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ABSTRACT 

Recent theoretical results have completely solved the problem of determining 
the minimum length path for a vehicle with a minimum turning radius moving 
from an initial configuration to a final configuration. Time optimal paths for a 
constant speed vehicle are a subset of the minimum length paths. This paper uses 
the Pontryagin maximum principle to find time optimal paths for a constant speed 
vehicle. The time optimal paths consist of sequences of arcs of circles and straight 
lines. The maximum principle introduces concepts (dual variables, bang-bang 
solutions, singular solutions, and transversality conditions) that provide important 
insight into the nature of the time optimal paths. We explore the properties of the 
optimal paths and present some experimental results for a mobile robot following 
an optimal path. 
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1. INTRODUCTION 

We consider a mohilc robot with one or more steerable drive wheels that steer 
together (for example, Cybermotion (1991), Denning (1991), Nomadic (1991), and 
HERMIES-I11 [Weisbin, et al. 19901). We assume that the robot is moving at its 
maximum speed when it receives orders to drive through a new goal configuration 
(position and orientation). We want to determine the time optimal path from the 
current configuration to the goal in an unobstructed environment. 

Since the wheels of the mobile robot steer together, we can consider the vehicle 
to be a unicycle. Time optimal paths for a constant speed vehicle can be minimum 
length paths. However, there are minimum length paths with cusps that cannot 
be followed by a constant speed vehicle. Thus, time optimal paths for a constant 
speed vehicle are a subset of minimum length paths. 

Recent theoretical results have completely solved the problem of determining 
the minimum length path for a vehicle moving from an initial configuration to a 
final configuration. In general, the optimal paths consist of sequences of arcs and 
lines. In 1957, Dubiris proved that the minimal length paths without cusps (with 
Lipschitz continuous tangents) are either arc-line-arc (ALA) or arc-arc-arc (AAA). 
In 1990, Reeds and Shepp determined the minimum length paths with cusps. 

Sussmann and Tang (1991) have derived the results of Reeds and Shepp using 
geometric methods based on the Lie algebraic analysis of trajectories. Boissonnat 
and his colleagucs (1992) have derived the results of Reeds and Shepp using the 
Pontryagin Maximum Principle (Pontryagin et al. 1962). Soueres and Laumond 
(1992) have synthesized paths using the results of Reeds and Shepp. 

Several recent papers (Jacobs and Canny 1989; Pin and Vasseur 1990; and 
Vasseur, et al. 1991) have explored minimum length paths for mobile robots that 
have a minimum turning radius. These authors have developed path planning 
algorithms for complex environments containing obstacles. 

In this paper, we will use the Pontryagin Maximum Principle to find time 
optimal paths for a constant speed vehicle that has one degree of freedom (the 
steering angle). Our results were obtained independently of the work by Boissonnat 
(1992). We will find that the optimal paths are either bang-bang or singular. 
Furthermore, the bang-bang paths are arcs and the singular paths are lines. Thus, 
the optimal paths consist of sequences of arcs and lines. Using the result of Dubins 
(1957) , the optimal paths are either arc-line-arc (ALA) or arc-arc-arc (AAA). 
The maximum principle introduces concepts (dual variables, bang-bang solutions, 
singular solutions, and transversality conditions) that provide important insight 
into the nature of the minimum time paths. We will not consider path planning 
algorithms for complex environments containing obstacles. 

The next section will use the maximum principle and Dubin’s results to derive 
the conditions for time optimal paths. The third section will explore the features 
of the optimal paths. The fourth section presents some experimental results for a 
mobile robot following an optimal path, while the fifth section lists our conclusions. 
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2. CONDITIONS FOR TIME OPTIMAL PATHS 

The basic equations of motion for a single wheel are: 

where the Cartesian coordinates (2, y)  locate the point of contact between the wheel 
and the floor, i is the 5 component of the wheel velocity (v), and q!J is the orientation 
of the plane of the wheel with respect to the z axis. We assume that the velocity 
of the wheel orientation is the control variable: 

q!J=u (3) 

where the magnitude of the orientation velocity is bounded: IuI 5 a.  While the 
control input could be the acceleration of the wheel orientation, the velocity is the 
control variable that we use for the HERMIES-I11 vehicle (Reister 1992). 

To apply the Pontryagin Maximum Principle, we introduce three state variables: 
z = (z,y,$). The three state variables define the configuration (position and 
orientation) of the vehicle. In vector notation, the equations of motion for the 
state vector z are: 

i = f ( z , u )  (4) 

The components of the equations of motion are: 

i l  = f+) u) = v cos x3 (5) 

is = f & , U )  = u (7) 
The optimization problem is to find a path for the control variable [u] that will 

move the system from the initial configuration zo to the final configuration z1 and 
minimize the transition time. 

Pontryagin introduces a system of dual variables [e] that satisfy: 

3 



4 CONDITIONS FOR TIME OPTIMAL PATHS 

The equations of motion for the dual variables are: 

Q3 = QIu  sin x3 - Q 2 v  cos x3 

The initial conditions a.re: 

* i ( t o )  = pi i = 1,2 ,3  . (12) 
If 2 3  is known, Eqs. (9) to (11) are linear and homogeneous and have a unique 
solution for any initial conditions. 

Pontryagin combines the equations of motion and the dual variables into a single 
Hamiltonian, H :  

H(Q,x, u j  = @ j f j ( X , U >  . 
j=l 

(13) 

q Q ,  2,U) = Qlfl(.) + Q 2 f 2 ( 4  + *3u (14) 
Pontryagin proves that the optimal set of control variables maximizes the 
Hamiltonian. Since the Hamiltonian is linear in the control variable u, the optimal 
solution is bang-bang or singular. The sign of the third dual variable ( @ 3 )  

determines the sign of the optimal control. When *3 is positive (negative), the 
optimal control is bang-bang and at its upper (lower) limit. When \z13 is zero for 
an interval, the optimal control is singular and may have intermediate values. 

We will show that the optimal path consists of a sequence of arcs and line 
segments by proving the following Theorem. 
Theorem 1. The optimal control can only be bang-bang or singular. When the 
control is bang-bang, the control is at its limit and the path is an arc of a circle. 
When the control is singular, the control is zero on a finite interval and the path is 
a line segment. 

We consider first the ca.se where the control is singular. Thus, !l~3 = 0 on a 
finite interval. Using Eqs. (5) and (6), Eq. (11) may be written: 

$3 = * l i 2  - Q 2 i ,  (15) 

To simplify our notation, we can perform a space-time coordinate transformation. 
We will assume that the initial point on the time interval is zero and we will choose 
the coordinate system to make the initial values of the state variables equal (0,0,0). 
In the new coordinate system, Eq. (15) can be integrated to yield: 
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Since Q1 and Q2 are constants, we have replaced them with their initial values (pl 

When the control is singular, !€'s is zero and Ey. (16) defines a line. On the line, 

A line can be defined by the inner product of a position vector ( r )  and a vector 

and p2) .  

4 is a constant and q5 = 0. Thus, t i  = 0 on the finite intert-al where 

( b )  that is perpendicular to the line: 

= 0. 

r . b = c  (17) 

The constant ( c )  is proportional to the distance from the line to the origin (see 
Section 1.4 of Paul 1981). For Eq. (16), the vectors are: T = (x, y) and b = (-pz, p l ) .  
Thus, Q3 = r b + p3. The parameter (113) is proportional to the distance from the 
line where Q3 is zero to the origin (when !€'3 = 0, p3 = -c) and the value of the dual 
variable (e,) is proportional to the distance from the point ( 5 ,  y) to the line where 
!€'3 is zero. In the next section, we will find that the line determines the optimum 
solution. Typically, the optimal control steers the wheel to the line, follows the line, 
and then steers to the goal. 

We consider next the case where the control is bang-bang. We will consider a 
finite interval where *3 is positive (or negative) and u is a constant. We shall show 
that the path is an arc of a circle on the finite interval . As in the singular case, 
we will assume that the initial point on the time interval is zero and we will choose 
the coordinate system to make the initial values of the state variables equal (O,O,O). 
When the control is constant initially, Eq. (3) can be integrated to yield: 4 = ut. 
Equations (1) and (2) can be integrated to find the Cartesian path: 

2 = (v/u) sin 4 

Thus, the path is an arc of a circle. The radius of the circle is the ratio of the 
wheel velocity and the steering velocity [R = 1(v/u)1]. The curvature of the circle 
is the reciprocal of the radius. The center of the circle is ( 0 , q ) :  x2 + (y - q)2  == R2, 
where q = v / u ( R  = 141). 

We have proven Theorem 1. The optimum path consists of a sequence of arcs 
and line segments. Next we establish upper limits on the number of arcs and line 
segments. 

While the control variable ( u )  can be discontinuous, the orientation (4) will be 
continuous. Thus, the components of the wheel velocity (i and $) will be continuous. 
Thus, at all points, the paths will have continuous tangents. At any point on a line 
segment, the control variable could become positive or negative and the path would 
become an arc of a circle. At the transition point from line to circle, the line must 
be tangent to the circle. Similarly, at any point on a circular path, the control 
variable could change sign and the path would switch to an arc of another circle. 
At the transition point from circle to circle, the two circles must be tangent. The 
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dual variable Q 3  is continuous. ,4t the transition point from circle to circle, Q 3  = 0 
and the transition point from circle to circle must lie on the line Q3 = 0. 

If a path consists of a line segment ( Q 3  = 0) followed by a circle, the circle is 
tangent to the line. Hence the path on the circle cannot cross the line and the path 
cannot leave the circle and get back on the line (Q3 = 0) except at the original point 
of departure. Thus no minimum time path can consist of two distinct, segments of 
the line (Q3 = 0) joined by an arc of circle. The arc must be a full circle and the 
segments can not be distinct,. No minimum time path can contain a full circle. 

We can imagine a long sequence of tangent circles that have all of the points 
of tangency on a single line. ‘4s we were attempting to bound the number of arcs 
in an optimum path, the paper by Jacobs and Canny (1989) led us to the seminal 
results of Dubins (1957). 

Dubins 
considers curves with “average curvature always less than or equal to R-1,’’ which 
means that for each curve the tangent vector exists everywhere and satisfies the 
Lipschitz c o r d  t ion: 

Before stating Dubins’ theorem, we need to specify some notation. 

where X is a vector with components (x, y) and s is the path length. A portion of 
a path that is an arc of a circle with radius R is denoted by A .  A line segment is 
denoted by L. Since the tangents are continuous, the lines and circles are tangent 
to each other. Dubins has proven the following theorem. 
Theorem 2. Given an initial position and Orientation in the plane ( P )  and a final 
position and orientation (Q). The minimum length path from P to Q that has an 
average curvature everywhere less than or equal to R-l is necessarily a continuously 
differentiable curve that is either ALA; or AA,4; or a subpath of a path of type ALL4 
or AAA. 

Our set of candidates for optimal paths consist of sequences of arcs and line 
segments. Dubins considers a more general class: curves with average curvature 
always less than or equal to R-l. Siiice the minimum length paths for the more 
general class are in our class, the minimum length paths for our class are the same 
as Dubins’. Hence, we conclude that our optimal paths are either ALA; or AAA; 
or subpaths. 

We have assumed that all three state variables are specified at the end of the 
path. We could be interested in paths with some free boundary conditions. We 
might want to reach a point (x) y) at an arbitrary orientation or we might want to 
reach an orientation at an arbitrary point. When an optimal path has free boundary 
conditions, Pontryagin’s Maximum Principle determines the optimal solution. We 
assume that the goal x1 is a point in a smooth manifold S.  Let T be the tangent 
plane to S at the goal. The dual solution satisfies the transversality condition 
if it is orthogonal to T .  Pontryagin’s Maximum Principle requires that the dual 
solution must satisfy the transversality condition at the goal. If the goal is to reach 
a point at  an arbitrary orientation, the tangent plane is defined by the vector (0,0,1) 
and the transversality condition requires that a3 = 0 at the goal. Thus, the last 
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segment of the path to the goal is a line. If the goal is to reach an orientation 
at an arbitrary point, the tangent plane is defined by the vector ( l ) l , O )  and the 
transversality condition requires that Ql = @* = 0 at the goal. Thus, Q 3  is a 
constant and the path to the goal is an arc. 





3. TIME OPTIMAL PATHS 

We have defined the features of time optimal paths. In this section, we will 
explore time optimal paths for several classes of problems. We begin by considering 
the case where both position and orientation are specified at the goal. We will 
choose the coordinate system to make the initial values of the state variables equal 
(O,O,O). The time optimal paths will be ALA or AAA or subpaths. Unless the time 
optimal paths are subpaths, the initial and final segments of the optimum path will 
be arcs. Thus, given an initial state (O,O,O) and a final state (z, y, 4), we can draw 
the two circles that lead away from the initial state and the two circles that lead 
into the final state. Next we look for lines or circles that will connect an initial 
circle to a final circle. 

Figures 1 to 4 illustrate optimal paths to a point for eight different orientations. 
In the figures, the initial and final circles are drawn with dotted lines while the 
optimal paths are drawn with solid lines. The initial state is always the same and 
the initial pair of circles is always the same. As the orientation of the final state 
changes, the final pair of circles rotate. In Fig. 1, the paths lead from the initial 
point (S) to the final point (G) and the orientation is either 0 or 180 degrees. The 
path to 0 degrees (path b)  starts with a positive (counterclockwise) arc and ends 
with a negative (clockwise) arc. The path to 180 degrees (path u )  starts and ends 
with a positive arc. In Fig. 2, the orientation is either 45 or 225 degrees. The path 
to 45 degrees (path b)  ends in a line segment. In Fig. 3, the orientation is either 90 
or 270 degrees. Compared to Fig. 1, the concluding arcs have switched circles. The 
path to 90 degrees (path u )  starts and ends with a positive arc. The path to 270 
degrees (path b )  starts with a positive arc and ends with a negative arc. In Fig. 4, 
the orientation is either 135 or 315 degrees. 

For the paths in Figs. 1 to 4, we could choose a consistent set of values for the 
initial conditions of the dual variables and verify that the paths are optimal. The 
parameters (p1 ,pz)  define the slope of the line segment, we will define p1 and pz 
by: p1 = cos6 and p2 = sin6, where 6 is the slope of the line segment. The distance 
from (0,O) to the line and the sign of the optimal control determine p3. For example 
in Fig. 4, the path to 135 degrees (path a )  starts and ends with a positive control. 
Thus, j43 is the positive distance from (0,O) to the line. Both the initial point and 
the goal are on the left side of the line. In Fig. 4, the path to 315 degrees (path b )  
starts with a positive control and ends with a negative control. The initial point is 
on the left side of the line while the goal is on the right side of the line. 

A constant speed vehicle cannot make tight maneuvers. Figure 5 shows the 
path required to turn around [the goal is (0,0,180)]. The path consists of three arcs. 
For this case, the line ( @ 3  = 0) is vertical; the optimal control is negative on the 
left of the line and positive on the right (or vice versa the path could be traveled in 
either direction). 

While time optimal paths at constant velocity are similar to minimum length 
paths, they have one significant difference. A minimum length path can reverse 
direction at a point (have a cusp). Our minimum time paths cannot have 

9 



10 TIME OPTIMAL PATHS 

discontinuities in tangent vectors. If a vehicle needs to perform tight maneuvers, 
it should not move at constant speed. As the speed (v) 
approaches zero, the turning radius ( R )  approaches zero (recall that R = I(v/u)l) .  

It should slow down. 

If the goal is to reach a position at an arbitrary orientation, the last segment 
of the path to the goal is a line. Paths that can reach a point are explored in 
Fig. 6. Figure 6 displays the paths when the steering velocity is positive. A similar 
set of paths could be obtained if the steering velocity is negative [the point (z,y) 
is mapped to (x,--y)]. For goals outside the two circles defined by the radius of 
curvature, we have truncated the lengths of the line segments to  remain within the 
region where the paths are optimal [in the upper half plane (y > O)]. The paths 
displayed in Fig. 6 are optimal to reach any point in the upper half plane cxcept the 
points inside the circle. Furthermore, they are optimal to reach any point within the 
circle for the lower half plane. The paths with negative steering velocity arc optimal 
for the complementary regions (inside the upper circle and outside the lower circle). 

We have explored the optimal paths to a point for eight different orientations. 
Next we will discuss an algorithm that will find the optimal path from an initial 
state to a final state. The time optimal paths will be ALA or AAA. The initial and 
final segments of the optimum path will be arcs. Since we have two initial circles 
and two final circles, we have four combinations of an initial circle and a final circle. 
Given an initial circle and a final circle for the ,4LA case, we define two types of 
line paths that join the two circles: parallel and crossover. The parallel paths are 
parallel to the line that joins the centers of the two circles while the crossover path 
cuts the line that joins the two circles. In Fig. 1, path a is a parallel path and 
path b is a crossover path. Although we can always find a parallel path between 
two circles, we cannot find a crossover path between two intersecting circles (if the 
distance between the centers of the two circles is less than 2 R). In the appendix, 
we derive expressions for the lengths of parallel and crossover paths. 

Given an initial circle and a final circle for the AAA case, we define two types 
of circle paths that join the two circles: left and right. The center of the left circle 
is to the left of the line joining the centers of the two circles while the center of the 
right circle is to the right of the line. In the appendix, we derive expressions for 
the lengths of circle paths. Circle paths will not exist if the distance between the 
centers of the two circles is more than 4 R. 

To find the optimal path from an initial state to a final state, we have four 
combinations of an initial circle and a final circle. For each combination of an 
initial circle and a final circle, we can have a maximum of four paths (two line 
paths and two circle paths). Thus, we can have a maximum of 16 paths from the 
initial state to the final position. Half of the paths will have the correct orientation 
and half of the paths will have the opposite orientation. Thus, to find the optimum 
path, we calculate the lengths of the 8 paths with the proper orientation and choose 
the shortest path. 
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Fig. 1. Time optimal paths when the final orientation is either 0 or 180 degrees. 
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Fig. 2. Time optimal paths when the final orientation is either 45 or 225 degrees. 
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Fig. 3. Time optimal paths when the final orientation is either 90 or 270 degrees. 
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Fig. 4. Time optimal paths when the final orientation is either 135 or 315 degrees. 
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Fig. 5. Time optimal path to rotate by 180 degrees. 
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Fig. 6.  Time optimal paths to reach a position at an arbitrary orientation. 

The lengths of the shortest line and circle paths from the initial state (0, 0,O) to 
the final state (2.3, 2.0, 4) are displayed in Fig. 7. The line paths are the optimal 
paths for all final orientations except the interval from -114 degrees to -18 degrees. 
The lengths of the shortest line and circle paths to the final state (-2.3, 2.0, 4) are 
displayed in Fig. 8. The line paths are the optimal paths for all final orientations 
except the interval from 68 degrees to 114 degrees. 
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Fig. 7. Lengths of line and circle paths 
orientation ranges from -210 to 30 degrees. 

to the point (2.3, 2.0) when the final 

We now explore further the transition from ALA to AAA in Fig. 8. The shortest 
line and circle paths to the final state (-2.3, 2.0, 68 degrees) are displayed in Fig. 9. 
At 68 degrees, both paths have the same length. As the orientation increases from 
68 degrees to 114 degrees, the final pair of circles rotates about the point C: and the 
circle path b is the optimal path. After 114 degrees, the circles are not intersecting 
and the crossover path becomes the shortest path. 

Dubins proves that when the optimal path is AAA, the angle subtended by the 
middle arc must be greater than 180 degrees. We have examined several numerical 
examples where the optimal path is AAA and we have verified that the angle 
subtended by the middle arc of each path is greater than 180 degrees. In Fig. 9, the 
angle subtended by the middle arc of the AAA path ( b )  is greater than 180 degrees. 
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Fig. 8. Lengths of line and circle paths to the point (-2.3, 2.0) when the Anal 
orientation ranges from -30 to 210 degrees. 
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Fig. 9. Line and circle paths to the point (-2.3, 2.0) when the final orientation is 
68 degrees. 





4. EXPERIMENTAL RESULTS 

The objective of our experiment is to demonstrate that a mobile robot can follow 
an ALA type path. Our mobile robot is HERMIES-111, a large robot designed for 
human scale experiments (Reister 1992). The chassis (1.6m x 1.3mx1.9m) has two 
steerable drive wheels and four corner caster wheels. The vehicle weighs 820 kg. 
The maximum wheel velocity is 0.45 m/s and the maximum velocity for wheel 
orientation is 60 degrees/second (1.05 radians/second). The radius of the arc is the 
ratio of the wheel velocity and the steering velocity [R = / ( V / U ) ~ ]  [see Eqs. (18) and 
(19)]. Thus, at maximum speed for the vehicle and for steering, the turning radius 
is 0.43 meters. 

During the experiment, the vehicle accelerates to full speed, steers left on an 
arc for 0.75 seconds to an orientation of 45 degrees, follows a 45 degree line for one 
second, steers right for 45 degrees, and decelerates to a stop. During each cycle of 
the wheel control system (approximately 33 times per second), the robot saves key 
data elements that are downloaded from memory to disk after the experiment. 

Using data collected during an experiment, the target and measured values for 
the wheel speed are displaycd in Fig. 10. At 7.64 seconds, the target for the wheel 
speed was raised from 0.0 to 0.45 m/s. By 9.86 seconds, the vehicle was at full 
speed and the vehicle remained at full speed until the target was reduced to 0.0 at 
12.91 seconds. By 15.04 seconds, the vehicle had stopped. 

The target and measured values for the wheel orientation are displayed in 
Fig. 11. At 10.15 seconds, the target for the wheel orientation was raised from 
0.0 to 0.79 radians (45 degrees). By 11.02 seconds, the wheel orientation was at 
45 degrees and the orientation remained at 45 degrees until the target was reduced 
to 0.0 at 11.90 seconds. By 12.71 seconds, the measured orientation was 0.0. Since 
the vehicle was at full speed from 9.86 seconds to 12.91 seconds, it was at full speed 
during the period (10.15 to 12.71 seconds) when the wheels were being steered and 
the vehicle was following the path. 

The paths for the two steerable drive wheels are displayed in Fig. 12. The 
midpoint between the two wheels starts at the point (4.00, 6.00) and ends at the 
point (6.10, 6.61). During the experiment, the vehicle accelerates to full speed 
while moving in the 2 direction, steers left on an arc to an orientation of 45 degrees, 
follows a 45 degree line, steers right for 45 degrees, and decelerates to a stop while 
moving in the 5 direction. The net motion is 2.10 meters in 2 and 0.61 meters in y. 

At the start of the high speed maneuver (10.15 seconds), the midpoint between 
the two wheels is at the point (4.62, 6.01). At the end of the maneuver 
(12.71 seconds), the midpoint is at the point (5.54, 6.60). Thus the net motion 
during the maneuver is 0.93 meters in x and 0.59 meters in y in 2.56 seconds. The 
line connecting the start and end of the maneuver is 1.09 meters and the average 
velocity (1.09/2.56 = 0.43 m/s) is close to the target for wheel speed (0.45 m/s). 

21 
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Fig. 10. The target and measured velocity of the right wheel during the 
experiment. The units of velocity are meters/second. 

This experiment marks the first time that a mobile robot has followed a 
minimum time ,4LA type path. While the figures illustrate that the vehicle did 
not follow the path exactly, the errors were small. We will conclude this section by 
quantifying the errors. 
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Fig. 11. The target and measured orientation of the right wheel during the 
experiment. The units of orientation are radians. 

To quantify the errors in Fig. 10, we fitted the best (least squares linear 
regression) line to the velocity data for the period when the vehicle was at full 
speed (from 9.91 seconds to 12.91 seconds). The best fit line has a small slope. 
During the period (10.15 to 12.71 seconds) when the vehicle was following the path, 
the linear fit to the velocity increased from 0.445 in/s to 0.448 m/s. The largest 
errors were -1.2% at 10.69 seconds and 1.1% at 11.65 seconds. Thus, most of the 
measured velocities are within 1.0% of the least squares line through the data. 
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Fig. 12. The paths of the left and right wheels during the experiment. The units 
of z and y are meters. 

To quantify the errors in Fig. 11, we divided the data into three groups (Arc, 
Line, and Arc). Using linear regression, we fitted the best line to the data during 
the first period (when the wheel orientation increases from 0 degrees to 45 degrees). 
As the well known statistical parameter R2 increases from 0.0 to 1.0, the parameter 
measures how well the linear model explains the variation in the data. During 
the first period, the value of R2 was 0.989. During the third period, the wheel 
orientation decreases from 45 degrees to 0 degrees and thc value of R2 was 0.981. 
Thus, in both cases the measured data is very close fit to a linear model. 
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During the second period, the target for the wheel orientation is 45 degrees. 
Initially, the measured data for the wheel orientation overshoots the target before 
approaching the target. The maximum value for the overshoot is 1.4%. 

Thus, we have demonstrated that the errors between the targets a,nd the 
measured values for both the velocity and the orientation were small. 





5. CONCLUSIONS 

We desire time optimal paths for a mobile robot (with one or more steerable 
drive wheels that steer together) that is traveling at its maximum speed. Recent 
theoretical results have completely determined the nature of the time optimal paths. 
The optimal paths consist of sequences of arcs and lines and are either ALA or AAA. 
In this paper, we have used the Pontryagin Maximum Principle to find time optimal 
paths for a constant speed vehicle. The time optimal paths are produced by control 
trajectories that are either bang-bang or singular. The bang-bang controls lead to 
subpaths that are arcs of circles, while the singular controls produce line segments. 

When the final configuration is not fully specified, the transversality condition 
determines the optimal solution. To reach a point at an arbitrary orientation, the 
path is AL (an initial arc followed by a line segment). To reach an orientation at 
an arbitrary point, the whole path is an arc. 

We have developed an algorithm that will find the optimal path from an initial 
state to a final state. Since we have two initial circles and two final circles, we have 
four combinations of an initial circle and a final circle. Given an initial circle and a 
final circle, we define two types of line paths that join the two circles: parallel and 
crossover and two types of circle paths that join the two circles: left and right. For 
each combination of an initial circle and a final circle, we can have a maximum of 
four paths (two line paths and two circle paths). Thus, we can have a maximum of 
16 paths from the initial state to the final position. Half of the paths will have the 
correct orientation and half of the paths will have the opposite orientation. Thus, 
to find the optimum path, we calculate the lengths of the 8 paths with the proper 
orientation and choose the shortest path. 

Using HERMIES-111, we have demonstrated that a large mobile robot can follow 
an ALA type path with small errors. 

For practical applications, the paths are best for high speed maneuvering in 
unobstructed environments and are not appropriate for maneuvering in complex 
environments or for large changes in orientation. For example, the rotation path 
in Fig. 5 required the vehicle to turn 420 degrees (+GO, -300, +GO) to accomplish 
a 180 degree change in orientation. This maneuver should be performed when the 
vehicle is at rest. 
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APPENDIX 

CALCULATION OF PATH LENGTHS 

The optimal path is either arc-line-arc or arc-arc-arc. To find the optimal path, 
we calculate the lengths of all possible arc-line-arc or arc-arc-arc paths and pick the 
shortest path. In this appendix, we will derive formulas for the path lengths. We 
begin with the arc-line-arc paths. 

We associate two circles with both the initial position and the final position. 
Given one of the initial circles and one of the final circles, we can define two types 
of connecting lines: parallel and crossover. A parallel line is parallel to the line that 
joins the centers of the two circles while the crossover path cuts the line that joins 
the centers of the two circles. 

The calculation of the length of a parallel line path is diagrammed in Fig. 13. 
The path consists of an arc of length a R ,  followed by a line of length d, followed 
by a.n arc of length p R. The path length ( L )  is: 

where R is the radius of the circles. 
To derive expressions for a ,  d, and p, we introduce the following notation: r 

is the distance from the center of the initial circle to the center of the final circle, 
8 is the orientation of the line that joins the centers of the two circles, 0 is the 
orientation of the line from the center of the initial circle to the starting point (S), 
p is the orientation of the line from the center of the final circle to the goal point 
(G), and X is the orientation of the line from the center of the final circle to the end 
of the line segment (or the end of the middle arc). 

Using our notation, we can derive expressions for a ,  d, and /?. 

a = 6  

d = r  

p = p - x  
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The calculation of the length of a crossover line path is diagramed in Fig. 14. 
The path consists of an arc of length a. R, followed by a line of length d, followed by 
an arc of length p R. The path length ( L )  is given by Eq. (20). The angle between 
the crossover path and the line that joins the centers of the two circles is y: 

y = arcsin(2 R / r )  (25 )  

When T is less than 2 R, the two circles intersect and the crossover path is not 
possible. Using our previous notation, we can derive expressions for CY, d, and p. 

d = rcosy (27 )  

p = x - p  (29) 
The calculation of the length of a three circle path is diagramed in Fig. 15. The 

path consists of an arc of length Q R, followed by an arc of length ,B R, followed by 
an arc of length y R. The path length ( L )  is: 

L = R(a 3- p + y) (30) 

The angle between the line that joins the centers of the first two circles and the line 
that joins the centers of the initial and final circles is 6: 

s = arcco.s(r/4R) (31) 

When r is greater than 4 R, the middle circle cannot bridge from the initial circle 
to the final circle. Using our previous notation, we can derive expressions for a,  p, 
and y. 

x = 9 + s - 7 r  (34) 
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Fig. 14. Calculation of the length of a crossover line path. 
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S 

Fig. 15. Calculation of the length of a three circle path. 
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