
f 

i- 





ORNL/TM-12356 

Engineering Physics and Mathematics Division ' 1 " )  , , 

Mathematical Sciences Section 

BROADCASTING ON LINEAR ARRAYS AND MESHES 

Steven R. Seidel 

Department of Computer Science 
Michigan Technological University 

1400 Townsend Drive 
Houghton, Michigan 49931-1295 

ste.ve@cs.mtu. edu 

Date Published: March 1993 

Research was supported by the Applied Mathematical Sciences Re- 
search Program and the Atmospheric and Climate Research Divi- 
sion of the Office of Energy Research, U.S. Department of Energy, 
and by NASA Ames Research Center grant NAG2-757. 

1 I 

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
managed by 

Martin Marietta Energy Systems, Inc. 
for the 

U.S. DEPARTMENT OF ENERGY 
under Contract No. DEAC05-840R21400 

3 4 4 5 6  0 3 7 4 4 1 7  0 





Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
2 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
3 Broadcast Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

3.1 Spanning tree broadcast on a linear array . . . . . . . . . . . . . . . . . . . . .  4 
3.1.1 STbroadcast, v = O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
3.1.2 ST broadcast on a linear array, v > 0 . . . . . . . . . . . . . . . . . . .  8 

3.2 Spanning tree broadcast on a mesh . . . . . . . . . . . . . . . . . . . . . . . . .  9 
3.2.1 ST broadcast on a mesh, Y = 0 . . . . . . . . . . . . . . . . . . . . . . .  9 
3.2.2 ST broadcast on a mesh, Y > 0 . . . . . . . . . . . . . . . . . . . . . . .  12 
Bidirectional spanning tree broadcast on a linear array . . . . . . . . . . . . . .  14 
3.3.1 BST broadcast on a linear array, Y = 0 . . . . . . . . . . . . . . . . . . .  14 
3.3.2 BST broadcast on a linear array, Y > 0 . . . . . . . . . . . . . . . . . . .  15 

3.4 Bidirectional spanning tree broadcast on a mesh . . . . . . . . . . . . . . . . .  16 
3.4.1 BST broadcast on a mesh. v = 0 . . . . . . . . . . . . . . . . . . . . . .  16 
3.4.2 BST broadcast on a mesh. Y > 0 . . . . . . . . . . . . . . . . . . . . . .  18 

3.5 Recursive halving broadcast on a linear array . . . . . . . . . . . . . . . . . . .  19 
3.6 Recursive halving broadcasc on a mesh . . . . . . . . . . . . . . . . . . . . . . .  20 
3.7 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

4 Broadcasting from an Arbitrary Node . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
4.1 ST broadcast on a linear array, Y = 0 . . . . . . . . . . . . . . . . . . . . . . . .  23 
4.2 ST broadcast on a linear array, v > 0 . . . . . . . . . . . . . . . . . . . . . . . .  24 
4.3 BST broadcast on a linear array . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
4.4 RH broadcasts on linear arrays and meshes . . . . . . . . . . . . . . . . . . . .  26 

5 Broadcasting to Arbitrary Numbers of Nodes . . . . . . . . . . . . . . . . . . . . . .  26 
5.1 Virtual nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
5.2 Companions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
5.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

6 Performance on the Intel Delta Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

3.3 

8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

... 
. 111 . 

.. .  . . . . . . . . . . . . . . .  . . . . . . . .  . . . . . . . .  .... .......... 





BROADCASTING ON LINEAR ARRAYS AND MESHES 

Steven R. Seidel 

Abstract 

The well known spanning binomial tree broadcast algorithm is generalized to obtain 

several new broadcast algorithms for linear arrays and meshes. These generalizations take 

advantage of bidirectional communication, the connectivity of two-dimensional meshes, 

and the difference between node-to-network and network-to-network bandwidth. It is 
shown how these algorithms can be further generalized so that any node can be the source 

of the broadcast message. A partitioning scheme is given that allows these algorithms to 

be used on linear arrays and meshes of any size. One of these algorithms, the bidirectional 

spanning tree broadcast, always has lower cost than the recursive halving broadcast for 

linear arrays. All of these algorithms offer significant performance improvements over the 

basic spanning tree broadcast. These algorithms do not rely on a knowledge of machine- 

dependent constants for network bandwidth and latency, so their performance is not as 

sensitive to changes in machine characteristics as that of hybrid and pipelined algorithms. 

Performance measurements are given for some of these broadcast algorithms on the Intel 

Delta mesh. 
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1. Introduction 

A broadcast is an operation where one processor of a multicomputer has a message that must be 

copied to  each of a set of processors. Solutions to this problem for various MIMD architectures 

have been widely studied. Much attention has been given to this problem for linear arrays and 

meshes [2,3,8,14,15] because of the recent availability of such machines. One group of broadcast 

algorithms [3,14,15] transmits the message pipeline fashion, in packets. While these algorithms 

have good theoretical performance] specific constants representing network bandwidth and 

latency are used at execution time to compute optimal packet lengths. This makes these 

algorithms sensitive to changes in the system on which they are implemented. In addition] 

such algorithms can be more difficult to implement on a mesh than on a hypercube because a 

mesh lacks the vertex and edge symmetry that is so useful for the implementation of algorithms 

on hypercubes. So far there have been no reports on the performance of these algorithms on 

existing meshes. Another approach to algorithm design is to construct hybrid algorithms. 

Examples of hybrid algorithms for other communication problems are given in [5,9], but such 

algorithms also use a knowledge of network constants to determine which strategy to apply. 

Neither pipelined nor hybrid algorithms are considered here. 

The work presented here offers several new solutions to the broadcast problem for linear 

arrays and meshes biased on the familiar spanning binomial tree (the communication pattern 

used in “recursive doubling” on hypercubes) [12] and on dimensional exchanges (also known as 

the “butterfly”). These algorithms are extensions of those given in [2]. They will perform well 

even as machine characteristics change because their design avoids execution-time dependence 

on constants that represent network performance characteristics. In particular, they do not 

use constants representing network bandwidth and latency to determine packet sizes or to  

decide among strategies, ias is done in pipelined and hybrid algorithms. The recursive halving 

broadcast algorithm is also considered here because it shares this independence. This broadcast 

algorithm is only a slight modification of the recursive halving global combine algorithm given 

by van de Geijn in [1,16]. 
The next section describes the communication model on which the analysis of comniunica- 

tion algorithms will be based. The broadcast algorithms and their costs are given in Section 3. 

In Section 4 it is shown how these algorithms can be generalized so that any node is the source 

of the broadcast message. Generalizations of these algorithms to linear arrays and meshes of 

any size are given in Section 5. Section 6 presents the predicted and observed performance of 

some these algorithms on the Intel Delta mesh. 
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2. Communication Model 

’This work considers solutions to the broadcast problem on linear arrays of n processors and 

on 2-dimensional meshes of n n1 x n2 processors. The nodes of a linear array are numbered 

from 0 through n - 1. ‘The nodes of a mesh are numbered from (0,O) through (nl  - 1, n2 - 1). 

Each node is connected by a pair of communication links (one in each direction) to each of 

its immediate neighbor(s) in the horizontal and vertical directions. There are no wrap-around 

links. Each node can concurrently transmit one message and receive one message. Circuit 

switched message passing with wormhole routing is used. The route taken by a message in a 

linear array is just the shortest path between the sending and receiving nodes. A message in a 

mesh is routed horizontally until it reaches the column containing the receiving node and then 

it is routed vertically to the receiving node. Messages can be routed through a node without 

affecting its performance as a sender or receiver. Finally, it is assumed that each receiving node 

allocates a buffer for each incorning message before that message arrives. Under this assumption 

the sending node can transmit a message without prior handshaking with the receiver. (This 

is the “forced” message passing protocol [ll] .) 
A simple communication model describes the cost of sending a message of m bytes as 

am + b ,  where b is the latency and a is the per-byte transmission cost. A close examination 

of real message passing networks reveals a much larger collection of factors that can affect the 

cost of communication algorithms. Some of these factors are: 

0 contention for communication ports and links, 

0 choice of message passing protocol, 

a packet permutation costs (message packet copying) within a node, 

0 bandwidth differences between different parts of the message passing network, such as 

from the node to the network “gateway”, and on the network itself (between “gateways”), 

0 the length of the circuit over which the message travels, 

0 the effects of message packetization performed by the node operating system, 

0 costs of arithmetic or logical operations on the message, such as in the combine operation, 

0 the distinction between the cost of a send operation measured in the sending node alone, 

and the cost measured from the initiation of a send operation to the completion of the 

corresponding receive operation, 

0 synchronization costs, 

a communication algorithm execution overhead (loop control, e tc . ) ,  
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0 delays contributed by operating system interrupt processing, 

0 delays contributed by concurrent computation, 

0 the effect of message traffic on the network that is not under the control of the application 

programmer, such as that caused by 1/0 operations and other message traffic generated 

by the operating system, and 

0 the effect of caches, FIFOs, and other hardware features. 

Along with transmission cost a and latency b ,  the first four factors (link and port contention, 

protocol choice, permutation costs, and bandwidth differences) significantly affect the cost of 

global communication on the Intel Delta mesh, so these factors are included in the communica- 

tion model presented here. The remaining factors, many of which have relatively small affects 

on cost, will not be considered here. 

The communication model of the Delta that will be used here is the same as that presented 

in [l], with the addition of a term for permutation costs. (See [ll] for a general description of the 

message passing network of that machine.) This model distinguishes two kinds of transmission 

costs: a is the per-byte cost of moving data from a processor onto the network and a is the cost 

of moving data over the network itself. This means that there is a path from (or to) a node to 

a network “gateway” and that there is a circuit connecting the “gateways” of the source and 

destination nodes. These two costs are not cumulative, they simply represent the capacity of 

these two components of the network. It is assumed that a = 2”z for some integer v 2 0. 

Link contention occurs when the paths taken by two or more messages have one or more 

links in common. As long as no more than 2” messages share any one link at a given time, 

link contention does not add to cost of sending a message. Port conteatzon occurs when one 

or more messages arrive at a node at the same time. Those messages can arrive over distinct 

incoming links or, if v > 0, they can arrive on the same link. In both cases port contention 

adds to  cost of sending a message. 

In the absence of communication port contention, the cost of transmitting a message of m 

bytes is expressed as [rE/2”1am + b ,  where k is the largest number of message circuits that 

share a link during the transmission of the message. Suppose that k _< 2” send operations are 

initiated by k distinct nodes. If all of the receiving nodes are distinct, that is, there is no port 

contention, then the latency of each send operation is overlapped and the total cost of these 

send operations is just am + b ,  regardless of whether or not any of the message circuits have 

one or more links in common. However, when k = 2i for some i > I/, the transmission cost is 

2”m +- b = 2i-vam + b .  

Finally, certain communication algorithms, such as the complete exchange algorithms given 

in [5] and [6], require significant amounts of message packet movement within individual nodes. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................ ^- . 
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Such internal data movement is also required in the recursive halving broadcast algorithms 

described in the next section. During execution of these algorithms the next message to be sent 

is formed by permuting the message packeh that have already arrived. In these algorithms each 

node moves as much data internally as it does over the network. A constant p that represents the 

cost of moving one byte of data from one location to another within a node is thus included in 

the cost analysis of the algorithms given in the next section. Also note that permuting message 

packets usually requires that additional storage be provided for message packets. This typically 

amounts to a doubling of storage requirements. which, when long messages are involved, can 

be a significant factor in the choice of algorithms. 

3. Broadcast Algorithms 

Several broadcast algorithms for linear arrays and meshes are considered. Each algorithm is 

based on communication patterns commonly used on hypercubes, such as spanning binomial 

trees and dimensional exchanges. In this section it is assumed that a linear array consists of 

n = 2d nodes and that a mesh consists of n = 2dl x 2a2  nodes. It is also assumed that node 0 

contains a message of length rn to be broadcast and that all other nodes are blocked, waiting 

for node 0 to begin the broadcast operation. The cost of a broadcast operation is measured 

from the time node 0 begins the broadcast to the time the last node receives the message. 

The familiar spanning tree broadcast algorithm is considered first. Several improvements of 

that basic algorithm are given. These improvements take advantage of 

1. the additional bandwidth offered by u > 0, 

2.  the additional bandwidth offered by bidirectional links, and 

3.  the increased connectivity of meshes over linear arrays. 

For comparison, the recursive halving broadcast algorithm is also described at the end of this 

section. 

3.1. Spanning tree broadcast on a linear array 

3.1.1. ST broadcast, v = 0 

The first algorithm is based on the familiar spanning binomial tree that is used in the recursive 

doubling broadcast algorithm for hypercubes [12]. This algorithm will be called the spanning 

iree (ST) broadcast and was described earlier in [2] for linear arrays and meshes. A ST broadcast 

on a linear array of 2d nodes takes d steps. On the ith step (1 5 i 5 d) ,  each node j that already 

has a copy of the message sends it t o  node j @ 2 d - i ,  where denotes bit-wise exclusive OR. 



This is illustrated for a linear array in Figure l(a). The corresponding spanning tree is shown 

in Figure l(b). Each arc of the tree is labeled with the step at which it carries the message. 

0 7 OOO 

100 010 001 

24 110 f i  101 3l 011 

Figure 1: Spanning tree broadcast on a linear array. 

The spanning binomial tree on which the ST broadcast algorithm is based is also used in 

all of the other broadcast algorithms considered here. The nodes of such trees are numbered 

in binary and the bits of each node number are indexed from most to least significant by 

d - 1, d - 2, ..., 0. (From a purely graph-theoretic point of view, these trees are not spanning 

trees of linear arrays or meshes. However, these trees are useful for describing the scheduling 

and routing of messages in those networks and they will continue to be referred to as spanning 

trees here.) For purposes here, a spanning tree with root 0 is a directed graph of n = 2d nodes 

in which each node i has children whose node numbers are obtained by complementing exactly 

one of the trailing zeros (if any) of i. To determine the node numbering of a spanning tree 

with root other than 0, exclusive OR the node number of each node in the tree with the node 

number of the new root. For more details about the properties of these trees see [12]. 

In the spanning tree of a linear array of 2d nodes, some tree arcs represent circuits of several 

links in the linear array and some links in the linear array are used in several tree arcs. Since 

some of the tree arcs carry messages simultaneously during this broadcast algorithm, there 

might be link contention. (This possibility does not arise in a hypercube because there is a 

one-to-one correspondence between tree arcs and hypercube links.) Even though some arcs in 

the tree share the same links, at each step only disjoint sets of links are used. It was shown in 

[2] that the ST broadcast algorithm causes no port or link contention if node 0 is the root of 

the spanning tree. Also, there are no packet permutation costs in this algorithm because the 

message is not divided into packets. Thus, the cost of the ST broadcast algorithm is 

d(ma  f b)  for a linear array of 2d nodes. (1) 
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There are two other communication problems whose solutions are used frequently in the 

broadcast algorithms given here. Solutions to these two problems, based on spanning trees, 

are now described. Many of the algorithms that follow make use of the distribute operation in 

which one node sends a distinct message to each other node in the network. This operation is 

also called a scatter or a one-lo-all personalized communication [12]. In most of the broadcast 

algorithms that follow, the messages to be distributed a.rise by partitioning the message that is 

to be broadcast. In a linear array or mesh of n = 2d nodes, each of the distributed messages, 

called packets ,  has length m/n,  where rn is the length of the message to be broadcast. The 

distribute algorithm that is used here is based on a spanning tree. A message of length ni is 

distributed to all the nodes in the tree by halving it at each step until each node has received 

its packet. The cost of this distribute algorithm is 

1 
2d 

d 

E(? + b )  = (1 - -)ma + db.  
i= l  

The other problem of interest is called the all-to-all broadcasi. In this problem, each node has 

a message (typically, a packet of length m/n)  that must be broadcast to all other nodes. This 

probletn is easily solved by exchanging packets between nodes whose node numbers (written in 

binary) differ by one bit. On hypercubes this algorithm is known as a dzmenstonal exchange 

and the same term will be used here. Note that the message length doubles at each step of this 

algorithm and so its cost is the same as the cost of the distribute algorithm described above, 

provided there is no link contention. However, on linear arrays and meshes a dimensional ex- 

change can give rise to both link contention and permutation costs. The issue of link contention 

is considered in detail in Sections 3.5 and 3.6, where the dimensional exchange is a critical part 

of the recursive halving broadcast algorithm. Until then dimensional exchanges will be done 

only on subarrays of 2" nodes and on submeshes of 2" x 2" nodes. Link contention does not 

arise in arrays of these sixes. 

Permutation costs can arise during a dimensional exchange if there is some inherent ordering 

among the packets that are exchanged. There is always such an ordering associated with the 

packets exchanged in the broadcast algorithms studied here. For example, it will often be the 

case that each contiguous subarray of 2" nodes contains distinct packets numbered 0,1, ..., 2"- l ,  

as shown in the two examples in Figure 2. It will be required that each subarray does an all-to-all 

broadcast of the packets within that subarray so that each node receives a copy of each packet. 

In addition, the packets must ultimately be ordered by their index. Figure 2(a) illustrates that 

the ordering of packets is preserved by exchanging with nearest neighbors first. This corresponds 

to selecting destinations by complementing the sender's node number bits from least to most 

significant. The opposite ordering of destinations results in an out-of-order concatenation of 
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01 01 23 23 

x 

01 01 23 23 01 01 

0 1 1  2 3 0 1 1  2 3 0 1 

0213 0213 0213 0213 0213 0213 0213 0213 0213 0213 

- - - f---------J 

I 0123 1 0123 I 0123 1 0123 I 0123 I 0123 I 0123 1 0123 1 0123 I 0123 I 

0 1 2 3 0 1 2 3 0 1  

Figure 2: Dimensional exchanges of 2" packets among 2" nodes, u = 2. 
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packets, as shown in Figure 2 ( b ) .  In this cia.se an internal permutation of packets is required 

to achieve the desired packet ordering. Until the recursive halving algorithms are introduced 

in Section 3.5 ,  all of the broadcast algorithms given here perform dimensional exchanges so 

that permutation costs are avoided. (Note that since the size of each subarray is limited to 2”, 

the overlapped pairs of exchanges do no exceed the capacity of the links, so there is no link 

contention during these exchanges.) 

With the basic tools introduced above, we can now continue with the construction and 

analysis of broadcast algorithms. 

3.1.2. ST broadcast on a linear array, v > 0 

If u > 0 and if it is assumed that v is an integer, the ST broadcast can be generalized to 

take better advantage of the available network bandwidth. Under these circumstances the 

linear array can be viewed as 2” interleaved subarrays each with 2d-” nodes. The ith of these 

subari-ays, for 0 5 i < 2 ” ,  consists of nodes numbered j2”  + i, for 0 5 j < Z d - ” .  Figure 3 shows 

the two interleaved arrays as white and gray cells in a linear array of 8 nodes for the case of 

v =  1. 

To broadcast the message on these interleaved arrays, the message is first distributed among 

nodes 0, 1, ..., 2“ - 1. The cost of this distribution is 

1 
2“ 

(1 - -)ma + ub. 

When u = 1 this distribution phase amounts to only one step, as shown in the first step in 

Figure 3. Each of the nodes 0, ..., 2” then acts as the source node of a ST broadcast of a 

message of length m / 2 ”  on a subarray of 2d-” nodes, at a cost of 

This is shown in the second and third steps in Figure 3. Since there is no link contention 

during a ST broadcast there is also no link contention when 2” ST broadcasts are performed 

concurrently because the maximum number of messages that contend for any link is 2 ” .  There 

is no port contention because none of the spanning trees have any nodes in common. Also note 

that the ST broadcasts leave the packets ordered in each contiguous subarray of 2” nodes just 

as they were after they were first distributed. 

The final phase of the algorithm consists of collecting the packets to reconstruct the original 

message. This is accomplished by a dimensional exchange on each contiguous subarray of 2” 

nodes. This is the final step in Figure 3. Recall that there is no link contention during this 

phase since all communication is localized among contiguous subarrays of 2” nodes. Also, 
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distribute ST broadcast (step 1) 

ST broadcast (step 2) exchange 

Figure 3: ST broadcast on a linear array, v = 1. 

the dimensional exchanges can be done in an ordering that allows the origina, message to be 

reconstructed without the need for permuting the packets within each node. Thus, this phase 

has cost 
1 

(1 - %)ma + ub. 

The total cost is 
d - V - 2  

(2+  2 Y  )ma + ( d  + u)b. 

When Y = 0 this cost reduces to d(mu + b ) ,  as it should. 

3.2. Spanning tree broadcast on a mesh 

3.2.1. ST broadcast on a mesh, Y = 0 

A ST broadcast on a mesh, based on the algorithm for linear arrays, is shown in Figure 4. In 

this algorithm the message is first broadcast to the nodes in the leftmost column of the mesh, 

then each node in that column broadcasts the message to the nodes in its row. The cost of this 

algorithm is 

(d l  + &)(mu + b)  for a mesh of 2d1 x 2da nodes, 

and it is easy to see that there is no link or port contention and that there are no permutation 

costs. 

This algorithm does not take very good advantage of the connectivity of the mesh. Better 

advantage is taken by treating the mesh as four interleaved 2dl-1 x 2d2-1 submeshes. This 

viewpoint is illustrated in the first two frames of Figure 5 where each of the four submeshes is 

given a unique hatching pattern. The message is first distributed to the 2 x 2 block of nodes in 

the upper left corner of the mesh so that each of the four nodes in that block has one quarter 

of the message. This is shown in the first two steps of Figure 5. The cost of these steps is 

3 
-ma + 2b. 
4 

Each of the four corner nodes then uses the S T  broadcast algorithm described in the previous 
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column ST broadcast (2 steps) 

row ST broadcast (3 steps) 

Figure 4: A simple spanning tree broadcast on a mesh. 

paragraph to concurrently broadcast the message in its submesh. Steps 3 through 6 of Figure 5 

show these broadcasts. All link and port contention can be avoided by alternating the orienta- 

tion of the spanning trees of the four submeshes. If alternate mesh nodes are colored red and 

black as in a checkerboard, then the red cells broadcast the message first in their column and 

then in their row, and the black cells do the opposite. If dl  # d2, the broadcasts along the 

shorter axis must be delayed for Id1 - dzl steps after the two broadcasts along the longer axis 

begin. The cost of this phase is the cost of the broadcasts along the longer axis, 

ma 
4 2(max(d1, dz) - 1)(- + b ) .  

At the end of the S T  broadcasts the packet distribution pattern of the first two steps is now 

replicated in each contigiious 2 x 2 block of nodes. Two exchanges between neighboring pairs 

of nodes complete the algorithm. The cost of these two exchanges is 

3 
-ma -t 2b.  
4 

For a 2dl x 2dz  mesh the total cost of the algorithm is 

dz)  + 1)ma + (2 max(d1, d 2 )  + 2)b.  

For sufficiently long messages, this is a significant improvement over the simple algorithm given 

at the beginning of this section. 
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distribute distribute 

exchange exchange 

bmadcast on submeshes 

i 
Figure 5: A better ST broadcast on a mesh. 
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3.2.2. ST broadcast on a mesh, v > 0 

For v > 0 the ST broadcast algorithm can be generalized from a linear array to a mesh just a s  

in the case of v = 0, that is, first broadcast along the leftmost column and then concurrently 

broadcast along each row. It follows from Equation 2 that this broadcast algorithm has cost 

(3) 
dl  + d:! - 2~ - 4  

2” 
) m a  + (dl + d2 3- 2v)b. (4 -t 

However, some savings can be achieved by delaying the collection step at the end of the column 

broadcast until the row broadcasts are complete. This way, the packets broadcast along the 

rows are somewhat shorter. In a mesh of 2d1 x 2 d 2  nodes, this algorithm proceeds in five phases 

(see Figure 6): 

distribute column ST broadcast (2 steps) distribute 

row ST broadcast exchange exchange 

Figure 6: S‘I’ broadcast on a mesh, v = 1. 

1. Distribute the message to the first 2’ nodes in the leftmost column. Cost: (l-&)rna+vb. 

2. The first 2’ nodes in the leftmost column each do a ST broadcast of a message of length 

ma/2” in a linear subarray (column) of 2 d l - u  nodes. Cost: ( d l  - v ) ( y  + b ) .  

3. Each node in the leftmost column distributes the message it received in phase 2 to the 

first 2” nodes in its row. Cost: (1 - $)y + vb. 
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4. The first 2” nodes in each row do a ST broadcast of a message of length m ~ / 2 ~ ”  in a 

linear subarray (row) of 2 d 2 - ”  nodes. Cost: (d2 - v)(% + b ) .  

5. Each contiguous 2” x 2” block of nodes exchanges packets to reconstruct the original 

message in each node. Cost: (1 - &)ma + 2vb. 
The distribute operations of steps 1 and 5, and the dimensional exchange of step 5, cause no 

link contention because each of those operations is limited to continguous subarrays of 2” nodes 

or to continguous submeshes of 2” x 2” nodes. Also, it is easy to see that the 2” ST broadcasts 

overlapped in each of steps 2 and 4 do not exceed link capacity. The total cost of this algorithm 

is thus 

(In view of this cost, when dl > d2 it is advantageous to first broadcast along the top row and 

then down the columns.) This cost is always lower than that of Equation 3.  Also note that 

when v = 0, this cost becomes ( d l  + dz)(ma + b ) ,  as expected. 

One additional algorithm is given that trades transmission costs for latency costs. It com- 

bines the “better” mesh ST  broadcast algorithm given in Section 3.2.1 with the advantage that 

Y > 0. Again, the mesh is viewed as 2’” interleaved meshes each of size 2 d l - u  x 2 d 2 - ” .  The 

message is first distributed to the block of 2” x 2” nodes in the upper left corner of the mesh 

at a cost of 

Each of the nodes that received a packet then acts as the source of a ST broadcast in its 

submesh, using the “better” ST broadcast algorithm of Section 3.2.1. Since each packet has 

length m/22”, the cost of this broadcast is 

max(4, &) - v mu 
( 2 + 1)- 22v + (2(max(d1, d2) - Y) + 2)b.  (5) 

At the end of this broadcast each block of 2” x 2” nodes uses a dimensional exchange to collect 

the entire message into each node. The cost of this collection step is 

(1 - -;-)ma 1 + 2vb, 
2-3 

and the cost of the entire algorithm is 

Comparing Equations 4 and 6 and assuming that dl 5 d2, we see that this algorithm has 

dz - dl  + 2 more steps, so its latency cost is higher while its transmission cost has been reduced. 
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This algorithm will be the one chosen for comparison with others in Section 3.7 

3.3. Bidirectional spanning tree broadcast on a linear array 

In all of the ST broadcast algorithms for linear arrays presented in Section 3.1 ,  messages flow 

strictly from left to right when node 0 is the source of the broadcast message. Similarly, in the 

mesh algorithms of Section 3.2 messages flow only from top to bottom and from left to right. 

Broadcast algorithms that have bidirectional message flow are now described. These algorithms 

exploit the network property that messages moving in opposite directions do not contend with 

each other for communication links. Each of the algorithms presented in Section 3.1 has a.n 

analogous bidirectional version, presented in this section. The bidirectional analogs of the ST 

broadcast algorithms for meshes are given in Section 3.4. 

3.3.1. BST broadcast on a linear array, v = 0 

In a linear array of n = 2d nodes, the bidirectional spanning tree (BST) broadcast algorithm 

broadcasts the message over two spanning trees, one rooted at node 0 and the other rooted 

at node 2d - 1.  Node 0 first sends half of the message to the root of the other spanning tree. 

Both root nodes then do a ST broadcast of their halves of the message over their respective 

spanning trees. On the last step neighboring pairs of nodes exchange their halves of the message, 

completing the broadcast. Figure 7 shows the message routing determined by these two trees. 

There is no link contention because all messages from node 0 are transmitted from left to right 

distribute 

bidirectional ST broadcasts 01 .v 1 

001 f i  010 

1 4 

1 Fim 

Figure 7: Bidirectional spanning tree broadcast on a linear array. 

while all the messages from node 2d - 1 are transmitted from right to left. There is no port 

contention because, until the last step, only even-numbered nodes send and receive messages 

in the spanning tree rooted at node 0 and only odd-numbered nodes send and receive messages 
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in the spanning tree rooted at node 2d - 1. This algorithm has cost 

(7) 
ma 

( d  + 1)( + a) for a linear array of 2d nodes. 

Comparing this cost to the cost of the analogous ST broadcast algorithm from Section 3.1.1 

(Equation l),  we see that for d > 1, transmission time has been reduced at the cost of one 

additional startup. 

3.3.2. BST broadcast on a linear array, u > 0 

If Y > 0, the linear array can be viewed as 2” interleaved subarrays each with 2d-V nodes, just 

as in Section 3.1.2. (See Figure 8 and compare with Figure 3.) 

distribute BST brdcast (3 steps) 

exchange 

Figure 8: BST broadcast on a linear array1 u = 1. 

The message is first distributed among nodes 0, l , . . . ]  2” - 1. The cost of this distribution is 

1 
2 

(1 - --)ma + vb. 

Each of the nodes 0, ..., 2” - 1 then acts as the source node of a BST broadcast of a message 

of length m/2” over a subarray of 2d-” nodes, a t  a cost of 

Since 2” BST broadcasts are performed concurrently, the maximum number of messages that 

contend €or a link is 2”, so there is no link contention during this phase. There is no port 

contention because none of the spanning trees have any nodes in common. It is easy to verify 

that the BST broadcasts leave the packets ordered in each contiguous subarray of 2” nodes 

just as they were in the original partitioning. The final phase of the algorithm consists of com- 

bining the packets to  reconstruct the original message. This is accomplished by a dimensional 

exchange within each contiguous subarray of 2’ nodes. Since these exchanges are localized 

among subarrays of 2” nodes, there is no link contention during this phase. Also, recall that 

the dimensional exchanges can be done in an ordering that allows the original message to be 

reconstructed without the need for permuting the packets within each node. Thus, this phase 
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has cost 
1 

2 
(1 - :)ma + vb. 

The total cost is 
d - Y - 3  

( 2 +  2 U S 1  )ma + ( d  + v + 1)b.  

When v = 0 this cost reduces to that of Equation 7, as it should. 

3.4. Bidirectional spanning tree broadcast on a mesh 

3.4.1. BST broadcast on a mesh, v = 0 

Applying the BST broadcast to a mesh, node 0 first broadcasts the message to the leftmost 

column of the mesh and then each node in the leftmost column broadcasts t.0 the nodes in its 

row. If these row and column broadcasts each use the BST broadcast algorithm for a linear 

array, it follows from Equation 7 that the cost is 

ma 
( d ~  + dz + 2)( 2 + b )  for a mesh of 2d1 x 2d2 nodes. 

A slight improvement can be obtained by treating the mesh as a linear array of 2dlfdz nodes 

and applying the BST algorithm just once to broadcast the message. It is easy to verify that 

there is no link or port contention in this version of the broadcast. The cost of this approach is 

(dl + dz + 1)( 2 + b )  (9) 

However, neither of these broadcast algorithms take very good advantage of the connectivity 

of the mesh. A lower cost algorithm can be obtained by an approach analogous to that used 

in Section 3.2.1 for the “better” ST broadcast on a mesh. The message is first distributed 

among two square blocks of 4 nodes each at opposite corners of the mesh. The details of this 

distribution phase are shown in the first three steps of Figure 9. The message is viewed as eight 

packets numbered 0 ,1 ,  ..., 7. Initially, node (0,O) contains all eight packets. Distributing the 

packets as shown in the figure avoids permutation costs later in the algorithm. The cost of this 

distribution phase is fixed at 
7 
-ma + 3b. 
8 

Each of the eight nodes that has a packet RUW uses a spanning tree to concurrently broadcast its 

packet of length m/8 among eight interleaved meshes each of size 2dl-1 x 2d2-1. Steps 4 through 

7 of Figure 9 show these broadcasts. All link and port contention is avoided by alternating the 

orientation of those spanning trees as described in Section 3.2.1. (Also, compare with Figure 5.) 

If d l  # da, the broadcasts along the shorter axis must be delayed for Id1 - dal steps after each 
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m 
distribute (3 steps) 

alternating row/column ST braadcasts (4 steps) 

r-I I 1 1  

exchange (2 steps)  

Figure 9: A better BST broadcast on a mesh. 



- 18 - 

of the two broadcasts along the longer axis begin. T h e  cost of this phase is the cost of the 

broadcasts along the longer axis, 

2(max(dl,dz) - 1)(- ma + b). 
8 

At the end of the ST broadcasts, each continguous square block of four nodes contains the entire 

message, distributed among its members. Figure 10 shows how the original eight packets are 

distributed among the members of each such block. This particular packet distribution pattern 

2; 2;+1 

2i i-1 2i E3 
Figure 10: Packet distribution after broadcast phase. Row and column indices indicate block 
orientation. (0 5 i < 2dl-1 and 0 5 j < 2dz-1.) 

allows the original message to be reconstructed in each node, without permutation costs, by 

the pair of exchanges shown in the last two steps of Figure 9 and with a cost of 

3 
;ma + 2b. 

The total cost of the algorithm is thus 

2max(dl,d2)+ 11 
8 

m a  + (2max(d1, dz) + 3)b. 

3.4.2. BST broadcast on a mesh, v > 0 

As in Section 3.2.2, consider the 2dl x 2da mesh as made up of 22v interleaved submeshes, each 

of size 2dl-v x 2d2-“, so that each 2” x 2” contiguous block of nodes has exactly one node from 

each submesh. To broadcast a message, node 0 first distributes the message as 22y packets 

among the nodes in the 2” x 2” block in the upper left corner of the mesh. The cost of this 

step is 
1 

22v 
(1 - -)ma + 2ub. 

Each of the nodes in that block then acts as the root of a BST broadcast of a message of length 

m/22” in a submesh of size 2d1-v x 2da-” with v = 0. From Equation 10, the cost of those 

broadcasts is 
2(max(dl, d2) - v) + 11 

22~+3  ma + (2(rnax(d1, dz) - v) + 3)b. 
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After those broadcasts are completed, each node in each contiguous 2” x 2” block contains one 

of the 22” packets. These packets are then recombined using a dimensional exchange. The 

ordering of these packets within each block is the same as the ordering of the packets after the 

distribution phase so there are no permutation costs during the exchange. Also, the level of 

link contention during the exchange is never greater than the network’s capacity to handle it 

because communication is localized within blocks of 2” x 2” nodes. This dimensional exchange 

thus has cost 
1 

(1 - ;iz;)rna + 2ub 

and so the total cost of this algorithm is 

3.5. Recursive halving broadcast on a linear array 

The recwsive halving (RH) broadcast is similar to the recursive halving broadcast algorithm for 

hypercubes given by van de Geijn and it differs only slightly from the global combine algorithm 

for linear arrays and meshes given in [1,16]. 

Ift+;+llltit)-ll;t”s.-l- 
distribute (3 steps) 

exchange (3 steps) 

Figure 11: Recursive halving broadcast on a linear array. 

The first phase of the RH broadcast uses a spanning tree to  distribute the message among 

all processors. This is shown in the first three steps of Figure 11. The cost of the first phase is 

1 
2 d  

(1 - -)ma + db. 

The second phase recombines the message packets using a sequence of pairwise exchanges 

analogous to a dimensional exchange in a hypercube. On step i (1 5 i 5 d ) ,  all pairs of 

nodes whose (d  - i ) lh  bits differ exchange messages. With each exchange the lengths of the 

message packets double until each node contains the entire message after d steps. There is link 

contention at each step of this phase but the last. The amount of contention decreases with 

each step. On the first step 2d-1 messages contend for the link from node Zd-l  - 1 to node 2“l. 

The same number of messages contend for t<he link going in the other direction. If v > 0, the 

link contention that occurs during the second phase is mitigated somewhat by the facts that 
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the shortest messages are sent during steps having the greatest link contention, and. if u > 0 

the bandwidth of the network links is a factor of 2” higher than that of the connection from 

the node to the network (since a = 2”?i), so 2” pairs of exchanges can proceed concurrently, 

Under these considerations the cost of the second phase of the RH broadcast is 

d - 1  d - U - 2  

i = O  

E[& max(a, 2”) + b] = ( 1  + 2v+ l  ) m a  + db.  

This algorithm partitions the original message into 2d packets. An examination of the 

routes followed by those packets shows that in order for the broadcast algorithm to preserve 

their original ordering they must either be permuted in node 0 before the first phase or permuted 

in each node following the second phase. Either choice has cost mp. The total cost of the RIi 

broadcast is thus 

d - U - 2  1 - - )ma + 2db + rnp for a linear array of 2d nodes. 
( 2 +  2u+1 2d 

3.6. Recursive halving broadcast on a mesh 

The RH broadcast algorithm for a mesh is similar to the RH broadcast algorithm for a linear 

array. The cost of distributing the message in the first phase (shown in the first six frames of 

Figure 12)  is 

( 1 -  2dl+ds )ma + ( d l  + d2)b. 

The dimensional exchange of the second phase can take advantage of both dimensions of the 

mesh to reduce contention. By interleaving horizontal and vertical exchanges in alternate nodes 

(shown in the remaining six frames of Figure 12)  the amount of contention that occurs in a 

square mesh ( d l  = d2)  is half that which would occur if all horizontal exchanges were done 

before any vertical exchanges. For non-square meshes the reduction is not as great. (See [ l ]  for 

further details.) For u < d l  5 d2 ,  the cost of the second phase is 

As in a RH broadcast on a linear array, permutation costs of mp are incurred at the beginning 

or at the end of the algorithm, so the total cost of the mesh RH broadcast for 2dl x 2 d z  nodes 

is 
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distribub (6 steps) 

exchange (6 steps) 

Figure 12: RH broadcast on a mesh. 
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linear ST 

linear BST 

3.7. Comparisons 

Table I summarizes the costs of the broadcast algorithms described in this section. The costs of 

the algorithms designed for linear arrays are given for n = 2d  nodes while the costs of the mesh 

algorithms are given for n = 2dl  x 2 d 2  nodes. It is assumed that v < d and v < dl  5 dz. All of 

these algorithms have O(1g n )  coefficients of transmission cost and latency. The RH broadcast 

has an O( 1) coefficient of transmission cost in the special case of square meshes (dl = d2). 

(2 + 9 )ma + ( d  + v)b 

( 2  + d-V-3 zy+’  )ma + ( d  + v + 1 ) b  

2 ( d i - d 1  -3  1 1 meshRH 1 ( 2 +  Zdl+Y!2  + 22y+3 - 2d,:d2 )ma + 2(dl + d2)b  + mp 

Table I: Broadcast algorithm costs. 

For the shortest messages the ST broadcast algorithm have the lowest cost on both linear 

arrays and meshes because of their low latency. The BST broadcast always has lower cost than 

the RII broadcast on linear arrays, regardless of message length. The BST broadcast also has 

lower cost than the ST broadcast whenever 

2 V + ’ b  
nz > 

a(d - Y - 1) ’ 

It can be verified from the data given in Section 6 that this crossover point is reached on the 

Intel Delta mesh before m > 1K bytes. 

The costs of the ST  and BST broadcast algorithms for meshes in Table I are those of the 

“better” versions of those algorithms given at the ends of Section 3.2.2 and 3.4.2, respectively. 

The mesh BST broadcast algorithm has one more step than the mesh ST broadcast algorithm 

and so its latency cost is higher by 6. The difference between the coefficients of ma in the 

cost expressions for those two algorithms is not as great as in the case of the algorithms for 

linear arrays and so the additional latency of the BST broadcast is not as quickly amortized 

by longer message lengths. On the Delta the predicted performance of the BST broadcast is 

better than that of the ST broadcast only for messages of many tens of kilobytes. The value 

of the crossover point varies inversely with the size of the mesh. The RH broadcast algorithm 

for meshes sometimes has lower transmission cost than the ST and BST broadcast algorithms, 



- 23 - 

but the latter always have lower latency costs and they have no permutation costs. 

Finally, note that the ST and BST broadcast algorithms require no additional temporary 

storage of message packets because they do not need to permute message packets. The RH 

broadcast algorithms require temporary storage proportional to message length. 

4. Broadcasting from an Arbitrary Node 

In all of the broadcast algorithms given so far, the node that contains the message to be 

broadcast has always been node 0 in the case of linear arrays, and node (0,O) in the case of 

meshes. This section considers the problem of generalizing the algorithms of Section 3 so that 

any node can serve as the source of the broadcast message. This is done for the ST and RST 

broadcasts on linear arrays and for the RII broadcast on linear arrays and meshes. None of 

these generalizations adds any cost to the original algorithms. I t  is conjectured that a similar 

approach can be used to generalize the ST and BST broadcast algorithms for meshes. 

4.1. ST broadcast on a linear array, v = 0 

It was mentioned in Section 3.1.1 that there is no link contention during a ST broadcast on a 

linear array. This is clear from Figure l(a) when node 0 is the root of the spanning tree. In 

fact, there is no link contention even when some other node is chosen as the root of the ST 

broadcast. It is now shown that for a ST broadcast from an arbitrary node of a linear array of 

n = 2d nodes, at each step each message travels the same distance and in the same direction, 

and all nodes that send messages are separated by a distance that is greater than the distance 

their messages travel. This will allow us to  conclude that there is no link contention during 

such a broadcast. 

Consider a linear array with n = 2d nodes and suppose node k is the source of the broadcast 

message. Construct the spanning tree for the broadcast by exclusive OR-ing k with the node 

numbers of the spanning tree with root 0. (See Figure 13(b).) Now assume that at the beginning 

of the ith step of the broadcast, any two nodes that have a copy of the message are separated 

by a distance of at least Zd-"I in the linear array. (This is vacuously true at the beginning of 

step 1.) Each message sent during the ith step travels a distance of Z d V i  hops because it is the 

( d  - i)th bit of the sender's node number that is complemented to determine the destination of 

the message. In addition, each message sent during the ith step travels in the same direction 

because the ith bit of each sender is the same. This is clearly true in the spanning tree with 

root 0; all such bits are 0 and all messages travel to the right at the dth step. This is also true 

in the spanning tree rooted at  node k since the ( d  - i)th bits of the sending nodes were all 

obtained by exclusive OR-ing the (d- bit o f t  with 0, so at the end of step i, all nodes that 

have a copy of the message are separated by a distance of at least Z d - i .  Thus, at each step all 
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message follow disjoint paths and so there is no link contention. It follows that there is no link 

contention during an ST broadcast from an arbitrary node of a linear array of 2d nodes. (See 

Fignre 13(a).) 

0 7 

3 1 

101 

A :/I 100 

01 1 OOO 110 

1 
010 

Figure 13: Spanning tree broadcast on a linear array with root node 5. 

Based on these observations it is also clear that there is no port contention during a ST 

broadcast from an arbitrary node because at each step each message has a distinct destination. 

Also, there is no link or port contention during a distribution operation from an arbitrary 

node. This follows because the distribution algorithm uses the same spanning tree as the 

ST broadcast. These observat,ions are now applied to generalize some of the other broadcast 

algorithms presented in Section 3. 

4.2. ST broadcast on a linear array, v > 0 

First, consider the ST broadcast algorithm for linear arrays with Y > 0. (See Section 3.1.2 and 

Figure 3.) That algorithm has three phases consisting of a distribute operation, concurrent ST 

broadcasts on subarrays (with Y = 0), and a dimensional exchange. During the first phase the 

message is distributed to a contiguous block of 2” nodes. When node 0 is the source of the 

broadcast this block consists of nodes 0, 1, ..., 2’ - 1. When some other node k is the source the 

message should be distributed among the corresponding block of nodes that contains node IC, 

namely, nodes j 2 ” ,  j2’ + 1, ..., ( j  + 1)2’ - 1, where 0 5 j < 2d-” and j 2 ”  5 k 5 ( j  + 1)2’ - 1. 

Call this block of nodes metanode j. If node k is not the leftmost node in metanode j the 

distribute algorithm must use a spanning tree rooted at some node other than the leftmost 

node in the metanode. It was pointed out above that there is no link or port contention in such 

a distribute operation. Also note that it is a simple matter to consecutively distribute the 2’ 

packets among the nodes of the metanode, so no permutation costs are introduced. 

During the next phase there are 2” concurrent ST broadcasts performed on 2” interleaved 
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subarrays. Note that at each step of the concurrent ST broadcasts, all messages sent by nodes 

in metanode j have destinations in the same metanode. Figure 13(a) can thus be viewed a 

a ST broadcast over a linear array of metanodes so the argument given in the case of Y = 0 

applies equally well to the case of Y > 0. 

The final phase of the ST broadcast is the dimensional exchange of packets among nodes 

in the same metanode. At this point the source node of the broadcast is irrelevant since each 

metanode contains the same information, so the issues of link and port contention do not arise. 

It follows from these observations that there is no link or port contention during a ST broadcast 

from an arbitrary node for linear arrays with v > 0. It is conjectured that similar arguments can 

be used to extend these observations to the mesh ST broadcast algorithms given in Section 3.2. 

4.3. BST broadcast on a linear array 

Now consider the BST broadcast on a linear array with Y = 0. (See Section 3.3.1 and Figure 7.) 

If some node k # 0 is the source of the broadcast message, then the appropriate broadcast tree 

is obtained by exclusive OR-ing k with each node of the BST broadcast tree with root 0. (See 

Figure 14.) On the first step the message is divided into two halves. Node k sends one half 

l- 
distribute 

bidirectional ST broadcasts 

101 

01 m 11 011 ??MI 110 

100  f i k  111 1 010 

Figure 14: BST broadcast on a linear array with root node 5. 

to  node El that is, to the bit-wise complement of k .  Nodes k and then act as source nodes 

in ST broadcasts on two interleaved arrays each with 2d-1 nodes. It was shown in Section 4.1 

that there is no link or port contention during either one of those ST broadcasts. There is no 

port contention between those two concurrent ST broadcasts because their spanning trees are 

disjoint] and there is no link contention because at each step all messages in one spanning tree 

travel in the opposite direction from all message in the other spanning tree. I t  follows that 

there is no link or port contention during a BST broadcast on a linear array with v = 0. This 

observation can be extended to the case of v > 0 by viewing a BST broadcast on a linear array 

of 2d nodes with v > 0 to  be a BST broadcast on a linear array of Z d - ”  metanodes with Y = 0. 
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The reasoning is the same as in the case of a ST broadcast with v > 0,  above. It is conjectured 

that similar arguments can be used to esterid these observations to the mesh RST broadcast. 

algorithms given in Section 3.4.  

4.4. RH broadcasts on linear arrays and meshes 

Finally, the RH broadcast algorithm for linear arrays can be easily generalized to start from 

an arbitrary node. The first phase of that algorithm is a distribute operation (across the entire 

array) based on a spanning tree. (See Figure 11.) It was shown above that such a distribute 

operation can be generalized to start from any node. After the distribute is complete the 

location of the source node is no longer relevant and the final dimensional exchange phase of 

the algorithm proceeds in the same way regardless of which node started the broadcast. Similar 

observations serve to generalize the RH broadcast on a mesh. The first phase is a column 

distribute followed by a row distribute. (See Figure 12.) These operations are easily extended 

to start from any node. The remainder of the algorithm consists of exchange operations, and 

these are not affected by the location of the source node. 

5. Broadcasting to Arbitrary Numbers of Nodes 

The problem of broadcasting on linear arrays and meshes of arbitrary size is now considered. 

Two approaches to this problem are described: virtual nodes and companions. The method 

of virtual nodes can be applied only to the ST and BST broadcast algorithms. The method 

of companions can be used to  generalize all of the broadcast algorithms given in Section 3. 

The method of companions is also likely to be useful for extending the applicability of other 

communication algorithms, such as the complete exchange algorithms of [6] and the global 

combine algorithms of [l], but such considerations are beyond the scope of this work. 

5.1. Virtual nodes 

Given a linear array of n nodes, append 2r1gnl - n virtual nodes to the right end of the array to 

bring the number of nodes up to  the next closest power of two. Figure 15(a) shows an 11-node 

linear array with five virtual nodes appended to it. The idea is to execute an algorithm designed 

for 2r1gnl nodes on n nodes, with node n - 1 simulating all of the virtual nodes to its right. 

This can only be done if there is not too much message traffic passing through node n - 1. 

For example, suppose n = 5 and suppose the rightmost three nodes are virtual nodes in 

the RH broadcast shown in Figure 11. Then at the fourth step, node 4 would have to send 

and receive messages from nodes 0, 1, 2, and 3. Since this would increase the cost of the 

broadcast over the usual cost of a RH broadcast on 2r1gnl nodes, generalizing such algorithms 

using virtual nodes is not considered worthwhile. 
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On the other hand, the ST and BST broadcast algorithms for linear arrays with v = 0 

do not requite node n - 1 to send and receive more than one message at a time. These two 

algorithms can be generalized using virtual nodes. The cost of broadcasting in a row of n nodes 

is then just the cost of broadcasting in a row of 2r 'gn1 nodes. 

In the case of an n1 x 122 mesh, shown in Figure 15(b), each cell in the rightmost column of 

physical nodes simulates the virtual nodes to its right. Similarly, the bottom row of physical 

nodes simulates the virtual nodes below. This leaves node ( n ~  - 1, n z - 2 ) ,  the bottom rightmost 

physical node, to simulate a submesh of (2r1gn11 - n1 + 1)(2r1g"21 - n2 + 1) - 1 nodes, shown 

with double hatching in Figure 15(b). This simulation is feasible for the "simple" ST and the 

BST broadcast algorithms for meshes with v = 0 given in Sections 3.2.1 and 3.4.1 because at 

each step of those algorithms all messages travel only horizontally or only vertically, so node 

(nl - 1,712 - 2) has no greater responsibility for the simulation than any other nodes in its row 

and column. In these two cases the cost of using virtual nodes is the same as the cost of a 

broadcast on a mesh of 2r'gnll x 2r1g"21 nodes. 

Figure 15: Virtual nodes (a and b), and companions (c and d). 

5.2. Companions 

The method of companions can be applied uniformly to generalize all of the algorithnis of Sec- 

tion 3. Consider the 11-node linear array shown in Figure 15(c). Use any broadcast algorithm 

. . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . , . . . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . .. . ~~~. . . .__*. . . . . . . . . . . . . . . . . . (. ., . . . . . . . . . . . . . . . . . . . . . . ,. . .. . . . -. . . . . . . .:,. . . . . . . . . . . .. .. 



- 28 - 

for linear arrays to broadcast the message to the 8 nodes shown full-sized in that figure. Each 

full-sized node then sends the message to its smaller neighbor, its companzon (if any), to its 

immediate right. In a linear array of n nodes, c = n - 2L1gnl nodes have companions. It is 

assumed that the companion nodes are the first c odd-numbered nodes in the array, the smaller 

nodes shown in Figure 15(c). ‘The cost of the broadcast is then the cost of broadcasting the 

message to 2L1gn1 nodes plus an additional cost of m a  + b to send the message to the compan- 

ions. In an nl x 722 mesh entire rows and columns may consist only of companions, and some 

nodes in a mesh may have as many as three companions, as shown in Figure 15(d). In this 

case the cost of the broadcast is that of a broadcast on a mesh of 2L1gnlJ x 2k1gn2J nodes plus 

min(2(ma + b ) ,  3((ma/2) + b ) ) .  The additional term is the minimum of the costs of ST and 

BST broadcasts, respectively, on a 2 x 2 mesh. (The RH broadcast algorithm always performs 

less well than either of these on a 2 x 2 mesh.) Note that the transmission cost in the additional 

term is at least 3ma/2. Also note that the transmission costs of all of the mesh broadcast 

algorithms given in Table I are approximately 2ma. This means that when companions are 

used to generalize those broadcast algorithms, the transniission cost of broadcasting on a mesh 

of arbitrary size is almost twice that of broadcasting on a mesh with the next smaller powers 

of 2 rows and columns. 

5.3. Comparisons 

Only a few of the broadcast algorithms given in Sections 3 can be generalized using virtual 

nodes. These are the ST and BST broadcast algorithms for linear arrays with v = 0 given in 

Sections 3.1.1 and 3.3.1, and the “simple” ST and RST broadcast algorithms for meshes with 

v = 0 given in Sections 3.2.1 and 3.4.1. It is easy to verify that generalizing the “simple” mesh 

broadcast algorithms using virtual nodes yields the same or lower cost than generalizations 

based on companions, but in both cases the overall lowest costs are obtained by generalizing 

the “better” mesh broadcast algorithms using companions, so it is not worthwhile to use virtual 

nodes to  generalize mesh algorithms. 

For the ST broadcast algorithm for linear arrays with v = 0, the cost of the algorithm 

generalized using virtual nodes is [lg n1 ( m a  + b )  and the cost of generalizing with companions 

is (Llg nJ + l)(ma + b ) .  These two costs are the same when n is not a power of 2. On the 

other hand, for the BST broadcast algorithm for linear arrays with Y = 0, the cost of the 

algorithm generalized using virtual nodes is ([lg n1 + l)(ma/2 + b )  and the cost of generalizing 

with companions is (LlgnJ + l)(ma/2 + b )  + m a  + b. It is easy to check that the former cost 

is lower. This is the only known case where generalizing a broadcast algorithm using virtual 

nodes has lower cost than generalizing that algorithm using companions. 



- 29 - 

latency 

permutation cost 

6. Performance on the Intel Delta Mesh 

6 75psec 

p O.Olp~ec/byte - 

The predicted and actual performance of the broadcast algorithms of Section 3 are now consid- 

ered. Predicted costs are based on the communication model of the Intel Delta mesh presented 

in Section 2 and on measurements of the constants for that model. The actual costs of the ST, 

BST and RH algorithms measured on a linear array of 16 nodes are also presented. 

It is claimed by Barnett et al. in [l] that v w 1 for the Delta. More recent results given 

in [13] reveal that this is an accurate estimate of v only when certain programming techniques 

are used. Under ordinary circurristances it is more often the case that v x 0 and so it is 

assumed here that a = 7i. The values given in Table I1 for a,  ii, and 6 are taken from [7]. These 

performance measurements were made using the “robust” kernel. The remaining constant used 

in the communication model of the Delta is p ,  the cost of data movement within a node. A 

careful consideration of this cost for the i860 processing nodes used on the Delta is beyond the 

scope of this work. The performance measurements given in [4] indicate that a data transfer 

rate of 100MB/sec is easily obtainable in practice, so p is chosen to be 0.01 microseconds per 

byte. 

I node-to-network trans. cost I a I 0.08psec/byte I 
I network-to-network trans. cost I iE I 0.08psec/b?/te I 

Table 11: Communication constants for the Intel Delta mesh. 

The predicted costs of broadcast algorithms are shown in Figure 16 for a linear array of 2* 

nodes. That figure illustrates that the BST broadcast is always faster than the RH broadcast 

and that the BST broadcast is faster than the ST broadcast on all but the shortest messages. 

Figure 17 shows the observed costs of implementations of the ST, BST, and RH broad- 

cast algorithms for a linear array of 16 nodes. Those data confirm that the BST broadcast 

algorithm performs better than the ST broadcast algorithm for all but the shortest messages. 

The crossover point is between 256 and 512 bytes. The observed cost of the RH broadcast 

algorithm was much higher than predicted by the model. This is attributed to the facts that 

the RH broadcast recursively breaks the original message into packets of length m / n  and that 

the cost model of the Delta used here is not accurate for such packet lengths. This observation 

about the cost model is supported in [lo]. Some improvement in the performance of the RH 

broadcast can probably be obtained by applying programming techniques described in [13]. 

The predicted c a t s  of the broadcast algorithms for meshes given in Section 3 are shown 

in Figure 18 for a 24 x 25 mesh with v = 0. The predicted costs given for the ST and BST 
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Figure 16: Predicted broadcast costs: n = 24, 8 5 m 5 64K, v = 0. 

broadcast algorithms are those of the “better” versions of those algorithms given at the ends of 

Section 3.2.2 and 3.4.2, respectively. Again, the ST broadcast performs best for short messages 

and gives way to the RST broadcast for message of between 512 and 1K bytes. The predicted 

performance of the RH broadcast is better than that of the BST broadcast for messages of 

more than 12K bytes. Actual performance figures for these algorithms are not available at this 

time. Work is currently underway to implement these algorithms and measure their costs on 

the Delta. 

The observations made in this section are preliminary. Further work will be conducted 

to obtain a larger collection of performance results from the Intel Delta and to better deter- 

mine which features are needed in the communication model to provide accurate predictions of 

algorithm performance. 
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Figure 17: Intel Delta observed broadcast costs: TI = 24, 8 5 m 5 64K. 

7. Summary 

This study of the problem of broadcasting on linear arrays and meshes has yielded several 

improved algorithms. The well known spanning tree (ST) broadcast algorithm for linear arrays 

was extended in several ways. First, it was modified to take advantage of the difference between 

node-tcmetwork and network-to-network communication rates. Second, it was modified, to 

take advantage of bidirectional communication. Combining these two extensions of the basic 

ST broadcast algorithm yielded the bidirectional spanning tree (BST) broadcast algorithm for 

linear arrays. The BST broadcast algorithm always has lower cost than that of the recursive 

halving (RH) broadcast algorithm and has lower cost than the ST broadcast algorithm for all 

but the shortest messages. 

Similar consideration was given to the ST broadcast algorithm for meshes. In this case the 
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Figure 18: Predicted broadcast costs: n = Z4 x z5,  8 5 m 5 64K, v = 0. 

basic algorithm was extended to take advantage of the additional connectivity offered by the 

mesh. This yielded the BST broadcast algorithm for meshes. Its predicted performance falls 

midway between the ST and RH broadcast algorithms for meshes. The ST broadcast algorithm 

performs best for very short messages and the RH broadcast algorithm performs best for very 

long messages. 

None of these algorithms require knowledge of machine-dependent constants for network 

latency and bandwidth to obtain good performance. This means that these algorithms will 

have relatively stable performance as hardware and operating system software changes. While 

better performance for a specific machine can probably be obtained by designing pipelined 

algorithms, such as those given in [12] for hypercubes, or by constructing hybrid algorithms, as 

in [5,9], such algorithms will be more sensitive to changes in machine characteristics than the 
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algorithms described here. 

In Section 4 it was  shown that the ST, BST, and RI-I broadcast algorithms for linear arrays 

can be extended so that any node, not just node 0, can act as the source of the broadcast mes- 

sage. There is no cost penalty when another node is chosen to be the source. It is conjectured 

that these results can be extended to meshes as well. 

Two techniques for generalizing these broadcast algorithms to linear arrays and meshes of 

arbitrary size were given in Section 5. The method of companions can be used to generalize all 

of the broadcast algorithms given here. It was shown that using this method to broadcast on a 

mesh that does not have rows and colunins with powers of 2 nodes approximately doubles the 

cost of the broadcast. It is likely that campanions can also be used to generalize other global 

communication algorithms, such as the complete exchange algorithms for meshes given in [5]. 

A second generalization technique, called virtual nodes, was described that provides slightly 

better performance than companions for the BST broadcast algorithm for linear arrays with 

I/ = 0. 

Finally, the actual performance of the ST, RST and RH broadcast algorithms for linear 

arrays was measured on the Intel Delta mesh. These measurements generally confirmed the 

analytic results of Section 3 but showed that a more precise model of the communication 

network is desirable. Future work will include implementations of these algorithms for meshes, 

additional study of the communication model for the Delta, and preparation of a model for the 

communication network of the Intel Paragon mesh. 
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