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Abstract 

This paper describes Message Passing Interface 1 (MPIl), a proposed library inter- 
face standard for supporting point-tc-point message passing. The intended standard will 
be provided with Fortran 77 and C interfaces, and will form the basis of a standard 
high level communication environment featuring collective communication and data dis- 
tribution transformations. The standard proposed here provides blocking, nonblocking, 
and synchronized message passing between pairs of processes, with message selectivity by 
source process and message type. Provision is made for noncontiguous messages. Context 
control provides a convenient mems of avoiding message sdectivity conflicts between dif- 
ferent phases of an application. The ability to form and manipulate process groups permits 
task parallelism to be exploited, and is a useful abstraction in controlling certain types of 
collective communication. 





1. Introduction 

This paper documents a proposal, initially made in Kovember 1992, for a standard for perforni- 

ing point-to-point message passing between pairs of processes in a MIMD distributed meniory 

computing system. Some modifications were made in January 1993, particularly in the ap- 

proach t o  process groups, following input from a number of colleagues An eKort is currently 

underway to  develop a more coniprehensive standard for message-passing on distril)uted mem- 

ory systems by July 1993. This effort involves a team of about 60 people made up of hardware 

and software vendors, and researchers from universities and govrrnment laboratories 

A small set of typed message passing routines form the core of the standard, and are aug- 

mented by support for features such as noncontiguous messages, comniunication contexts, and 

process groups. The proposed standard, called Message Passing Interface 1 (MPI l ) ,  includes 

o~i ly  message passing between distinct pairs of processes, and thus does not address collective 

communication of any type, including broadcasts and reduction operations. We expect these 

types of communication will be included in the final version of the MPI standard. Other impor- 

tant standardization issues not addressed in detail include support for virtual communication 

channels, active messages, heterogeneous computing, performance tracing, and parallel I/O. 

Thus, while MPIl  does not at this stage provide the flexibility and range of functionality that 

one would expect from a complete message passing environirient, we regard it as forming the 

core of such an environment. In designing MPIl  we have tried t o  avoid imposing constraints 

that would hinder the future extensions necessary to address the issues mentioned above 

The main advantages of establishing a message passing standard are portability and ease- 

of-use. In a distributed memory communication environment in which the higher level routines 

and/or abstractions are built upon lower level message passing routines the bencfits of standard- 

ization are particularly apparent. Furthermore, the definition of a message passing standard, 

such as that proposed here, provides vendors with a clearly defined base set of routines that they 

can implement efficiently, or in some cases provide hardware support for, thereby enhancing 

scalability. 

In designing MPIl we have sought to  make use of the most attractive features of a number 

of existing message passing systems, rather than selecting one of them and adopting it as the 

standard. Thus, MPI l  has been strongly influenced by work at the IBM T. J .  Watson Research 

Center by Bala, Kipnis, Snir and colleagues [2,3], Intel’s NX/2 [18], Express [17], nCUBE’s 

Vertex [15], and PARMACS [11,13]. Other important contributions have come from Zipcode 

[19,20], Chimp [6,7], PVM [8,2l], and PICL [9]. 

One of the objectives of this paper is to promote a discussion within the concurrent com- 

puting research community of the issues that must be addressed in establishing a practical, 

portable, and flexible standard for message passing. This cooperative process begarl with a 

workshop on standards for message passing held in April 1992 [22], and continued with a sec- 

ond meeting in November 1992 when an organizational structure for developing a standard 
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message passing interface was created. We believe the draft of hiPIl  proposed here provides 

a good, concrete basis for continued discussion, and that it will contribute over the next few 

months to the developirient of an intermediate level message passing standard. 

In Section 2 the rationale for an intermediate level standard is given. Section 3 presents the 

programming model assumed. and describes the rnain features of MPI1. Section 4 discusses 

the main decisions and compromises made in designing MPIl. Some important unresolved 

issues that must be addressed before MPIl can be regarded as complete are presented in 

Section 5. ‘These include support for application topologies and heterogeneous computing, and 

a more general approach to process groups. Finally, Section 6 presents concluding remarks, 

and solicits the involvement of the research community in the development of a standard for 

a comprehensive message passing interface. Detailed specifications of the MPIl routines are 

given in Appendix A in the form of manual pages. 

2. General Overview 

It is possible to consider defining a message passing standard at a number of levels. At the 

lowest level, closest to the hardware, might be syntactically simple routmines for moving pack- 

ets along wires. Above this channel-addressed level might be a process-addressed level (where 

there may he more than one process on each physical processor), such as that defined by NX or 

Vertex on the iPSC and nCUI3E machines, the commercially-available Express communication 

environment, or the PARMACS message passing macros. Higher-level abstractions, for exam- 

ple, Linda [4,10], MetaMP [16], or Shared Objects [1,14], would lie above this level. Each level 

could be built using the level beneath, provided that the overhead in doing this was sufficiently 

low that the cumulative overhead incurred at the higher levels was small. These successive 

software levels form a series of layers, that with some stretch of the imagination resemble the 

multiple skins of an onion, with the hardware being at the center. We, therefore, call this the 

“Onion Skin Model” of the distributed communication environment. In deciding at which level 

to try to impose a standard it should be noted that different people might favor different types 

of standard. For example, a non-expert user would prefer to use high-level abstractions, such 

as virtual shared memory, so that details of the message passing are hidden. On the other 

hand, a compiler writer would like to produce a portable parallel compiler, and would like to 

use small, fast messages such as might be provided by a low-level standard. Finally, an ex- 

pert application developer might be prepared to sacrifice some ease-of-use for additional speed, 

and so woiild prefer a intermediate level standard that provides a set of efficient primitives for 

point-to-point message passing. The standard proposed here is intended for use by such an 

application developer. 

If the Onion Skin model is valid, then it makes sense to impose a standard that is also layered. 

However, the hardware of different distributed memory computing systems is sufficiently varied 

that it is difficult to impose a low-level standard that is efficient on all machines. Therefore, 
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it is more appropriate to  define a standard at an intermediate level, and to implement this 

as efficiently a s  possible on each machine. There is still the possibility of defining higher-lrvel 

standards on top of this intermediate level. Thus, the intermediate-level standard will be open 

and extendable. It is the standardization of this intermediate lrvel of points-to-point message 

passing between pairs of processes that is the focus of this paper. 

3. Features of the Standard 

Our programming model assumes some set of processes that coniminicate by I)oirit-to-l)oint 

message passing. With each process is associated some rneniory directly accessible only by 

that process - there is no shared memory. In MPll it is assumed that processes are single 

threaded, though we expect the final MPI standard to permit multithreaded processes. Al- 

though the message passing paradigm is usually associated with distributed memory systems, 

i t  is not necessary to make any strong assumptions about the underlying hardware. The pco- 

posed message passing standard could also be iniplernented on shared memory machines and 

uniprocessor workstations. Note that the standard does not address the issue of how the pro- 

cesses are assigned to  physical processing nodes. In general, this issue requires the development 

of machine-dependent static and dynamic load balancers, and lies outside the scope of the 

proposed standard. 

MPIl provides some support for task parallelism. To this end each process is assumed to 

be a member of one or more process groups, each of which is identified by a unique process 

Group ID number, or GID. The processes in a group can cooperate to  perform tasks com- 

pletely independently of other processes, and in this sense each group can behave like a distinct 

virtual machine. The concept of process groups is also important when designing collective 

communication routines. 

3.1. Basic Message Passing Routines 

We now introduce the basic message passing routines that form the core of the proposed stan- 

dard. These routines permit point-to-point message passing between pairs of processes, with 

message selectivity based explicitly on message type and source process, and implicitly on 

communication context. Communication contexhs are explained in more detail in Scction 3.3.  

MPIl provides three modes for sending and receiving messages: blocking, nonblocking, and 

synchronized. These different communication modes are explained below. The mode is passed 

as an argument to the send or receive routine. A nonblocking or blocking send routine may 

be matched by a nonblocking or blocking receive routine in any combination. However, a 

synchronized send must be matched by a synchronized receive. 

Noncontiguous messages are handled by providing three variants of the send and receive 

routines. The first variant assumes contiguous messages, and MPIl provides the routines 

MPI-CSEND and MPI-CRECV for such messages. The second deals with messages that are 
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gathered from, or scattered to, a buffer with constant stride. This type of routine niap be used 

when communicating rows of a distributed matrix that is stored by columns. The routines 

MPI-SSEND and MPI-SRECV are used in this case. The third variant deals wit,h messages 

that are gathered from, or scattered to, a buffer in an arbitrary way. MPIl provides the 

routines MPI-GSEKD and MPILGREC\.‘ for this purpose. This last case provides a mechanism 

for doing point-to-point scatter/gather operations between pairs of processes. ‘The dat,a blocks 

comprising the message may be of differing sizes and lie at arbitrary locat,ions in the buffer 

gathered from or scat,tered to. The scatter/gather operations are controlled by a pair of arrays. 

The first of these arrays contains pointers into a buffer that indicates where the data for the 

message is coming from, or going to. The second array indicates how many data items are 

to  be extracted from, or stored to, each location pointed to. For example, suppose in some 

spatially decomposed particle simulation we build a list of the particles that must be migrated t,o 

another process in each time step. This list is a set of indices into the data structure containing 

the particle information. The Fortran language requires that the scatter/gather locations be 

specified by an indirection vector that applies to a specific buffer. The C language permits 

pointer manipulation, so the memory location from which data are gathered, or to which data 

are scattered, can be more naturally expressed as an array of pointers. This is one of the few 

significant syntactic differences between the C and Fortran versions of MPI1. We expect the 

final version of the MPI standard will specify the scattering and gathering of data with an 

“iovec” data structure, as is used by the readv and vritev routines of the Posix standard. 

3.1.1. Receiving messages 

The receipt of a message is said to be blocking if the receiving process suspends execution until 

all of the message has been received, i.e., until it has been placed in an application buffer on 

the receiving process. If a process attempts to perform a blocking receive that i s  not matched 

by a corresponding loosely synchronous send, execution will be suspended indefinitely on that 

process, resulting in full or partial deadlock. 

A nonblocking receive takes place in two phases. First, a receive is posted on the receiving 

process, that is, the application provides a buffer that is to be used to store a specified incoming 

message. After this the receiving process can then continue to do useful work. However, 

a t  this stage receipt of the message is not guaranteed. and the data in the message should 

not yet be used by the receiving process. The nonblocking receive must be completed in a 

second phase that either calls the routine MPI-WAIT that blocks until the message is received, 

or periodically calls the routine MPI-STATS that checks on whether the message has been 

received into an application buffer. Between these periodic checks useful work can continue to 

be done by the receiving process, and once receipt is confirmed the message may be processed. 

Using the blocking mechanism (MPI-WAIT) to complete a nonblocking receive is usually done 

immediately before the message is to be used on the receiving process, thereby allowing the 



maYvimum potential for overlap of computation and cornniunication This approach is cornnion 

when the amount of work that could be done between posting the receive and actually using 

the received data can be quantified at compile time. In more dynamic situations there may 

be an almost arbitrary amount of work that a process could do until an anticipated mrssagr 

arrives. In such cases it is common to periodically check for message receipt using MPI-STATS 

At the application level, a blocking receive is conceptually the same as a nonblocking receive 

in which no useful work is done between the two phases, i.e., a call to an MPIl receive routine 

in nonblocking mode immediately followed by a call to  MPI-WAIT. 

When a message is received in synchronized mode, the receiving process sends an acknowl- 

edgment to the sending process once the message has been completely received and placed in 

an application buffer. In the absence of hardware failures, and provided valid arguni~nts  are 

passed to the send and receive routines, rnessage receipt is guaranteed. 

3.1.2. Sending messages 

The sending of a message is said to be blocking if the sending process suspends execution until 

all of the message has been sent, Le., until the application buffer containing the message on 

the sending process is available for reuse. When this has occurred we say that “the message 

has cleared the buffer.” It is not guaranteed that the message will actually be delivered t o  

the destination process, and unless the application performs some additional handshaking, the 

sending process cannot know if the message was delivered. 

A nonblocking send takes place in two phases. In the first phase the user calls an MPIl 

send routine in nonblocking mode which initiates transmission of a specified message buffer to  

the destination process, and then returns. The sending process can then continue to do useful 

work, but during this time it  is not guaranteed that the message has cleared the buffer, and 

it is a programming error to change i t  in any way. The nonblocking send must be completed 

in a second phase that either calls the routine MPI-WAIT that blocks until the message has 

been sent, or periodically ralls the routine MPI-STATS that checks on whether the message 

has been sent or not. Between these periodic checks useful work can continue to be done by 

the sending process, and once the message has been sent the message buffer may then be safely 

modified. The routine MPI-STATS may be used to check for completion of a nonblocking send 

when there is an arbitrary amount of work that can be done between initiating and completing 

the send operation. A blocking send is conceptually the same as a nonblocking send in which no 

useful work is done between the two phases, Le., a call to an M P I l  send routine in nonblocking 

mode immediately followed by a call to MPI-WAIT. 

When a message is sent in synchronized mode, execution is suspended on the sending process 

until an acknowledgment has been received from the destination process indicating that message 

receipt has completed. For a message sent in synchronized mode the message is not buffered 

by the system, and upon delivery to  the the destination process it is placed directly into the 
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supplied application buffer. 

3.1.3. Other message passing utilities 

On systems that provide buffering for messages (see Section 3.1.4) it is sometimes necessary 

for a process to check whether it has any pending messages satisfying given select,ion crit,eria. 

MPIl  provides the routine MPI-PRORE for this purpose. A pending message is one that 

was sent in blocking or nonblocking mode, but for which a corresponding receive has not yet. 

been posted on the destination process. Such messages may be buffered by the system on 

the destination process, thus MPI-PROBE queries the contents of the system message buffers. 

Note that MPI-PROBE differs from MPI-STATS which checks for delivery of a message int,o 

an application buffer. 

Either, or both, of the type and source message selection criteria specified in an MPIl  receive 

routine, or the routine MPI-PROBE can have wildcard values. A wildcard value for the type 

or source indicates that this criterion is to be ignored in selecting messages on a destination 

process, so it is possible to select messages regardless of type and/or source. After it has been 

ascertained by a process that it has received a wildcarded message, or that, it has such a message 

pending, the actual length, type, and/or source of the message can be determined by calling 

MPI-INFOL, MPI-INFOT, and MPIINFOS, respectively. 

‘The routine MPI-CANCEL can be used to cancel a specified nonblocking send or receive 

operation initiated previously. After returning from MPI-CANCEL the nonblocking operation 

is no longer active, and the status of the nonblocking operation is left indeterminate. 

3.1.4. Buffering of messages by the system 

In describing MPIl’s message passing routines, we have tried to avoid making any unnecessary 

assumptions about the underlying communication mechanism. In this section we will touch on 

sorne implementation issues that affect application portability, and whether message delivery 

is guaranteed. 

In general, a communication system has some buffering capacity, as would usually be the case 

if the underlying communication mechanism was asynchronous. In such cases, when a message 

sent in blocking or nonblocking mode arrives a t  a destination process it is placed directly in an 

application buffer if a corresponding receive has already been posted; otherwise, it is placed in 

a system buffer. Messages in a system buffer are referred to as “pending messages,” and remain 

in a system buffer until a corresponding receive is posted, at  which point they are moved to an 

application buffer, and effectively deleted from the system buffer. Since the system can only 

provide a finite amount of buffer space for pending messages, an asynchronous communication 

rriechanism must deal with the possibility that an incoming message would cause a system 

buffer to overflow. A simple recourse in such a situation is to discard the message, and flag an 

error condition on the receiving process. It should be noted that this would not be detected as 
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an error by the sending process. 

MPI can also be implemented on top of a synchronous communication system with no 

buffering capacity. In this case there are no system buffers, so the possibility of one overflowing 

does not arise On such systems, a message buffer remains volatile on the sending process 

until a corresponding receive is posted on the destination process, at  which point the message 

is delivered. Since messages are not buffered, the routine MPI-PROBE always indicates that 

there no pending messages. 

To write applications that are portable between machines with different underlying com- 

munication mechanisms, and between machines whose communication syste~ns have difleririg 

(and usually unknown) buffering capacities, reliance on system buffering should be avoided [5]. 

Although a synchronous communication system can guarantee message delivery (in the 

absence of hardware failures and software bugs), it is more difficult for an asynchronous system 

to do so. Thus, requiring guaranteed message delivery as part of a message passing standard 

may not be appropriate. 

3.2. Process Groups 

3.2.1. Creating and Managing Process Groups 

Process groups provide a means of handling task parallelism, as well as controlling which pro- 

cesses cooperate in collective cornrnunication tasks, such as broadcasl and reduction operai,ions. 

MPIl does not include collective communication routines, however, the support provided for 

process groups in MPIl is intended to be fully consistent with the use of process groups in 

collective communications, a standard for which we expect to  be defined subsequently. Thus, 

within the context of MPIl  process groups are provided solely as a means of supporting task 

parallelism, in which different process groups work on different tasks. 

A process group is identified by a unique process group ID, or GID, which is an integer 

greater than zero. When a parallel program starts up, the processes allocated to  an application 

belong to the predefined group with GED = ALL, where ALL is sowe integer assigned by the 

system. MPIl  provides two basic methods for creating a new group or groups. A new group can 

be created by each process in the group synchronously calling the routine MPI-DEFNG, which 

takes as its arguments the number of processes in the new group, and a list of the processes 

making up the group. A second routine, MPI-PARTG, is provided that allows a group to  be 

partitioned into distinct subgroups based on the value of a specified key. 

Information about group membership can be obtained using the routines MPI-GETID and 

MPIJNFOG. Given a process group with n members, the processes in the group are uniquely 

labeled 0,1, . . . , n - 1. These labels may be regarded as process ID numbers that are specific to a 

particular group, and will be referred to as Group Context Process ID numbers, or GCPIDs. A 

process has a different GCPID for each group of which it is a member. The routine MPI-GETID 

returns the GCPID of the calling process in a given group, or -1  if the process in not in the 
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group. The routine MPI-IKE'OG can be used to determine which processes belong to a specified 

group of which the calling process is a member. 

System memory is required to store information about the configuration of all currently 

defined groups. In order to make efficierit use of this memory groups that are no longer needed 

by an application can be discarded, thereby freeing some memory for reuse. MPI provides the 

routine MPI-FREEG to  discard a specified group. The routine MPI-FREEG must be called 

synchronously by all processes in the discarded group. 

Finally, the routine MPI-SYNCG imposes a barrier synchronization on a specified group of 

processes. 

All processes that are involved in an operation to  produce, discard. or synchronize a group 

must perform the operation loosely synchronously, or full or partial deadlock may rpsult. 

3.2.2. Task parallelism 

The routines discussed in Section 3.2.1 are concerned with creating, discarding, sychronizing, 

and inquiring about process groups. The use of groups to manage t a l i  parallelisni will now be 

discussed. We consider three types of task parallelism, corresponding to the SIMD, SPMD, and 

MIMD programming models, each of which subsumes the former. In SIMD task parallelism 

each group of processes executes the samc instructions on different data. For example. suppose 

we have two groups of processes of the same size, and want to find the fast Fourier transform 

(FFT) of two vectors of the same length. Then, one FFT can be done by one group and 

the other FFT by the second group, and processes in each group with the same GCPIDs will 

execute the same instructions. In SPMD task parallelism each process executes the same code, 

but different groups may execute different instructions. The groups are not required to be of 

the same size, but must be distinct. Finally, in MIMD task parallelism different executable 

programs are loaded into each group. I t  should be noted that MIMD task parallelism can 

be mirnicked by SPMP, task parallelism by having each group execute different branches of a 

conditional statement within a single executable program. As currently defined MPIl supports 

SPMD task parallelism, but not MIMD task parallelism. 

Two routines specifically for using groups to manage the SPMD style of task  parallelism 

will now be introduced. MPI-PUSHG establishes an environment in which a specified group of 

processes is treated as if it  were the only processes in use by the application, i.e., it establishes 

a process group context. MPILPOPG re-establishes the process group context in effect prior to 

the corresponding preceding call t o  MPI-PUSHG. The use of these routines is, perhaps, best 

demonstrated with an example. Suppose we have a piece of software that performs some task in 

parallel on n processes, where n is an iiiput parameter passed to the software. In executing the 

parallel software, communication between the processes is based on the assumption that they 

are numbered 0 ,1 , .  . . , n - 1. However, the actual PIDs of the processes in the group executing 

the software, in general, will not be labeled in this way since we are able to construct groups 
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PIU GID C;CPID 
0 1 0 
1 1 1 
2 1 2 
3 1 3 
4 2 0 
5 2 1 
6 2 2 
7 2 3 

Table 1:  Mapping of group context 1’111s to PTDs 

with arbitrary membership. IIowever, the C4CPIDs of the processes do run from 0 to  n - 1, so 

whenever the software refers to  a source or destination process in the range 0 to  n - 1 this must 

be interpreted as a GCPID, which is then mapped to the corresponding PID. Thus, between a 

call to MPI-PUSHG and the corresponding subsequent call to  MPI-POPG any reference to a 

process ID number is interpreted as a GCPID and is automatically mapped to the appropriate 

process ID number. For example, suppose the ALL group consists of 8 processes with process 

ID numbers 0 ,1 , .  . . , 7. Now suppose further that these processes have been partitioned so that 

the first four form one group with GID=l, and the others form a second group with GID=2, 

and that the contexts for these groups have been established by calls t o  MPI-PUSHG. Then 

the GCPID associated with each process is as given in Table 1. N o w ,  €or example, if in the 

second group process 1 is required to send a message to process 3, the process ID numbers are 

interpreted so the communication actually takes place between processes 5 and 7. In this way 

a piece of software designed to execute on n processes with YIDs 0 through n - 1 will perform 

correctly within any group context. 

After a call to  MPI-PUSHG the predefined group A L L  refers to the group whose context 

has just been established, and not to the original set of processes. The group can then be 

partitioned, and subgroups can be used to form new groups, by calling the routines MPI-PARTG 

and MPI-DEFNG. No reference may be made to  any process or group outside the current group 

context. Group contexts may be nested. 

A process must not be involved in any outstanding nonblocking conirnunications within the 

current communication context (see Section 3.3) when calling MYI-YUSHG or MPI-POPG. All 

processes that are involved in an operation that changes the group context must perform the 

operation loosely synchronously, or full or partial deadlock may result. 

3.2.3. Examples of the use of subgroups 

To further clarify the use of subgroups in managing task parallelism we shall consider now some 

specific examples that use the NIP1 routines introduced in Sections 3.2.1 and 3.2.2. The first 

example is the solution of the shallow water equations on a sphere by the spectral transform 

method [23,25]. An important computational kernel of this application is the spectral transfor- 

mation of a state variable defined on a rectangular longitude/latitude grid into a set of spectral 
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ROWGRP = MPIPARTG (ALL, MYBOW) 

COLGRP = MPIPARTG (ALL, MY-COLI 

Figure 1: Creation of row and column groups. Here MYROW and MY-COL are the position of a 
process in the logical P x Q process mesh. 

INFO = MPIJUSHG (ROWGRP) 

do I D  FFTs over l o n g i t u d e  

INFO = MPIJOPG ( ) 
INFO = MPIJUSHG (COLGRP) 
do summation over l a t i t u d e  
INFO = MPIJOPG ( ) 

Figure 2: Pseudocode outline showing the use of process groups in the shallow water equation 
application. 

coefficients. The spectral transform is evaluated in two phases. In the first phase a fast Fourier 

transform (FFT) is performed along each line of constant latitude in the grid. In the second 

phase the spectral transform is completed by taking a weighted integral over latitude of the 

Fourier coefficients. Numerically this is performed by weighted summation. 

Suppose that the longitude/latitiide grid is distributed in blocks over a two-dimensional, 

logical mesh of P x Q processes. Currently MPIl does not provide a mechanism for establishing 

process topologies of this type, however, a proposal for extending MPIl to do this has been 

suggested by Hempel [12]. The processes in each row of the process mesh cooperate to evaluate 

the FFTs along a set of latitude lines. Then, the processes in each column cooperate to evaluate 

the spectral coefficients for a set of wavenumbers. The two phases of the spectral transform 

algorithm can be managed by partitioning the processes into row groups and column groups 

by making two calls to  the routine MPI-PARTG, as shown in Figure 1. 

The calls to MPILPARTG are made once at  the starto of the application. Thereafter, the 

spectral transform of a state variable can be found by first establishing a process group context 

for the rows, and doing the FFTs over longitude for each latitude using a generic parallel 

F F T  routine that assumes processes are numbered 0 , 1 , .  . . , Q - 1. Then, a process group 

context for the columns is established, and the summation over latitude for each wavenuniber 

is performed using a parallel routine that assumes processes are numbered 0,1,  . . . , P - 1. ‘Thus, 

the pseudocode for the spectral transform algorithm is as as shown in Figure 2.  

A second example of an application that might make use of process groups is an event- 

based circuit simulation code [24]. We are grateful to K. Yelick of the University of California, 

Berkeley, for suggesting this example. The circuit is decomposed into loosely coupled subcircuits 

with different computational loads. Each subcircuit is assigned to a process group, where the 

appropriate size of each group is determined by the computational load associated with the 
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-, 

LUGRP = MPISARTG (ALL, KEY) 

INFO = HPISUSHG (LUGRP) 

CALL LUSOLVE (COEFFS, RES, H, P,  Q) 
INFO = HPISOPG ( 1 

I I 

Note that the parallel LU solver may itself use row and column orient,ed subgroups. These 

would be set up within the parallel LU solve routine. 

3.3. Communication Contexts 

It is sometimes necessary to  ensure that different streams of communication do not interfere 

with one another. For example, in an application with two distinct phases, each involving 

nonblocking communication, there is the possibility that one phase may intercept messages in- 

tended for the other phase. This situation can arise if the message selectivity criteria of the two 

phases overlap, as may be the case when using a “canned” concurrent software library in which 

the selectivity criteria, in general, are unknown. Communication contexts, first used in the 

Zipcode message passing system [19,20], provide a means of disambiguating such situations. 

In effect, a communication context provides a third select.ivity criterion, in addition to type 

and source process, that  may be used to control the receipt of messages. A communication 

context is uniquely labeled by a strictly positive integer called the Comniunicatiori Context ID, 

or CCID. In MY11 a communication context may be created by a call to MPLNEWC, and a 

list of the current valid contexts may be obtained by calling MPIJNFOC. After invoking a pre- 
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I I 
I I ---- Lu--- I I 

---- ---- 
I I 
I I 
I I 
I I 
I I 

I 

Figure 3:  The division of processes into three groups of 1 x 1, 3 x 3 ,  and 4 x 4 processes. Each 
group is assigned t o  a subcircuit , and independently performs a parallel LU solve. The a r row 
indicate the need for intermittent communication between the groups. 

viously created communication context by calling MPI-PUSHC, all messages subsequently sent 

are tagged with that context, and only those messages so tagged may be received. ‘The current 

communication context is terminated by a call to MPI-POPC, which restores the communica- 

tion context in effect prior to  the preceding call to MPI-PUSIIC. Commuiiication contexts may 

be nested. 

As an example, suppose we want to evaluate D = AB + C T ,  where A ,  B, C ,  and D are all 

matrices. Then we might proceed as follows: 

1. Initiate a nonblocking transpose of G 

2. Call a concurrent library routine to  find AB 

3. Block until transpose of C is complete 

4. Add CT to A B  to form D 

Here the task of transposing matrix C ,  which requires interprocess communication, is over- 

lapped with the distinct task of evaluating the matrix product A B ,  which also requires com- 

munication. If the message selectivity criteria within the two tasks are not unique there is 

the possibility that one task will receive messages intended for the other task. Note that this 

example assumes a sophisticated comrnunication processor that not only knows what messages 

need to be sent for the transpose, but also interleaves them with those of the matrix commu- 

nication. Potential message conflicts can be avoided by establishing different contexts for the 

matrix multiplication and matrix transpose tasks. The MPIl code fragment for this example 

would be as shown in Figure 4. 
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ICC = WPIJEWC ( ) 
BEGIN-TRANSPOSE (C) 
IOK = MPIJUSHC (ICC) 
CALL RATRUL (D, A ,  B) 
IOK = HPISOPC ( ) 
END-TRANSPOSE (C) 
D = D + C  

I 

Figure 4: Code fragrrieiit illustrating the use of comniunication contexts 

In the above example, the communication context ICC is first created by calling MPT-NEWC. 

The transposition of matrix C is then initiated, with the cornrtiunication context for this op- 

eration being the default context Next, the routine MPI-PUSHC is called to establish the 

communication context with CCID number TCC. When MATMUL is then called only messages 

labeled with this comuiunication context will be visible t o  the application, thereby, insulating 

the messages associated with the matrix multiplication from those of the matrix transposilion. 

When MATMUL returns, the routine MPI-POPC is called to restore the default comniunica- 

tion context. The routine END-TRANSPOSE blocks, if necessary, until the transposition is 

completed. If the communication associated with the transpose has already completed follow- 

ing the return from MPI-POPC, then END-TFLANSPOSE just copies C from a system to an 

application buffer. 

Upon entering a program, or establishing a process group context by a call to MPI-PUSIIG 

(see Section 3.2.2): a unique default conimunication context is established. A default commu- 

nication context cannot be discarded, so a call to MPI-POPC when the current cornniunica- 

tion context is the default has no effect. When exiting a process group context by a call to 

MPI-POPG the communication context in effect prior to the preceding call to  MPI-PUSHG is 

restored. Communication and process group contexts may be nested, but not rriisaligned. 

3.4. Buffer Packing 

As discussed in Section 3.1, point-to-point scatter/gather types of comniunication, in which 

data are gathered from a message buffer on the sending process, and subsequently scattered 

into a buffer on the receiving process, may be performed using different variants of the send 

and receive routines. Sometimes it may be necessary to gather/scatter data between multiple 

buffers that may be of differing data types. In the Fortran language this cannot be done by a 

single call to the MPIl send/receive routines. 

In this section we introduce routines that (1) gather data from a buffer and pack it con- 

tiguously into another buffer, and (2) scatter data into a buffer from a contiguous buffer. In all 

cases the buffers are on the same process, and no interprocess communication is required. These 

routines allow complex messages to be packed into a contiguous buffer on the sending process. 
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This message can then be sent to the destination process using the routines MPI-CSEKD and 

MPI-CRECV, where it can then be unpacked. 

Two sets of pack/unpack routines are provided, and their syntax is very similar to that of 

the corresponding noncontiguous send/receive routines. The first pair of routines, hf PI-SPACE; 

and MPISUNPACK, handles the case in which data blocks of constant size are respectively 

gathered from, or scattered to, a buffer with constant stride. The second pair of routines, 

MPLGPACK and MPI-GUNPACK, handles the case in which the data blocks may be of 

differing sizes and lie at  arbitrary locations in the buffer gathered from, or scattered to. 

3.5. Utilities 

We expect the final version of MPI will include a set of routines for performing a variety of 

environmental management and inquiry functions. These routines, might for example. provide 

information on the machine the calling process is running on, the size of the system buffers 

available for interprocess communication, and other useful details. We also expect MPI to 

include routines for determining the date and time, and for finding the CPU time and elapsed 

wallclock time for a process. If a Posix standard exists for a routine then MPI should conform 

to i t .  

In general, the definition of these environmental and utility routines is deferred to later 

versions of MPI. The only utility routines provided in MPIl are for error handling. Most of 

the routines in MPIl return a value of -1 to indicate that an error has occurred. The nature 

and/or cause of the error can be determined by calling the routine MPI-ERROR. This returns 

an integer that indicates the error type applying to the most recent call to an MPIl routine. 

Among the types of error that would be indicated by a call to MPI-ERROR are the use of an 

invalid PID, GCPID, CCID, or MSGID; the loss of a message on a process due to a system buffer 

overflow; the use of an invalid block length or stride in one of the message packing routines; and 

so on. If the integer returned by MPI-ERROR is passed to the routine MPILETEXT, a string 

is returned giving a short description of the error which can then be output by the application. 

This way of handling errors is essentially the same as that used by PARMACS [13]. 

4. Discussion and Rationale 

In this section we discuss the reasoning behind some of the decisions made in designing MPI1. 

In the design of this interface, one of the main concerns was t o  keep both the calling sequences 

simple and the range of options limited, while at, the same time maintaining sufficient function- 

ality. This clearly implies a compromise, and a good decision is vital if MPIl is t o  be accepted 

as a useful standard. 

In order to avoid potential programming errors, values of scalar variables are not returned 

through argument lists. In MPI1, routines are written as function calls rather than subroutine 

calls, which provides a mechanism for returning scalars. One consequence of this is that in order 
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to determine the source, length, and/or type when a wildcarded message has been received in 

nonblocking mode, or is known t o  be pending following a call to MPI-PROBE. it is n 

to  call the information routines MPI-INF, MPI-INFOL, and/or MPI-INFOT. 

It is not assumed in MPI1 that messages sent from one process to another are receivrd 

in the order in which they were sent since some systems may use a non-tletrrministic routing 

scheme to avoid contention for comniunicat~on links. Of course, even in such cases the correct 

order of messages could be recovered by the receiving process if each rnessagr was labeled by 

the sending process with a sequence nunher. Whether or not messages from one process to 

another arrive in the correct order has no impact on the definition of a standard, though clearly 

the assumption is vital to  the correct functioning of many parallel algorithms 

MPIl defines three modes for send and receiving messages, namely the blocking. nonblock- 

ing, and synchronized modes. We believe that these are the most widely used types of point- 

to-point communication operations, and in order to avoid too many varieties of send routine, 

some potentially useful functionality has been excluded from MPI1. For example, MPIl does 

not include forced communication of the sort provided in Intel’s NX/2 through the use of “force 

types.” In forced communication, if a message sent in nonblocking mode is delivered to a pro- 

cess, and an application buffer has not already been made available for it by previously posting 

a receive, then the message is simply discarded, rather than being placed in a system buffer on 

the destination process. This functionality could be provided in MY11 by reserving a certain 

range of types for forced communication, just as in NX/2. The justification for using forced 

communication is that it avoids some overhead, and thus is often faster. The main disadvantage 

is that  it is the responsibility of the application to ensure that a receive is always posted prior 

to  delivery of a forced message, otherwise the message will be lost 

In handling communication contexts MPIl uses an approach that is independent of the 

message type selectivity mechanism. A different approach would be for each phase of an 

application to initially register the range of types it will use, and for a central message type 

registry to  check for overlaps between the ranges claimed by different phases. An overlap 

would indicate to the application the potential for communication conflicts. The best approach 

is unclear. The first option would be more natural to  the user, while for the second option 

communication context control functions would be easier to port onto most current parallel 

systems without major changes to the runtime systems. Thus, the question is how much MPIl  

should be influenced by the presently available systems. 

5 .  Outstanding Issues 

In this section we outline a few of the issues that need t o  be addressed by MPI1, and some 

features that should be considered for inclusion in future versions of MPIl. 

A number of extensions to  the support provided by MPl l  for process groups are possible. For 

example, currently in MPIl  the union of groups cannot be formed, nor is it possible for single 
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processes to join or leave a group. Abstractions for permitting process groups to communicate 

with each other are another possible extension MPIl does not allow processes to be created 

or destroyed, or for different executable codes to be loaded into different processes, as would be 

required in order to support the MIMD style of task parallelism. The need for all these possible 

enhancements must be given careful consideration. 

In MPIl no explicit mechanism is provided to allow a process to inquire about the existence 

and membership of groups of which it is not a member. In a more general system it would be 

possible for a process to access information about any group. One way of doing this would be to 

have some processes dedicated to storing data about the current valid groups, and responding 

to requests for this information. Whenever, a group is created, discarded, or modified the 

processes involved must synchronize with one or more of the “group database” processes and 

inform them of the changes. Clearly, if there are too few such processes bottlenecks may develop 

in accessing their data; if there are too many then memory and compute power are wasted. 

In the current version of MPI1 a process group is formed by a collection of processes without 

any additional structure. Typical applications, on the other hand, have much more internal 

structure. For example, the solution of a partial dieerential equation on a 3D grid is usually 

performed by processes which are arranged in a corresponding structure. If the programming 

interface does not provide functions for defining that structure, the user must program the 

relationship of the logical position of a process and its identifier himself. Also, this information 

is not available for automatic tools which map neighboring processes onto neighboring hardware 

processors. Therefore, a mechanism such as that suggested by Heinpel [la] for defining, and 

inquiring about, logical process topologies would be a useful addition to the message passing 

standard . 

Another important consideration when extending MPIl to handle heterogeneous distributed 

computing is the fact that different machines not only have different data formats, but also 

prefer different packet sizes. It would therefore appear that a table is needed that not only 

maps a PID number to  an Internet address and process ID on the destination machine, but 

which also includes the target machine’s preferred packet size. 

6. Conclusions 

We do not claim to provide the definitive aiiswer to  everyone’s communication needs. Indeed, 

our insistence on simplicity precludes that. However, we believe the M P I l  routines proposed 

here will be useful as a basis for further discussion in the development of a standard for message 

passing in distributed memory environments. An MPI standards committee was formally insti- 

tuted in November 1992, with the objective of providing a forum for discussion and of defining 

a standard message passing interface by July 1993. This committee is similar in structure and 

organization to  that which developed the High Performance Fortran standard. Members of the 

distributed memory computing community who wish to become involved in the standardization 
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process should send email to walker@msr.epm.ornl.gov by May 1, 1993. 
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Appendix A 

In this appendix we give Fortran specifications for the MPI1 routines. The C language specifica- 

tions are not given explicitly, but are very similar, except for the routines dealing with arbitrary 

scatter/gather operations (MPI-GSEKD, MPLGRECV, MPLGPACII; and MPI..GIINPACK). 

In the synopses of the Fortran specifications of some of the routines, message buffers are referred 

t o  as integer arrays; however, real arrays can also be passed to these routines 

The appendix is consists of the follo~virig five sections. 

1. Point-to-point message passing routines, 

2. Support for process groups, 

3. Support for buffer copying, 

4. Support for communication contexts, 

5. UtiMies. 



- 20 - 

A . l  Point-to-Point Message Passing Routines 

In this section we provide specifications for the following point-to-point message passing and 

related routines. 

0 MPI-CANCEL 

MPI-CRECV 

MPI-CSEND 

0 MPI-GRECV 

0 MPI-GSEND 

0 MPIINFOL 

0 MPIlNFOS 

0 MPIlNFOT 

MPI-PROBE 

0 MPI-SRECV 

0 MPI-SSEND 

MPI-STATS 

0 MPLWAIT 

Cancel nonblocking send or receive 

Receive contiguous message 

Send contiguous message 

Receive into buffer with arbitrary scatter 

Send from buffer with arbitrary gather 

Get length of pending or received niessagc 

Get source of pending or received message 

Get type of pending or received message 

Check pending messages 

Receive into buffer with constant stride 

Send from buffer with constant stride 

Check status of nonblocking send or receive 

Block until send or receive has  completed 

Message selectivity (within a comm~inication context) is by source process and message 

type, either of which may have the “wildcard” value of -1, indicating that any source and/or 

type is acceptable. 

Nonblocking sends and receives return a message ID that is unique within the current group 

context. All other sends and receives return the number of bytes actually sent or received, or 

-1 if an  error occurred. 
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NAME 

MPI-CANCEL Cancel a previously initiated xionblocking send or receive 

SYNOPSIS 

integer function MPI-CANCEL (msgid) 

integer msgid 

INPUT ARGUMENTS 

msgid message identifier returned by a call to a nonblocking send or receive 

DESCRIPTION 

MPI-CANCEL cancels a previously issued nonhlocking send or receive specified by the 

message identifier, msgid. Upon return the nonblocking send or receive is no longer active, 

and may or may not have completed. 

RETURN VALUE 

MPI-CANCEL returns 0, or -1 if a11 error occurs. 



- 22 - 

NAME 

MPI-CRECV Receive a message contiguously into a buffer 

SYNOPSIS 

integer function MPILCRECV (mode, buf, source, type, maxlen) 

integer mode 

integer buf(*) 

integer source 

integer type 

integer maxlen 

INPUT ARGUMENTS 

mode 

source 

type 

maxlen 

the mode of the receive (blocking, nonblocking, or synchronized) 

the ID number of the process sending the message 

the message type, or type mask 

the maximum length of the message in bytes 

OUTPUT ARGUMENTS 

buf the application buffer into which the message is received. 

DES C RIP T I 0  N 

If mode has the system-defined value MPI-BLOCKING then the calling process blocks 

until a message of a specified type is received from a specified source into the application 

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously 

by the source process. 

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts 

a receive for a message of a specified type from a specified source, and immediately returns. 

If mode has the system-defined value MPI-SYNCHRONIZED then the calling process 

blocks until the specified message has been received into the application buffer, buf, and 

then sends an acknowledgment to the source process before returning. The receive must 

be matched by a corresponding send, also done in synchronized mode. 

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is 

-I then selectivity by type is ignored. Messages longer than maxlen bytes are truncated 

to maxlen bytes. 

For all modes, the message received is stored contiguously in the buffer buf. 

RETURN VALUE 

Upon successful completion, if mode is MPI-BLOCKING or MPLSYNCHRONIZED then 

MPI-CRECV returns the length of the message received in bytes. This will exceed 

maxlen bytes if the message was truncated. If mode is MPI-NONBLOCKING then 

MPI-CRECV returns the message ID number associated with the receive operation. 



- 23 - 

A value of -1 is returned if an error occiirs. 
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NAME 

MPI-CSEND Send a message contiguously from a buffer 

SYNOPSIS 

integer function MPI-CSEKD (mode, buf, dest. type, len) 

integer mode 

integer buf(+) 

integer dest 

integer type 

integer len 

INPUT ARGUMENTS 

mode 

buf 

dest 

type the message type 

len 

the mode of the send operation 

the buffer containing the message to be sent 

the ID number of the process to which the message is sent 

the length of the message in bytes 

DES C RIP T I 0  N 

If mode has the system-defined value MPI-BLOCKING then MPI-CSEND sends a mes- 

sage of type type to process dest, and blocks until the message buffer, buf is available 

for reuse. 

If mode has the system-defined value MPI-NONBLOCKING then MPI-CSEND initiates 

transmission of a message of type type to process dest, and immediately returns. The 

message buffer, buf, should not be changed until the message is guaranteed to  have 

been sent, i.e., to have “cleared the buffer”, by a call to MPI-WAIT, or by a call to 

MPI-STATS returning a nonnegative integer. 

If mode has the system-defined value MPI-SYNCHRONIZFXI then MPI-CSEND sends 

a message of type type to process dest, and blocks until an ackiiowledgment is received 

from the destination process to indicate that message receipt has completed. The send 

must be matched by a corresponding receive, also done in synchronized mode. 

For all modes, the message consists of the len contiguous bytes in the buffer buf. 

RETURN VALUE 

If mode is MPI-BLOCKING or MPI-SYNCHRONIZED then MPI-CSEND returns the 

number of bytes sent. If mode i s  MPI-NONRLOCKING then MPI-CSEND returns the 

message ID number associated with the send operation. A value of -1 is returned if an 

error occurs. 
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NAME 

MPI-GRECV Receive a message and scatter it arbitrarily into a buffer 

SYNOPSIS 

integer function MPI-GRECV (mode, buf, source, type, nlist, ilist, nblks) 

integer mode 

integer buf(*) 

integer source 

integer type 

integer nlist(*) 

integer ilist(*) 

integer nblks 

INPUT ARGUMENTS 

mode 

source 

type 

nlist 

ilist 

nblks 

the mode of the receive (blocking, nonblocking, or synchronized) 

the ID number of the process sending the message 

the message type, or type mask 

list of the number of bytes in each data block 

list of the location in buf at which each data block starts 

maximum number of data blocks to be scattered 

OUTPUT ARGUMENTS 

buf the application buffer into which the message is scattered 

DESCRIPTION 

If mode has the system-defined value MPI-BLOCKING then the calling process blocks 

until a message of a specified type is received from a specified source into the application 

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously 

by the source process. 

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts 

a receive for a message of a specified type from a specified source, and immediately returns. 

If mode has the system-defined value MPI-SYNCHRONIZED then the calling process 

blocks until the specified message has been received into the application buffer, buff and 

then sends an acknowledgment to  the source process before returning. The receive must 

be matched by a corresponding send, also done in synchronized mode. 

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is 

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated 

to  maxlen bytes. 

For all modes, the way in which the data received are stored in the buffer buf is controlled 

by the arrays n l i s t  and ilist. The data received are treated a,. a succession of data  
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blocks, with the ith block being of size nlist(i) bytes. This is stored in the buffer buf 

so that the start of the block is at i l i s t ( i )  bytes from the start of buf. The maximum 

number of data blocks received is nblks. It is assumed that all indices and numbering 

of data items begin at  0. It is the responsibility of the user to ensure that buf is large 

enough to hold the data scattered into it. 

RETURN VALUE 

Upon successful completion, if mode is MPI-BLOCKING or MPI-SYNCHRONIZED then 

MPI-GRECV returns the total number of bytes received. If mode is MPI-NONBLOCK- 

ING then MPI-GRECV returns the message ID number associated with the receive 

operation. A value of -1 is returned if an error occurs. 
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NAME 

MPI-GSEND Send a message gathered arbitrarily from a buffer 

SYNOPSIS 

integer function MPI-GSEND (mode, buf, dest, type, nlist, ilist, nblks) 

integer mode 

integer buf(*) 

integer dest 

integer type 

integer nlist(*) 

integer ilist(*) 

integer nblks 

INPUT ARGUMENTS 

mode 

b uf 

dest 

type 

nlist 

ilist 

nblks 

the mode of the send (blocking, nonblocking, or synchronized) 

the buffer containing the message to be sent 

the ID number of the process to which the message is sent 

the message type 

list of the number of bytes in each data block 

list of the location in buf at which each data block starts 

number of data blocks to be gathered 

DESCRIPTION 

If mode has the system-defined value MPI-BLOCKING then MPI-GSEND sends a 

message of type type t o  process dest ,  and blocks until the message buffer, buf, is available 

for reuse. 

If mode has the system-defined value MPI-NONBLOCKING then MPI-GSEND initiates 

transmission of a message of type type to  process dest ,  and immediately returns. The 

message buffer, buf, should not be changed until the message is guaranteed to have 

been sent, Le., t o  have “cleared the buffer”, by a call to MPI-WAIT, or by a call to  

MPI-STATS returning a nonnegative integer. 

If mode has the system-defined value MPI-SYNCHRONIZED then MPI-GSEND sends 

a message of type type to process dest ,  and blocks until an acknowledgment is received 

from the destination process to  indicate that message receipt has completed. 

For all modes, the way in which the message sent is gathered from the buffer buf is 

controlled by the arrays n l i s t  and ilist. The data are gathered in blocks, with the ith 

block being of size n l i s t ( i )  bytes. This is gathered from the buffer buf starting at the 

location i l ist  ( i )  bytes from the start of buf. The total number of data blocks gathered 

is nblks. It is assumed that all indices and numbering of data items begin at  0. 
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RETURN VALUE 

If mode is MPI-BLOCKING or MPI-SYNCHRONIZED then MPI-GSEND returns the 

number of bytes sent. If mode is MPI-XONBLOCKI?JG then MPI-GSEND returns the 

message ID number associated with the send operation. A value of -1 is returned if an 

error occurs. 
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NAME 

MPIlNFOL Determine the length of a pending or received message. 

SYNOPSIS 

integer function MPI-INFOL () 

ARGUMENTS 

None 

DESCRIPTION 

MPIlNFOL determines the length in bytes of a pending or received message. It only 

returns a valid result if used directly after a call to a receive routine in blocking or 

synchronized mode, or directly after a call to MPI-STATS or MPI-PROBE that has 

returned a nonnegative integer. 

RETURN VALUE 

Directly after a call to a receive routine in blocking or synchronized mode, a call to  

MPLWAIT, or a call to to  MPI-STATS that returns a nonnegative integer, the rou- 

tine MPIlNFOL returns Lhe length in bytes of the message just received. If called 

directly after MPIPROBE has returned a nonnegative number, MPIlNFOL returns 

the length in bytes of the pending message. If there are no pending messages -1 is re- 

turned. 
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NAME 

MP I l N F O  S Determine the source process of a pending or received message. 

SYNOPSIS 

integer function MPI-INFOS ( )  

ARGUMENTS 

None 

DESCRIPTION 

MPIlNFOS determines the source process of a pending or received message. It only 

returns a valid result if used directly after a call to a receive rout,ine in blocking or 

synchronized mode, or directly after a call to MPI-STATS or MPI-PROBE that has 

returned a nonnegative integer. 

RETURN VALUE 

Directly after a call t o  a receive routine in blocking or synchronized mode, a call to 

MPI-WAIT, or a call to to MPI-STATS that returns a nonnegative integer, the routine 

MPIlNFOS returns the ID number of the process that sent the message just received. If 

called directly after MPITROBE has returned a nonnegative number, MPIlNFOS 

returns the ID nurnber of the process that sent the pending message. If there are no 

pending messages -1 is returned. 
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NAME 

MPIlNFOT Determine the type of a pending or received message. 

SYNOPSIS 

integer function MPI-TNFOT () 

ARGUMENTS 

Xone 

DESCRIPTION 

MPLINFOT determines the type of a pending or received message. MPIlNFOT 

only returns a valid result if used directly after a call to a receive routine in blocking 

or synchronized mode, or MPI-WAIT, or directly after a call to MPI-PROBE or 

MPI-STATS that has returned a nonnegative integer. 

RETURN VALUE 

Directly after a call to  a receive routine in blocking or synchrouized mode, MPI-WAIT, 

or a call to  MPLSTATS that returns a nonnegative integer, MPIJNFOT returns the 

type of the message just received. If called directly after NPI-PROBE has returned a 

nonnegative number, MPLINFOT returns the type of the pending message. If there 

are no pending messages -1 is returned. 
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NAME 

M P I J R O B E  Check for pending messages. 

SYNOPSIS 

integer function MPI-PROBE (source, type) 

integer source 

integer type 

INPUT ARGUMENTS 

source 

type 

the ID number of the process sending the  message. 

the message type, or type mask. 

DES C RIP TI0  N 

MPI-PROBE checks if there is a message from a specified source and of a specified type 

awaiting receipt. That is, if there is a such a message stored in a system buffer for which a 

receive has not yet been posted. If source is -1 then this argument is ignored. Similarly, 

if type is -1 then this argument is ignored. Only messages sent using the routines sent in 

blocking or nonblocking mode may be buffered by the system on the receiving process, 

so it only makes sense to  use MPII'ROBE to probe such messages. 

R.ETURN VALUE 

If a message satisfying the selectivity criteria is awaiting receipt MPI-PROBE returns 

the length of the message i n  bytes. Otherwise, -1 is returned. 
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NAME 

MPI-SRECV Receive a message and scatter it with constant stride into a buffer. 

SYNOPSIS 

integer function MPI-SRECV (mode, buf, source, type. lenblk, stride, nblks) 

integer mode 

integer buf(*) 

integer source 

integer type 

integer lenblk 

integer stride 

integer nblks 

INPUT ARGUMENTS 

mode 

source 

type 

lenblk 

stride 

nblks 

the mode of the receive (blocking, nonblocking, or synchronized) 

the ID number of the process sending the message 

the message type, or type mask 

the size in bytes of each data block 

the number of bytes between the start of each data block 

maximum number of data blocks to be scattered 

OUTPUT ARGUMENTS 

buf the application buffer into which the message is scattered 

DESCRIPTION 

If mode has the system-defined value MPI-BLOCKING then the calling process blocks 

until a message of a specified type is received from a specified source into the application 

buffer buf. Deadlock will occur if no corresponding message is sent loosely synchronously 

by the source process. 

If mode has the system-defined value MPI-NONBLOCKING then the calling process posts 

a receive for a message of a specified type from a specified source, and immediately returns. 

If mode has the system-defined value MPISYNCHRONIZED then the calling process 

blocks until the specified message has been received into the application buffer, buf, and 

then sends an acknowledgment to the source process before returning. The receive must 

be matched by a corresponding send, also done in synchronized mode. 

For all modes, if source is -1 then selectivity by source is ignored. Similarly, if type is 

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated 

to maxlen bytes. 

For all modes, the data received are treated as a succession of data blocks, each of length 

lenblk bytes. Data blocks are placed in the buffer buf so that the start of successive 
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blocks are separated by stride bytes. The maximum number of data blocks received is 

nblks. It is the responsibility of the user to ensure that buf is large enough to  hold the 

data scattered into i t .  

RETURN VALUE 

Upon successful completion, if mode is MPI-BLOCKING or MPILSYNCHRONIZED then 

MPI-SRECV returns the length of the message received in bytes. If mode is MPI-NON- 

BLOCKING then MPI-SRECV returns the message ID number associated with the 

receive operation. A value of -1 is returned if an error occurs. 
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NAME 

MPI-SSEND Send a message gathered wi th  constant stride from a buffer. 

SYNOPSIS 

integer function MPI-SSEND (mode, buf, dest, type, lenblk, stride, nblks) 

integer mode 

integer bur(*) 

integer dest 

integer type 

integer lenblk 

integer stride 

integer nblks 

INPUT ARGUMENTS 

mode 

buf 

dest 

type the message type 

lenblk 

stride 

nblks 

the mode of the send (blocking, nonblocking, or synchronized) 

the buffer containing the message to be sent 

the ID number of the process to which the message is sent 

the size in bytes of each data block 

the number of bytes between the start of each data block 

number of data blocks to  be gathered 

DESCRIPTION 

If mode has the system-defined value MPI-BLOCKING then MPI-SSEND sends a mes- 

sage of type type to  process dest ,  and blocks until the message buffer, buf, is available 

for reuse. 

If mode has the system-defined value MPI-NONBLOCKING then MPI-SSEND initiates 

transmission of a message of type type to process dest ,  and immediately returns. The 

message buffer, buf, should not be changed until the message is guaranteed t o  have 

been sent, Le., to have “cleared the buffer”, by a call to MPI-WAIT, or by a call t o  

MPLSTATS returning a nonnegative integer. 

If mode has the system-defined value MPI-SYNCHRONIZED then MPI-SSEND sends 

a message of type type to  process dest ,  and blocks until an acknowledgment is received 

from the destination process to indicate that message receipt has completed. 

For all modes, the data sent are gathered from the buffer bnf in blocks, each of length 

lenblk bytes. The start of successive data blocks are separated by s t r i d e  bytes in the 

buffer buf. The total number of data blocks gathered is nblks. 

RETURN VALUE 

If mode is MPI-BLOCKING or MPI.SYNCHRONIZEI> then MPI-SSEND returns the 
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number of bytes sent. If mode is MPI-NOKBLOCKING then MPI-SSEND returns the 

message ID number associated with the send operation. A value of -1 is returned if an 

error occurs. 
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NAME 

MP 1.3 TATS Check the status of a nonblocking send or receive operation. 

SYNOPSIS 

integer function MPI-STATS (msgid) 

integer msgid 

INPUT ARGUMENTS 

nisgid message identifier returned by a call to a nonblocking send or receive 

DESCRIPTION 

If the message identifier, msgid, refers to  a message being sent in tionblocking mode, 

then MPI-STATS checks if the message has cleared the message buffer yet. If it has, 

then the message buffer is available for reuse. If the message identifier, msgid, refers t o  a 

message being received in nonblocking mode, then MPI-STATS checks if message receipt 

has been completed yet, Le., if the incoming message has been placed in an applicatioii 

buffer. If it has, then the data received into the buffer is available for use. 

RETURN VALUE 

MPI-STATS returns the number of bytes sent or received if the nonblocking send or 

receive operation has completed. Otherwise, -1 is returned. 
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NAME 

MPI-WAIT Block until a nonblocking send or receive operation has completed. 

SYNOPSIS 

integer function MPI-WAIT (msgid) 

integer rnsgid 

INPUT ARGUMENTS 

msgid message identifier returned by a call to a nonblocking send or receive 

DES C RIP T I 0  N 

If the message identifier, msgid, refers to a message being sent in nonblockiiig mode, then 

MPI-WAIT blocks until the message has cleared the message buffer. Upon return from 

such a call to MPI-WAIT the message buffer is available for reuse, but receipt of the 

message by the destination process is not guaranteed. If the message identifier, msgid, 

refers to a message being received in nonblocking mode, then MPI-WAIT blocks until 

message receipt has been completed. The data received into the message buffer is then 

available for use. 

RETURN VALUE 

On successful completion MPI-WAIT returns the number of bytes sent or received. 

Otherwise, -1 is returned. 
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A.2 Support for Process Groups 

In this section specifications for the following routines for supporting process groups are given. 

0 MPI-DEFNG 

0 MPIZREEG 

0 MPI-GETID 

0 MPIlNFOG 

MPITARTG 

0 MPI-POPG 

0 MPITUSHG 

0 MPI-SYNCG 

Create a group from a list of processes 

Discard a group 

Determine GCPID of calling process in a group 

Determine processes in a group 

Partition a group 

Restore previous group coiitext 

Establish new group contest 

Synchronize a group of processes 
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NAME 

MPI-DEFNG Define a group of processes. 

SYNOPSIS 

integer function MPI-DEFNG (nprocs, plist) 

integer nprocs 

integer plist(*) 

INPUT ARGUMENTS 

nprocs 

plist 

the number of processes in the new group 

a list, of nprocs process ID numbers 

DESCRIPTION 

MPIDEFNG creates a new group consisting of the nprocs processes whose ID numbers 

are listed in the array plist. The new group can subsequently be partitioned by calls to 

MPITARTG. MPIDEFNG must be called synchronously by all the processes listed 

in plist. 

RETURN VALUE 

On successful completion MPI-DEFNG returns the unique group ID number of the 

newly formed group. If an error occurs a value of -1 is returned. 
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NAME 

MPITREEG Discard a specified group 

SYNOPSIS 

integer function MPI-FREFX (gid) 

integer gid 

INPUT ARGUMENTS 

$id the group ID number of the group to be discarded 

DES C RIP TI ON 

MPI-FREEG may be used to free nieinory that stores information about groups that are 

no longer needed. The group gid  is discarded, and may not be referred to subsequently. 

MPI-FREEG must be called synchronously by all processes in the group gid. 

RETURN VALUE 

On successful completion MPI-FREEG returns 0. Otherwise -1 is returned. 
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NAME 

MPI-GETID Determine the group context PID of the calling process for a spec- 

ified group ID number. 

SYNOPSIS 

integer function MPI-GETID (gid) 

integer gid 

INPUT ARGUMENTS 

gid the group ID for which the group context PID is required 

DESCRIPTION 

MPI-GETID determines the group context PID of the calling process within the group 

g i d .  A value of -1 is returned if the calling process is not in the group g i d .  

RETURN VALUE 

MPI-GETID returns the group context PID of the calling process within the group g i d .  

A value of -1 is returned if the calling process is not in the group g id .  
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NAME 

M P  INFOG Determine the number of processes in a group, anL return a list of 

the PID numbers of the group merrtbers. 

SYNOPSIS 

integer function MPI-INFOG (gid, maxlis, plist) 

integer gid 

integer maxlis 

integer plist(*) 

INPUT ARGUMENTS 

gid a group ID number 

maxlis the maximum size of the array plist 

OUTPUT ARGUMENTS 

plist a list of the PID numbers of the processes in group g i d  

DESCRIPTION 

MPIlNFOG determines the number of processes the group gid,  and returns a list of 

the PTD numbers of the group members in the array plist. The calling process must be 

a member of the group gid.  If there are more than m a x l i s  processes in group g id ,  only 

the PID numbers of m a x l i s  of them are returned in p l i s t .  

RETURN VALUE 

On successful completion MPIXNFOG relurris the number of processes iu the group 

gid, or -1 if an error occurs. 
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NAME 

MPIPARTG Partition a group into subgroups. 

SYNOPSIS 

integer function MPI-PARTG (gid, key) 

integer gid 

integer key 

INPUT ARGUMENTS 

gi (1 

key 

the ID number of the group to be partitioned 

the key whose value determines the partitioning 

DESCRIPTION 

MPIPARTG partitions the group gid into subgroups according to the value of key. 

All processes for which key has the same value form a distinct subgroup. MPI-PARTG 

must be called synchronously by all processes in the group gid. 

RETURN VALUE 

On successful completion MPI-PAR,TG returns the unique GID number of the subgroup 

to which the calling process belongs. Otherwise, -1 is returned. 



- 45 - 

NAME 

MPI-POPG Re-establish former process group contest 

SYNOPSIS 

integer function MPT-POPG ( ) 

ARGUMENTS 

None 

DESCRIPTION 

MPI-POPG re-establishes the process group context that was in effect before the preced- 

ing call to MPI-PUSHG. MPI-POPG must be called synchronously by all processes 

in the group whose context was established by the preceding call to  MPI-PUSHG. The 

calling process must not be involved in any nonblocking communication within the current 

communication context when calling MPIPOPG.  

RETURN VALUE 

On successful completion MPI-POPG returns the process group ID number of the group 

whose context is reestablished. Otherwise, -1 is returned. 
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NAME 

MPI-PUSHG Establish a new group context. 

SYNOPSIS 

integer function MPI-PUSHG (gid) 

integer gid 

INPUT ARGUMENTS 

gid the group ID number of the context to be established 

DESCRIPTION 

A call t o  MPI-PUSHG establishes an environment in which it appears to the processes 

in the group gid that they are the only processes in use by the application. This environ- 

rnent is called the process group context of gid. The effect of a call to MPI-PUSHG 

is nullified by the next subsequent call to MPI-POPG, which re-establishes the pro- 

cess group context that was in effect before the call to MPI-PUSHG. If the group gid 

contains n processes, then within the group context of gid each process is labeled by a 

unique integer between 0 and n - 1, referred to as its group context PID. Processes may 

only be referenced by their group context PIDs, which are automatically mapped to the 

corresponding process ID numbers by the system. It is an error to refer to any process ID 

number outside the range 0 to n - 1, and the processes in group gid may not communi- 

cate with processes outside the group. Groups created outside the current group context 

by calls t o  MPI-DEFNG, or MPI-PARTG may not be referenced. Groups created 

within the current group context may not be referenced after exiting the context by call- 

ing MPI-POPG. Within a group context the group ALL refers to just the processes 

in the current group context. Group contexts may be nested. MPILPUSHG must he 

called synchronously by all processes in the group gid. The calling process must not be 

involved in any nonblocking conirnunication within the current comtnunication context 

when calling MPI-PUSHG. 

RETURN VALUE 

On successful completion MPITUSHG returns the number of processes in the group 

gid.  Otherwise -1 is returned. 
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NAME 

MPI-SYNCG Synchronize processes. 

s Y hT 0 P SIS 

integer function MPI-SYNCG (gid) 

integer gid 

ARGUMENTS 

gid a process group ID 

DESCRIPTION 

MPI-SYNCG performs a barrier synchronization involving all processes in the group 

gid,  of which the calling process must be a member. 

RETURN VALUE 

On successful completion MPI-SYNCG returns 0. Otherwise, -1 is returned. 
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A.3 Support for Buffer Copying 

In this section specifications for the following routines for packing data into and out, of message 

buffers are given. 

e MPI-SPACK 

e MPI-SUNPACK 

e MPI-GPACK General-purpose gather routine 

e MPI-GUNPACK General-purpose scatter routine 

Gather data with constant stride 

Scatter data with constant stride 



, 
- 49 - 

NAME 

MPISPACK Pack data blocks into a buffer with constant stride. 

SYNOPSIS 

integer function MPI-SPACK (buf, lenblk, stridt., nblk, rnsg) 

integer buf(+) 

integer lenhlk 

integer stride 

integer nblk 

integer msg(*) 

INPUT ARGUMENTS 

buf 

lenblk 

stride 

nblk 

buffer from which data are to be gathered 

size of each data block in bytes 

number of bytes between successive blocks in buffer buf 

number of data blocks to be gathered 

OUTPUT ARGUMENTS 

msg buffer in which the gathered data is packed 

DESCRIPTION 

MPI-SPACK gathers data from the buffer buf and packs it contiguously into the buffer 

msg. In buf the data blocks consist of lenblk bytes, with the starts of successive blocks 

being separated by a constant stride bytes. The number of blocks gathered in nblk. 

The most common use of MPI-SPACK is to fill a message buffer for subsequent com- 

munication. 

RETURN VALUE 

Upon successful completion MPI-SPACK returns the total length of the message in 

bytes. Otherwise, -1  is returned. 
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NAME 

MPI-SUNPACK Unpack data blocks from a buffer with constant stride 

SYNOPSIS 

integer function MPI-SUNPACK (buf. lenblk, stride, nblk, msg) 

integer buf(*) 

integer lenblk 

integer stride 

integer nblk 

integer msg(*) 

INPUT ARGUMENTS 

lenblk 

stride 

nblk 

msg 

size of each data block in bytes 

number of bytes between successive blocks in buffer buf 

number of data blocks to be scattered 

buffer in which the data to be scattered are packed 

OUTPUT ARGUMENTS 

buf buffer to which data are to be scatt'ered 

DES C RIP TI0  N 

MPI-SUNPACK unpacks contiguous data from the buffer msg and scatters it with 

constant stride into the buffer buf. Successive contiguous blocks of lenblk bytes are 

extracted from msg and copied to  buf so that the first such block is aligned with the start 

of buf, and the start of successive blocks is separated by s t r i d e  bytes. A total of nblk 

data blocks are unpacked. The most common use of MPI-SUNPACK is to unpack data 

received from another process. I t  is the responsibility of the user to ensure that buf is 

large enough to  hold the data unpacked into it. 

RETURN VALUE 

Upon successful conipletion MPI-SUNPACK returns the total length of the message 

in bytes. Otherwise, -1 is returned. 
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NAME 

MPI-GPACK General routine for packing data blocks into a buffer. 

SYNOPSIS 

integer function MPI-GPACK (buf, nlist, ilist, nblk, msg) 

integer buf(*) 

integer nlist(*) 

integer ilist(*) 

integer nblk 

integer rrisg(+) 

INPUT ARGUMENTS 

buf 

nlist 

ilist 

nblk 

buffer from which data are to  be gathered 

list of the number of bytes in each block 

list of the location in buf at which each data block starts 

number of data blocks to be gathered 

OUTPUT ARGUMENTS 

msg buffer into which the gathered data are packed 

DESCRIPTION 

MPI-GPACK extracts nblk data blocks from the buffer buf a i d  packs them contigu- 

ously into the buffer msg according to  the information in the arrays n l i s t  and i l i s t .  

The ith data block extracted consists of the contiguous n l i s t  (i) bytes starting at the 

location ilist ( i )  bytes from the start of buf.  It is assumed that all indices and number- 

ing of data items begin at 0. The most common use of MPI-GPACK is to fill a message 

buffer for subsequent communication. 

RETURN VALUE 

Upon successful completion MPI-GPACK returns the total length of the message in 

bytes. Otherwise, -1 is returned. 
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NAME 

MPI-GUNPACK General routine for unpacking data blocks froin a buffer. 

SYNOPSIS 

integer function PtlPI-GUIWACK (buf, nlist, ilist, nblk, msg) 

integer buf(*) 

integer nlist(*) 

integer ilist(*) 

integer nblk 

integer msg(i) 

INPUT ARGUMENTS 

msg 

nlist 

ilist 

nblk 

buffer from which the data to be scattered are unpacked 

list of the number of bytes in each block 

list of the location in buf at which each data block starts 

number of data blocks to be scattered 

OUTPUT ARGUMENTS 

buf buffer into which data are to be scattered 

DESCRIPTION 

MPI-GUNPACK takes nblk successive contiguous data blocks from the buffer msg arid 

unpacks them into the buffer buf according to the information in the arrays n l i s t  and 

i l i s t .  The ith data block unpacked consists of n l i s t  ( i )  contiguous bytes, and is copied 

t o  the buf so that the start of the block is aligned with the location i l i s t ( i )  bytes from 

the start of buf. It  is assumed that all indices arid numbering of data items begin at  

0. The most common use of MPI-GUNPACK is to unpack a message received from 

another process. It is the responsibility of the user to ensure that buf is large enough to  

hold the data unpacked into it. 

RETURN VALUE 

Upon successful completion MPI-GUNPACK returns the total length of the message 

in bytes. Otherwise, -1 is returned. 
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A.4 Support for Communication Contexts 

In this section specifications for the following routines for managing communication contexts 

are given, 

0 MPIJNFOC 

MPI-NEWC 

MPI-POPC 

0 MPI-PUSHC 

Get information on valid cornmunicatiori contests 

Create a new corrirnunication context 

Restore a communication context 

Establish a new communication context 
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NAME 

MPIlNFOC Get information about valid communication contexts 

SYNOPSIS 

integer function MPI-IKFOC (maxlis. ilist) 

integer maxlis 

integer ilist(+) 

INPUT ARGUMENTS 

maxlis maximum number of communication context ID numbers in the 

a.rray i l i s t  

OUTPUT ARGUMENTS 

ilist a list. of communication context ID numbers 

DESCRIPTION 

MPIJNFOC determines the number of communication contexts that have been created 

for the current process group context, and returns a list of the corresponding communi- 

cation context ID numbers in the array i l i s t .  The first entry in i l i s t  is always t.he 

ID number of the default communication context. If the number of ID numbers exceeds 

maxlis, then only maxlis are returned in the array i l i s t .  

RET.URN VALUE 

On successful completion MPI-INFOC returns the number of communica.tion contexts. 

Otherwise, -1 is returned. 
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NAME 

MPIJVEWC Create a new communication context. 

SYNOPSIS 

integer function MPI-NEWC ( ) 

ARGUMENTS 

None 

DESCRIPTION 

MPI-NEWC creates a new comniunication context within the scope of the current 

process group context. 

RETURN VALUE 

On successful completion MPIBEWC returns the unique ID number of the new com- 

munication context. Otherwise -1 is returned. 
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NAME 

MPITOPC Re-establish former comrriunication context 

SYNOPSIS 

integer function MPI-POPC ( ) 

ARGUMENTS 

None 

DES C RIP T I 0  N 

MPI-POPC re-establishes the communication context that was in effect before the pre- 

ceding call to MPI-PUSHC. 

RETURN VALUE 

On successful completion MPI-POPC returns the ID number of the communication 

context that is re-established. Otherwise, -1 is returned. 



NAME 

MPI-PUSHC Establish a new cornmu~iication context 

SYNOPSIS 

integer function MPI-YUSHC (ccid) 

integer ccid 

INPUT ARGUMENTS 

ccid the ID number of the comniunicatiori context to be established 

DESCRIPTION 

MPI-PUSHC sets the current communication context to that given by the communi- 

cation context ID number, ccid. This communication context stays in effect until the 

subsequent corresponding call to MFI-POPC, or until the next call to MPI-POPG, 

which destroys all the communication contexts of the process group context being exited. 

MPIPUSHC must be called by all processes in the current process group context. 

RETURN VALUE 

On successful completion MPIPUSHC returns 0. Otherwise -1 is returned. 
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A.5 Utilities 

In this section specifications for the following utility routines are given, 

0 MPI-ERROR 

a MPIBTEXT 

Determine the current MPI error status 

Get text string corresponding to  error stat.us 
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NAME 

MPI-ERR,OR Determine error status following a call to hlPIl  

SYNOPSIS 

integer function MPILERROR ( ) 

ARGUMENTS 

Kone 

DESCRIPTION 

MPIXRROR returns an integer giving t,, error status of the preces 

routine. 

ing ca I to an MPI 1 

The meaning of the error status returned by MPI-ERROR. is given in the table below 

RETURN VALUE 

Additional entries may be added later. 

Error status 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Meaning 
No error 
Invalid PID used 
Invalid GID used 
Invalid MSGID used 
Invalid CCID used 
Invalid GCPID used 
Invalid message buffer size 
Invalid stride in MPI-SPACK/MPISUNPACK 
Invalid block size in pack/unpack routine 
Invalid data item size in pack/unpack routine 
System buffer overflow 
Too many communication contexts 
Too many group contexts 
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NAME 

MPIBTEXT Give string describing the error stmatus 

SYNOPSIS 

character*80 function MPI-ETEXT (ierrno) 

integer ierrno 

INPUT ARGUMENTS 

ierrno The error status 

DES C RIP TI0  N 

MPI-ETEXT gives a brief description of the error corresponding to the value of the 

error status integer ierrno. 

R.ETURN VALUE 

MPI-ETEXT returns a string describing the error status. 
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