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Abstract 

Kendall Square Research introduced the KSRl system in 1991. The architecture is based 

on a ring of rings of 64bit microprocessors. It is a distributed, shared memory system 

and is scalable. The memory structure is unique and is the key to understanding the 

system. Different levels of caching eliminates physical memory addressing and leads to the 

ALLCACHETM scheme. Since requested data may be found in any of several caches, the 

initial access time is variable. Once pulled into the local (sub)cache, subsequent access 

times are fixed and minimal. Thus, the KSRl is a Cache-Only Memory Architecture 

(COMA) system. 

This paper describes experimentation and an analytic model of the KSRI. The focus 

is on the poststore programmer option. With the poststore option, the programmer can 

elect to broadcast the updated value of a variable to all processors that might have a copy. 

This may save time for threads on other processors, but delays the broadcasting thread 

and places additional tr&c on the ring. The specific issue addressed is to determine 

under what conditions poststore is beneficial. The analytic model and the experimental 

observations are in good agreement. They indicate that the decision to use poststore 

depends both on the application and the current system load. 
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1. Introduction 

Traditionally, the scalability of shared memory multiprocessors has been limited due to memory 

access path contention. However, the KSRl system, recently developed by Kendall Square 

Research, demonstrates that scalable shared memory multiprocessors are feasible. From a 

measurement and modeling perspective, the KSRl and its architectural paradigm deserve an 

in-depth analysis. 

One novel feature of the KSRl is its memory management scheme, ALLCACHETM. Each 

processor has its own local memory that is managed as a cache, and a valid copy of a data 

item must exist in the local cache of the processor in order to be accessed. Data items are 

not bound to  any particular memory, but migrate dynamically to a processor when they are 

accessed The entire memory is shared and the memory is viewed as a hierarchy of caches. Upon 

writing, a requesting processor writes the data item to its local cache and marks it as valid. 

All other copies of the item in other processor caches are marked as invalid. Prior to reading, a 

requesting processor must have a valid copy of the item in its local cache. If a valid copy of the 

item is not in the local cache of the requesting processor, then a valid copy is migrated from 

the local cache of another processor. Depending on which cache contains the requested data 

item at any particular time, the time required to perform this migration may vary. However, 

once a valid copy of the requested item is moved into the local cache, all subsequent accesses 

are to  the local copy. Thus, the KSRl has a Cache-Only Memory Architecture (COMA) [5]. 

To take advantage of the architecture, programmers are provided with a poststore option. 

When a variable is updated by a write, using poststore will cause a valid copy of the variable 

to be sent to all caches which contain a copy of that variable. This will shorten the access time 

for any future reads on those other processors, since each will have a valid copy of the item in 

its local cache. Without poststore, whenever a future reader requests the variable, it  must first 

pull a valid copy into its cache. Clearly, a tradeoff exists since using poststore will shorten the 

time for future reads, but lengthens the time for the write. 

This paper presents an experimental and modeling study of the KSR1. The focus is on the 

poststore option. The stated goals and outline of this work are: 

0 t o  understand and describe the KSRl architecture, 

to run controlled experiments on the KSRl, using a simple readers-and-writers workload, 

to observe performance with and without poststore, 

to construct and validate an analytic model of the system which could be used for predict- 

ing the general behavior of the KSRl and for predicting the specific behavior of poststore, 

and 

e t o  outline generalizations and summarize our findings. 
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The purpose of this paper is to study the effects of poststore for a particular reader/writer 

workload. The results show that relatively simple models accurately indicate the effects of 

poststore. Also, results show that poststore is more effective as the number of reader threads 

in one application increases, but becomes less effective as the total number of applications in- 

creases. Therefore, the effective use of poststore depends on both the programmer’s application 

code as well as the system load. 

2. Architectural Overview of the KSRl 

2.1. System Hardware 

The general KSR architecture is a multiprocessor system composed of a hierarchy of rings. The 

lowest level, ring:O, consists of a 34 slot backplane connecting 32 processing cells (processing 

elements) and two cells responsible for routing to the next higher layer ring, ring:l. A fully 

populated ring:l is composed of the interconnecting cells from 32 ring:O rings. A fully con- 

figured KSRl is composed of two layers containing 1024 processing cells along with two ring 

interconnecting cells on each ring:O. The general KSR architecture provides for a third layer 

which connects 32 ring1 rings into a ring::! layer. Figure 1 shows the hierarchical ring structure 

of the KSR multiprocessor. 

This study deals with a KSRl multiprocessor with a single ring:O installed. The description 

that follows is of the general KSR architecture with specific attention given to the memory 

structure and management of a single ring:O. 

Each processing cell i s  constructed from 12 custom CMOS chips: 

0 The Co-Execution Unit (CEU) fetches all instructions, controls data fetch and store, 

controls instruction flow, and does arithmetic required for address calculations. 

0 The Integer Processing Unit (IPU) executes integer arithmetic and logical instructions. 

0 The Floating Point Unit (FPU) executes floating point instructions. 

0 The external Input/output Unit (XIU) performs DMA and programmed I/O. 

0 Four Cache Control Units (CCU) are the interface between the 0.5MB subcache and the 

32MB local memory (referred to as the local cache). 

0 Four Cell Interconnect Units (CIU) are the interface between a processing cell and the 

ring:0 ring. 

In one instruction cycle an instruction pair is executed. One member of the pair is an instruction 

for the CEU or XIU and the other member is an instruction for the FPU or IPU. The clock 
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speed is 20 MHz. As in other superscalar processors, the KSR processor operates in a pipelined 

fashion with two pipelines, one for the FPU/IPU and one for the CEU/XIU. The pipelining 

and 20 MHz clock yield a peak 40 MFLOPS for each cell. Using shared data structures and 

optimized code, early implementations of a 1000 X 1000 double precision 

on a 32 processor system resulted in over 500 MFLOPS total capacity [3]. 

LlNPACK running 

erou..ing 
C.11. 

1 

.. . 

... 
Ring2 :: 

Figure 1: KSR hierarchy of rings. 

Each processing cell also contains a 256KB data cache and a 256KB instruction cache. The 

on-board data and instruction caches are referred to as subcaches. A daughter board connected 

to each processing cell contains 32MB of memory referred to as local cache. The word size 

of the KSR is 64 bits and all functional units are based on 64 bit operands. All execute 

and control operations are register oriented. Each processor has 64 floating point registers, 

32 integer registers, and 32 addressing registers. All registers are 64 bits wide. (The KSRl 

implementation uses 40 bit addressing registers.) 

In addition to the 32 processing cells, each ring:O also contains 2 ALLCACHE Routing and 

Directory (ARD) cells. One of the ARD cells is an uplink from the ring0 to ring:l. The other 

ARD is a downlink from the ring:l to ring:O. The ARDs participate in the transfer of data 

between ring:Os across ring: 1. 

All of the local caches, together with the interconnecting rings, make up the ALLCACHE 

memory system. Addressing in the KSR architecture is based on the translation of a Con- 

text Address (CA) into a System Virtual Address (SVA). Context addresses are composed of 

a segment and ofFset and are translated into System Virtual Addresses via fully associative 

hardware Segment Translation Tables (STTs) on each processor. There are two STTs, one for 

data and one for instructions. The System Virtual Address space consists of all of the local 

caches. The ALLCACHE memory system and the organization and management of System 

Virtual Address (SVA) space is the major difference between the KSR architecture and other 

architectures. When a processor references an SVA, a search engine, which is the collection of 

CIUS and the ARD on each ring0 along with the ring interface, locates the SVA and moves its 
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contents to the local cache of the referencing processor. 

2.2. Memory Organization 

ALLCACHE stores data in units of pages and subpages. Pages contain 16K bytes divided into 

128 subpages of 128 bytes each. Each local cache can hold 2,048 pages. The memory system 

allocates storage in the local caches on the basis of pages and each page of SVA space is either 

entirely allocated in the caches or not allocated at all. The local caches share data in units of 

subpages. Whenever a page of SVA space is allocated in the system, there may be more than 

one copy present. This would be the case when several threads running on different processors 

are all referencing shared memory. It is possible that each local cache that has allocated a page 

may not contain a copy of all of the subpages in that page. That is, space in the local caches is 

allocated on a page basis, but data is transferred on a subpage basis. Each local cache maintains 

a cache directory in a 16-way set associative memory with 128 sets that maps physical pages 

in that cache to SVA pages. All of the pages of SVA space are divided into 128 equivalence 

classes, each associated with a cache directory set. Since there are 16 elements in each set in 

the cache directory, a cache can contain no more than 16 pages in the same equivalence class. 

The subcaches are allocated on the basis of blocks (2K bytes) and data is moved into and 

out of the subcaches in subblocks of 64 bytes each. A two way set associative subcache directory 

maintains the mapping between subcache blocks and SVA pages with one descriptor for each 

block. The subcaches replace blocks as needed using a random replacement scheme. 

In the cache directory of each cell, additional information is maintained that represents the 

state of each subpage in the local cache. There are four states that a subpage can be in: 

Exclusive owner: Indicates that this is the only valid copy of the subpage in all of the 

local caches (Le., in the entire system). The contents can be read or modified. 

Atomic: Like exclusive, this is the only valid copy and the subpage can be modified. This 

state also provides a flag to allow synchronization by multiple processors. Thus, this state 

provides for locks. 

Read-only: Indicates that there are two or more valid copies of this subpage among all 

of the local caches. The contents of this subpage cannot be modified until its state is 

changed to exclusive or atomic. 

Invalid: The contents of this subpage are not t o  be accessed (i.e., read or modified). 

Newly allocated pages set all subpage descriptors t o  invalid. This state is analogous to 

the setting of a “dirty bit.” 

The subcaches also maintain state information at the subblock level. The instruction subcache 

allows each subblock to be in either the invalid state or the read-only state. In addition to 
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Location of 
subpage 

invalid and read-only, the data subcache allows a block to be in the exclusive owner state to 

allow for modification. The data subcache also maintains modification information for each 

subblock. The state of a subblock in the subcache is not allowed to be stronger than the state 

of the corresponding subpage i n  the local cache. Thus, it is not possible for a subblock’s state 

t o  be exclusive in the subcache while read-only in the local cache. 

When a processor references an SVA address it continues execution for two cycles, which is 

the latency of the subcache. If the address is not contained in the subcache, the processor is 

stalled and a request is presented to the CCUs to locate the subpage containing the requested 

address in the ALLCACHE memory. If the subpage containing the address is not present in 

the local cache (and in the state requested by the processor), then the CCUs make a request of 

the local CIUs t o  format a request message and place it on ring:O. The ring:O communication 

interconnect is a slotted pipelined ring with a total bandwidth of 1GB. There are 13 slots on 

the ring:0 ring. Each message on the ring consists of a 16 byte header followed by one subpage 

(128 bytes) of data. As a request message passes each processing cell, the cell’s CIU determines 

if the request can be satisfied from its local cache. If it can be satisfied, the request message 

is extracted from the ring and a response message is inserted. Also attached to each ring:O is 

an ALLCACHE Router and Directory (ARD) cell that contains a directory of the entire ring:O 

cache (Le., all of the local caches). If the ARD determines that a request message cannot be 

satisfied on the local ring:O, it extracts the message and inserts a request on the next higher 

ring in the hierarchy, ring:l. When the response message to the original request is inserted 

on the ring, the requesting processor copies the message and fills the original request from the 

local CCU. If a request message returns to the requesting processor unanswered, a hard page 

fault is generated and the subpage is brought in from the disk. The latency and total capacity 

of the ALLCACHE memory system hierarchy is shown in Table 1 [6]. 

Total Latency in 
capacity (MB) cycles (5ns) 

The hardware management of the KSR memory system assures that the ALLCACHE mem- 

ory is both sequentially consistent [7] and strongly ordered [2]. The state of a subpage in local 

cache or a subblock in subcache is changed in response to requests from processing cells in the 

system. When a load instruction is issued, it can specify the state that  the subblock should 
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possess. A store instruction always requires that a subpage have an exclusive ownership state. 

Whenever a request for exclusive ownership is made, all copies of the subpage in other cells 

are marked as invalid. One distinction between the ALLCACHE memory and NUMA shared 

memory architectures is that no processor is the designated “home” of a subpage of memory. 

There can be multiple local caches that have allocated space for a subpage and the ownership 

travels around the rings as required, to satisfy state requests by the multiple processors. 

One problem that floating ownership can cause is that as fetch requests are made, it is 

possible that the local cache of the processor issuing the request may have an invalid copy. 

There are two methods by which the inefficiencies created by this approach are moderated. 

First, whenever a copy of a subpage is sent across the ring to satisfy a request, any local cache 

that has a descriptor for the subpage (Le., has allocated space) but does not have a valid copy, 

can pick up a read-only copy of the subpage if the cell is not too busy. This a ~ l o m a t i c  prefe lching  

is a function of the hardware. Second, there are two instructions, pcsp (prefetch subpage to 

cache) and pstsp (poststore subpage), that provide the programmer with some control over 

the locality of specific subpages. The prefetch instruction allows for the specification of the 

state that should be acquired when a subpage is fetched. The poststore instruction simply 

relinquishes exclusive ownership and broadcasts the contents of a subpage on the ring. All cells 

that have a descriptor for the subpage will take a copy from the ring if they are not too busy. 

If no advance copy is obtained by a cell, then a new request is issued whenever the cell requires 

a valid copy. 

2.3. System Configuration 

The KSR operating system is an implementation of OSF-1 and provides a standard UNIX 

interface. Built on top of the Mach threads of OSF-1 is a pthreads interface based on the IEEE 

POSIX draft standard, P1003.4a. The KSR pthreads interface includes extensions to enable 

an application to manage ring traffic and the geometry of thread placement for optimizing the 

performance of cooperating threads. The experiments described here were run using version 

R1.0.5 of the KSR OS. The system includes a fully configured ring0 with 32 processing cells. 

The timings reported in the experimental section were collected using the two sub-microsecond 

timers on each cell, one which reports user time, the other system time. 

3. Experimental Analysis 

3.1. The Workload 

In order to study the advantages and disadvantages of using poststore after an update, various 

workloads consisting of a parallel version of a readers/writers workload are constructed. Each 
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workload performs the following steps: 

0 Initialization Phase 

1. A number of reader and writer threads are spawned, each bound to a specific pro- 

cessor. 

2. Each reader and writer reads a predetermined portion of a given data set. This 

ensures that a copy of the shared data set is in the local cache of each participating 

thread, and that no disk accesses will be required during the measurement phase. 

Measurement Phase 

1. Timing begins for each writer. 

2. Each writer updates its portion of the data set. Writing is done with or without 

poststore, depending on the experiment. 

3. Timing ends for each writer. 

4. Timing begins for each reader. 

5.  Each reader sequentially reads its portion of the data set one time. 

6 .  Timing ends for each reader. 

The emphasis of the experiments is to determine under which conditions the use of poststore 

is an advantage. If the writers broadcast their updates with poststore, then each reader should 

find a valid copy of the data in its local cache during the reading phase. If the updates are done 

without poststore, then no valid copy is available in the reader’s local cache during the reading 

phase. In this case, every read is a cache miss and generates a request on the ring. Readers 

are allowed to  read only after all the writers have finished. In all the experiments, readers and 

writers are implemented by distinct threads, and are mapped onto distinct processing cells, so 

that  no two threads in the same application access the same local cache. 

3.2. The Experiments 

The parameters to  be varied in the experiments are: 

1. the amount of data requested per subpage access, 

2. the amount of delay between accesses, 

3. the read access pattern, 

4. the number of writers, 

5.  the amount of data set sharing among readers, and 
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6. the number of concurrent reader/writer workloads 

Several experiments were run using different values for each of these parameters. Table 2 lists 

the experiments reported here with their parameter values. Three data set sizes were used: 

small (13K subpages), medium (52K subpages), and large (100K subpages). Different sizes 

test the effect of processing for longer periods of time. Each experiment was  run for a varying 

number of readers. 

Table 2: Experiment parameter values 

1 Experiment I Granularity I Delay I Access Pattern 1 Writer I Sharing I Workloads 1 

Different access granularity levels affect the rate at which read requests are made to the 

ring. The access granularity may be one access per subpage, one access per subblock (i.e, two 

accesses per subpage), or the entire subpage. In the experiments reported, each read is a 64 

bit word. Each subpage contains 16 words. When one word per subpage is read, without 

intervening processing, the rate at which requests for invalid pages are made is maximized. 

When one word per subblock is read, then the rate of ring requests decreases, since every other 

read is a local cache hit. When an entire subpage is read there will be one request to the ring 

(to acquire the subpage initially), one hit to the local cache (to get the first word of the second 

subblock), and fourteen hits to the subcache (to get the remaining 14 words of the subpage). 

The subcache and local cache latencies of 2 and 18 processor cycles, respectively, increase the 

time between requests to the ring. Experiments A and B show the effect of different access 

granularities . 

When no additional time is used for processing (Le., pure read requests), the single request 

to the ring outweighs the other delays since it is an order of magnitude greater than the local 

cache latency. The rate at which read requests are made to the ring may be slowed further by 

introducing a variable delay between read accesses to simulate data processing. Experiment C 

shows the effect of introducing delay between read accesses. 

In Experiment D the access pattern is varied in order to study the effect of automatic 

prefetching. If many subpages are copied from the ring before they are requested, then the 

number of ring requests will be reduced. This has the effect of reducing total execution time. 
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Experiments E and F show the effects of multiple writers. With multiple writers, the data 

set is divided equally among the writers so that each writer has the valid copy of a distinct 

(private) portion of the data set. When multiple writers own different parts of a shared data 

set and multiple readers read different parts as well, the composition of read requests being 

placed on the ring changes and the read time per subpage changes. Readers may or not may 

not be allowed to  share data sets. T w o  extremes are considered: 

1.  Full sharing, where each reader reads the entire data set. This is termed global  readers. 

2. No sharing, where the data set is divided equally into distinct portions among the readers, 

and each reader accesses only its portion. This is termed private readers. 

Experiment E investigates the effects of multiple global readers. It is possible that a single 

writer could become the system bottleneck. Multiple writers can reduce this bottleneck effect. 

Also, it  is possible for a reader to obtain a valid copy of a subpage through automatic prefetching 

because of a request made by another reader. 

Experiment F shows the effect of multiple writers and private readers. With private readers, 

readers cannot take advantage of automatic prefetching since each reader is the only thread 

accessing the data for which it has put a request on the ring. With multiple writers and 

private readers, read requests are served by different writers a t  the same time, which reduces 

the demands on the writer process. 

Since poststore reduces the execution time of the reader threads while increasing the execu- 

tion time of writer threads, both thread types should be considered when making the decision 

of when to use poststore. It is expected that for a low reader-to-writer ratio the expense to 

the writers would dominate, indicating that poststore should not be used. Conversely, for a 

high reader-to-writer ratio, it  is expected that the benefits to the readers would dominate, in- 

dicating that poststore should be used. Also, as the number of reader/writer workloads (i.e., 

heavyweight threads, multiprogramming level) changes, the relative benefit of poststore can be 

affected. Experiment G examines these issues. 

3.3. The Results 

The results of the 7 experiments are presented here. Except for Experiment G the performance 

metric used is the average access time per subpage by an average reader thread. 

In Experiments A,  B and C there is a single writer and progressively longer times between 

read requests. In each of these, the average read time per subpage is shown as the number of 

readers varies from 1 to 30. The results of Experiment A are shown in Figure 2. Experiment 

A has the highest rate of ring requests (one per subpage). RRsults are shown for the three data 

set sizes. When poststore is used, read time per subpage is constant, since every read is a hit in 
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the local cache. With a larger data set, the average time to read a subpage increaes because 

of the extra overhead incurred due to more subcache turnover. When no poststore is used, 

the average time to read a subpage increases as the number of readers increases. Regardless 

of the size of the data set, when more than six readers are executing, the time to read a 

subpage increases linearly due to delays at the cell of the writer thread which must handle all 

requests. Larger data sizes yield better performance because they allow for better exploitation 

of the pipelined execution, and the subcache turnover overhead is overlapped with the time 

the processor is waiting for the requested subpage. Furthermore, a longer global execution 

time favors automatic prefetching. This is because the longer readers execute, the more their 

executions are staggered from the initial synchronized start, increasing the probability that one 

reader will request a subpage that will be needed in the future by another reader. 

In Experiment B every word in each subpage is read. The results are similar to those of 

Experiment A, as shown in Figure 3. Again, when no poststore is used, the average time to 

read a subpage increases as the number of readers increases. The increase becomes linear with 

the same slope as before but begins with a higher number of readers, since the request rate is 

smaller. The point where the curve reaches the asymptote is 11 readers, as Figure 3 shows. 

The absolute value of the average read time per subpage is larger than with Experiment A 

due to the extra accesses performed per subpage. However, when the system is not saturated, 

the difference between the average read time with poststore and the average read time without 

poststore is the same, and is equal to the measured ring latency. 

Experiment C shows the effect of including a variable delay to represent processing time 

between each read, which further reduces the ring request rate. In this experiment, one word 

per subpage is read, so that with no poststore, every read generates a ring request, The curves 
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in Figure 4 show the average read time per subpage for different delays between reads, as the 

number of readers increases from 1 to 30. The base case for a delay of 6ps yields the same 

performance as when an entire subpage is read and there is no delay between reads, as in 

Experiment 8 with the small data set. As the delay increases, the number of readers that it 

takes to saturate the system is larger. At saturation, the slope of the asymptote is the same 

as before for all curves, but the location of the saturation point is a function of the delay. 

Again, when the system is not saturated, the difference between the average read times with 

and without poststore is the same, and is equal to the measured ring latency. Experiment C 

shows that as the delay between reads increases, the ring latency and writer response time have 

less effect on total execution time. 

Experiment D shows that performance improves if readers use different access patterns, 

as illustrated in Figure 5. In this experiment there is one writer, readers are global, and 

the number of readers is varied from 1 to 30. Half of the readers read the entire data set 

sequentially forward, and half of the readers read the entire data set sequentially backward. 

Figure 5 shows that the slope of the saturation asymptote for the average read time without 

poststore is about 50% of the slope for the corresponding experiment where all readers use the 

same access pattern (Experiment B). The performance improvement is due to the automatic 

prefetching of subpages that have not yet been requested as they pass by on the ring. This 

effect of prefetching is noticeable from one to two readers. The read time drops because there is 

a high probability that subpages requested by the second reader are copied by the first reader 

also, and vice versa. This is an instance of “anomalous” behavior where performance improves 

as the workload increases. When both readers have read half of the data set, the probability of 

generating ring requests is very low. Additional readers do not give any advantage, since their 
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read pattern is the same as one of the first two. As more reader threads are added, performance 

degrades less severely than in the other cases because during the second half of the execution 

the number of ring requests is reduced. 

In Experiments E and F the number of readers varies from 1 to 29, and the number of 

writers varies from 29 down to 1, with the number of active threads fixed at  30. The results of 

Experiment E are shown in Figure 6. In this experiment, every reader reads the entire shared 

data set with the same reference pattern, and requests are satisfied by one writer a t  a time. 

At different times during execution, different writers supply the requested subpages. Because 

all readers tend to access similar parts of the data set at  the same time, the trend is for a 

single writer at  a time to be responding to reader requests. Thus, the expected improvement 

in execution time by spreading the requests among multiple writers is not realized. Figure 6 

shows that average read time per subpage follows the same trend as in Experiment A ,  where 

there is a single writer and multiple global readers reading one word per subblock. 

The results of Experiment F are shown in Figure 7. In this experiment, no two readers 

read the same piece of data, so no duplicated requests for the same subpage are seen on the 

ring. The data is distributed evenly among the writers. Thus, the readers segregate their read 

requests. Each reader will read data from a different set of writers, unlike Experiment E where 

each reader makes requests of each writer. When readers access distinct parts of the data set, 

the saturation behavior and the low load behavior are different. The slope of the asymptote 

is much steeper and occurs at  a much higher number of readers due to the load balancing 

which occurs at the writers. The effect of many writers using poststore to a very few readers 

is also shown in this graph. With 29 writers and 1 reader the time to access a subpage is 

higher because not all poststore instructions were effective. The single reader was saturated 

with poststores from 29 writers and could not process all of the poststores. 

The effectiveness of poststore is a tradeoff between the total time it takes the writer to 

update and poststore the data, and the reduction in read time for the readers. Figure 8 shows 

the sum of average access time per subpage for readers and the average time to write a subpage 

for the writer as a function of the number of readers, for the medium data set. The data is 

taken from the Experiment B runs for both with and without poststore. When the number 

of readers is small, the additional time it takes the writer to poststore is not offset by the 

savings in average access time for the readers. However, as the number of readers increases, the 

average access time of the readers in the without poststore case increases, while the write time 

is always constant. After approximately 15 readers the savings in access time for the readers 

with poststore is greater than the extra time required for the writer to perform the poststore. 

Experiment G illustrates a similar tradeoff as the number of workloads (i.e., reader/writer 

sets, heavyweight threads, multiprogramming level) increases. The data was collected by si- 
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multaneously executing multiple copies of the workload from Experiment C with 29 readers 

with a processing delay of 9ps, and 1 writer. Figure 9 graphs the average over all workloads of 

the combined access time for the readers and writers as the number of concurrently executing 

workloads increases. As the number of workloads increases (Le., as the system load increases), 

the advantage of using poststore decreases. With 4 or more workloads, the average response 

time is lower without poststore. One possible reason is that retrieval of subpages from the 

ring can occur during the time that a thread is suspended due to context switching between 

workloads. When poststore is used, the time a thread is suspended (because it has been context 

switched with threads of other workloads) cannot be overlapped with data fetching. This tends 

to nullify the advantage of broadcasted updates. The higher the number of workloads, the more 

evident this effect becomes. In Figure 8 the advantage of poststore is more significant when 

there are more reader threads. The tradeoffs shown in Figure 8 and in Figure 9 explain why 

the decision of when to use poststore should be shared by the programmer and the system. As 

the system load increases, programmed poststores should be ignored by the system. 

In general, the higher the rate at which non-local shared data is read, the greater the 

advantage of poststoring, especially when many other threads share that data. However, the 

number of threads which access the same data, and their access patterns, are other important 

factors to consider. When strict serialization of writes and reads cannot be ensured a pr ior i ,  

the use of poststore should be limited. When there are pending requests for a subpage for 

which a poststore has been issued, the poststore instruction is started but not completed, so 

no update broadcast is performed. This results in pure overhead for the writer. 
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4. Modeling and Validation 

4.1. Detailed Model 

In this section, analytical models of the system and the workloads presented in Section 3.2 are 

presented. The workloads modeled are the various applications of readers and writers with and 

without the use of poststore. The analytic model illustrates the processing which occurs in the 

subcaches, local caches, and the ring under the selected workloads. The following modeling 

assumptions are made: 

1. Initial modeling will include only the effects of subcaches, local caches, and ring:0 traffic. 

However, the models could be extended to include disk accesses and ring:l traffic. 

2. No cache inconsistencies or synchronization occur among the reader/writer threads. Specif- 

ically, all writing completes before any reading occurs. The hardware guarantees cache 

consistency and the modeled workloads have no synchronization. 

3. Access times for the subcache, local cache, and ring are exponentially distributed, with a 

mean given by the hardware specifications of the KSRl (see Table 1). 

4. Each processor may make a memory request to the subcache, local cache, or ring0 based 

on probabilities which are determined by the specific workload running on the processor. 

5. A request placed on the ring and the removal of a request may be effectively modeled 

probabilistically. That is, it is not necessary to track the exact path of every request on 

the ring and that modeling average path behavior is sufficient. 
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For the workloads modeled, each cell does some processing, followed by a memory request. 

When a memory request is made from a processor, the item may be located in either the 

subcache, the local cache, or the local cache of another processor. If the item is in the subcache, 

then it is transferred directly to the processor. If the item is found in the local cache, then it  

is transferred to the subcache, and then to the processor. If the item is not found locally in 

either the subcache or local cache of the processor, then a request is issued on ring:0 for the 

data item. When the response arrives, the data item is placed first in the local cache, then the 

subcache, then sent t o  the processor. 

A Generalized Stochastic Petri Net (GSPN) [9,8] was selected to model the system. The 

detailed GSPN model includes a subnet for each of the 32 processing cells and subnets for the 

two ARDs which model the ring propagation only. Each subnet models the cell’s processing 

time, and subcache (sc), local cache (IC), and ring interactions. The subnets are connected 

together to form the complete ring:O. 

B (memory request) 

E (request to ring:O) 

from previous cell to next cell 

Figure 10: A subnet of one cell of the KSR1. 

Figure 10 illustrates the detailed model of the subnet of one cell of the system. Places in 

each processor are labeled A through I .  Transitions are numbered t o  through t10 a t  each cell. 

The traffic on the ring is expressed by the number of occupied slots. Each cell has access to 

one slot, and this single slot is represented by the three places G, H ,  and I ,  in Figure 10. 

Inhibitor arcs on transition t 6  ensure that a cell can only place a message into an empty ring 

slot. Inhibitor arcs on transition t g  from each of the places G, H ,  and Z of the next cell ensure 
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that a message on the ring will only be passed to the next cell if the slot for that cell is empty. 

Throughput on the ring at a processor can be measured as the throughput of transition t 8  at 

that processor. Throughput of a processor can be measured as the throughput of transition t o ,  

since all transactions at the processor must pass through that transition. 

The subnet of a reader (i.e., a cell where the executing thread is a reader) operates as 

follows: Place A represents processing that occurs between memory requests. Transition t o  is 

a timed transition which represents this processing time, and its rate depends on the volume of 

computation/processor cycles the reader is executing between two consecutive read requests. If 

a token is in place B,  a memory request has been issued. After the memory request is issued, 

one of the iinmediate transitions 11, t Z ,  or 53 is fired with probability p1, p2 ,  or p 3 ,  respectively. 

If the requested item resides in the cell’s subcache, t l  fires. If the subpage containing the item 

resides in the cell’s local cache, transition t 2  fires. If the subpage containing the item resides 

in the local cache of another cell, t 3  is fired. The firing probabilities of transitions t l ,  t z ,  and 

t 3  depend on the workload type. The modeling of automatic prefetching is approximated by 

adjusting the probabilities p1 ,  p 2 ,  and p3.  

A token in place E represents a pending request to the ring. As soon as a slot becomes 

available, transition t.5 will fire, representing a request which is propagated on the ring. At the 

same time, the processor will go into a wait state, represented by place F ,  until the request 

is satisfied. Upon arrival of the response to place G, transition t l o  is fired and the packet 

(i.e., the requested subpage) is received from the ring. The probabilities that a reader acquires 

the subpage from the ring or not are q and 1 - q ,  respectively. Transitions t 4 ,  t 5 ,  and 18 are 

timed transitions with firing times equal to the hardware latencies given by the manufacturer 

for the subcache, local cache, and the rate of ring propagation, respectively. Reader cells are 

initialized by placing a token in place A of each cell which represents an active reader process. 

This indicates that a read request is about to be made. 

The subnet of a writer (;.e., a cell where the executing thread is a writer) operates similarly, 

except that the probabilities and transition rates are different. In each writer cell, q and q - 1 

represent the probabilities that a writer does or does not own the subpage requested from the 

ring. Transitions t o ,  t 4 ,  and 1 5  represent the total time for a writer to respond to a request. 

The probabilities p1 and p z  are zero for a writer thread, since no additional processing takes 

place, and the writer immediately issues a response on the ring as soon as a slot is available. 

Writer cells are initialized by placing a token in place F of each active writer thread, indicating 

that the writer is waiting to respond to a request. 

The detailed model is a description of the interactions between threads and ring:0 of the 

KSR1. However, the detailed model contains 294 places and 358 transitions. Even a simple 

workload of 1 reader and 1 writer generates a reachability set containing over 800 states. Since 
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the addition of each new active thread causes the number of states to increase exponentially, 

the model quickly becomes intractable with just a few active threads. Since this detailed model 

cannot be solved easily, simulation or an approximate model must be used. The latter option 

is chosen. 

4.2. Approximate Load Dependent Model 

Figure 11: Load dependent GSPN model of ring:O. 

The readers are modeled with the approximate load dependent model illustrated in Fig- 

ure 11. In this model, transitions t o  through t 5 ,  and places A through I" are as described for 

the detailed model. However, the ring delay (Le., ring and writer activity) is modeled as a 

single load dependent server, and all processes interact through this single resource. Figure 12 

illustrates the experimentally measured service rate of the ring and a single writer thread. Since 

the access rate increases linearly up through six readers, and flattens thereafter, an M/M/6 

server is used in the approximate model. 

If the assumption is made that a single thread executes at a time on each processing cell 

and each cell is statistically identical (Le.? single class), then the model can be reduced. The 

equivalent model shown in Figure 13 results after collapsing all subnets that  represent the 

readers of the approximate load dependent model into a single subnet. This model is initialized 

by placing a number of tokens in place A equal to the number of readers. This model gives 

the same global performance metrics for the reader threads as the model in Figure 11. The 
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Figure 12: Service rate of the ring versus the number of active readers/threads. 

response time measured with this model is the access time of a word. 

B (memory request) 

t E (request to Mg) 
6 

Figure 13: Reduced load dependent GSPN model for ring:O. 

The number of tokens in this model indicates the number of readers. As before, tokens in 

place A represent internal cell processing. Tokens pass to  place B when processing is complete 

and a memory request is issued. Transitions 11, t 2 ,  and t3  are immediate transitions] with 

the same functionality as that of the detailed model. A token in place C indicates that the 

requested word is in the subcache. A token in place D indicates that the word is in the local 

cache. A token in place E indicates that a fault to ring:O has occurred. Transitions t 4 ,  t5, and 

&5 are timed transitions. Transitions 14 and t5 are infinite servers, representing the subcache 

and local cache of each reader thread, again with rates equal t o  the hardware rates specified by 
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the manufacturer for subcache and local cache access, respectively. Transition t 6  is an M/M/6 

server, with a rate equal to the hardware rate specified by the manufacturer for ring:O access. 

As more processes attempt to place messages on the ring, the server becomes saturated and 

processes requests at  a fixed maximum rate. As before, p1,  p z ,  and p3 depend on the modeled 

workload. 

4.3. Theoretical Model/Experimental Comparisons 

In this section, comparisons between the theoretical response time curves (dashed lines) and the 

experimentally observed response time curves (solid lines) of various workloads are presented. 

The theoretical results are based upon the reduced load dependent GSPN model. The model 

was programmed and solved using SPNP [1], an analytic GSPN solver. The service rate of 

t o  is workload dependent and depends on the amount of delay or computation performed 

after each read. The granularity of access of the experimental workload is reflected in the 

transition probabilities pl,  pz, and p3. The size of the experimental workload affects both the 

amount of overlap of subcache overhead with processing and the effectiveness of pipelining. 

Experiments with different data sets yield different response time curves. However, the model 

does not incorporate any information about these types of overhead. The analytically predicted 

response times apply to the workload, regardless of the size of the data set. The medium data 

set is selected as representative and is used for comparisons to the theoretical model. The 

performance metric of interest is the average read time per subpage. 

Figure 14 shows comparisons for Experiment A. For the average read time without poststore, 

the transition probabilities p l ,  p2 ,  and p3 are set to 0.0, 0.0, and 1.0, respectively (i.e., all reads 

generate a ring request). For the average read time with poststore, the transition probabilities 

are set to 0.0, 1.0, and 0.0 (Le., all reads are a subcache miss, but a hit to the local cache). The 

model prediction is quite good. The analytical model overestimates performance by at most 

by 5ps (12.5%). In this case, the writer (i.e., the load dependent server) becomes the system 

bottleneck. 

Figure 15 shows comparisons for Experiment B, where the global readers read the entire 

subpage. For the without poststore curve, the transition probabilities t l ,  t 2 ,  and t3  are set to 

16, 16, and &, since each subpage consists of two subblocks of 8 words each and as soon as a 

request is made to the ring, the subpage is moved to the local cache. For the with poststore 

curve, the transition probabilities are set to 9, &, and 2, since all read requests are satisfied 

in either the subcache or local cache. The theoretically predicted response time overestimates 

the experimental results by about 15%. 

I 14 J- 

Similar comparisons between the analytic model and the experiments can be observed for 

Experiment C, as shown in Figure 16. (In the remaining figures, the with poststore curves do 
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not provide any additional insight and have been deleted for clarity.) In Experiment C, delays 

of 6ps ,  12ps, and 2 1 p  are added after each read to simulate processing time. The rate for the 

timed transition t o  is adjusted to account for this in the model. In this experiment, the rate of 

ring requests is the slowest (in contrast to Experiment A where the relative rate of generating 

a ring request is the highest possible). As before, the model predictions follow the trend of the 

experimental response time curves. 
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Figure 16: Model prediction for the “no 
poststore” case, Experiment C. 

Figure 17: Model prediction for the “no 
poststore” case, Experiment D. 

Figure 17 shows the predicted performance of the model along with the actual performance 

of Experiment D. For Experiment D (i.e., in the single writer/multiple reader case where half 

of the readers read sequentially forward, from the beginning to the end, the other half read 

sequentially backwards), the performance improves (i.e., compared against Experiment B where 
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all readers read in the same direction). Improvement results due to readers collecting subpages 

that they have not yet referenced but for which they have subpage descriptors. By adjusting 

the probabilities p1,  p 2 ,  and p3 it is possible to capture the effect of automatic prefetching of 

some percentage of the circulating subpages. The model indicates that the actual system is 

prefetching roughly 75% of the circulating subpages. 

5. Generalizations 

The model presented here may be generalized in a number of ways. These generalizations 

include such features as a more accurate load dependent server, a multiclass model, and less 

extreme workloads. 

In Experiments A through D there is only one writer, with multiple readers which all 

behave similarly. This makes it possible to build a simple load dependent model of the readers 

on ring:O. The model reflects the readers’ interactions with the “system”, which is viewed as the 

combination of the ring and single writer, and is modeled as an M/M/6 server. The parameters 

of each model reflect the different behavior of the readers in each of the Experiments A through 

D. However, the simple load dependent model is not as accurate for Experiments E and F. 

Experiments E and F are different from the first four because there is more than one writer. 

In particular, when the readers are private, as in Experiment F, each reader is accessing data 

from a different writer a t  any one time. 

Figure 18 shows the predicted performance using two different analytical models along with 

the actual performance for Experiment F. The first model is the one used in the previous section 

and use8 a single M/M/6 server to model the ringjwriter behavior. As seen, the model is a 

poor predictor for the case of multiple writers and private readers. The second model uses 

multiple M/M/6 servers, one for each writer. The behavior of this model is very close to that 

of the actual system. When there are 29 writers and 1 reader, the large number of writers 

(M/M/6 servers) can easily handle the number of requests from the single reader. Both the 

actual system curve and that from the analytic model are flat up to 25 readers (and 5 writers). 

If each writer behaves as an M/M/6 server, then there are equivalently 30 servers to handle 

the requests of the 25 readers. The system is behaving as an infinite server up until that point, 

since the number of readers is smaller than the total number of servers. For 26 readers there 

are 4 writers, with the number of total servers equal to  24. At that  point, the read time per 

subpage begins to  increase dramatically, since the number of readers is greater than the number 

of servers. With 29 readers and 1 writer, the writer is saturated, as in the earlier experiments. 

The current model approximates the effect of automatic prefetching by adjusting the prob- 

abilities p1 ,  pa, and pj. A multiclass model could be used to show this effect more accurately 

by modeling each request as a separate class. Each reader would issue a ring request for a class 
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Figure 18: Model prediction for Experiment F 

of data not previously seen on the ring. Each reader would access future data on the ring with 

some probability dependent on other processor activity. The Petri net model would have a 

place for each class of data in the local cache and subcache. A more general model could also 

take into consideration subcache overhead and pipelining effects. 

The current experimental workload was selected with the goal of illustrating the worst case 

behavior with and without the use of poststore. This workload is extreme in that all writing is 

completed before any reading starts, and the workload ensures that either all data is available 

in the local cache for each individual reader, or no data is available in the local cache for each 

individual reader at the time the reading occurs. Further work includes monitoring actual codes 

to acquire model parameters for the processing rates and the probabilities of memory requests 

of less extreme workloads. 

6. Summary 

The primary contributions of this paper are listed below, relative to the stated goals in the 

introduction. 

0 A description of the basic KSRl architecture has been given. The key elements are: the 

ring of rings structure, the hierarchical (ALLCACHE) caching scheme, and the address 

resolution search engine. Attention is focused on the poststore option. 

0 Results from a suite of sensitivity analysis experiments have been reported. A simple 

readers/writers workload was used. Each experiment was run both with and without 

the poststore option. Performance sensitivity results were given with respect to: data 
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granularity, reader delay, data access patterns, reader/writer ratio, data sharing, total 

system load, data set size, and number of readers. 

Analytic models, both a detailed model and an approximate model, have been con- 

structed. Validation experiments indicate that the basic trends are accurately captured 

using relatively simple models. 

The experimental results indicate where poststore is most effective. Figure 8 shows that 

as the number of reader threads increases, poststore is more advantageous. However, if the 

number of reader threads is small, poststore should not be used since the benefit to the readers 

does not offset the extra incurred overhead of the writers. Thus, the number of reader threads 

influences the decision of whether or not to use poststore, and this number is a parameter of the 

programmer’s application code. Figure 9 shows that the number of application workloads 

(Le., the number of sets of reader/writer codes) increases, poststore becomes less advantageous. 

That is, as  contention increases a t  the processing cells, poststore is not beneficial and should not 

be used. The system load is controlled by the operating system scheduler. Therefore, neither 

allowing a programmer to use poststore without knowledge of the system load, nor allowing 

the operating system to determine the use of poststore without knowledge of the application 

code, is advisable. 

Using poststore is analogous to a sender-initiated transfer. Sender-initiated transfers are 

most beneficial under light load [4]. Using prefetch (i.e., another programmer option not ad- 

dressed in this paper), or allowing the readers to pull in subpages as requested when poststore 

is not used, is analogous to a receiver-initiated transfer. Receiver-initiated transfers are most 

beneficial when the system load is heavy. Although applied here in a different context, the 

results in Figure 9 confirm these general findings. 

As mentioned in Section 5, several improvements to the model are possible and other features 

of the KSR architecture warrant further study. The intent here was not to model all aspects 

of the KSR’s memory or ring hardware. However, building on the basic understanding of the 

architecture, such a modeling effort would be useful. These modeling and experimentation 

efforts are continuing. 
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