
3 445b 0374303 7

E. Rasti
E. Smirni

A. W. Apoa
L. w. Dowdy

.- , . -

i -

ORNL/TM- 1228 7

I '

Engineering Physics and Mathematics Division ; ?J -2
c _

Mathematical Sciences Section I.'

THE KSR1: EXPERIMENTATION AND MODELING OF POSTSTORE

E. Rosti
E. Smirni t

T. D. Wagner +

A. W. Apon
L. W. Dowdy

Dipartimento di Scienze dell'Informazione
Universitb degli Studi di Milano
Via Comelico 39
20135 Milano, Italy

t Computer Science Department
Vaiiderbilt University
Box 1679, Station B
Nashville, T N 37235

Date Published: February 1993

This work was partially supported by sub-contract 19X-SL131V
from the Oak Ridge National Laboratory, and by grant N.
92.01615.PF69 from the Italian CNR "Progetto Finalizzato Sistemi
Informatici e Calcolo Parallel0 - Sottoprogetto 3."

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U S . DEPARTMENT OF ENERGY
under Contract No. DE-AC05840R21400

3 4 4 5 6 0374303 7

Contents

1 Introduction . 1
2 Architectural Overview of the KSRl . 2

2.1 System Hardware . 2
2.2 Memory Organization . 4
2.3 System Configuration . 6

3 Experimental Analysis . 6
3.1 The Workload . 6
3.2 The Experiments . 7
3.3 The Results . 9

4 Modeling and Validation . 14
4.1 DetailedModel . 14
4.2 Approximate Load Dependent Model . 17
4.3 Theoretical Model/Experimental Comparisons 19

5 Generalizations . 21
6 Summary . 22
7 References . 25

... . 111 .

THE KSR1: EXPERIMENTATION AND MODELING OF POSTSTORE

E. Rosti

E. Smirni

T. D. Wagner

A. W. Apon

L. W. Dowdy

Abstract

Kendall Square Research introduced the KSRl system in 1991. The architecture is based

on a ring of rings of 64bit microprocessors. It is a distributed, shared memory system

and is scalable. The memory structure is unique and is the key to understanding the

system. Different levels of caching eliminates physical memory addressing and leads to the

ALLCACHETM scheme. Since requested data may be found in any of several caches, the

initial access time is variable. Once pulled into the local (sub)cache, subsequent access

times are fixed and minimal. Thus, the KSRl is a Cache-Only Memory Architecture

(COMA) system.

This paper describes experimentation and an analytic model of the KSRI. The focus

is on the poststore programmer option. With the poststore option, the programmer can

elect to broadcast the updated value of a variable to all processors that might have a copy.

This may save time for threads on other processors, but delays the broadcasting thread

and places additional tr&c on the ring. The specific issue addressed is to determine

under what conditions poststore is beneficial. The analytic model and the experimental

observations are in good agreement. They indicate that the decision to use poststore

depends both on the application and the current system load.

- v -

1. Introduction

Traditionally, the scalability of shared memory multiprocessors has been limited due to memory

access path contention. However, the KSRl system, recently developed by Kendall Square

Research, demonstrates that scalable shared memory multiprocessors are feasible. From a

measurement and modeling perspective, the KSRl and its architectural paradigm deserve an

in-depth analysis.

One novel feature of the KSRl is its memory management scheme, ALLCACHETM. Each

processor has its own local memory that is managed as a cache, and a valid copy of a data

item must exist in the local cache of the processor in order to be accessed. Data items are

not bound to any particular memory, but migrate dynamically to a processor when they are

accessed The entire memory is shared and the memory is viewed as a hierarchy of caches. Upon

writing, a requesting processor writes the data item to its local cache and marks it as valid.

All other copies of the item in other processor caches are marked as invalid. Prior to reading, a

requesting processor must have a valid copy of the item in its local cache. If a valid copy of the

item is not in the local cache of the requesting processor, then a valid copy is migrated from

the local cache of another processor. Depending on which cache contains the requested data

item at any particular time, the time required to perform this migration may vary. However,

once a valid copy of the requested item is moved into the local cache, all subsequent accesses

are to the local copy. Thus, the KSRl has a Cache-Only Memory Architecture (COMA) [5].

To take advantage of the architecture, programmers are provided with a poststore option.

When a variable is updated by a write, using poststore will cause a valid copy of the variable

to be sent to all caches which contain a copy of that variable. This will shorten the access time

for any future reads on those other processors, since each will have a valid copy of the item in

its local cache. Without poststore, whenever a future reader requests the variable, it must first

pull a valid copy into its cache. Clearly, a tradeoff exists since using poststore will shorten the

time for future reads, but lengthens the time for the write.

This paper presents an experimental and modeling study of the KSR1. The focus is on the

poststore option. The stated goals and outline of this work are:

0 t o understand and describe the KSRl architecture,

to run controlled experiments on the KSRl, using a simple readers-and-writers workload,

to observe performance with and without poststore,

to construct and validate an analytic model of the system which could be used for predict-

ing the general behavior of the KSRl and for predicting the specific behavior of poststore,

and

e t o outline generalizations and summarize our findings.

- 2 -

The purpose of this paper is to study the effects of poststore for a particular reader/writer

workload. The results show that relatively simple models accurately indicate the effects of

poststore. Also, results show that poststore is more effective as the number of reader threads

in one application increases, but becomes less effective as the total number of applications in-

creases. Therefore, the effective use of poststore depends on both the programmer’s application

code as well as the system load.

2. Architectural Overview of the KSRl

2.1. System Hardware

The general KSR architecture is a multiprocessor system composed of a hierarchy of rings. The

lowest level, ring:O, consists of a 34 slot backplane connecting 32 processing cells (processing

elements) and two cells responsible for routing to the next higher layer ring, ring:l. A fully

populated ring:l is composed of the interconnecting cells from 32 ring:O rings. A fully con-

figured KSRl is composed of two layers containing 1024 processing cells along with two ring

interconnecting cells on each ring:O. The general KSR architecture provides for a third layer

which connects 32 ring1 rings into a ring::! layer. Figure 1 shows the hierarchical ring structure

of the KSR multiprocessor.

This study deals with a KSRl multiprocessor with a single ring:O installed. The description

that follows is of the general KSR architecture with specific attention given to the memory

structure and management of a single ring:O.

Each processing cell i s constructed from 12 custom CMOS chips:

0 The Co-Execution Unit (CEU) fetches all instructions, controls data fetch and store,

controls instruction flow, and does arithmetic required for address calculations.

0 The Integer Processing Unit (IPU) executes integer arithmetic and logical instructions.

0 The Floating Point Unit (FPU) executes floating point instructions.

0 The external Input/output Unit (XIU) performs DMA and programmed I/O.

0 Four Cache Control Units (CCU) are the interface between the 0.5MB subcache and the

32MB local memory (referred to as the local cache).

0 Four Cell Interconnect Units (CIU) are the interface between a processing cell and the

ring:0 ring.

In one instruction cycle an instruction pair is executed. One member of the pair is an instruction

for the CEU or XIU and the other member is an instruction for the FPU or IPU. The clock

- 3 -

speed is 20 MHz. As in other superscalar processors, the KSR processor operates in a pipelined

fashion with two pipelines, one for the FPU/IPU and one for the CEU/XIU. The pipelining

and 20 MHz clock yield a peak 40 MFLOPS for each cell. Using shared data structures and

optimized code, early implementations of a 1000 X 1000 double precision

on a 32 processor system resulted in over 500 MFLOPS total capacity [3].

LlNPACK running

erou..ing
C.11.

1

.. .

...
Ring2 ::

Figure 1: KSR hierarchy of rings.

Each processing cell also contains a 256KB data cache and a 256KB instruction cache. The

on-board data and instruction caches are referred to as subcaches. A daughter board connected

to each processing cell contains 32MB of memory referred to as local cache. The word size

of the KSR is 64 bits and all functional units are based on 64 bit operands. All execute

and control operations are register oriented. Each processor has 64 floating point registers,

32 integer registers, and 32 addressing registers. All registers are 64 bits wide. (The KSRl

implementation uses 40 bit addressing registers.)

In addition to the 32 processing cells, each ring:O also contains 2 ALLCACHE Routing and

Directory (ARD) cells. One of the ARD cells is an uplink from the ring0 to ring:l. The other

ARD is a downlink from the ring:l to ring:O. The ARDs participate in the transfer of data

between ring:Os across ring: 1.

All of the local caches, together with the interconnecting rings, make up the ALLCACHE

memory system. Addressing in the KSR architecture is based on the translation of a Con-

text Address (CA) into a System Virtual Address (SVA). Context addresses are composed of

a segment and ofFset and are translated into System Virtual Addresses via fully associative

hardware Segment Translation Tables (STTs) on each processor. There are two STTs, one for

data and one for instructions. The System Virtual Address space consists of all of the local

caches. The ALLCACHE memory system and the organization and management of System

Virtual Address (SVA) space is the major difference between the KSR architecture and other

architectures. When a processor references an SVA, a search engine, which is the collection of

CIUS and the ARD on each ring0 along with the ring interface, locates the SVA and moves its

- 4 -

contents to the local cache of the referencing processor.

2.2. Memory Organization

ALLCACHE stores data in units of pages and subpages. Pages contain 16K bytes divided into

128 subpages of 128 bytes each. Each local cache can hold 2,048 pages. The memory system

allocates storage in the local caches on the basis of pages and each page of SVA space is either

entirely allocated in the caches or not allocated at all. The local caches share data in units of

subpages. Whenever a page of SVA space is allocated in the system, there may be more than

one copy present. This would be the case when several threads running on different processors

are all referencing shared memory. It is possible that each local cache that has allocated a page

may not contain a copy of all of the subpages in that page. That is, space in the local caches is

allocated on a page basis, but data is transferred on a subpage basis. Each local cache maintains

a cache directory in a 16-way set associative memory with 128 sets that maps physical pages

in that cache to SVA pages. All of the pages of SVA space are divided into 128 equivalence

classes, each associated with a cache directory set. Since there are 16 elements in each set in

the cache directory, a cache can contain no more than 16 pages in the same equivalence class.

The subcaches are allocated on the basis of blocks (2K bytes) and data is moved into and

out of the subcaches in subblocks of 64 bytes each. A two way set associative subcache directory

maintains the mapping between subcache blocks and SVA pages with one descriptor for each

block. The subcaches replace blocks as needed using a random replacement scheme.

In the cache directory of each cell, additional information is maintained that represents the

state of each subpage in the local cache. There are four states that a subpage can be in:

Exclusive owner: Indicates that this is the only valid copy of the subpage in all of the

local caches (Le., in the entire system). The contents can be read or modified.

Atomic: Like exclusive, this is the only valid copy and the subpage can be modified. This

state also provides a flag to allow synchronization by multiple processors. Thus, this state

provides for locks.

Read-only: Indicates that there are two or more valid copies of this subpage among all

of the local caches. The contents of this subpage cannot be modified until its state is

changed to exclusive or atomic.

Invalid: The contents of this subpage are not t o be accessed (i.e., read or modified).

Newly allocated pages set all subpage descriptors t o invalid. This state is analogous to

the setting of a “dirty bit.”

The subcaches also maintain state information at the subblock level. The instruction subcache

allows each subblock to be in either the invalid state or the read-only state. In addition to

- 5 -

Location of
subpage

invalid and read-only, the data subcache allows a block to be in the exclusive owner state to

allow for modification. The data subcache also maintains modification information for each

subblock. The state of a subblock in the subcache is not allowed to be stronger than the state

of the corresponding subpage i n the local cache. Thus, it is not possible for a subblock’s state

t o be exclusive in the subcache while read-only in the local cache.

When a processor references an SVA address it continues execution for two cycles, which is

the latency of the subcache. If the address is not contained in the subcache, the processor is

stalled and a request is presented to the CCUs to locate the subpage containing the requested

address in the ALLCACHE memory. If the subpage containing the address is not present in

the local cache (and in the state requested by the processor), then the CCUs make a request of

the local CIUs t o format a request message and place it on ring:O. The ring:O communication

interconnect is a slotted pipelined ring with a total bandwidth of 1GB. There are 13 slots on

the ring:0 ring. Each message on the ring consists of a 16 byte header followed by one subpage

(128 bytes) of data. As a request message passes each processing cell, the cell’s CIU determines

if the request can be satisfied from its local cache. If it can be satisfied, the request message

is extracted from the ring and a response message is inserted. Also attached to each ring:O is

an ALLCACHE Router and Directory (ARD) cell that contains a directory of the entire ring:O

cache (Le., all of the local caches). If the ARD determines that a request message cannot be

satisfied on the local ring:O, it extracts the message and inserts a request on the next higher

ring in the hierarchy, ring:l. When the response message to the original request is inserted

on the ring, the requesting processor copies the message and fills the original request from the

local CCU. If a request message returns to the requesting processor unanswered, a hard page

fault is generated and the subpage is brought in from the disk. The latency and total capacity

of the ALLCACHE memory system hierarchy is shown in Table 1 [6].

Total Latency in
capacity (MB) cycles (5ns)

The hardware management of the KSR memory system assures that the ALLCACHE mem-

ory is both sequentially consistent [7] and strongly ordered [2]. The state of a subpage in local

cache or a subblock in subcache is changed in response to requests from processing cells in the

system. When a load instruction is issued, it can specify the state that the subblock should

- 6 -

possess. A store instruction always requires that a subpage have an exclusive ownership state.

Whenever a request for exclusive ownership is made, all copies of the subpage in other cells

are marked as invalid. One distinction between the ALLCACHE memory and NUMA shared

memory architectures is that no processor is the designated “home” of a subpage of memory.

There can be multiple local caches that have allocated space for a subpage and the ownership

travels around the rings as required, to satisfy state requests by the multiple processors.

One problem that floating ownership can cause is that as fetch requests are made, it is

possible that the local cache of the processor issuing the request may have an invalid copy.

There are two methods by which the inefficiencies created by this approach are moderated.

First, whenever a copy of a subpage is sent across the ring to satisfy a request, any local cache

that has a descriptor for the subpage (Le., has allocated space) but does not have a valid copy,

can pick up a read-only copy of the subpage if the cell is not too busy. This a ~ l o m a t i c prefe lching

is a function of the hardware. Second, there are two instructions, pcsp (prefetch subpage to

cache) and pstsp (poststore subpage), that provide the programmer with some control over

the locality of specific subpages. The prefetch instruction allows for the specification of the

state that should be acquired when a subpage is fetched. The poststore instruction simply

relinquishes exclusive ownership and broadcasts the contents of a subpage on the ring. All cells

that have a descriptor for the subpage will take a copy from the ring if they are not too busy.

If no advance copy is obtained by a cell, then a new request is issued whenever the cell requires

a valid copy.

2.3. System Configuration

The KSR operating system is an implementation of OSF-1 and provides a standard UNIX

interface. Built on top of the Mach threads of OSF-1 is a pthreads interface based on the IEEE

POSIX draft standard, P1003.4a. The KSR pthreads interface includes extensions to enable

an application to manage ring traffic and the geometry of thread placement for optimizing the

performance of cooperating threads. The experiments described here were run using version

R1.0.5 of the KSR OS. The system includes a fully configured ring0 with 32 processing cells.

The timings reported in the experimental section were collected using the two sub-microsecond

timers on each cell, one which reports user time, the other system time.

3. Experimental Analysis

3.1. The Workload

In order to study the advantages and disadvantages of using poststore after an update, various

workloads consisting of a parallel version of a readers/writers workload are constructed. Each

- 7 -

workload performs the following steps:

0 Initialization Phase

1. A number of reader and writer threads are spawned, each bound to a specific pro-

cessor.

2. Each reader and writer reads a predetermined portion of a given data set. This

ensures that a copy of the shared data set is in the local cache of each participating

thread, and that no disk accesses will be required during the measurement phase.

Measurement Phase

1. Timing begins for each writer.

2. Each writer updates its portion of the data set. Writing is done with or without

poststore, depending on the experiment.

3. Timing ends for each writer.

4. Timing begins for each reader.

5. Each reader sequentially reads its portion of the data set one time.

6 . Timing ends for each reader.

The emphasis of the experiments is to determine under which conditions the use of poststore

is an advantage. If the writers broadcast their updates with poststore, then each reader should

find a valid copy of the data in its local cache during the reading phase. If the updates are done

without poststore, then no valid copy is available in the reader’s local cache during the reading

phase. In this case, every read is a cache miss and generates a request on the ring. Readers

are allowed to read only after all the writers have finished. In all the experiments, readers and

writers are implemented by distinct threads, and are mapped onto distinct processing cells, so

that no two threads in the same application access the same local cache.

3.2. The Experiments

The parameters to be varied in the experiments are:

1. the amount of data requested per subpage access,

2. the amount of delay between accesses,

3. the read access pattern,

4. the number of writers,

5. the amount of data set sharing among readers, and

- 8 -

6. the number of concurrent reader/writer workloads

Several experiments were run using different values for each of these parameters. Table 2 lists

the experiments reported here with their parameter values. Three data set sizes were used:

small (13K subpages), medium (52K subpages), and large (100K subpages). Different sizes

test the effect of processing for longer periods of time. Each experiment was run for a varying

number of readers.

Table 2: Experiment parameter values

1 Experiment I Granularity I Delay I Access Pattern 1 Writer I Sharing I Workloads 1

Different access granularity levels affect the rate at which read requests are made to the

ring. The access granularity may be one access per subpage, one access per subblock (i.e, two

accesses per subpage), or the entire subpage. In the experiments reported, each read is a 64

bit word. Each subpage contains 16 words. When one word per subpage is read, without

intervening processing, the rate at which requests for invalid pages are made is maximized.

When one word per subblock is read, then the rate of ring requests decreases, since every other

read is a local cache hit. When an entire subpage is read there will be one request to the ring

(to acquire the subpage initially), one hit to the local cache (to get the first word of the second

subblock), and fourteen hits to the subcache (to get the remaining 14 words of the subpage).

The subcache and local cache latencies of 2 and 18 processor cycles, respectively, increase the

time between requests to the ring. Experiments A and B show the effect of different access

granularities .

When no additional time is used for processing (Le., pure read requests), the single request

to the ring outweighs the other delays since it is an order of magnitude greater than the local

cache latency. The rate at which read requests are made to the ring may be slowed further by

introducing a variable delay between read accesses to simulate data processing. Experiment C

shows the effect of introducing delay between read accesses.

In Experiment D the access pattern is varied in order to study the effect of automatic

prefetching. If many subpages are copied from the ring before they are requested, then the

number of ring requests will be reduced. This has the effect of reducing total execution time.

- 9 -

Experiments E and F show the effects of multiple writers. With multiple writers, the data

set is divided equally among the writers so that each writer has the valid copy of a distinct

(private) portion of the data set. When multiple writers own different parts of a shared data

set and multiple readers read different parts as well, the composition of read requests being

placed on the ring changes and the read time per subpage changes. Readers may or not may

not be allowed to share data sets. T w o extremes are considered:

1. Full sharing, where each reader reads the entire data set. This is termed global readers.

2. No sharing, where the data set is divided equally into distinct portions among the readers,

and each reader accesses only its portion. This is termed private readers.

Experiment E investigates the effects of multiple global readers. It is possible that a single

writer could become the system bottleneck. Multiple writers can reduce this bottleneck effect.

Also, it is possible for a reader to obtain a valid copy of a subpage through automatic prefetching

because of a request made by another reader.

Experiment F shows the effect of multiple writers and private readers. With private readers,

readers cannot take advantage of automatic prefetching since each reader is the only thread

accessing the data for which it has put a request on the ring. With multiple writers and

private readers, read requests are served by different writers a t the same time, which reduces

the demands on the writer process.

Since poststore reduces the execution time of the reader threads while increasing the execu-

tion time of writer threads, both thread types should be considered when making the decision

of when to use poststore. It is expected that for a low reader-to-writer ratio the expense to

the writers would dominate, indicating that poststore should not be used. Conversely, for a

high reader-to-writer ratio, it is expected that the benefits to the readers would dominate, in-

dicating that poststore should be used. Also, as the number of reader/writer workloads (i.e.,

heavyweight threads, multiprogramming level) changes, the relative benefit of poststore can be

affected. Experiment G examines these issues.

3.3. The Results

The results of the 7 experiments are presented here. Except for Experiment G the performance

metric used is the average access time per subpage by an average reader thread.

In Experiments A, B and C there is a single writer and progressively longer times between

read requests. In each of these, the average read time per subpage is shown as the number of

readers varies from 1 to 30. The results of Experiment A are shown in Figure 2. Experiment

A has the highest rate of ring requests (one per subpage). RRsults are shown for the three data

set sizes. When poststore is used, read time per subpage is constant, since every read is a hit in

- 1 0 -

Data Set Size

-small - - -medium
larae

0 5 10 15 20 25 30

number of readers

60

-
9 50
u

E
3 40 E

30 .-
A2

n

8 20 P
& g, 10

2
P

0

Data Set Size

-small - - -medium
large -...-

/

5 10 15 20 25 30

number of readers

Figure 2: Granularity: 1 per subpage, Ex- Figure 3: Granularity: entire subpage,
periment A. Experiment B.

the local cache. With a larger data set, the average time to read a subpage increaes because

of the extra overhead incurred due to more subcache turnover. When no poststore is used,

the average time to read a subpage increases as the number of readers increases. Regardless

of the size of the data set, when more than six readers are executing, the time to read a

subpage increases linearly due to delays at the cell of the writer thread which must handle all

requests. Larger data sizes yield better performance because they allow for better exploitation

of the pipelined execution, and the subcache turnover overhead is overlapped with the time

the processor is waiting for the requested subpage. Furthermore, a longer global execution

time favors automatic prefetching. This is because the longer readers execute, the more their

executions are staggered from the initial synchronized start, increasing the probability that one

reader will request a subpage that will be needed in the future by another reader.

In Experiment B every word in each subpage is read. The results are similar to those of

Experiment A, as shown in Figure 3. Again, when no poststore is used, the average time to

read a subpage increases as the number of readers increases. The increase becomes linear with

the same slope as before but begins with a higher number of readers, since the request rate is

smaller. The point where the curve reaches the asymptote is 11 readers, as Figure 3 shows.

The absolute value of the average read time per subpage is larger than with Experiment A

due to the extra accesses performed per subpage. However, when the system is not saturated,

the difference between the average read time with poststore and the average read time without

poststore is the same, and is equal to the measured ring latency.

Experiment C shows the effect of including a variable delay to represent processing time

between each read, which further reduces the ring request rate. In this experiment, one word

per subpage is read, so that with no poststore, every read generates a ring request, The curves

- 11 -

Delay Data Set small

6PS
- 12pe
21ps

- - -
-.__-

A

Data set small Access Pattern
0 -different

Y

0;
0 5 10 15 20 25 30

0 1
0 5 10 15 20 25 30

number of readers number of readers

Figure 4: Readers with extra processing
delay, Experiment C.

Figure 5: Access patterns, Experiment D.

in Figure 4 show the average read time per subpage for different delays between reads, as the

number of readers increases from 1 to 30. The base case for a delay of 6ps yields the same

performance as when an entire subpage is read and there is no delay between reads, as in

Experiment 8 with the small data set. As the delay increases, the number of readers that it

takes to saturate the system is larger. At saturation, the slope of the asymptote is the same

as before for all curves, but the location of the saturation point is a function of the delay.

Again, when the system is not saturated, the difference between the average read times with

and without poststore is the same, and is equal to the measured ring latency. Experiment C

shows that as the delay between reads increases, the ring latency and writer response time have

less effect on total execution time.

Experiment D shows that performance improves if readers use different access patterns,

as illustrated in Figure 5. In this experiment there is one writer, readers are global, and

the number of readers is varied from 1 to 30. Half of the readers read the entire data set

sequentially forward, and half of the readers read the entire data set sequentially backward.

Figure 5 shows that the slope of the saturation asymptote for the average read time without

poststore is about 50% of the slope for the corresponding experiment where all readers use the

same access pattern (Experiment B). The performance improvement is due to the automatic

prefetching of subpages that have not yet been requested as they pass by on the ring. This

effect of prefetching is noticeable from one to two readers. The read time drops because there is

a high probability that subpages requested by the second reader are copied by the first reader

also, and vice versa. This is an instance of “anomalous” behavior where performance improves

as the workload increases. When both readers have read half of the data set, the probability of

generating ring requests is very low. Additional readers do not give any advantage, since their

- 12 -

read pattern is the same as one of the first two. As more reader threads are added, performance

degrades less severely than in the other cases because during the second half of the execution

the number of ring requests is reduced.

In Experiments E and F the number of readers varies from 1 to 29, and the number of

writers varies from 29 down to 1, with the number of active threads fixed at 30. The results of

Experiment E are shown in Figure 6. In this experiment, every reader reads the entire shared

data set with the same reference pattern, and requests are satisfied by one writer a t a time.

At different times during execution, different writers supply the requested subpages. Because

all readers tend to access similar parts of the data set at the same time, the trend is for a

single writer at a time to be responding to reader requests. Thus, the expected improvement

in execution time by spreading the requests among multiple writers is not realized. Figure 6

shows that average read time per subpage follows the same trend as in Experiment A , where

there is a single writer and multiple global readers reading one word per subblock.

The results of Experiment F are shown in Figure 7. In this experiment, no two readers

read the same piece of data, so no duplicated requests for the same subpage are seen on the

ring. The data is distributed evenly among the writers. Thus, the readers segregate their read

requests. Each reader will read data from a different set of writers, unlike Experiment E where

each reader makes requests of each writer. When readers access distinct parts of the data set,

the saturation behavior and the low load behavior are different. The slope of the asymptote

is much steeper and occurs at a much higher number of readers due to the load balancing

which occurs at the writers. The effect of many writers using poststore to a very few readers

is also shown in this graph. With 29 writers and 1 reader the time to access a subpage is

higher because not all poststore instructions were effective. The single reader was saturated

with poststores from 29 writers and could not process all of the poststores.

The effectiveness of poststore is a tradeoff between the total time it takes the writer to

update and poststore the data, and the reduction in read time for the readers. Figure 8 shows

the sum of average access time per subpage for readers and the average time to write a subpage

for the writer as a function of the number of readers, for the medium data set. The data is

taken from the Experiment B runs for both with and without poststore. When the number

of readers is small, the additional time it takes the writer to poststore is not offset by the

savings in average access time for the readers. However, as the number of readers increases, the

average access time of the readers in the without poststore case increases, while the write time

is always constant. After approximately 15 readers the savings in access time for the readers

with poststore is greater than the extra time required for the writer to perform the poststore.

Experiment G illustrates a similar tradeoff as the number of workloads (i.e., reader/writer

sets, heavyweight threads, multiprogramming level) increases. The data was collected by si-

13 -

- 6o -
u B

50 - E
8 4 0 -
-2

’bj’ 6o 1 Data Set Size

u a -small
50 - - -medium

Data Set Size
-small - - -medrum
-_,-- large I

0 4 I I I I I

0 5 10 15 20 25 30
number of readers

Figure 6: N global readers, 30-N writers,
Experiment E.

multaneously executing multiple copies of the workload from Experiment C with 29 readers

with a processing delay of 9ps, and 1 writer. Figure 9 graphs the average over all workloads of

the combined access time for the readers and writers as the number of concurrently executing

workloads increases. As the number of workloads increases (Le., as the system load increases),

the advantage of using poststore decreases. With 4 or more workloads, the average response

time is lower without poststore. One possible reason is that retrieval of subpages from the

ring can occur during the time that a thread is suspended due to context switching between

workloads. When poststore is used, the time a thread is suspended (because it has been context

switched with threads of other workloads) cannot be overlapped with data fetching. This tends

to nullify the advantage of broadcasted updates. The higher the number of workloads, the more

evident this effect becomes. In Figure 8 the advantage of poststore is more significant when

there are more reader threads. The tradeoffs shown in Figure 8 and in Figure 9 explain why

the decision of when to use poststore should be shared by the programmer and the system. As

the system load increases, programmed poststores should be ignored by the system.

In general, the higher the rate at which non-local shared data is read, the greater the

advantage of poststoring, especially when many other threads share that data. However, the

number of threads which access the same data, and their access patterns, are other important

factors to consider. When strict serialization of writes and reads cannot be ensured a pr ior i ,

the use of poststore should be limited. When there are pending requests for a subpage for

which a poststore has been issued, the poststore instruction is started but not completed, so

no update broadcast is performed. This results in pure overhead for the writer.

- 1 4 -

1 Data Set medium
375,

' I

$ 0

2 0 5 10 15 20 25 30

number of readers

Figure 8: Combined reader and writer ac-
cess time, single reader/writer workload.

225 5
B
L

a 150

I l l I

0 1 2 3 4 5 7 10
e

number of workloads

Figure 9: Combined reader atid writer
access time, multiple reader/writer work-
loads, Experiment G.

4. Modeling and Validation

4.1. Detailed Model

In this section, analytical models of the system and the workloads presented in Section 3.2 are

presented. The workloads modeled are the various applications of readers and writers with and

without the use of poststore. The analytic model illustrates the processing which occurs in the

subcaches, local caches, and the ring under the selected workloads. The following modeling

assumptions are made:

1. Initial modeling will include only the effects of subcaches, local caches, and ring:0 traffic.

However, the models could be extended to include disk accesses and ring:l traffic.

2. No cache inconsistencies or synchronization occur among the reader/writer threads. Specif-

ically, all writing completes before any reading occurs. The hardware guarantees cache

consistency and the modeled workloads have no synchronization.

3. Access times for the subcache, local cache, and ring are exponentially distributed, with a

mean given by the hardware specifications of the KSRl (see Table 1).

4. Each processor may make a memory request to the subcache, local cache, or ring0 based

on probabilities which are determined by the specific workload running on the processor.

5. A request placed on the ring and the removal of a request may be effectively modeled

probabilistically. That is, it is not necessary to track the exact path of every request on

the ring and that modeling average path behavior is sufficient.

- 15 -

For the workloads modeled, each cell does some processing, followed by a memory request.

When a memory request is made from a processor, the item may be located in either the

subcache, the local cache, or the local cache of another processor. If the item is in the subcache,

then it is transferred directly to the processor. If the item is found in the local cache, then it

is transferred to the subcache, and then to the processor. If the item is not found locally in

either the subcache or local cache of the processor, then a request is issued on ring:0 for the

data item. When the response arrives, the data item is placed first in the local cache, then the

subcache, then sent t o the processor.

A Generalized Stochastic Petri Net (GSPN) [9,8] was selected to model the system. The

detailed GSPN model includes a subnet for each of the 32 processing cells and subnets for the

two ARDs which model the ring propagation only. Each subnet models the cell’s processing

time, and subcache (sc), local cache (IC), and ring interactions. The subnets are connected

together to form the complete ring:O.

B (memory request)

E (request to ring:O)

from previous cell to next cell

Figure 10: A subnet of one cell of the KSR1.

Figure 10 illustrates the detailed model of the subnet of one cell of the system. Places in

each processor are labeled A through I . Transitions are numbered t o through t10 a t each cell.

The traffic on the ring is expressed by the number of occupied slots. Each cell has access to

one slot, and this single slot is represented by the three places G, H , and I , in Figure 10.

Inhibitor arcs on transition t 6 ensure that a cell can only place a message into an empty ring

slot. Inhibitor arcs on transition t g from each of the places G, H , and Z of the next cell ensure

- 16 -

that a message on the ring will only be passed to the next cell if the slot for that cell is empty.

Throughput on the ring at a processor can be measured as the throughput of transition t 8 at

that processor. Throughput of a processor can be measured as the throughput of transition t o ,

since all transactions at the processor must pass through that transition.

The subnet of a reader (i.e., a cell where the executing thread is a reader) operates as

follows: Place A represents processing that occurs between memory requests. Transition t o is

a timed transition which represents this processing time, and its rate depends on the volume of

computation/processor cycles the reader is executing between two consecutive read requests. If

a token is in place B, a memory request has been issued. After the memory request is issued,

one of the iinmediate transitions 11, t Z , or 53 is fired with probability p1, p2 , or p 3 , respectively.

If the requested item resides in the cell’s subcache, t l fires. If the subpage containing the item

resides in the cell’s local cache, transition t 2 fires. If the subpage containing the item resides

in the local cache of another cell, t 3 is fired. The firing probabilities of transitions t l , t z , and

t 3 depend on the workload type. The modeling of automatic prefetching is approximated by

adjusting the probabilities p1 , p 2 , and p3.

A token in place E represents a pending request to the ring. As soon as a slot becomes

available, transition t.5 will fire, representing a request which is propagated on the ring. At the

same time, the processor will go into a wait state, represented by place F , until the request

is satisfied. Upon arrival of the response to place G, transition t l o is fired and the packet

(i.e., the requested subpage) is received from the ring. The probabilities that a reader acquires

the subpage from the ring or not are q and 1 - q , respectively. Transitions t 4 , t 5 , and 18 are

timed transitions with firing times equal to the hardware latencies given by the manufacturer

for the subcache, local cache, and the rate of ring propagation, respectively. Reader cells are

initialized by placing a token in place A of each cell which represents an active reader process.

This indicates that a read request is about to be made.

The subnet of a writer (;.e., a cell where the executing thread is a writer) operates similarly,

except that the probabilities and transition rates are different. In each writer cell, q and q - 1

represent the probabilities that a writer does or does not own the subpage requested from the

ring. Transitions t o , t 4 , and 1 5 represent the total time for a writer to respond to a request.

The probabilities p1 and p z are zero for a writer thread, since no additional processing takes

place, and the writer immediately issues a response on the ring as soon as a slot is available.

Writer cells are initialized by placing a token in place F of each active writer thread, indicating

that the writer is waiting to respond to a request.

The detailed model is a description of the interactions between threads and ring:0 of the

KSR1. However, the detailed model contains 294 places and 358 transitions. Even a simple

workload of 1 reader and 1 writer generates a reachability set containing over 800 states. Since

- 17 -

the addition of each new active thread causes the number of states to increase exponentially,

the model quickly becomes intractable with just a few active threads. Since this detailed model

cannot be solved easily, simulation or an approximate model must be used. The latter option

is chosen.

4.2. Approximate Load Dependent Model

Figure 11: Load dependent GSPN model of ring:O.

The readers are modeled with the approximate load dependent model illustrated in Fig-

ure 11. In this model, transitions t o through t 5 , and places A through I" are as described for

the detailed model. However, the ring delay (Le., ring and writer activity) is modeled as a

single load dependent server, and all processes interact through this single resource. Figure 12

illustrates the experimentally measured service rate of the ring and a single writer thread. Since

the access rate increases linearly up through six readers, and flattens thereafter, an M/M/6

server is used in the approximate model.

If the assumption is made that a single thread executes at a time on each processing cell

and each cell is statistically identical (Le.? single class), then the model can be reduced. The

equivalent model shown in Figure 13 results after collapsing all subnets that represent the

readers of the approximate load dependent model into a single subnet. This model is initialized

by placing a number of tokens in place A equal to the number of readers. This model gives

the same global performance metrics for the reader threads as the model in Figure 11. The

- 18-

Data Set medium

Data Set small

0 ; I I I 1 I I

0 5 10 15 20 25 30

number of readers

Figure 12: Service rate of the ring versus the number of active readers/threads.

response time measured with this model is the access time of a word.

B (memory request)

t E (request to Mg)
6

Figure 13: Reduced load dependent GSPN model for ring:O.

The number of tokens in this model indicates the number of readers. As before, tokens in

place A represent internal cell processing. Tokens pass to place B when processing is complete

and a memory request is issued. Transitions 11, t 2 , and t3 are immediate transitions] with

the same functionality as that of the detailed model. A token in place C indicates that the

requested word is in the subcache. A token in place D indicates that the word is in the local

cache. A token in place E indicates that a fault to ring:O has occurred. Transitions t 4 , t5, and

&5 are timed transitions. Transitions 14 and t5 are infinite servers, representing the subcache

and local cache of each reader thread, again with rates equal t o the hardware rates specified by

- 19 -

the manufacturer for subcache and local cache access, respectively. Transition t 6 is an M/M/6

server, with a rate equal to the hardware rate specified by the manufacturer for ring:O access.

As more processes attempt to place messages on the ring, the server becomes saturated and

processes requests at a fixed maximum rate. As before, p1, p z , and p3 depend on the modeled

workload.

4.3. Theoretical Model/Experimental Comparisons

In this section, comparisons between the theoretical response time curves (dashed lines) and the

experimentally observed response time curves (solid lines) of various workloads are presented.

The theoretical results are based upon the reduced load dependent GSPN model. The model

was programmed and solved using SPNP [1], an analytic GSPN solver. The service rate of

t o is workload dependent and depends on the amount of delay or computation performed

after each read. The granularity of access of the experimental workload is reflected in the

transition probabilities pl, pz, and p3. The size of the experimental workload affects both the

amount of overlap of subcache overhead with processing and the effectiveness of pipelining.

Experiments with different data sets yield different response time curves. However, the model

does not incorporate any information about these types of overhead. The analytically predicted

response times apply to the workload, regardless of the size of the data set. The medium data

set is selected as representative and is used for comparisons to the theoretical model. The

performance metric of interest is the average read time per subpage.

Figure 14 shows comparisons for Experiment A. For the average read time without poststore,

the transition probabilities p l , p2 , and p3 are set to 0.0, 0.0, and 1.0, respectively (i.e., all reads

generate a ring request). For the average read time with poststore, the transition probabilities

are set to 0.0, 1.0, and 0.0 (Le., all reads are a subcache miss, but a hit to the local cache). The

model prediction is quite good. The analytical model overestimates performance by at most

by 5ps (12.5%). In this case, the writer (i.e., the load dependent server) becomes the system

bottleneck.

Figure 15 shows comparisons for Experiment B, where the global readers read the entire

subpage. For the without poststore curve, the transition probabilities t l , t 2 , and t3 are set to

16, 16, and &, since each subpage consists of two subblocks of 8 words each and as soon as a

request is made to the ring, the subpage is moved to the local cache. For the with poststore

curve, the transition probabilities are set to 9, &, and 2, since all read requests are satisfied

in either the subcache or local cache. The theoretically predicted response time overestimates

the experimental results by about 15%.

I 14 J-

Similar comparisons between the analytic model and the experiments can be observed for

Experiment C, as shown in Figure 16. (In the remaining figures, the with poststore curves do

- 20 -

ti
si g 4 0 -

.! 30-
Y

8 2 2 0 -

&I

p” 10 -
2

6o 1 Data Set medium

60 7

-
5 5 0 -

4
f 4 0 -

,$ 30 -
e e
c

2 30-

L
g 1 0 -
3 .1

6o 1 Data Set medium

E
V g 4 0 -

.! 30 -
8 2 30-

5
p” 1 0 -

no PS

0 5 10 15 20 25 30

number of readers

Actual
3 5 0 7? 4 - - -Analytical Model

o f t I

0 5 10 15 20 25 30

number of readers

Figure 14: Model prediction for Experi- Figure 15: Model prediction for Experi-
ment A. ment B.

not provide any additional insight and have been deleted for clarity.) In Experiment C, delays

of 6ps , 12ps, and 2 1 p are added after each read to simulate processing time. The rate for the

timed transition t o is adjusted to account for this in the model. In this experiment, the rate of

ring requests is the slowest (in contrast to Experiment A where the relative rate of generating

a ring request is the highest possible). As before, the model predictions follow the trend of the

experimental response time curves.

Data Set medium

- - - Analytical Model
Actual -

2o - - -
w f Delay 40

60

H
3 40

v
m

2 10
2

Data Set medium

- Actual w/unknown pref. %
Model w/ 50% prefetching - Model w/ 80% prefetching
Model w/lOO% prefetching

-- - - _ _ _ _
- -

.-a-

o ! I I I I I I o l I I I I

0 5 10 15 20 35 30 0 5 10 15 20 25 30

number of readers number of readers

Figure 16: Model prediction for the “no
poststore” case, Experiment C.

Figure 17: Model prediction for the “no
poststore” case, Experiment D.

Figure 17 shows the predicted performance of the model along with the actual performance

of Experiment D. For Experiment D (i.e., in the single writer/multiple reader case where half

of the readers read sequentially forward, from the beginning to the end, the other half read

sequentially backwards), the performance improves (i.e., compared against Experiment B where

- 21 -

all readers read in the same direction). Improvement results due to readers collecting subpages

that they have not yet referenced but for which they have subpage descriptors. By adjusting

the probabilities p1, p 2 , and p3 it is possible to capture the effect of automatic prefetching of

some percentage of the circulating subpages. The model indicates that the actual system is

prefetching roughly 75% of the circulating subpages.

5. Generalizations

The model presented here may be generalized in a number of ways. These generalizations

include such features as a more accurate load dependent server, a multiclass model, and less

extreme workloads.

In Experiments A through D there is only one writer, with multiple readers which all

behave similarly. This makes it possible to build a simple load dependent model of the readers

on ring:O. The model reflects the readers’ interactions with the “system”, which is viewed as the

combination of the ring and single writer, and is modeled as an M/M/6 server. The parameters

of each model reflect the different behavior of the readers in each of the Experiments A through

D. However, the simple load dependent model is not as accurate for Experiments E and F.

Experiments E and F are different from the first four because there is more than one writer.

In particular, when the readers are private, as in Experiment F, each reader is accessing data

from a different writer a t any one time.

Figure 18 shows the predicted performance using two different analytical models along with

the actual performance for Experiment F. The first model is the one used in the previous section

and use8 a single M/M/6 server to model the ringjwriter behavior. As seen, the model is a

poor predictor for the case of multiple writers and private readers. The second model uses

multiple M/M/6 servers, one for each writer. The behavior of this model is very close to that

of the actual system. When there are 29 writers and 1 reader, the large number of writers

(M/M/6 servers) can easily handle the number of requests from the single reader. Both the

actual system curve and that from the analytic model are flat up to 25 readers (and 5 writers).

If each writer behaves as an M/M/6 server, then there are equivalently 30 servers to handle

the requests of the 25 readers. The system is behaving as an infinite server up until that point,

since the number of readers is smaller than the total number of servers. For 26 readers there

are 4 writers, with the number of total servers equal to 24. At that point, the read time per

subpage begins to increase dramatically, since the number of readers is greater than the number

of servers. With 29 readers and 1 writer, the writer is saturated, as in the earlier experiments.

The current model approximates the effect of automatic prefetching by adjusting the prob-

abilities p1 , pa, and pj. A multiclass model could be used to show this effect more accurately

by modeling each request as a separate class. Each reader would issue a ring request for a class

- 22 -

Data Set medium

- Actual - - -Anal. Model, single M/M/6 - - - -- - - - Anal. Model, rnult. M/M/6 I

o i I I

0 5 10 15 20 25 30

number of readers

Figure 18: Model prediction for Experiment F

of data not previously seen on the ring. Each reader would access future data on the ring with

some probability dependent on other processor activity. The Petri net model would have a

place for each class of data in the local cache and subcache. A more general model could also

take into consideration subcache overhead and pipelining effects.

The current experimental workload was selected with the goal of illustrating the worst case

behavior with and without the use of poststore. This workload is extreme in that all writing is

completed before any reading starts, and the workload ensures that either all data is available

in the local cache for each individual reader, or no data is available in the local cache for each

individual reader at the time the reading occurs. Further work includes monitoring actual codes

to acquire model parameters for the processing rates and the probabilities of memory requests

of less extreme workloads.

6. Summary

The primary contributions of this paper are listed below, relative to the stated goals in the

introduction.

0 A description of the basic KSRl architecture has been given. The key elements are: the

ring of rings structure, the hierarchical (ALLCACHE) caching scheme, and the address

resolution search engine. Attention is focused on the poststore option.

0 Results from a suite of sensitivity analysis experiments have been reported. A simple

readers/writers workload was used. Each experiment was run both with and without

the poststore option. Performance sensitivity results were given with respect to: data

- 23 -

granularity, reader delay, data access patterns, reader/writer ratio, data sharing, total

system load, data set size, and number of readers.

Analytic models, both a detailed model and an approximate model, have been con-

structed. Validation experiments indicate that the basic trends are accurately captured

using relatively simple models.

The experimental results indicate where poststore is most effective. Figure 8 shows that

as the number of reader threads increases, poststore is more advantageous. However, if the

number of reader threads is small, poststore should not be used since the benefit to the readers

does not offset the extra incurred overhead of the writers. Thus, the number of reader threads

influences the decision of whether or not to use poststore, and this number is a parameter of the

programmer’s application code. Figure 9 shows that the number of application workloads

(Le., the number of sets of reader/writer codes) increases, poststore becomes less advantageous.

That is, as contention increases a t the processing cells, poststore is not beneficial and should not

be used. The system load is controlled by the operating system scheduler. Therefore, neither

allowing a programmer to use poststore without knowledge of the system load, nor allowing

the operating system to determine the use of poststore without knowledge of the application

code, is advisable.

Using poststore is analogous to a sender-initiated transfer. Sender-initiated transfers are

most beneficial under light load [4]. Using prefetch (i.e., another programmer option not ad-

dressed in this paper), or allowing the readers to pull in subpages as requested when poststore

is not used, is analogous to a receiver-initiated transfer. Receiver-initiated transfers are most

beneficial when the system load is heavy. Although applied here in a different context, the

results in Figure 9 confirm these general findings.

As mentioned in Section 5, several improvements to the model are possible and other features

of the KSR architecture warrant further study. The intent here was not to model all aspects

of the KSR’s memory or ring hardware. However, building on the basic understanding of the

architecture, such a modeling effort would be useful. These modeling and experimentation

efforts are continuing.

- 25 -

Acknowledgements

The helpful information, criticisms, and suggestions provided by Tom Dunigan, Rich Stir-

ling, and Jim Rothnie have significantly improved this paper.

7. References

[I] G. CIARDO AND J. K. MUPPALA, Manual for the SPNP Package, Version 3.1, Department

of Electrical Engineering, Duke University, Sept. 1991.

[2] M. DUBOIS, c. SCHEURICH, AND F. GRIGGS, Memory access buflering in mdtzprocessors,

in 13th International Symposium on Computer Architecture, 1986, pp. 434-442.

[3] T . H . DUNIGAN, Kendall Square multiprocessor: Early experiences and performance, Tech.

Report ORNL/TM-12065, Oak Ridge National Laboratory, Apr. 1992.

[4] D. L. EAGER, E. D. LAZOWSKA, AND J . ZAHQRJAN, A comparison of receiver-initiated

and sender-initiated adaptive load sharing, Performance Evaluation, 6 (1986), pp. 53-68.

[5] E. HAGERSTEN, A. LANDIN, AND S. HARIDI, DDM- a cache-only memory architecture,

IEEE Computer, 25 (1992), pp. 45-54.

[SI KENDALL SQUARE RESEARCH, KSRl Principles of Operation, Revision 5.5 , Waltham, Ma.,

Oct. 1991.

[7] L. LAMPORT, How t o make a multiprocessor computer that correctly executes multiprocess

programs, IEEE Transactions on Computers, (2-28 (19791, pp. 690-691.

[8] M. A. MARSAN, G . CONTE, AND G. BALBO, A class of generalized siochastdc Petri neis

for the performance evaluation of multiprocessor systems, ACM Transactions on Computer

Systems, 2 (1984), pp. 93-122.

[9] M. K . MOLLOY, Performance analysis using stochastic Petri nets, IEEE Transactions on

Computers, C-31 (1982), pp. 913-917.

ORNL/TM-12287

I N T E R N A L DISTRIBUTION

1.
2.

3-4.
5.
6.
7.
8.
9.

10.
11.

12-16,

B. R. Appleton
A. S . Rlaiid
T. S. Darland
J . J . Dongarra
T. H . Dunigaii
G . A. Geist
I<. L. Kliewer
M. R. Leuze
R. A. Manning
C. E. Oliver
S. A . Rahy

17. T. €I. Roman
18-22. R. F. Siiicovec
23-27. R. C. Ward

23. P. 1-1. Worley
29. Ceiitra,l Research Library
30. ORNL Pa.teiit Office
31. 1;-25 Applied Techiiology Li-

32. Y-12 ‘reclinical Library
33. Laborat,ory Records - RC

brary

31-35. Laboratory Records Department

E X T E R N A L D I S T R I B U T I O N

36-40. Amy 13’. Apon, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

41. Donald M. Austin, (5196 EECS Building, Uiiiversity o f hlinnesota., 200 Union
Street, S.E., Minnea.polis, M N 55455

42. Clive Baillie, Physics Deparlrrient, Cali-ipus Sox 390, Uiiiversity of Colora,do, Boul-
der, C;O 80309

43. Edward H . Rarsis, Computer Science and Rlathema,tics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, N M 87185

44. Robert E. Beiiner, Parallel Processing Divisioii 1413, Sandia National Laborato-
ries, P. 0. Box 5800, Albuquerque, NR.1 87185

45. Donna Bergmark, 745 E 95 ’TC Building, Hoy Road, Cornell University, Itliaca.,
NY 14553

46. Roger W . Brockett, Harva.rd University, Pierce Hall, 29 Oxford Street Cambridge,
MA 0’2138

47. Bill L. Buzbee, Scientific Computing Division. Nationa.1 Center for Atmospheric
Research, P. 0. Box 3000, Boulder, CO 80307

48. Maria Calzarossa, Dipartimento di Informatica e Sistemistica, Universith Degli
Studi di Pavia, Via Abbiategrasso 209, 1-27100 Pavia, Italy

49. Brian M . Carlson, Comput.er Systems Researcli Institute, University of Toronto,
Toronto, Ontario M5S 1A1, Canada

50. Jagdisli Cha.ndra. Army Research Office, P. 0. Box 1221 1, Research Triangle Park,
NC 27709

51. Melvyn Ciineiit. National Science Foundation. 1800 G Street N . W . , Washington,
DC 20550

52. John J . Dorning, Department of Nuclear Engineering Physics. University of Vir-
g i ti i a Rea c t or F' a c i I i t y. C h a I' 1 o t. t es v i I I e. I,'.-\ 2 2 9 0 1

53-57. Lawrence Dowdy. Computer Science Depart,ment.. Vaiiderbilt. University, Nasliville,
TN 3723.5

58. Derek Eager, Depa.rtment of Computer Science and Engineering, Sieg Hall, FR-35,
University of \I'ashington, Seattle, \5rA 98195

59. Edward Felten, Departrnent of Computer Science, Universit.y of \5~ashington, Seat-
tle, FVA 98195

60. GeofTrey C . Fox, NPAC, 111 College Place, Syra.cuse University, Syracuse. NY
13211-4100

61. Offir E'riecler. (;eorgo hlason I'niversit,y, Science and 'Technology Building, Com-
put ,e r Science Departminetit ~ 4400 Lniversit,y Drive. Fairfa.s. Va. 22030-4414

62. Dennis B. Gannon, Computer Science Department, Indiana University. Bloomiiig-
ton. IN 4'7401

63. C. \Yilliaii~ Gear . PJEC Research I~ist~itute, 4 Independence Way, Princeton, N J
08540

64. W . Morven Gent,leman, Division of Electrical Engineering, National Resea.rch
Council, Building RI-50, Room 344, Montreal Roa.d, Ottawa, Ontario, Cana.da
K 1 A OR8

65. Alan George, Vice President., Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

66. Gene Golub, Computer Science Department, Stanford University, Stanford, CA
94305

67. Andy Grant, Computer Graphics Unit, Rlanchester Computing Centre, IJniversity
of Manchester, Oxford Rd, Manchester h113 9PL, United Kingdom

68. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hi l l , N J 07974

69. John L. Gustafson, Ames Laboratory, 230; M'ilhelm IIall, Iowa State University,
Ames. IA .50011-JO'LO

70. Robert M . Haralick, Department of Electrical Engineering, Director, Intelligent
Systems Lab, Universit.y of \?Jasl~ingtlon, 402 Electrical Engineering Building, FT-
10, Seattle, WA 98195

71. Micha.el T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Urbana, IL
6 1801-2300

72. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

7 3 . Charles . I . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, \I'ashington, DC 20332

74. Robert E. Huddleston, Cotiiputation Depart,inc:rit.. Lawrence Livermore Katioiial
Laboratory, P. 0. Box 808, Liverinore, C A 94.'J50

(3 . Gary Jolitisoii, Ofiice of Scientific Coiiipiit,ing, Eki-7, Applied Mathemat.ica1 Sci-
ences, Ofice of Energy Research, U.S. 1Ielxirtrnt:iit of Energy, M'a.sliington, DC
20585

76. Lennart Jolinsson, Thinking Machines Corporation, 245 First, Street, Ca.mbridge,
M A 02142-1211

--

77. Harry Jordaii, Departinerit of Electrical aiid Computer Engineeriiig, University of
Colorado, Uoulder, C 0 80309

78. hlalvyn Kalos, Cornell Theory Center, Eiigineerirtg aut1 Theory Center Building,
Cornell University, It'liaca, NY 14853-3901

79. Keiiiictli I ~ c ~ i i ~ c ~ l y . Depart ii-ieiit of Coi-iipukr Sciciiw. Rice liiiivcrsity, P.O. Box 1882,
kIOUSt.011, 'rx 77001

80. Rlicliael Laiigst,on, Depa.rt,riirnt, of Compiit.er Science, Universit.y of Tennessee,
Iinoxville, T N 37996 1301

81. Richard La.u, Office of Naval Research, Code l l l M A SO0 Quiricy Street, Boston
Tower 1, Arlington, VA 22217-5000

82. Robert L. Launer, Army Resea,rcli Office, P. 0. Box 12211, Research 'Triangle
Park, NC 27709

83. E. D. Lazowslta, Department of Coniputer Science and Engineering, Sieg Hall,
FR-35, IJiiiversity of Washington, Seattle, WA 98195

84. Toni Leighton, Lab for Computer Science, Massacliusetts Inst,it,ute of Technology,
545 'lechnology Square, Carn bridge, R4A 02139

85. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

80. Heather M . Liddell, Center for Parallel Computing, Department of Coniputer
Science and Statistics, Queeii I\?a.ry College, University of London, Mile Eiid Road,
London E l 4NS, Englaiid

87. Kik Litt.lefield, Pacific Northwest Laboratory, A I S Kl-87, P.O.Box 999, Richland,
\,\)A 993.52

88. Ivo de Lott,o, Dipsrtiment,o di Inforniatica e Sistemistica, Universita Degli Studi
di Pavia, Via Abbiat,egrasso 209, 1-27100 Pavia, Italy

89. Allen D. Maloiiy. Departnieiit of Computer and Information Science, University
of Oregon, Eugene, OR 97403

90. Oliver McBryan, University of Colorado a t Boulder, Department of Computer
Science, Campus Box 425, Boulder, CO 80309-0425

91. James McGraw, Lawrence Livermore National Laboratory, L-30Gl P. 0. Box 808,
Livermore, CA 94550

92. Neville Moray, Department of Mechanical and 1ndust.rial Engineering, University
of Illinois. 1206 Wrst Green Street, Urbana , 11, 61801

- 30 -

9.3. Ricliard J l i i n t z . C~oniputer Science Depiirt.nieiit, [‘iiiversity of C:alifornia at. Los
Angeles. Los Aiigeles. CA ’9002.1

94. David Selson. Director, Office of Scientific Compiiting. ER-7, Applied hlatliemat-
ical Scieiices. OIfice of Energy Research, C .S. Department of Energy, \V’ashingt~on,
DC 20585

95. Randolph Nelson, IBM, P.O. Box 704, Room II2-D26, Yorktown Heights, NY
10598

9G. James AI. Ortega, Department of Applied Ma.thematics, Thornton Hall, University
of Virginia. Cha.rlottesville, VA 22901

97. Merrell Patsrick. Department. of Computer Science, Duke University, Durham, NC
‘27706

98. David A . Poplawski, Depart.ment, of Computer Science, Michigan Technological
University, Houghton, R11 49931

99. Daniel A . R,eed, Computer Science Department, University of Illinois, Urbana, TL
Gl8Ol

100-104. Emilia Rosti, Dipartimento di Scienze dell’Informazione, Universitk degli Studi di
Milano, Via Conielico 39, 20135 Milano. Italy

105. Diane T. Rover, 155 Engineering Building, Department of Electrical Engineering,
hlichigaii Statme University. East. Lansing h l I 488’24

106. Ahmed 11. Sa.nieli, Department. of Coniput,er Science, iliiiversity of Minnesota, 200
Unioii Street S.E., Miiineapolis, M N 55455

107. Robert B. Sclinabel, Depart.ment of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Cent,er, Campus Box 430, Boulder, CO 80309-
0430

108. Robert Sclireiber, RIACS, MS 230-5, NASA Ames R,esearch Center, Moffet Field,
CA 94035

109. Martin 11. Schultz, Department of Computer Science, Yale University, P. (3. Box
2158 Yale St,tilioii3 New Haven, CT 0G520

110. David S. Scott, Intel Scientific Computers, 15201 N . W . Greenbrier Parkway, Reaver-
ton, OR 9 i O O G

11 1. The Secretary, Department of Comput.er Science and Statistics, The Universit,y of
Rhode Island, Kingston, RI 02881

112. Charles L . Seitz, Department of Computer Science, California Institute of Tech-
nology, Pasa.dena, CA 9112.5

113. Giuseppe Serazzi, Politecnico di Milano, Dipartimeiito di Elettronica e Infor-
mazione, Piazza Leonard0 da Vinci 32, 20133 Milano, Italy

11.1. 1ienliet.li C.’. Sevcili. Ckmiputer Systems Research Institute, 10 Iiing’s College Road,
lliiiversity o f ‘Ioront,o. Toront,o. Ont,ario M5S 1/11> Ca.nada

115. Horst D. Simon, KASA Ames Research Center, Mail St,op T045-1, Moffett Field,
CA 94035

- 31 -

122. Marc Snir, IBhl l ' . . l . Watson Itwearch Cent,er, Department 420/36-241, P. 0.
Box 218, Yorktowri Iieiglit,~, N Y 10598

123. Rick Stevens, Mathematics a.nd Computer Science Division, Argonne Na.ti0na.l
Laboratory, 9700 South Cass Avenue, hrgoone, 11, 60439

124. Paul N . Swarztra.tiber, National Center for i\t~nosplirr.ic Research, P. 0. Box 3000,
Boulder, CO 8 0 X ?

125. Anne Trefethcn, Engineering St Theory CeuteI, Cornel1 University, Ithsca., N Y
14353

1'26. Mary Vernon, Coniputer Sciences Depa.rtment., Universit.y of Wisconsin, 1210 W.
Dayt.on Street, Madison, 14'1 .XI706

127. Robert G . Voigt, Nat.iorial Science Foundation, Rooin 417, 1800 G Street N.W.,
Washington, DC 20550

128- 132. Thoi1i;is \Yagiwr. ('Oln]-JUtl>I' %ieiice Depart r i i e n t , , J'aiiderbilt University, Nasliville,
'I" 37235

133. Mary F . Wheeler, Department of Matlieniat~ical Sciences, Rice University, P. 0. Box
1892? I-Ioust80n, T X 77251

134. Andrew B. Whit,e. Computing Division, Los Alamos Nat,iotial Laboratory, Los
Ala.trios, N M 87545

135. John Zaliorjan, Department of Computer Science and Engineering, Sieg FIall, FR-
35, Universit,y of \Vashingtoii, Sea,ttle, MTA 98195

136. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment, of Energy, Oak Ridge Operatioils Office, P. 0. Bos 2001, 0a .k Rldge, TN
3783 1-8o;OO

137-146. Office of Scient,ifir & Technical Inforniation, Y. 0. Box 62, Oak Ridge, TN 37831

