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ABSTRACT 

Multi-Sensor Integration (MSI) is the combining of data and information 
from more than one source in order to generate a more reliable and consistent 
representation of the environment. The need for MSI derives largely from basic 
ambiguities inherent in our current sensor imaging technologies. These ambiguities 
exist as long as the mapping from reality to image is not 1-to-1. That is, if different 
“realities” lead to identical images, a single image cannot reveal the particular 
reality which was the truth. MSI techniques attempt to resolve some of these 
ambiguities by appropriately coupling complementary images to eliminate possible 
inverse mappings. What constitutes the best MSI technique is dependent on the 
given application domain, available sensors, and task requirernents. 

MSI techniques can be divided into three categories based on the relative 
information content of the original images with that of the desired representation: 
1) ”detail enhancement,” wherein the relative information content of the original 
images is less rich than the desired representation; 2) “data enhancement,’’ wherein 
the MSI techniques are concerned with improving the accuracy of the data 
rather than either increasing or decreasing the level of detail; and 3) “conceptual 
enhancement ,” wherein the image contains more detail than is desired, making it 
difficult to easily recognize objects of interest. In conceptual enhancement one must 
group pixels corresponding to the same conceptual object and thereby reduce the 
level of extraneous detail. 

This research focuses on data and conceptual enhancement algorithms. To 
be useful in many real-world applications, e.g., autonomous or teleoperated 
robotics, real-time feedback is critical. Unfortunately, many MSI/image processing 
algorithms require significant processing time. This is especially true of feature 
extraction, object isolation, and object recognition algorithms due to their typical 
reliance on global or large neighborhood information. This research attempts 
to exploit the speed currently available in state-of-the-art digitizers and highly 
parallel processing systems by developing MSI algorithms based on pixel rather than 
global-level features. Hence, the basic direction of this research is the potentially 
faster and more robust formation of “clusters from pixels” rather than the slower 
process of extracting “clusters from images.” 

The “data enhancement” algorit hms developed include general-purpose, 
sensitivity enhancement techniques and specific sensor anomaly detection and 
remediation techniques. These techniques are evaluated on actual multi-modal 
sensor data obtained from a laser range camera, i.e., range and reflectance images. 
A suite of over thirty conceptual enhancement techniques are developed, evaluated 
and compared on this sensor domain. For objective analysis, each algorithm’s 
performance is optimized by Genetic Algorithms, a machine learning technique, for 
a predefined level of detail. However, the general applicability of these techniques 
is empirically verified by applying the laser range camera optimized results to 
different sensor domains, e.g., ground conductivity data including quadrature and 
in-phase strength images. The overall result is a general-purpose, MSI conceptual 
enhancement approach which can be efficiently implemented and used to supply 
input to a variety of high-level processes, including: object recognition, path 
planning, and object avoidance systems. 

vii 





1. INTRODUCTION 

Multi-Sensor Integration(MS1) has been defined as combining data and 
information from more than one source to generate a more reliable and consistent 
representation of the environment.’ MSI techniques combine: multi-modal sensor 
images (e.g., sonar and visual, range and reflectance, etc.), multiple single modal 
sensor images (e.g., multi-sampling, images displaced in time, or images displaced 
in space), or various combination of these.2 

MSI is necessary because of basic ambiguities inherent in our current sensor 
imaging technologies. Sensor ambiguities derive from two basic causes: limitations 
of the physical attribute being measured by the sensor (e.g., visible light’s inability 
to permeate opaque surfaces, sonar edge effects, etc.) and the sensor’s inaccuracies 
in making measurements (e.g., noise, resolution, etc.). Ambiguity exists as long as 
the mapping from reality to image is not 1-to-1. That is, if different “realities” lead 
to identical images, a single image cannot reveal the particular reality which was 
the truth, e.g., a 2-D visual image of a opaque object cannot reveal its interior or 
its hidden surfaces and hence, an infinite number of “realities” would result in the 
same sensor image. 

Choosing the most advantageous MSI technique is dependent on the given 
application and available sensors. Multi-sampling is perhaps the simplest MSI 
technique and is primarily used to reduce noise. Merging multiple single modal 
images displaced in space can improve 3-dimensional information, reveal otherwise 
occluded areas, and reduce relative position induced artifacts, e.g., glare, sonar 
anomalies, etc. Merging multiple single modal images displaced in time can 
be used to reduce temporal effects or to isolate them. Employing multi-modal 
sensors permits exploitation of each sensor’s strengths while avoiding their intrinsic 
weaknesses, e.g., using both sonar and vision can provide both accurate distance 
(sonar) and edge detection ( ~ i s i o n ) . ~  Clearly the choice of sensors and MSI 
techniques is critical to achieving performance gains from MSI; MSI provides 
nothing if the images to be merged axe not complementary. 

1.1 MSI OBJECTIVES 

While the goal of MSI, by definition, is “to generate a more reliable and 
consistent representation,’’ the means to achieve this goal can be divided into three 
categories based on the relative information content of the original images with that 
of the desired representation. 

In the first case, “detail enhancement,” the relative information content of 
the original images is less rich than the desired representation. This case occurs 
whenever the original images axe integrations of the target, e.g., raw NMR, 
X-ray photography, etc., or undergo a distorting function, eg., unfocused lenses, 
interference patterns, etc. These images can be translated into a more accurate and 
detailed representation if the original integration or distortion function is sufficiently 
understood to permit an inverse mapping function to be well approximated. 

1 



2 INTRODUCTION 

In the second case: “data enhancement,” the MSI techniques are concerned with 
improving the accuracy of the data rather than either increasing or decreasing the 
level of detail. Techniques within this category include noise reduction, resolution 
enhancement and reduction of sensor artifacts. 

In the third case, “conceptual enhancement,” the image contains more detail 
than is desired, making it difficult to easily recognize objects/regions of interest. In 
these images one must group together pixels corresponding to the same conceptual 
entity and thereby reduce the level of extraneous detail. This task may require 
significant amounts of global knowledge and processing time. For example, if 
one wishes to distinguish “walls” from “floors,” one could separate clusters on 
planar edges, however this would subdivide complex structures into their many 
facets. Collecting these facets into single multi-planar clusters without combining 
separate, adjacent clusters, requires detailed knowledge of each complex structure of 
interest (object definition) and recognition of that structure within the image (object 
recognition). This problem extends to all sensor modalities as well, e.g., color, 
texture, composition, shape, etc. Either one accepts the shortcomings inherent in 
making segmentation/clustering decisions independent of global knowledge, or one 
accepts the time and computational complexity associated with object definition 
and recognition. 

1.2 TARGET DOMAINS 

Two imaging domains are investigated in this paper: subsurface data of a 
buried waste site and sensor data typical of underground storage tanks or warehouse 
environments. 

The available subsurface data consists of a set of ground conductivity (GC) 
readings of a cold test pit at the INEL waste storage facility. This set was originally 
to include ground penetrating radar data, but the ground water and clay soil of 
that region rendered that sensor modality impotent. Despite that loss, MSI can 
still provide some benefit by merging the multiple GC data sets and by merging the 
two measured signals inherent in GC data: quadrature and in-phase strength. 

The GC sensor used’ consists of a magnetic transmitting coil and a receiving 
coil placed 3.66 meters apart. The transmitting coil sets up a magnetic field in 
the ground which induces eddy currents and in turn a secondary magnetic field, 
90” out of phase. The receiving coil measures both the primary magnetic field 
(in-phase component) and the secondary field (quadrature component). Thus, a GC 
sensor measures the integrated dielectric constant of the ground in the 3-dimensional 
proximity of the two coils. By its very nature, data from a GC sensor is very 
ambiguous and unfocused since a buried conductive object will disturb all readings 
taken anywhere within its vicinity and the amount of disturbance is a function of: 
the object’s size, dielectric constant, orientation with respect to the coils, distance 
from each magnetic pole, uniformity and distribution of ambient material, the 
relative position of other magnetic conductive objects, etc. Hence, from a set of 
GC data, it is impossible to determine which of the infinite number of perfectly 
data-consistent possibilities actually corresponds to “reality.” 
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Given GC data’s ambiguous and unfocussed nature, it would appear a 
perfect candidate for inverse mapping using MSI “detail enhancement” techniques. 
However, the inverse mapping function is unresolvable from the GC data alone, 
due to its inherent ambiguities. Ground penetrating radar was an excellent 
complementary sensor and if available may have permitted the inverse mapping 
function to be roughly apprmimated. 

The GC data’s representation may be improved by using NISI “clustering” 
techniques. However, since precise truth for the GC data is not available, these 
data sets cannot be used for designing or training “~lustering?~ algorithms. This 
forced us to investigate a second sensor domain, the laser range camera (LRC), for 
the development of general-purpose, clustering algorithms which could eventually 
be applied to the GC sensor domain, see Section 4.2. 

Laser imaging is performed by scanning a laser beam in a two-dimensional 
pattern and measuring the returned (reflected) signal to determine the distance 
to the target at various points and its relative reflectance ability, or gloss. LRCs 
determine the target distance by measuring the time delay between broadcasting 
a signal and receiving its reflection. The LRC used in this research (41, produces 
images of 128 x 128 pixels corresponding to its 60” x 60” field of view and has 
a measurement range of 3 to 10 meters. ‘The target chosen for analysis was a 
portion of ORNL’s Center for Engineering Systems Advanced Research (CESAR) 
labratory, with distances ranging from 3 to 15 meters and scattered, miscellanious 
objects, e.g., furniture, boxes, 55 gallon drums, etc. For this domain, MSI could 
be performed using either multiple LRC images or the multi-modal, distance and 
reflectance images from a single view. 

The LRC was chosen for MSI algorithm development for four reasons: 1) it is 
consistent with the requirements of many autonomous and teleoperated robotics 
environments, including underground storage tank characterization and automated 
warehouse tasks; 2) since its two, multi-modal images (distance and reflectance) are 
obtained from the same reflected laser light, they are perfectly registered images, 
thus eliminating tJhe need for and effects of seperate image registration algorithms; 
3) a calibrated LRC was readily available in our laboratory and fully integrated 
with our computer network; and 4) precise truth measurements of the target scene 
could be taken and used for MSI design, development, tuning, and evaluation. 

1.3 OVERVIEW 
The second section of this paper outlines our basic MSI approach and its 

application to Data Enhancement and Clustering techniques. Section 3 outlines 
a general purpose parameter optimization method and its objective comparison of 
the competing MSI algorithms. The fourth section presents an empirical validation 
of these techniques on new images from the learned domain (LRC) and from a 
completely unfamiliar sensor domain (GC). 





2. LOCAL MSI METHODOLOGY 

This research focuses on MSI “data enhancement” and “conceptual 
enhancement” algorithms. To be useful in many applications, e.g., autonomous 
or teleoperated robotics, real-time feedback is critical. Unfortunately, many 
image processing algorithms require significant processing time. This is especially 
true of feature extraction, object isolation, and object recognition algorithms 
due to their typical reliance on global or large neighborhood information. For 
example, many object isolation algorithms are based on expected object templates, 
feature extraction, and “hypothetical” feature extension, i.e., extension of edges 
to possible intersection points in order to form closed polygons from only partial 
edge line segments. These methods have the advantage of global knowledge, large 
neighborhood features, a priori expectations, etc., but are, for the same reasons, 
rather slow and specialized. 

State-of-the-art image digitizers’ are capable of performing complex functions 
at the pixel level at full, image acquisition rates. This permits one to obtain pixel 
level features with little processing delay time and may pennit MSI images to be 
produced at near original image acquisition rate, leading to virtual ”multi-modal 
sensors.” This research attempts to exploit this speed capability by developing MSI 
algorithms based on pixel-level features. Hence, the basic direction of this research 
is the potentially faster and more robust formation of “clusters from pixels” rather 
than the slower process of extracting “clusters from images.’? 

This pixel level approach to clustering assumes that the sensors are well chosen 
and have sufficient resolution, relative to the conceptual entities, to ensure that 
adjacent pixels corresponding to the same entity are similar (e.g., in zero, first, 
or second order derivatives, in at least one of the sensor modalities) and that the 
entities of interest span several pixels. If these conditions are not met, either the 
entities are out of range or the sensors’ modalities are inappropriate for the task. 

2.1 DATA ENHANCEMENT ALGORITHMS 

2.1.1 Resolution Enhancement 

Optimally, a sensor’s resolution is sufficiently fine to prevent its intrinsically 
discrete nature from impacting its use. This was not the case for the LRC. The LRC 
has a distance resolution of 1.44 inches4 and a vertical and horizontal displacement 
of approximately range*sin(6O0/128”) = 1.5 inches at about its mid-range of 15 feet. 
This resolution level creates discretization artifacts, making constant slopes appear 
as step functions. Use of a simple smoothing function would reduce this effect but 
would also decrease significant detail and sharpness. 

The solution chosen was to develop a discriminating smoothing operator which 
would be applied only if adjacent pixels indicated either the pixel in question was 
erroneous (noisy) or suffering from the coarse resolution constraint. The four pairs 
of pixels adjacent to and on opposite sides of the target pixel are chosen. The 
linear interpolation of each pair at the target pixel’s position is calculated and the 

5 
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common consensus values averaged. An erroneous value was defined as one without 
a neighboring pixel-pair interpolation having similar value. (Clearly, this assumes 
all features of interest are greater than one pixel in size.) If noise was present, the 
target pixel’s value would be changed to the average linear interpolation defined 
above. If not, the target pixel’s value would be changed in the direction of the 
average linear interpolation, but by no more than one half the sensor’s resolution 
capability. This restraint is based on the assumption that if the target pixel is not 
noisy, then its value is the most accurate possible for the sensor’s resolution. To 
change it by more than half that resolution would contradict this assumption. 

Figure 1 shows a close-up of a carton pointed toward the camera and colored by 
distance. Figure 1A is the raw sensor data and Fig. 1B is the resolution enhanced 
data. Since the target consists of two perpendicular planes at approximately the 
same angle relative to the camera’s line of sight, the readings should be smooth 
and nearly symmetric. This process improved the resolution and corrected much of 
the resolution (discretization) distortions. It is important to note that by resolution 
enhancement we do not mean an increase in the number of sample points, but rather 
an increase in the existing samples’ measurement accuracy and precision. 

This resolution enhancement technique is applicable to any type of image 
and is used as a preprocess to reduce spot noise and resolution-induced sensor 
anomalies. More sophisticated slope determinations could be performed on larger 
neighborhoods or subsequently resolved entities, however, such methods would be 
significantly slower a.nd/or post processing methods. 

2.1.2 Sensor Anomaly Correction 

The LRC determines distance by comparing the relative phase shift between 
the original light transmitted and its reflection. This method is unambiguous 
only for targets within one phase length, since it is impossible to determine the 
integer number of phase lengths traversed. Thus, targets at 0.1, 1.1 and 2.1 
phase length would all be detected as 0.1 out of phase. This problem is known as 
“wraparound error”; the LRC assumes all reflections occur within one phase length 
of the transmitter. Figure 2 displays the raw data from the LRC. (The random, 
dark spotting on this and subsequent figures is a result of the photographic process 
and is not present in the sensor data itself.) Figure 2a presents the distance image 
shown as a 2-dimensional grid with darker color indicating shorter distance from 
the sensor. Figure 2b presents the reflectance image with darker color indicating 
greater reflectivity (sheen). In Fig. 2a, the dark region in the upper left corner 
actually corresponds to the most distant targets and is suffering from wrap-around 
errors. The fact that wrap-around errors do not effect the reflectance image, Fig. 2b, 
permits MSI techniques to resolve this anomaly. 

Figure 3 presents the reflectance data plotted in 3-dimensions by using the 
distance data of Fig. 2a. Note that Fig. 3’s point of view is offset from the original 
LRC’s view point to amplify the 3-dimensional effect. Areas apparently missing 
data are a result of target occlusion. The wrap-around error in the distance readings 
results in a smearing of data points toward the camera’s view position. 
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I 
Fig. 1A. Unehraced LRC data of a box on the floor, with comer facing camera, 

3-D plot c o l a d  by reflectance. 
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Fig. 2B. Raw LRC data of a comer of the laboratory, with various objects 
interspersed, 2-D plot colored by rdectance. 
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The wrap-around error was addressed by comparing adjacent pixels in both the 
distance and reflectance images. A wrap-around error is indicated if the difference 
in their distance values is very large (approaching the full phase length) while 
the difference in their reflectance is small (indicating little change). Whenever 
a wrap around error is indicated, the closer pixel’s distance is incriminated by one 
phase length. The results of this MSI technique are shown in Fig. 4. Note that 
this solution cannot guarantee accurately correcting all wrap-around errors. For 
example, if the error is coincident with a sudden change in reflectance values, one 
must conclude that the pixel’s short distance may in fact be accurate. While this 
occurred for several pixels in the given image, most of the wrap-around error was 
resolved correctly. 

2.2 CONCEPTUAL ENHANCEMENT ALGOMTHMS 

The MSI conceptual enhancement algorithms presented in this paper are based 
on the premise that given appropriate sensors (i.e., those capable of “seeing” the 
targets) and sufficient resolution @e., providing multiple pixels of each target) 
clusters of pixels can be formed which correspond to the targets by accurately 
answering the fundamental question for each pair of adjacent pixels: “DO these 
pixels belong to the same target?” Given an accurate response for each pair of pixels, 
forming accurate clusters is trivial. This question applies for cluster formation 
regardless of the sensor domain, whether one is isolating shapes in CCD images, 
forms in LRCs, or conductivity anomalies in GC data. 

This fundamental question suggests simply comparing the adjacent values across 
each sensor modality. But by posing the same question in the negative “Is there a 
surface edge lying between these two pixels?” one is drawn to compare the pixel 
neighborhoods on each side of the questioned interface, e.g., comparing the linear 
extrapolation of pixels on the first side of the interface with the second pixel’s value, 
or comparing the average adjacent pixel value variation on each side of the interface. 
Such functions should be compared across all modalities and appropriately merged. 

In this research, each modality is analyzed separately, and a real-valued, “degree 
of match” for each pair of adjacent pixels is determined based on the user specified 
“match function.” These “degrees of match” are then merged across both modalities 
by a separate “combination function.” Four different match functions are compared. 
These differ in the size and use of pixel neighborhoods: 1) “2-pt,” which uses only 
the two pixels adjacent to the interface; 2) “4-pt General,” which uses the best 
linear fit to any four adjacent pixels spanning the interface; 3) “4-pt Predictive,” 
uses the three adjacent pixels on each side of the interface to predict the pixel 
on the other; and 4) “6-pt,” which uses the three adjacent pixels on each side of 
the interface to measure the linear discontinuity at the interface. The combination 
function produces an “overall degree of match” for each adjacent pixel pair, based on 
the degrees of match returned by each sensor modality. Two different combination 
functions are compared: 1) “OR,” which requires a high degree of match on only 
one of the sensor modalities; and 2) “AND,” which requires a high degree of match 
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The final “overall degree of match” resulting from the combination function 
could, in turn, be used as a meta-level description of the pixel interface. Hence, 
a ninth technique was devised which compared these overall measures in the 
neighborhood of the interface. This ninth technique provides a locally adaptive 
measure of local pixel predictability. By thresholding the relative degree of match 
with respect to neighboring interfaces, this measure becomes more strict in smooth 
regions, e.g., corresponding to an artificial surface, and more forgiving in rough 
regions, e.g., corresponding to natural surfaces like grass or brush. In this way, 
the ninth technique varies its clustering requirements over the image based on 
local indications of continuity. This ninth technique is actually eight separate 
techniques, depending on which of the original eight techniques is used to determine 
the underlying pixel interfaces’ “overall degree of match.’’ 

With each of these sixteen techniques is associated various tuning parameters 
and/or thresholds. To quickly and objectively evaluate these competing techniques, 
an automatic parameter tuning and image evaluation system was developed. This 
system reduces the arbitrary effects of blind luck and personal bias and provides 
a more accurate indication of the various techniques’ true performances. The 
following section details this system and its empirical results. 





3. MSI OPTIMIZATION 

The automatic parameter tuning system consists of three basic components: 
a learning strategy, an evaluation function, and a “truth” image. The learning 
strategy selects parameter settings for analysis, based largely on prior parameter 
performance, and assesses them by using the evaluation function to compare the 
resulting clustered images with the predefined optimal results of the “truth” image. 
Following is a detailed discussion of the learning strategy, evaluation function and 
the empirical results. 

3.1 LEARNING STRATEGY 

Genetic Algorithms, GAS, are extremely powerful adaptive global search 
techniques derived from natural population genetics.6 GAS have been shown 
to perform well for many types of functions including those exhibiting very 
difficult characteristics, e.g. , discontinuities, non-different iabilit y, mult i-modali ty, 
high dimensionality, huge search spaces and noise. GAS require no specific, a priori 
function information-nly the form of a candidate solution, i.e., the number of 
parameters to be optimized and the desired level of precision (number of bits), and 
a comparative performance measure for candidate solutions is needed. 

GAS are a simplified simulation of the natural genetic model. As such, GAS 
simulate a population of individuals evolving over multiple generations: individuals 
are specified by a series of genes (bits) that can be independently inherited; 
reproduction is accomplished by a crossover operation which forms offspring from 
genetic material of two parents; and, an individual’s reproduction frequency is based 
on his performance in the environment (evaluation function). Thus, trait encoding, 
sexual reproduction and “survival of the fittest” propagation are all simulated; 
and the average performance of the population tends to improve over successive 
generations. When some user-specified stopping criterion is met, the best individual 
produced is taken as the GA’s solution for function optimization. 

Clearly, GAS can not guarantee discovery of the optimal solution, but they have 
proven themselves as powerful global search techniques7 capable of simult meously 
searching extensive regions of the parameter space. The basic GA framework used 
in this research was provided by the GENESIS* GA4 package. However, the quality 
and efficiency of the search is almost completely dependant on the user defined 
evaluation function. 

3.2 EVALUATION FUNCTION 

The evaluation function guides and directs the GA’s search by providing 
performance feedback for candidate “individuals.” To efficiently guide, the function 
should have a high resolution and monotonically encourage clustering quality so 
that even small improvements will be reflected in the evaluation measure alnd have 
a positive impact on the search. 

For this application, an “individual” is a set of parameter values for the 
conceptual enhancement technique being optimized, and the evaluation function 

13 
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must return a measure of the quality of each candidate set. Since the goal is to 
form pixel clusters which most nearly approximate reality, a “truth image” was 
defined which had all of the pixels in a typical LRC image correctly grouped into 
their separate conceptual regions. Each of the erroneous pixels in the LRC image 
was associated with a single group understood to be “don’t care” pixels. That is, 
the cluster association of those pixels had no effect on the evaluation. 

We chose to run the GA as a minimization technique, wherein the GA searches 
for the parameter set yielding the lowest evaluation measure. This requires the 
evaluation function to be written as a “penalty function’); the function increases its 
evaluation measure with each undesirable behavior that it detects. 

For the evaluation function to measure how closely the image resulting from 
a given parameter set matches the truth image, each pixel is assigned a “cluster 
number” which is constant for all pixels within a single cluster and distinct from 
all other pixels. The particular cluster number associated with any given cluster 
is arbitrary. Hence, the evaluation function cannot simply count the number of 
pixels whose cluster numbers match the truth image’s conceptual region numbers. 
Rather it must consider each set of pixels which (according to truth) should be 
united as a single region, and determine how well those pixels are grouped 4 
differentiated from “outside” pixels. Thus, the evaluation function must penalize 
both the fragmentation and amalgamation of true regions. 

Evaluation was performed by considering each true region in order of 
decreasing size, and associating with each, the candidate cluster which 
has not already been associated with any other cluster and has the greatest 
representation within that true region. For example, 
let Ai E (Candidate  C l u s t e r s )  

T E ( T r u t h  Regions)  
D = (Prev ious ly  Associated Candidate  C lus t e r s )  

n 

and T = u .4; 
i= 1 

then Ak is associated with T if and only if 

For each associated cluster, the evaluation function increments the penalty 
based on the amount by which that cluster failed to cover its true region and 
by the amount by which it lies outside its true region, see Fig. 5 .  For example, 
let A, B E (Candidate  C l u s t e r s }  

A = AI U AI/ 
B = BI U BII 
T E ( T r u t h  Regions)  
T = AIU BI 

and ]All < 1BII 
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then the penalty resulting from T is f( / A / / ,  IB//I), for some function f. This penalty 
combination encourages clusters to “grow” within the true regions’ bounds and 
“shrink,’ outside those bounds. Note also that this function makes no distinction 
between pixels of different clusters, i.e., every valid, mis-associated pixel causes the 
same amount of penalty. Hence, an “N” pixel improvement in a small region has 
the same impact as an “N” pixel improvement in a large region, though the two 
resulting images may intuitively appear to have very different levels of “clustering 
quality,” depending. on the application. An “optimal” evaluation function is very 
subjective and application specific and not in the scope of this research. Although 
this evaluation function may not provide sufficient feedback for the GA to find 
the globally optimum setting for each competing MSI technique, it does provide 
sufficient feedback for the GA to objectively optimize, compare, and evaluate them. 

Fig. 5. Cluster matching against truth region T. Cluster B associated with T ,  
penalty is a function of A/ and BII. 

3.3 EMPIRICAL RESULTS 

The evaluation function provides a numerical measure of the quality of a 
conceptually enhanced image. This measure is useful not only for the GA’s 
parameter optimization, but also for the objective comparison of competing MSI 
techniques. However, it should be noted that while the GA is a powerful 
search technique, it does not guarantee any particular proficiency relative to that 
technique’s global optimum, e.g., a guarantee of achieving X% of the technique’s 
optimum performance. Since each search was permitted the same amount of 
resources, yet the search space sizes ranged from 2/\10 to 2“47, the competing 
techniques had significantly different proportions of their search spaces investigated. 
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The G A  was permitted to examine up to 5000 parameter sets. For the smaller search 
spaces, this was sufficient to cover the entire space, but for the largest spaces, the 
GA could examine less than 4 trillionth of the search space. Hence, although the 
evaluation measure can be used to compare the quality of the resulting images, it 
can only imply the corresponding technique’s relative potential. 

For each of the four match functions, four modes of clustering were GA 
optimized: each of the two sensor modalities (distance and reflectance) and the 
two MSI combination functions (“AND” and “OR”). The best solution found after 
up to 5000 evaluations was taken as that modes optimized solution, see Fig. 6. 
(Note that the overall degree of match is a penalty function, and therefore, lower 
values are better.) 

2-pt. SensorR 1- I 
I I I I 1 I I 

I 1 1 1 1 1 R o r D  I I 
R and D 

4-pt Ge neral. Sensor R 
Sensor D 

R or D 
R and D 

4-ot Predictive, Se nsar R 
Sensor D 

R or D 
!3il!Km 

6-Dt. Sensor R 
Sensor D 

R or D 
R and D 
Dynamic 

Q ~ U G . 1 5 ~ ~ ~ Q 3 5  
Best So lution’s Overall Dearee of Match 

Fig. 6. Comparison of penalty factors for the best solutions found for each 

Several interesting tendencies are worthy of note. First, and most importantly, 
the basic goal of MSI was achieved; MSI improved clustering and therein led to 
better representations of the real environment. An MSI combination function 
outperformed both of the single sensors for every match function, see Fig. 6. (By 

method, both for individual sensors and with MSI. 
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2-pt 
4-pt General 

4-pt Predictive 

1 & I  one cluster 1 pixels 

2 & 2  Or3&1 one cluster 2 pixels 
3 & 1  ’ one cluster 3 pixels 

The dynamic method examines the local uniformity of the overall degree of 
match “image” for a given type of operation. Hence, there are sixteen different 
dynamic methods, one for each technique (match function and mode) which can 
be used to produce the overall degrees of match. Rather than execute the GA 
a.n additional sixteen times, the choice of technique was defined as an additional 
parameter to be simultaneously optimized by the GA. The GA determined that 
the best technique for dynamic operation is “6-pt OR,” which. is also the technique 
found tu perform best non-dynamically. Figure 6 shows the superiority of dynamic 
operation, as it outperforms all other techniques by a significant margin (>27%). 

6-pt 3&3 

The truth image is shown in Fig. 8. This image is based on the data shown in 
Fig. 4. The significant true regions include: 1) floor; 2) a box with two facets facing 
the camera; 3) a movable wall partition; 4) two regions of the back wall, divided by 
a supporting pillar; 5 )  a toal chest; 6) a segment of the left wall; 7) a small crate; 
8) a supporting pillar in the middle of the back wall; and 9) a triple faceted, corner 
support structure. 

both dusters 3 pixels 



2-pt, R OR D 

2-pt, RAND D 

4-pt G, R OR D 

4-pt G, R AND D 

4-pt P, R OR D 

4-pt P, R AND D 

6-@, R OR D 

6-pt, R AND D 

R = Reflectance 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
Best Solution's Overall Degree of Match 

Fig. 7. Comparison of eight MSI techniques, showing combination function 
trade-off (AND, OR) with respect to match function strictness (2-pt and 4-pt G 
versus 4-pt P and 6-pt). 
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For human display, adjacent points corresponding to the same region are 

graphically connected. This display mode makes it easier to discern the true regions 
and their edges. The color of each region is based on its relative size, in pixels. 
Black space between regions is the result of: 1) missing data due to occlusion, 
e.g., behind the box in the middle of the room; 2) the display mode not graphically 
connecting adjacent pixels which correspond to different regions, e.g., separating the 
two faces of the box and separating the wall supports; or 3) erroneous data labeled 
as “don’t care pixels,” e.g., the random clutter next to region #7. (Note that the 
“don’t care pixels” were not excluded from processing; the MSI techniques had to 
deal with them. But the correct clustering of these pixels was not evaluated since 
the system should optimize the MSI techniques for their ability to ignore erroneous 
data, not for their ability to correctly cluster both valid and erroneous data.) In the 
following figures, erroneous data is shown with its corresponding cluster, however, 
to “declutter” the display, only the larger clusters are shown. 

Figure 9 presents the results of dynamic operation with “6-pt OR” using the 
GA’s optimized parameter settings. This image reveals the major regions (#1-#6, 
above) and some of the minor ones, including two of the corner supports (#9). The 
top surface of the tool chest and a region considered clutter in the upper right corner 
of the image were also correctly differentiated. These regions were considered too 
small and their data too erratic to be included in the truth image. hrthermore, 
despite wrap-around effecting regions numbered 1 ,4 ,  6, and 8, this MSI technique 
was able to smoothly form clusters across the wrap-mound boundaries and lying 
within the wrapped area. These results verify the accuracy and continuity of the 
MSI wrap-around technique described in Section 2.1. 

Although this MSI technique failed to differentiate all of the significant true 
regions in the image, it was very successful. To get an impression of the quality 
of these results, one need only review the original images which were merged, see 
Figs. 2-4. In these images, most of the regions, e.g., #3+, are difficult to visually 
isolate despite our detailed knowledge of them. 

Figure 10 presents the results of the “6-pt OR” MSI technique using the GA’s 
optimized parameter settings. This technique also differentiated most of the major 
regions, failing only to amalgamate region #6. (Because of region #6’s greater 
distance, its spacial sampling resolution is lower. This led to greater variation in 
the data and for a non-dynamic technique to correctly amalgamate those pixels, 
it would fail to disassociate separate other, more consistent clusters. To correctly 
handle this problem one must base matching on the local dynamics of the data, 
e.g., like the dynamic MSI techniques.) All three of the corner supports, #9, the 
top of the tool box, #5, and a region in the upper right corner were found. 
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i 

Fig. 9. “Dynamic 6-pt OR” conceptual enhancement of Fig. 4, 3-D plot 
arbitrarily colored by cluster size. 

a -. m *  I 

Fig. 10. “6-pt OR” conceptual enhancement of Fig. 4, 3-D plot arbitrarily colored 
by cluster size. 
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It should be recalled that the uniform emphasis on pixels rather than any 
special emphasis on finding each of the primary 14 truth regions helps explain the 
techniques’ “failure” to isolate the smaller regions. However, to do otherwise might 
demean the general applicability and robustness of the techniques. The promise 
of these techniques is their ability to produce quality results despite their total 
lack of global, conceptual shape, or a priori knowledge. This ability is a common 
requirement in many robotic applications. These MSI results are of sufficient 
quality to enhance an autonomous system’s world map, a teleoperated display, or 
a higher-level object recognition system. 





4. VALIDATION 

The MSI conceptual enhancement approach outlined in Section 2.2 is highly 
domain and application robust. By domain robustness we refer to its suitability for 
a wide variety of environments and sensor types, though it may first require tuning 
to the level of image detail desired by the user for that domain, via, e.g., the use 
of truth images as outlined in Section 3. By application robustness we refer to the 
suitability of a given parameter set to a wide variety of situations within a tuned 
or learned domain. This section validates our approach’s application robustness 
by evaluating the performance of its tuned parameter set in the learned domain, 
i.e., LRC images of an indoor living or warehouse environment, and validates its 
domain robustness by demonstrating its suitability to another, highly dissimilar 
domain, i.e., GC images of buried waste. 

4.1 LEARNED DOMAIN, LASER RANGE CAMERA 

The control parameters of the MSI techniques described in Section 2.2 were 
tuned to a single LRC image (Fig. 4) and user defined truth image (Fig. 8.) The 
following validation test is to demonstrate the suitability of these tuned parameters 
to LRC images of other, “similar” scenes. 

Figure 11 shows the LRC’s images of another corner of the CESAR laboratory. 
Figure 11A presents the distance image shown as a 2-dimensional grid with 
darker color indicating shorter distance from the sensor. Figure 11B presents 
the reflectance image with darker color indicating greater reflectivity (sheen). For 
clarity of description, the significant true regions are numbered in Fig. 12: 1) floor; 
2) a cylindrical barrel; 3) a moveable wall partition; 4) two regions of the back 
wall, separated by a supporting pillar; 5 )  a 55-gallon drum; 6) a door set in the 
right wall; 7) a box with two facets in view; 8) a supporting pillar in the middle 
of the back wall; 9 and 10) two halves of a windowed door; 11) a suspended hoist 
and its draped extension cords; 12) three more regions of the back wall separated 
by #11; 13) a box with one facet in view; 14) a fire extinguisher; and 15) an 
electrical cable lying on the floor. This image partially overlaps the previous image; 
regions numbered 1, 4, and 8 match the correspondingly numbered regions of 
Fig. 8. 

The scene represented in Fig. 11 is more difficult than the learned scene of Fig. 8. 
This scene contains cylindrical objects (#2 and #5) ,  very narrow objects (#15 and 
parts of #ll), and significantly more detail. The best performing MSI technique 
from Section 3, Le., “Dynamic 6-pt OR” and its tuned parameter set was applied 
to the distance and reflectance images of Fig. 11. 
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Fig. d f i e  laboratory, with new types of 
objects i ca. 

a L 
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Fig. 12. "Dynamic 6-pt OR" conceptual enhamcement of image h m  Fig. 11 
using parameters tuned to Fig. 4, 8-D plot arbjtrarily c o k e d  by cluster siae and 
numbered for reference. 
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Figure 12 clearly demonstrates the application robustness of the tuned 
“Dynamic 6-pt OR” conceptual enhancement technique. After tuning the technique 
to just one application image, it was able to isolate almost all of the significant 
regions in an a priori unknown image. Furthermore, these regions included surface 
types hitherto never seen: curved surfaces. The success of this clustering technique 
on curved surfaces, despite its linear extrapolation approach and lack of experience 
with this surface type, strongly supports the utility and robustness of this MSI 
approach’s concentration on “pixel-level affinity.” 

4.2 UNLEARNED DOMAIN, GROUND CONDUCTIVITY 
The conceptual enhancement techniques described in Section 2.2 are designed 

to be completely independent of the sensor modalities being merged and the 
application being addressed. These are general purpose MSI techniques for merging 
multiple images into a single, enhanced representation of conceptually disjoint 
regions. The desired level of image detail, and hence, the intrinsic definition of 
regions, must be defined by the user according to his application and objectives. 
This definition must be communicated to the system in order for it to tune the 
parameters for a given application domain. For the LRC, the truth image implicitly 
embodied the user’s definition of meaningful regions and of extraneous detail. From 
this image, the system can determine the relative information content of the sensor 
modalities being merged. If a region definition is not supplied, the user must either 
rely on general purpose parameter settings (tuned to a diverse suite of domain 
types), or “manually” adjust the parameters to achieve the desired level of detail. 

The unlearned domain chosen to demonstrate the domain robustness of this 
conceptual enhancement approach is GC images (see Section 1.2) of buried waste. 
This sensor provides an excellent test case because of its extreme dissimilarity 
with the LRC: it measures internal rather than surface properties; it obtains an 
integration measure rather than a point measure; it has a wide signal dispersion, 
leading to sampling overlap; its truth is almost undeterminable, due in part to the 
effects of varying environmental conditions, e.g., ground water, soil type, etc., across 
the region being mapped; it is a single rather than an array sensor, and hence its 
sample positioning is much less accurate and produces a scatter plot rather than a 
grid; etc. Since accurate truth for these GC images is unknown, the system can not 
be automatically tuned as it can for the LRC images. Furthermore, determining 
general purpose parameter settings, if they even exist, will require images and truth 
for many diverse sensor modalities and is not in the scope of this research. Hence, 
we must demonstrate the robustness of this MSI approach by examining the results 
of manually selected parameter settings. 

The raw GC data consists of hundreds of samples taken over a three day period. 
These samples consist of an X - Y  position and two sensor readings: the quadrature 
component and the in-phase component (see Section 1.2). The data is plotted in 
Fig. 13. Because of the inconsistent spacing of the data points, the MSI techniques 
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described above cannot be directly applied. The data must first be transformed 
into a grid representation. A grid resolution and registration is chosen so that each 
of the internal grid elements contains samples from the original data set. The d u e  
of each grid element is then defined as the average value of the raw sample points 
lying within its corresponding area, see Fig. 14. (Note that the extreme edges of 
the original data set were discarded, see Fig. 13, and that the white elements on 
the lower edges have no corresponding data samples.) 

Fig. 13A. Raw GC data of buried 
waste field, superimposition of three 
data sets in a 2-D plot colored by 
quadrature. 

Fig. 13B. Raw GC data of buried 
waste field, superimposition of three 
data sets in a 2-D plot colored by 
in-phase measure. 
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Fig. 14A. Raw GC data of 
Fig. 13A, represented in a 2-D uniform 
grid colored by quadrature. 

Fig. 14B. Raw GC data of 
Fig. 13B, re resented in a 2-D uniform 
grid colore8by in-phase measure. 

Figure 15 presents the results of the “Ppt G-OR” technique with a manually 
chosen parameter set. With this particular parameter set, the main cluster, near 
the middle of the image, is isolated, as are smaller clusters just below it and in the 
upper right-hand of the image. This result is intuitively consistent with the data 
in Fig. 14. However, without defined truth, e.g., the relative importance of the two 
sensor ima es, an indication of the desired level of detail, etc., other solutions are 
equally via % le. Figure 16 presents the results of the “6-pt AND” technique with a 
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grid plot arbitrarily colored by 
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Fig. 16. L'B-pt AND" cIns#ming of 
Fi 14.udn handrtmqd parameters, 
2-6 grid p&t arbitrardy colored by 
region. 
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Despite the lack of a truth image to which the approach could be tuned and its 
results evaluated, these MSI techniques are clearly able to isolate significant regions 
of the merged images. As such, these figures demonstrate the suitability of this MSI 
approach to GC images and hence its overall domain robustness. 



5. SUMMARY AND CONCLUSIONS 

MSI techniques can be divided into three categories based on the relative 
information content of the original images with that of the desired representation: 
detail enhancement, data enhancement , and conceptual enhancement techniques. 
Detail enhancement techniques are used to increase the level of image detail or 
contrast by applying an appropriate inverse mapping function to reduce/remove 
“blurring” distortions. Data enhancement techniques improve the accuracy of 
the data rather than either increase or decrease its level of detail. Conceptual 
enhancement techniques are used when the original image contains more detail 
than is desired, making it difficult to easily recognize objects of interest. 

The first resolves 
the wrap-around ambiguity problem common to most LRCs. This technique is 
implemented and tested on real data and found to be very effective for single wrap 
ambiguities. (Multi-wrap ambiguity was not considered, though a similar solution 
should be as effective.) The second data enhancement technique increases a sensor’s 
measurement precision by applying a “discriminating” smoothing filter to each local 
pixel neighborhood of the image. This filter is sensitive to local noise, discontinuities 
and the sensor’s known precision. This method is applicable to virtually any imaging 
sensor and is successfully demonstrated on a LRC’s data. 

Conceptual enhancement requires segmenting an image into meaningful clusters 
which correspond to conceptual entities. The approach presented in this paper is 
based on the premise that given appropriate sensors, clusters of pixels can be quickly 
and accurately formed by examining the inter-pixel continuities implied by the local 
pixel neighborhoods. Hence, this research is based on the potentially faster and 
more robust formation of ”clusters from pixels” rather than the slower process of 
extracting “clusters from images.” This approach is applicable to cluster formation 
regardless of sensor and/or application domain-whether one is isolating shapes in 
CCD images, forms in LRCs, or conductivity anomalies in GC data. As such, this 
approach constitutes a “general-purpose7’ MSI methodology. 

A suite of conceptual enhancement techniques is designed and applied to 
the distance and reflectance images of an LRC. These techniques are objectively 
optimized and compared by an automated parameter optimization system using 
Genetic Algorithms. The best performing technique, according to this stochastic 
optimization system, is able to isolate nearly all of the significant regions of the 
learned image. The domain robustness of this optimized technique is validated on 
an unknown LRC image in that nearly all of the significant regions of the new image 
are correctly isolated. Application robustness of this basic approach is validated on 
an extremely dissimilar sensor and application domain-ground conductivity data 
of buried waste. Since truth for GC data is unavailable, the conceptual enhancement 
techniques could not be tuned for this sensor/application domain. However, manual 
tuning is able to demonstrate the approach’s ability to integrate GC images and 
isolate significant regions. 

This paper presents two data enhancement techniques. 
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Future research includes: time optimizing these various MSI techniques; 
optimizing and validating the conceptual enhancement techniques’ abilities over a 
suite of images, so as to permit their use in fully autonomous robotics applications; 
extending the techniques by permitting heterogeneous match functions across sensor 
modalities and extending the set of combination functions being investigated; and 
genetically searching the space of potential match functions upon which to base 
clustering. 
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