diverse 
models of mental activities that are based on the modular interactions of the nervous system 
(form, visual images, attention, belieflconcepts). 

development of new paradigms can be achieved. By understanding the structure/form 
correlates that exist (e.g., the visual system where form, color, and spatial information is 
processed along three independent pathways in the brain), enhanced mathematical 
formulations of select neural attributes can be developed. In addition, answers can be given 
to questions about such processes as adaptationhabituation and its impact on plasticity, 
associative behavior and learned expectations and how it colors perception, and situational 
awareness and how its environmental focus can enhance or detract from the reasoning 
process. 

By analyzing the biologicaVphysiologica1 process, an enhancement of existing and 

5.3 HUMAN BRAIN STRUCTURE 

The human brain contains over one hundred billion processing units called neurons 
(computing elements) whose communication is conducted over nerve fibers called synapses. 
The neuron is the fundamental building block of the nervous system and is similar to all 
other cells in the body, but it is specialized in its ability to perform the computational and 
communication functions within the brain. It consists of three parts: cell body, axon, and 
dendrite. The dendrite sums the information, receiving signals from other cells at terminal 
points called dendritic spines. Here, information is passed along the axons, across the 
synaptic cleft, and otlto the dendrite leading to the active neuron. [Research has shown that 
in certain instances the morphological changes that accompany learning create instances 
where the axons terminate directly on the soma (cell body).] The signals are then passed to 
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the cell body, where they are averaged with other such signals. If the average of a short 
interval is sufficient to overcome a resting potential (threshold), then the cell fires, thus 
producing a pulse that is passed down its own axon to succeeding cells. 

The synapses, which form the interconnected pathways by which information is 
carried across the net, provide signals that act as enhancers or inhibitors. This interplay 
among the signals and the electrochemical process occurring at the synaptic cleft mediates 
the learning process and cellular activity that occurs in the brain. Figure 5.1 is a 
diagrammatical representation of the biological paradigm. 

5.4 MATHEMATICAL REPRESENTATION OF THE BIOLOGICAL PARADIGM 

Like the biological paradigm, artificial neural networks consist of many 
interconnected units (neurons) where learning occurs; and as a result, memory stored 
(connection weights). Since all the networks encountered align with this definition, the 
mathematical description presented describes general properties of these models with no 
inference to any particular structure. Figure 5.2 shows the general topology of a neural net. 

and in this case, two hidden layers of neurons. These neurons are considered highly 
connected since each lower level neuron is connected to every neuron in the next layer. It 
should be noted that no internode feedback occurs in this model, although occurrence is 
possible. 

The output, O,,, of neuron, depends upon the inputs that the unit receives. In this 
representation, i is defined as the layer number a n d j  the particular neuron present. 
Exceptions are input neurons and any neuron that is damped at a fixed output level. The 
inputs to a neuron are the outputs of neurons in the preceding level, which are 
communicated over connection strengths, W,,. Therefore, the net input level, A,+,,,, of 
neuron ,+,,] is defined as: 

As shown in Fig. 5.2, the net structure consists of an input layer, an output layer, 

Asynchronous F l r i n g  R a t e  
i_ 200 1 sec. 

1 .E04 Fan Out 

Q 0 

Fig. 5.1. Biological paradigm for neural model. 
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input 

X I  x 2  x3  Xn 

Layer  2 

Layer 3 

Y I  Y 2  Y 3  Ym 

output 
Fig. 5.2. Basic neural net topology. 

A,+,, = 1 Wv.O, : summed over i . 

In this development, symmetry is assumed in the connection strengths (i.e., W,, = W,,). 
This condition is not necessary for network development but it is usually employed because 
it leads to the existence of an energyfinction. (It should be noted that asymmetric networks 
have a potentially richer behavior.) Each connection weight can be excitatory, W,, > 0, or 
inhibitory, W,, < 0. Connection weights can also be defined as discrete or continuous and 
bounded or unbounded. 

They represent the distributed memory and are initially chosen randomly and set to small 
values. Then, through some interactive scheme, they are dynamically adjusted as the 
network leams in response to a set of training data. 

The connection strengths, W,, are the key elements in the learning behavior of the net. 

As stated earlier, 0, is functionally depended in some way on A,,. 

However, a change in Arj does not necessarily result in an instantaneous change in 0,. 
Depending upon the update mechanism employed, the state of each neuron can be updated 
either immediately or later. The response will be determined solely on whether the system 
is synchronously (immediately) or asynchronously (randomly) updating the state estimates of 
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the neurons. An asynchronous mechanism is equivalent to updating, in a random sequence, 
each neuron with an equivalent constant probability per unit of time, independent of all 
others. 

The equivalence of 0, to a value may be either deterministic or stochastic. In the 
deterministic case, it is a simple assignment of the functional value of the Z( ) function to 
0,. In the stochastic case, it is with probability Z(A,,). 

The range of Z(L,,) must be the domain of 0, in the deterministic case and [0,1] in 
the stochastic case. Usually, E( ) is made nonlinear and monotonically increasing. For the 
case of a binary discrete range (- 1, +l), the transfer function is a simple step function: 

where u!, is the threshold parameter for unit j .  
For continuous valued neurons, the practice is to use the sigmoidal function, 

W,) = tanh(PA,) 9 

in the range [- 1, +I]. For [0,1], the corresponding function is 

= [ 1 + exp( -2ph,)]-’ . 

This last function is normally used for the stochastic case. 

5.5 NETWORK PARADXGMS OF USE 

Although the mathematical model presented is simple in nature, it captures the 
essence of the functional relationships that exist in most artificial neural networks. What 
varies is the net’s morphological structure and the dynamics employed in the learning 
process. Table 5.1 lists some of the more well known nets that are in use today [for a 
review of neural nets, see Lippman (1988)]. 

Table 5.1. Some network paradigms of use 

Hopfield Kohonen’s feature map (self-organizing) 

B ack-pro pagat ion Bidirectional associative memory 

Counter propagation 

N-tuples 

Sparse distributed memory 

Adaptive resonance theory (ART) 

Neuromorphic with terminal attractor 

Each net has its own unique properties that make it suitable for select classes of 
problems, but this uniqueness does not come without a cost. As an example, Kohonen’s 
Feature Map is used to associate input vectors (patterns) with output class structures. This 
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map is an unsupervised learning technique that, once trained, will produce excitation levels 
in each output neuron; the neuron with the maximum excitation level represents the class. 

the input data. If the input vectors (data patterns) are orthogonal to each other, the net will 
converge and be able to distinguish class structures. As the input vectors become colinear 
(the inner product of two patterns: <A*B> = I A I I B I ), the ability of the net to distinguish 
and classify input patterns degrades to a point where class features are indistinguishable to 
the net. In terms of Kunewa 's Sparse Distributed Memory (associative memory), the input 
patterns must be h-separable in the vector space (i.e., 'd vectors x, x, E S 3 h such that 
Ix, - x,X 2 h). Similar to Kohonen's Feature Map, if this requirement is not met, the net's 
ability to discriminate class structures in the input data is not definite. Other nets experience 
problems of convergence, memory and storage capacity, speed of operation, data 
preprocessing requirements, and data formatting requirements @e., integer, real, binary, 
normalization). 

large numbers of input data patterns (x-, y-, z-axes; Lf = 0.097, 0.147, 0.198, 0.247; syllabus 
lengths of 72 min); use real, binary, and integer data constructs in the formulation; and 
provide an associative mapping of input data to predefined output classes. The network that 
best supports these criteria is the N-tuple. In the following section, the network is described 
in some detail to provide a fundamental understanding of its structure. 

The uniqueness of reasoning is developed around formulating a point distribution about 

The data structures of the simulator sickness model require the net to be able to store 

5.6 N-TUPLE NETWORK 

The N-tuple network can be thought of as a binary mapping of images onto a retina and 
the subsequent development of discriminators (N-tuples) for pattern recognition (see 
Fig. 5.3) and feature extraction. In this formulation, an image is projected onto a planar 
retina that has been subdivided into K (= n x m) cells, C (i.e*, a matrix of cellular entities 
addressed by ij). Each cell, Cy, will be in one of two (binary) states-on or off-which 
assumes that no representation for gray-scaling is enforced. In the on state, the cell will 
have a value of 1; in the off state, the cell will have a value of 0. These states correspond 
with the presence or absence of an active image projected onto the pixel respectively. Each 
cell is then randomly grouped into one of the N-tuple configurations. These configurations 
are the discriminators of the network and can have 2N states represented by the decimal 
equivalent of the binary number projected by the o d o f f  states of the associated cells. As a 
pattern is mapped onto the retina, the state of each discriminator is recorded and correlated 
in a memory matrix with the particular pattern representing its experience. Patterns of the 
same class are learned by or-ing the active cell states (odoff states in the ij space) in the 
memory matrix. As different patterns are presented and learned, a formal structure for each 
experience is reflected in the memory matrix. The synthesis capability of the network 
results not only from those correlated features developed in the N-tuple from similar patterns 
but also from the fact that there will also be forbidden states not addressed by each 
particular experience. This feature provides the discrimination needed to learn particular 
features of each pattern presented and then be able to discriminate between and classify 
presented unknown patterns. 

Classification proceeds along the lines of highest correlation wins. As an unknown 
pattern is presented, it is translated into the N-tuple discriminator space and compared with 
existing class-feature constructs that exist in the memory matrix (inner product of the 
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f i c a t  i on  

Fig. 5.3. Retinal projection of block T for N-tuple discriminator on 8 x 12 retina. 

unknown image vector and the memory feature space vector). The results are stored and 
then compared to frnd the highest inner product value. The pattern (or image) is then said 
to possess, or correlate with, the features of the learned class with the highest score. Ties 
are abritarily broken. 

The following is a mathematical formulation of the preceding argument. 
A window of dimension 

P (pixels) = a x b 

is defined in an arbitrary picture space. 

subscripted variables i j  in the E matrix: 
The pixel elements of the P-window are labeled as matrix entries defined by the 

These elements, eob7 are then grouped in Kd,  N-dimensional vectors representing the 
N-tuple discriminators. Defining the parameter K is an arbitrary decision as well as the 
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element grouping N (usually randomly chosen). The Kd N-tuples can have ZhB states, where 
B is the number of bits per pixel. Each state is then characterized by the total bit pattern of 
the group of N pixels. (In this formulation B will be equal to one, giving the total number 
of states that any particular Kd discriminator can be as equal to 2N). 

Two types of N-tuple samplings can exist: a one-to-one and a cover set. In one-to-one 
sampling, the selected N pixels are randomly chosen yet are unique to a particular K d  

discriminator. In this case, exactly PIN N-tuple discriminators are in the scanned window. 
The second sampling is a cover set, where the N pixels are again randomly chosen but can 
be members of several discriminators. In this instance, G which represents the number of 
N-tuple discriminators in the scanned window can be greater than PIN (Le., G 2 P/N). 

For the following formulation, a one-to-one structure is adopted. A training pattern, 

EJt  = { e'", dL2,  . . . 
. . . . . .  * . .  
e J " l  , . . ., eJab 1 , 

a part of the training set 

E, = { El,, E*,, E3,, . . ., ET, }, 

is applied to the N-tuple. Each E', will represent a state, SK,, for each of the Kd N-tuples. 
Therefore, each E', will have a discriminator state space, SEi', defined as 

SE" = { SI,, s2,, . . . 

where the superscript variables are correlated one-to-one in a unique matching with the 
defined N-tuples and the elements S', are vectors themselves. 

When testing with an unknown pattern, U',, a discriminator state vector, SuJ', is 
developed for the unknown pattern. From this, a response vector, <ZuJ'>, defined as a 
vector product space unique for each E,,, is derived by performing inner products on each 
element of the {[SEJ'*S""]}. The response vectors will span the training set (i.e., k = T). 
The cardinality of d"J'>h IZ"?, is called the response of the window to the unknown 
pattern UJ, . The unknown pattern will be associated with the training pattern, E', , giving 
the largest cardinality. 

This formulation is a s i m p l e y e t  effective-mechanism by which feature extraction 
and data compression can be performed over a large operational space, incurring no 
penalties that are inherent in many of the other neural net structures (e.g., saturation, 
convergence). As can be expected, drawbacks exist. Memory requirements can have an 
exponential growth as the number of N-tuplektates and patterns increase. Storage of real 
numbers, as opposed to integers, can also create memory resource problems. Finally, a 
formal methodology must be constructed for mapping domain-specific data onto the retina. 
Even with these restrictions and limitations, this network offers the best solution for 
mapping the complex operational space of simulator sickness onto a usable structure. 
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6. DEVELOPMENT ISSUES FOR THE N-TUPLE NETWORK 

6.1 INTRODUCTION 

In the development of the Simulator Sickness Paradigm, several issues were 
associated with the structure of the N-tuple network. Some examples are data scaling and 
sensitivity and memory requirements for class development. This chapter outlines these 
issues and the approach to resolve them. These solutions can be thought of as 
generalizations that can be applied in the development of N-tuple networks. 

6.2 RETINAL MAPPING: TEMPORAL, SPATIAL, AND SPECTRAL ARGUMENTS 

The strength of the N-tuple network is in its ability to map complete histories (time 
in this case) of variables considered to be causal factors in a process and correlate them for 
feature extraction. For the Simulator Sickness Paradigm, this required capturing the 
human-system interaction dynamics (Whole Body Energy Absorption Model) and 
associativehonassociative behavioral patterns of the user community. The interaction 
dynamics required mapping four discrete frequencies for each of three linear acceleration 
axes (x-, y-, and z-axes), and the behavioral required mapping 14 variables and the 12 
energy contributions from the previous run's dynamics. Figures 6.1-6.3 (x-, y-, z-axes, 
respectively, mapping 0.97, 0.147, 0.197, and 0.244 Hz verticaily) show this retinal 
projection for the dynamics of the 18th hop occumng on the third day of testing. 

determining the size and extent of the retinal plane. The breadth (y-axis projection) of the 
planar image was set by the length of the data records representing the temporal extent of 
each hop. In this case, 242 maximum points for the longest run (72-min hop) compressed 
down from approximately 250K. This parameter is not a limiting factor in the design for 
most computer applications but must be considered in the trade-off of the complete 
projection versus memory and CPU requirements for hardware implementations. Another 
horizontal-axis design parameter is the full extent or replication of records-that is, should 
each run be represented as a full 242 points? One answer to this question is to extend the 
data record to full extent by splicing the last 242-11 (where n is the total number of temporal 
points for a particular hop) temporal data points of the record onto itself. Intuitively, this 
would give the same topological weighting in the y-axis for all hops (images). The other 
answer is a one-for-one mapping of the image onto the N-tuple-that is, the extent of the 
image is based on the length of the actual simulator flight. For this research, the latter was 
chosen. It was done so to support one. of the main premises of this research: that it is just as 
important to know the temporal extent of the hop as it is to know the energy contributions at 
any instance of time. Figure 6.4 (x-axis temporal/spectral dynamics) is the planar projection 
of run 4R27 used in this research, representing a 43-min hop. As can be seen, the 
projection maps only the temporal extent of the time period itself. If, as stated earlier, the 
model is sensitive to temporal extent and variation, then the paradigm should extract 
essential features of the run and predict the extent and level of simulator sickness in the user 
population. 

the resolution (or sensitivity) required. One of the interesting aspects of the N-tuple 

It is obvious from this projection that one of the first issues to be dealt with is 

The depth of the network is functionally related to the number of data records and 
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Fig. 6.1. The x-axis whole-body energy absorption model retinal map-hop , 3R18. 
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Fig. 6.2. The y-axis whole-body energy absorption model retinal map-hop 3R18. 
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formulation is that each time record (history) can be dealt with on an individual basis 
without introducing any artificial biases in the prediction capabilitjf. Each record can be 
scaled differently without impacting the ability of the network to capture and extract image 
features important to classification (relative variations as opposed to absolute). This 
overcomes problems associated with mathematical formulations that would be artificially 
sensitized to scaling variations of data or information. This a particular problem with many 
neural nets whose synaptic strengths, influenced by scale, represent the distributed 
know 1 edge. 

For the predictor network, the y- and z-axes were normalized to a unit value equal to 
the x-axis dispersion. This equated to a scale factor of 7.5 for the y-axis and 140 for the 
z-axis. As seen, the z-axis acceleration was an order of magnitude down from the other 
two. Yet, with variable scaling capabilities, the change or variation in the z-axis, which is 
important for prediction, was facilitated. With the above reasoning and using perceptual 
variance as a performance measure, a depth of 480 pixels was chosen for this network. It 
should be mentioned that saturation of the net can occur if each image map projects fully 
onto the retina (see Fig. 6.5). In this case, no separability of classes exists and, therefore, no 
feature selection or discrimination capabilities. Therefore, image-variance on the retina is an 
important parameter for the network structure. 

6.3 DISCRIMINATOR ATTRIBUTES 

Defining the size of the discriminator(s) (see Chap. 5) is of particular importance 
when considering a hardware implementation of the net. The choice is impacted by the 
number of classes; size of retina; states (selectivity) allowed for each discriminator; and in 
this case, the structure of any parallel net. This is not a concern for most N-tuple 
formulations when using laboratory or office computer resources because capability is 
usually bounded by storage and memory. (Time is intentionally left out as an argument 
since it represents a subjective evaluation relative to the user and system being used.) 

For this paradigm, 25 discriminators were constructed. This number was chosen 
primarily because it allowed an equal distribution or weighting of state projections between 
the parallel, interactive-dynamic and behavioral networks. Thus, for the dynamic network, 
each discriminator has 24608 (1 15.2K pixel projectiod25, N = 4608) possible states that it can 
represent; for the behavioral map, 2'04 (2.6K pixel projectiod25, N = 104). 

6.4 CLASS MEMBERSHIP DEVELOPMENT 

To facilitate the large storage requirements for each network and its respective 
discriminators, each class descriptor for each parallel network was developed by using a 
binary-vector image map. Each image was a similarity (position sensitive) map produced by 
storing in retinal position ij, the number of times that particular position was identified as 
significant by the members of the class set. With this structure, training and learning 
occurred by the application of an exclusive-or function to each retinal element of any image 
that belonged to a particular class and then inclusion of the similarity attribute. By 
formulating the network in this manner, a weighted similarity could be included in the 
analysis. 
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The universal set (S) of class members consists of 20 simulator flights distributed 
across 3.125 usage days (8  hops per day, 72 min per hop) and 16 student pilots. Class 
distinctions were determined by the postsymptomatology scores (Kennedy) for each hop. A 
post score is computed from a battery of tests administered to check for motor skills and 
functional mental impairments as a result of the hop. The scores range in value from 0 (no 
impairmentho functional loss) to 5 (serious impairment). This is a logarithmic scale, so 
larger values are indicative of serious physical problems. Figure 6.6 shows the frequency 
distribution of symptomatology for each post score class. These scores were further broken 
down into specific symptomatology (nausea, visual-motor, and disorientation). 
Figures 6.7-6.9 depict the individual attribute scores by hop number for days 1, 2, and 3 
respectively. Above each triplet is the logarithmic scale, in parentheses, corresponding to 
the integer class structure. Figure 6.10 shows the total composite score for each day and 
each hop. 

Given the limited number of members in the data set, integer representations for 
classes were chosen. Within this, only 1 through 4 were developed-for several reasons. 
First, having two members from each of the four classes representing available information 
uses eight members of the set S (40% of the available information). This is sufficient for . 

cover and provides enough unknown cases to test the predictor’s capabilities. Second, to 
use the symptomatology attributes would use most, if not all, the data sets in developing the 
class structures themselves, leaving an insufficient number to test. Third, by excluding the 
extreme points (cases 0 and S), the predictor’s capability to extrapolate would be 
functionally tested, providing a figure of merit for classification. 

above text. The results are presented in Chap. 7. 
The classification networks were developed by using the reasoning set forth in the 
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Fig. 6.6. Class membership vs frequency for differential score across all hops. 
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7. THE N-TUPLE’S PREDICTIVE CAPABILITIES: 
RESULTS AND CONCLUSIONS 

7.1 INTRODUCTION 

When the capability of a model or any analytic structure to act as a stable predictor is 
assessed, a figure of merit must be defined which integrates the relevant aspects of the 
phenomenon with a functional accountability of interactive parameters that are relevant to 
the process. In light of this, the performance measure must provide, through qualitative 
andor quantitative reasoning, descriptors that can be equally applied to decisions under 
uncertainty as well as crisp data sets. Along with this provision must come a developing 
knowledge base for understanding incorrect classifications and the extrapolation of such to 
enhanced formulations. These requirements, therefore, establish certain functional criteria 
that must be met by the analytic formulation. These criteria are developed from the broad 
spectrum of system interactive correlates and are defined for the phenomenon itself, the 
analytic structure employed, and the available data from which the knowledge of the system 
is formulated. 

criterion, therefore, is one of developing applied (reasonable) expectations. If the 
phenomenon is a highly complex intercorrelated process and the research represents the 
initial efforts, then objective measures will not su6ce  in adequately describing the 
paradigm’s effectiveness in classifying unknown patterns. In this instance, a subjective 
qualifier is also needed. This qualifier is context dependent on the application and the 
phenomenon being described. Objective measures may be the number of correct or 
incorrect classifications or some functional entity tied to these variables. A subjective 
parameter would be a threshold percentage above which the paradigm’s ability to classify 
would be considered successhl. Considering the complexity of simulator sickness and the 
highly interactive environment in which it exists, a 70% or greater probability of 
classification would be indicative of the strength of the approach. Conceptually speaking, 
this subjective evaluation would also account for the extension of results to the next 
generation predictor. 

are stable across all events. These parameters are fimctionally related to the model and 
should possess a formal logic and reasoning as well as intuition that integrate into a 
mathematically tractable formulation. The associated N-tuple variables will be identified 
and completely described in the following section. 

set and thus the descriptors for each class structure. The resulting criterion will therefore be 
one of reasonableness in the face of diminishing resources (ensemble class members). This 
reasonableness is a very subjective parameter that relates numbers of ensemble (class data 
sets) members available with expectations for classification. As stated, for this research 
effort, 20 data sets exist from which to develop six classes of symptomatology levels: 0, 1, 
2, 3, 4, and 5. Table 7.1 identifies the criterion for each level of simulator sickness, with 
Table 7.2 providing a further refinement. It should be noted that eight levels are identified 
for complete scoring, but only six were experienced in the pilot group. If two member data 
sets were used for each class, exactly one-half of the available data would be used in the 
model structure. This small amount of data would not allow a sufficient cover set of 

When the phenomenon is considered, complexity is the main issue. The resulting 

For the analytic structure, the criterion is one of determining performance measures that 

The data (members of the universal set) will impact the size of the allowable training 
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Table 7.1. Criteria for categorizing levels of simulator sickness 

Category Criteria 

0 No symptoms reported 

1 

2 

3 

4 

Any simulator sickness symptom reported 

More than two other symptoms reported 

One minor plus other symptoms reported 

One major symptom alone or 

Two minor symptoms or 

One major and one minor symptom or 

One minor plus four other symptoms, 
of which two or more are stomach 
awareness, sweating, drowsiness, 
or pallor 

One major and two minor symptoms 

Two major symptoms (including subject’s 

5 

6 
report of emesis) 

7 ExDerimenter’s report of emesis 
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Table 7.2. Diagnostic categorization 

Pathognomic symptom 

Vomit 

Drowsiness 

Increased salivation 

Nausea 

Pallor 

Retch 

Sweating 

Drowsiness 

Increased salivation 

Nausea 

Pallor 

Sweating 

Major symptoms 

Severe 

Moderate and severe 

Moderate and severe 

Severe 

Severe 

Severe 

Minor symptoms 

Moderate and slight 

Slight 

Slight 

Moderate and slight 

Moderate and slight 

Apathy 

Confusion 

Depression 

Difficulty concentrating 

Fullness of head 

Mental symptoms (minor and other) 

Other 

Minor 

Other 

Minor 

Other 
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Table 7.2 (continued) 

Visual symptoms (minor and other) 

Blurred vision Other 

Difficulty focusing Minor 

Eye strain Other 

Visual flashbacks Minor 

Other symptoms 

Aerophagia 

Anorexia 

BM desire 

Burping 

Character facies 

Dizziness 

General fatigue 

Headaches 

Increased yawning 

Stomach awareness 

Vertigo 
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unknown members to test the predictive capabilities of the network. To overcome this 
problem, only four classes were defined (1, 2, 3, and 4), and two members of each class set 
were used as defining examples. Therefore, the reasonableness of the paradigm’s predictive 
capability will be determined by its ability to not only classify the existing known members 
and those unknown members of the same class but also those members associated with each 
extreme point (0 and 5) and the compressiodexpansion of each to the closest set member. 
In this case, 0 should map to 1, and 5 should map to 4. 

7.2 N-TUPLE PERFORMANCE MEASURES 

The performance measures of the N-tuple that provide stable prediction are developed 
from set theory. Seven such parameters exist including a signal-to-noise ratio (SWR). The 
following gives a descriptive analysis and mathematical formulation for each. For this 
analysis, the first element in each set is associated with the image to be classified and the 
second with the class itself. 

of zeros and ones: 
The unknown structurehmage (I,,) to be classified is a planar projection defined in terms 

I,, = [O\l] . (7.1) 

The image or experience of an N-tuple class is captured in a similar form expanded to 
include information about the number of set members (k) used to define each class: 

1, = [0\1\2\ . . . vr] . (7.2) 

The noise (Bledsoe) projected by the classification of image I,, by class I, is calculated 
by summing the number of doublets of the form (1, 0) or (0, 1). For this analysis, it will be 
defined as Dissimilar Noise and calculated as 

En = [(1,0) or (0,l) or . . . (O,k-l)] (73) 
instances 

over all instances. Another noise estimate is the set of (0, k) doublets. This noise is defined 
as the Orthogonal Noise (on) and is calculated by summing over each discriminator (disc) 
space the number of these sets that exist: 

Similarity measures will be defined over four set structures. The first, the Null Set, is 
the form (0, 0). This set represents the forbidden states associated with the unknown image 
and is calculated as the sum of these doublets over the range of the image: 
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,Ynul, = [existing doublets of the form(0, O)] . 
imagc 

(7.5) 

The second similarity set, (1, k), is defined as Similarity Order-k, where once again, k 
is the number of members from each distinct class used in the formulation of its N-tuple 
image. It is calculated over the image range as 

So-k = [existing doublets of the form(1, k)] . 
image 

The third similarity set is a combinatorial summation over the image range of all 
possible sets of the form [(1, l), (1, 2), . . . , (1 ,  k-1)]: 

So-k-, = [doublets ofform(1, l ) ,  . . . , ( l ,  k- l)]  . (7.7) 
image 

The sixth parameter is a weighted summation of the existing similarity sets, defined as 

Sweighed = k (over range of SO-J + C k-1 (over range of So k-,) 

for each set member [ l ,  (1 or 2 or . . . k-1)] + (over range of S,,,,) . (7.8) 

The final performance measure used in the classification analysis is an SNR computed 
as 

These performance parameters are calculated for each of the two parallel N-tuple nets, 
Dynamic and Behavioral. 

7.3 RESULTS 

Appendixes A and B (Cases I and I1 respectively) represent different classification 
schemes employed in categorizing the 20 “unknown” test cases using the Simulator 
Sickness N-Tuple Classifier. For Case I, the metric used to determine class membership is 
the linear weighted summation over the entire similarity set for both dynamic (dyn) and 
behavioral (beh) nets Eq. (7.8): 

‘lass Imelric = ’weighted-dyn + ’weighted-beh ‘ (7.10) 

(See Appendix C for Case I Fortran program listing.) For Class 11, the metric is a nonlinear 
relationship in the form of a normalized power law function. The metric is calculated as 
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The results of the classification are summarized in Table 7 .3 .  This table lists by run the 
actual Differential Score, the Case I classification, the Case I1 classification, and whether a 
particular run was used in forming the image of the class. For this discussion, only Case I 
results will be reviewed. (Case I1 is presented only to provide an example of another 
method that could be employed in a classification scheme.) 

classifying the differential symptomatology scores for the runs. Classifications can be 
further broken down into subsets containing those elements used in the formation of each 
image class and those that are functionally “unknown” classes. For the image maps, 
Class 1 through Class 4 have a 100% success rate. The “unknown” classes have a 75% 
success rate. This facet will be further covered later in the section. Earlier, it was reported 

The first thing to notice is that the Case I Classifier is 85% (1  7 of 20) successfid at 

that only eight members (representing 40% of the universal set) were used to develop the 
class images for the four Symptomatology Scores. The two extreme points, Class 0 and 
Class 5, remained with no accountability (knowledge) in the network. The hypothesis was 
that if the N-tuple did indeed capture the complexity of the human-system interaction, then 
could be expected that the network would map the extreme points, 0 and 5 ,  to their closest 
projections, 1 and 4 respectively. As indicated in Table 7.3, two Class 0 (3R17 and 4R27) 
and one Class 5 (3R20) are symptomatology incidences. As shown, the N-tuple mapped 
those in Class 0 to Class 1 and those in Class 5 to Class 4. Finally, recall that in Chap. 6, 
run 4R27 (Fig. 6.4) was identified as a short (43-min) run. One of the argued performance 

it 

measures of the N-tuple would be its effectiveness at classifying short-duration runs as well 
as those occurring over the normal time period (72 min). As shown in Table 7.3, the 
N-tuple was successful at classi@ing Run 4R27. (As mentioned, this run is a Class 0 
mapped to Class 1). 

significantly correlated with Class 1 and partially with both Class 3 and Class 4. To 
understand how these classification errors are developed, one must understand the issues 
associated with the scoring of symptomatology for each run. Recall that for the class 
structures, a simple integer-valued scoring based on a logarithmic scaling was used; but this 
system could also be expanded into a triplet of symptomatology attributes-nausea, 
visuo-motor, and disorientation. Table 7.4 redefines the integer scoring (Kennedynane) for 
each run in terms of its associated triplet. Comparison of attribute scores of Runs 3R19 and 
4R25 (Class 3 to Class 1 error) shows that they match. But comparison with another Class 
3, say 1R6, shows that not only are the triplet values inconsistent but also the total score 
(107.48 vs 118.70). This inconsistency in class definitions will create problems for the 
N-tuple as well as any other artificial neural network in the ability to correctly establish 
class memberships. Given that the inconsistency exists and that it provides a plausible 
explanation, it is of interest to investigate and compare the image maps of these three runs. 
Figures 7.1, 7.2, and 7.3 are the N-tuple projections for runs 3R19, 4M5, and 1R6 linear 
x-axis Whole Body Energy Model respectively. A visual inspection provides an interesting 
perspective on the N-tuple’s ability to extract image information even though the definition 
across all events of the same nature may be convoluted. Comparing runs 3R19 and 4R25 
(Figs. 7.1 and 7.2) shows similarity in the sense that peaked values occur during 
approximately the last one-third of the syllabus hop. In addition, the expected value would 
seem to be equivalent across the two events, especially the first two-thirds of the hops. 
Now, compare these findings with the planar map of Run 1R6 (Fig. 7.3). As is obvious, 
Run 1R6 presents a visual projection vastly different from those of the other two runs. It 
then would be expected that runs 3R19 and 4RZ project in a similar manner and Run 1R6 

- 
As reported earlier, the error rate for the “unknown” classes is 25%, generating errors 
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Table 7.3. Classification results of the simulator sickness N-tuple 

Differential Case I Case I1 Member of 
Run symptomatology classification classification class image 

1R1 4 4 4 Yes 

1R2 1 4 4 No 

1R3 4 4 1 No 

1 R4 1 1 1 Yes 

1 R6 3 3 3 Yes 

1 R7 1 1 1 No 

R10 4 4 2 Yes 

2R11 1 1 1 No 

2R12 1 1 1 Yes 

2R14 2 2 2 Yes 

3R15 1 1 1 No 

3R16 3 3 3 Yes 

3R17 0 1 1 No 

3R18 2 2 2 Yes 

3R19 3 1 1 No 

3R20 5 5 2 No 

4R22 4 4 1 No 

4R25 3 1 1 No 

4R26 1 1 1 No 

4R27 0 1 1 No 

(85%) (70%) 
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Table 7.4. Symptomatology scoring in terms of attribute triplets 

Attribute scoring 

Run Integer Nausea Visuo-motor Disorientation Total 

1R1 

1R2 

1R3 

1 R4 

1 R6 

1 R7 

2R10 

2R11 

2R12 

2R14 

3R15 

3R16 

3R17 

3R18 

3R19 

3R20 

4R22 

4R25 

4R26 

4R27 

4 

1 

4 

1 

3 

1 

4 

1 

1 

2 

1 

3 

0 

2 

3 

5 

4 

3 

1 

0 

147.70 

109.54 

147.70 

109.54 

100.00 

109.54 

100.00 

100.00 

109.54 

128.62 

109.54 

128.62 

100.00 

109.54 

109.54 

176.32 

128.62 

109.54 

100.00 

100.00 

130.32 

100.00 

130.32 

100.00 

115.16 

122.74 

130.32 

100.00 

115.16 

115.16 

100.00 

107.58 

100.00 

115.16 

130.32 

137.90 

122.74 

130.32 

115.16 

100.00 

127.84 

100.00 

141 -76 

100.00 

100.00 

100.00 

127.84 

100.00 

100.00 

113.92 

100.00 

100.00 

100.00 

100.00 

100.00 

141.76 

113.92 

100.00 

100.00 

100.00 

141.14 

103.74 

144.88 

107.48 

114.96 

114.96 

122.44 

100.00 

11 1.22 

122.44 

103.74 

114.96 

100.00 

11 1.22 

118.70 

159.84 

126.18 

118.70 

107.48 

100.00 
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fc=0.244 

Fig. 7.1. Whole-body energy absorption model x-axis output (Run 3R19). 
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Fig. 7.2. Whote-body energy absorption model x-axis output (Run 4R25). 
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Fig. 7.3. Whole-body energy absorption model x-axis output (Run 1R6). 
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to be quite different. With this, it is suggested that the image map of Class 3 is captured in 
the similarity of runs 3R16 and 1R6 (which project as colinear maps) and not runs 3R19 and 
4R25 (which are similar for the same reasons). If the convoluted nature of the existing 
“similar” class images could be rectified by expanding class definitions to include subsets 
or new classifications, then the N-tuple would converge without ambiguity. These same 
arguments apply to the Run 1R2 classification error @e., better resolution will reduce the 
uncertainty in the class image maps). 

The results are summarized as follows. 

1. The Simulator Sickness N-Tuple using Case I metrics had an 85% success rate for 
classification over the entire universal set. It had a 100% success rate for images used 
to define classes and a 75% success rate for “unknown” classes. 
The Classifier projected the Extreme Classes 0 and 5 to Classes 1 and 4 respectively. 
The Classifier correctly classified the Class 0, 43-min hop (Run 4R27) as Class 1. 
The N-tuple formulation will capture the image of a class and provide a basis for 
(similarity/forbidden states) reliable projection. In light of this, the net could, through 
unsupervised learning, identify previously unknown classes. 
Errors were explained in terms of the convoluted definitions of classes and could be 
resolved if more data were available. 

2. 
3. 
4. 

5 .  

7.4 CONCLUSIONS 

The main emphasis of this research was to develop a neural net paradigm and 
behavioral model that would capture the interactive dynamics of the human and the 
simulator system and predict the level of simulator sickness in a user population. The 
hypothesis was that the interactive sensitivity of humans to simulator dynamics was not 
uniform across events and that the whole body energy occurring late in a hop would 
influence the incidence of simulator sickness more than early occurrences would. To 
facilitate this research required developing a model (Whole Body Energy Absorption Model) 
that characterized the temporal, spatial, and spectral interplay of the human and machine. In 
addition, it was necessary to develop an understanding of the neuro-physiological impacts 
(associative and nonassociative behavioral patterns) of simulator use and take this 
understanding into account in the paradigm structure. Once this was achieved, a neural 
network formulation had to be developed that could not only accommodate a large amount 
of data (data points >2900) but also correlate and feature extract in a complex hyper-space 
(n = 38). The success of this research is the development of the Simulator Sickness 
N-Tuple Predictor. 

This N-tuple formulation with the Whole Body Energy Absorption Model has stable 
predictive powers (see the preceding Results) and provides consistent measures of similarity. 
This ability is shown in the discovery of the dichotomy that exists in the symptomatology 
class images. The network has a hardware extension that makes it ideally suited for field 
deployment (Boolean feature extraction) as a biofeedback monitoring device. The 
knowledge gained from the Whole Body Energy Absorption Model can augment the existing 
Military Standard 1472D to expand the concept of 0.2-Hz acceleration energy to include a 
narrowband, low-frequency region spanning 0.097 to 0.247 Hz. This paradigm can also be 
used to develop filter design parameters for the simulator system. By passing the x-, y-, and 
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z-axis acceleration data through predesigned filters and using this as input into the model, 
the N-tuple formulation can be used to predict the incidence and level of simulator sickness 
in the user population. With correct filter design, all events can be pushed into appropriate 
categories, reducing the incidence level across the user group and alleviating the need for 
enforced travel restrictions. 

establish this as a stable predictor, it will be necessary to apply the model to a different set 
of data. This new set could be from the same simulator operating under different conditions 
or from a simulator of different design. If the latter is chosen, then data compression may 
be necessary because the number of points representing the history of the flight may vary. 
In either case, by mapping to the same retina, the problem becomes scale and time invariant. 
Once stable predictability is established, a method would need to be developed to 
incorporate the model into existing systems at simulator sites. This would also require 
developing a program to supervise the maintenance of the feedback information. Another 
possibility is to apply the model to an expanded data base to determine whether correlations 
exist between the model’s predictive output capabilities and the occurrence of latency and 
flashback. If features can be extracted, then those users who are at risk can be identified 
and the danger eliminated by alerting them to the problem. The possibility exists that the 
method needs to be expanded to incorporate angular acceleration into the model. To 
facilitate this, a literature search would need to be performed to determine what functional 
relationships exist between angular acceleration and simulator sickness. Once this has been 
established, a development phase would be undertaken to integrate this additional 
information into the predictor. Finally, the basic structure of the paradigm could be reduced 
by eliminating those elements that provide little or no information in the class definition. 
By developing a method to perform a sensitivity analysis for parameter reduction, the order 
of the model could be reduced. 

In closing, I suggest possibilities for future research using this paradigm. First, to 
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