
3 4 4 5 6 03b9L85 0

ORNL/TM- 12270
c-

Engineering Physics and Mat hematics Division I? 5 .i
7 2,

PARTITIONING A CHORDAL GRAPH INTO TRANSITIVE
SUBGRAPHS FOR PARALLEL SPARSE TRIANGULAR SOLUTION

Barry W. Peyton t
Alex Pothen

Xiaoqing Yuan 5

t Matlieiriatical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

1150 Eglinton Ave. East
North York, Ontario, M3C 1H7, Canada

1 Department of Computer Science

.
5 IBM Canada Lab

Date Published: December 1992

Research was supported by the National Science Foundation under grant
CCR-9024954, the U. S. Department of Energy under grant DE-F’G02-
91ER25095, the Canadian Natural Sciences and Engineering Research Coua-
cil under grant OGPOOOSlll, and the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U. S. Department of En-

ergy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 03b7185 0

Contents

1 Introduction . 1
2 Chordless paths and an adjacency set partition 4
3 Transitive perfect elimination orderings . G

3.1 Definitions and notation . G
3.2 The T-set of maximum cardinality . 7

4 A greedy scheme for the chordal partitioning problem 9
5 Computing a maximum-cardinality T-set . 10
6 Implementing the greedy scheme . 13

6.1 An efficient test for simpliciality . 14
6.2 An efficient test for membership in R . 14
6.3 Implementation details . 15
6.4 Complexity analysis . 19

7 Concluding remarks . 20
8 R.eferences . 20

PARTITIONING A CHORDAL GRAPH INTO TRANSITIVE
SUBGRAPHS FOR PARALLEL SPARSE TRIANGULAR SOLUTION

Barry W. Peyton
Alex Pothen

Xiaoqing Yuan

Abstract

A recent approach for solving sparse triangular systems of equations on mas-
sively parallel coniputers employs a factorization of the triangular coefficient matrix
to obtain a representation of its inverse in product form. The number of general
communication steps required by this approach is proportional to the number
of factors in the factorization. The triangular matrix cau be symmetrically per-
muted to minimize the number of factors over suitable classes of permutations, and
thereby the complexity of the parallel algorithm can be minimized. Algorithms for
minimizing the number of factors over several classes of permutations have been
considered in earlier work.

Let F = L+LT denote the symmetric filled matrix corresponding to a Cholesky
factor L , and let CF denote the adjacency graph of F . In this paper we consider the
problem of minimizing the number of factors over all permutations which preserve
the structure of G F . The graph model of this problem is to partition the vertices
GF into the fewest transitively closed subgraphs over all perfect elimination order-
ings while satisfying a certain precedence relationship. The solution to this chordal
graph partitioning problem can be described by a greedy scheme which eliminates
a largest permissible subgraph at each step. Further, the subgraph eliminated at
each step can be characterized in terms of lengths of chordless paths in the cur-
rent elimination graph. This solution relies on several results concerning transitive
perfect elimination orderings introduced in this paper. We describe a partitioning
algorithm with O(lVl + /El) time and space complexity.

Keywords: chordal graph, directed acyclic graph, massively parallel comput-
ers, partitioned inverse, perfect elimination ordering, sparse triangular solution,
transitive closure, transitive perfect elimination ordering

AMS(M0S) subject classifications: primary 65F50, 65F25, G8RlO

- v -

1. Introduction

We consider a graph partitioning problem which arises in the development of a pnr-
titioned inverse approach to the solution of sparse triangular systems of equations on
highly parallel computers. On such machines it is advantageous to compute the solution
to a lower triangular system L s = b by matrix-vector multiplication := L-lk when
there are several systems (not al l available a t the same time) involving the matrix L to
be solved. This is due to the fact that there is much more parallelism to be exploited
in the multiplication approach than in the conventional substitution algorithm. If we
can find a factorization L = IIf=, Pi, where each factor P; has the property that P, and
<-' have the same nonzero structure, then L-* = II:==,P;-' can be represented in a
space-efficient manner, storing the t factors .P$-' in the space required for L. Further-
more, the vector s can be computed as a sequence of t matrix-vector multiplication
steps, exploiting parallelism fully within each step.

The number of factors t in the factorization of L is an important measure since
it is proportional to the number of (expensive) router communication steps required
by the parallel algorithm based on this approach; hence it is a good predictor of the
running time of triangular solution on highly parallel machines like the Connection
Machine CM-2. It has been recognized that the triangular matrix can be symmetrically
permuted to minimize the number of factors, and hence several strategies for minimizing
t over appropriate permutations of L have been considered in previous work [2,11].

Minimizing t over all symmetric permutations of L for which the permuted ma-
trix remains lower triangular gives rise to a directed acyclic graph (DAG) partitioning
problem 121. After introducing some notation, we discuss this problem in some detail,
after which we proceed with a description of the closely related partitioning problem
addressed in this paper.

Let Gd = (V, F) be the directed graph of the matrix L with vertices V = (1, .. . , n}
corresponding to the columns of L and edges E = { (j , i) : i > j and # O}. The
edge (j , i) is directed from the lower numbered vertex j to the higher numbered vertex
i. It follows that G d is a directed acyclic graph (DAG). If there exists a directed
path from a vertex j to another vertex i in Gd, then j is a predecessor of i, and i is a
successor of j. An ordering of Gd is any bijection from V to the set {1,2,. . . , [VI}. A
topological ordering is any ordering that , for every predecessor-successor pair, numbers
the predecessor with a lower number than that received by the successor. Note that
the initial ordering imposed on Gd by L is a topological ordering.

V , let l'x E F be the set comprising every edge from a vertex in
Iz to any vertex in the graph. The edge su6gruph induced by F' is the subgraph of Gd
with edge set F' and vertex set consisting of all vertices which are endpoints of these
edges. (We will refer to this as the edge subgraph induced by X.) A directed graph is
transitively closed, or more briefly transitive, if the existence of edges (u, v) and (v, w)
implies the existence of edge (u , w).

Given a set X

We can now give a precise statement of the DAG partitioning problem:

Problem 1. Given a DAG Gd, find an ordered partition R,
vertices such that

Rz < - . < Rt of its

- 2 -

1 . for every 2: E V , if v E Ri then all predecessors of v belong to R,, . . . , El; ,

2. the edge subgraph induced by each R; is transitively closed, arid

3. t is minimum over all partitions that satisfy the first two properties.

Problem 1 can be solved in O(lVl IFI) time and O(IF1) space when L is an arbi-
trary lower triangular matrix, or is obtained from the sparse LU factorization of an
unsymmetric coefficient matrix [2]. However, if L is a Cholesky factor of a symmetric
positive definite matrix, then there is a more efficient O(lV1) time and space parti-
tioning algorithm [ll]. We consider this latter case in more detail now since it will be
helpful in describing the graph partitioning problem considered in this paper.

Let A be a symmetric positive definite matrix whose nonzeros are algebraically
independent, and let E' = L + LT denote the symmetric filled matrix corresponding
to its Cholesky factor L . Then GF, the adjacency graph of F , is a chordal graph.'
The ordering a : V -+ (1,. . . , /VI} of the vertices of G that corresponds to the order
in which the unknowns in the linear system are eliminated is a perfect eliiriination
ordering (P E O) of G. In the case of sparse symmetric factorization, because G is a
chordal graph, the transitive reduction of Gd (a data structure called the elimination
tree [SI) can be used to obtain an extremely efficient O(lVl) time and space algorithm
for solving the chordal DAG partitioning problem [ll]. The only other data required
are the outdegrees of the vertices in G d , which are either already available or easily
computed.

Further details on DAG partitioning problems connected with highly parallel al-
gorithms for the solution of sparse triangular systems and computational results from
a Connection Machine CM-2 implementation may be found in the papers [2.11]. The
partitioned inverse approach has been shown to be normwise but not componentwise
forward and backward stable when a certain scalar, which can be loosely described
as a growth factor, is small; this scalar is guaranteed to be small when L is well-
conditioned [5]. A comprehensive survey of the partitioned inverse approach to highly
parallel sparse triangular solution is provided in [l].

The more general chordal graph partitioning problem addressed in this paper arises
when we consider a larger class of elimination orderings for Cholesky factorization
(thereby potentiaUy reducing 1 further). Given the matrix A , we may compute an ap-
propriate ordering in two steps: First, we compute the filled graph GF for a Cholesky
factor L by means of a primary fill-reducing ordering; then we compute a secondary
reordering that minimizes the number of factors t in the triangular matrix over all
reorderings of A that preserve the structure of the filled graph GF. The computed or-
dering is then applied to the coefficient matrix A before the factorization is computed.
When there are several systems to be solved involving the same triangular matrix, the
use of an ordering for factorization that has been optimized for efficient parallel trian-
gular solution is justified. This two-step approach is similar t o that used to compute
the Jess and Kees ordering for parallel sparse Cholesky factorization [6,9].

'Definitions of some technical terms will be deferred until later in the paper.

- 3 -

Given a chordal graph G = (V ,E) with vertices numbered in a P E O , we can
associate a DAG Gd with G by directing each edge in E from the lower-numbered
vertex to the higher-numbered vertex. The more general chordal graph partitioning
problem may be stated as follows.

Problem 2. Given a chordal graph G = (V, E) , compute a PEO, the associated DAG
Gd, and an ordered partition R1 4 R2 4 . ..: Rt of its vertices such that

1. for every v E V, if w E Ri then all predecessors of v belong to R1,. . . , Ri,
2. the edge subgraph induced by each R; is transitively closed, and

3. t is minimum over all partitions that satisfy the first two properties for some
DAG G d , where G d ranges over all DAGS obtained from PEOs of G in the
manner described above.

In this paper we introduce an O(lVl + IEI) algorithm for solving Problem 2. Our
solution, which we discuss briefly now, involves the lengths of certain chordless2 paths
in G. A vertex w is an interior vertex of a path if it lies on the path and is not an
endpoint of the path. Observe that any vertex v is either an interior vertex on some
chordless path in the graph, or else it is an endpoint of every chordless path on which
it lies. In the former case, let X(v) denote the length of the longest chordless path in
G which includes w in its interior. (Note that X(v) 2 2 for all such vertices.) In the
latter case, let X(v) = 1. The vertices w E V for which X(v) = 1 or X(v) = 2 have
certain properties which will play a crucial role in our solution to Problem 2. Section 2
introduces a few of these properties.

From among all solutions to Problem 2, choose one for which IRll is as large as
possible. In Section 3 we show that R1 is the unique set consisting of vertices v which
satisfy X(v) 5 2, and also satisfy X(u) 5 2 for all u E udj[v] such that {u} U udj[u] C
{v} U a d j [~] . ~ This characterization moreover can be applied recursively to obtain the
largest possible partition member 12; in the reduced graph G \ (I 2 1 U - . U &-I). As
we shall see in Section 4, we can solve Problem 2 by using a simple greedy scheme
that eliminates a t the i-th step a maximum cardinality set B, from the reduced graph.
This greedy scheme is based on concepts associated with transitive perfect elimination
orde'rings of subgraphs of G which are introduced in this paper.

The remainder of the paper is concerned with the expansion of this greedy scheme
into an efficient algorithm for solving Problem 2. Section 5 develops two ideas needed
for efficient implementation of the high-level scheme. Further details needed to realize
our goal of an S(/Vl +] E l) implementation are given in Section 6. A few concluding
remarks are given in Section 7.

2A path is chordless if no edge in G joins two nonadjacent vertices on the path.
3The set ad j [v] contains all vertices joined to v by an edge in G.

- 4 -

2. Chordless paths and an adjacency set partition

Assume G = (V , E) is a connected chordal graph,4 and let the '*length" parameters
X(v), v E V , be as defined in Section 1. Figure 2.1 displays a chordal graph for which
X(a) = X (b) = X(c) = X(d) = 1, X (e) = 2, and X(f) = X(g) = 3. It is interesting to
note that the simplicial vertices5 of the graph are a , 6 , c , and d : precisely the vertices
for which A(.) = 1. We formalize the result suggested by this observation later in this
section.

Figu c3 2.1: Chord
X (f) = X(g) = 3.

1 graph with X(a) = X(b) = X(c) = X(d) = 1, A (e) = 2, and

The following concepts will be used to define an interesting partition of a d j [v] in the
case where A(.) 5 2. The neighborhood of a vertex v is denoted by nbd[v] := { v } U a d j [v] .
A vertex u adj[v] is said t o be indistinguishable from v if nbd[u] = nbd[v]; the set of
neighbors indistinguishable from v will be denoted by adjO[v]. A vertex u E adj[v] is
said t o strictly outmatch v if nbd[u] c nbd[v]. The set of vertices that strictly outmatch
v will be written adj-[v]; the set of vertices strictly outmatched by z1 will be written
adj+[v]. Finally, let adj*[v] consist of the vertices u E adj[v] for which nbd[u] and
nbd[v] are incomparable. Some of these relationships in Figure 2.1 are: a E adj-[e] and
e E adj+[a]; b E udj- [e] and e E adj+[b]; e E adj-[f] and f E ad j+[e] . There are no
pairs of indistinguishable vertices in Figure 2.1.

It is worth noting that some of these ideas have already played an important role in
sparse matrix computations. In particular, vertex indistinguishability and outmatching
play an interesting and vital role in eficient implementations of the minimum degree or-
dering heuristic [4]; vertex indistinguishability also plays a critical role in the subscript
compression scheme introduced by Sherman [12] and in improving the time-efficiency
of the symbolic factorization step [3].

The reader may easily verify that the sets a d j - [v] , ad jO[v] , ad j+[v] , and ud j*[v] forin
a partition of adj[v] . The following result shows that the vertices v E V for which
X(v) 5 2 are precisely those vertices for which adj -[v] , a d j O [~] , and adj+[v] form a
partition of udj[u] (;.e., adj*[v] = 0). Before reading the proof, the reader may find it
helpful to verify the result for the graph in Figure 2.1.

'A graph is chordal if every cycle containing more than three edges has a chord (i.e., an edge joining

5A vertex v E V is simplicial if the vertices of adj[v] induce a complete subgraph of G (i.e., a d j [v]
two non-adjacent vertices on the cycle).

is a clique in G).

Lemma 1 (Adjacency-Partition Lemma). The sets udj-[v] , ud jO[u] , and udj+[v]
form a partition ofadj[v] if and only if A(.) 5 2.

Proof: We first prove the “only if” part by contraposition. Assume that adj-[w],
udjo[v], and udj+[v] do not form a partition of udj[v]. It follows then that there exists
a vertex u E adj*[v] , and thus we can choose w, E nbd[u] - nbd[v] # 0 and w, E
nbd[v] - nbd[u] # @. Note that wu, u, v, and wy are necessarily distinct, and moreover
[w,, u, v, w,,] is a path in G. Since (w,, u) and (u, w,) clearly are not edges in G, the
only other possible chord for the path is (wu, w,,). If, however, w, were joined to w, by
an edge in G, then [w,, u, o, w,, w,] would be a chordless cycle of length four, contrary
to the chordality of G. It then follows that [wu, u, v, w,] is a chordless path in G, and
consequently we have X(v) 2 3.

We now prove the “if” part of the result, also by contraposition. Suppose X(v) 5 3,
so that there exists a chordless path [u, TI, w, x] of length three in G with v in the
interior. Clearly, u E nbd[v] - nbd[w] and 2 E 7 2 b d [~] - nbd[u], whence tu f udj*[v].
It follows that udj - [v] , adjo[w], and udj+[v] do not form a partition of udj[v] , thereby
giving us the result. 8

The vertices v f V for which X(v) 5 2 play a key role throughout the rest of the
paper. The following properties of these vertices will be useful in later proofs. The
reader may find it useful to confirm that the result holds for the vertices u, b, c, d, and
e in Figure 2.1.

Lemma 2. 1. X(v) = 1 if and only if v is simplicial; in which case adjj-[v] = 0.

2. If X(v) = 2, then ludj-[o]l 2 2 and for every vertex u E udj-[v] there exists a

Proof: For the first statement we prove both directions by contraposition. If A(.) _>
2, then o is an interior vertex of some chordless path in G, say [u,v,w]. Whereas
u, w f adj[v] and (u, w) 4 E , it follows that udj[v] is not complete in G, whence v is
not simplicial in G. Now assume o is not simplicial in G. Since udj[v] is not complete
in G, we can choose u, w E udj[o] for which (u, w) E . The chordless path [i t , v, w3 in
G ensures that X(v) 2 2. To prove the last part of the first statement, assume that v
is simplicial, so that nbd[u] is complete in G. It follows that nbd[v] nbd[w] for every
vertex w E udj[v], whence udj-[v] = 0.

To prove the second statement, assume that X(v) = 2, and let [u, v, 21’1 be a chordless
path in G of length two with v in the interior. It follows from the Adjacency-Partition
Lemma that u belongs to one and only one of the sets udjj-[v], udjo[v], or udj+[v]. Since
u’ E nbd[v] - nbd[v], it follows that u f udj-[v]. By the same argument, 71‘ E ndj- [v]
too, whence 1udj-[~1]1 2 2, as required. To prove the last part of the second statement,
again assume that A(7i) = 2; moreover, let u E udjj-[v] f 0, so that nbd[u] c nbd[v].
Choose a vertex u’ E nbd[v] - nbd[v] # 0. Clearly u’ adj[u], whence it follows that
u’ 4 udjo[v] U adj+[v], and thus u’ E udj-[v]. This concludes the proof. 1

Here, also for later use, we verify that each of the sets udjO[u] U ad j+[v] , o E V , is
complete (i.e., pairwise adjacent) in G.

vertex u‘ E udj-[v] for which (ti, u’) # E.

Lemma 3. The vertex set ndjO[v] U udj+[v] is compkte in G for each w E V .

- 6 -

Proof:
w‘ E adj[w], whence nbd[v] is complete in G. a

Let v E V , and choose w, w’ E adjO[v] U adj+[v]. Since nbd[v] 5 n b d [w] , clearly

3. Transitive perfect elimination orderings

3.1. Definitions and notation

An ordering of G is a bijection

(Y : v -+ {1 ,2 , . . . , n} ,

where n := IVI. For any vertex v of an ordered graph, let the monotone adjacency set
of v be defined by

madj[v] := {w E adj[v] I a (w) > a(v)}.
A perfect elimination ordering (P E O) of G is any ordering of G such that madj[v] is
complete in G for every vertex v E V .

In this paper we will be interested in perfect elimination orderings that are “partially
specified” in the following sense. An incomplete ordering o f G relative to a vertex set
X V is a mapping

(Y:v-+ {172, . . . , I x ~ - 1 7] x ~ , n + l }

such that a restricted to X is a bijection from X t o {1,2, . . . , [X I } and a(.) = n + 1 for
each vertex v E V - X . For convenience we shall refer t o such an incomplete ordering
of G as an ordering o f G (X) . Whenever X = V , clearly the “incomplete” ordering
is an ordering of G. A perfect elimination ordering of G (X) is an ordering of G (X)
such that madj[v] is complete in G for every vertex v E X . (We emphasize that G (X)
does not refer t o the subgraph induced by the vertex set X , and that in the previous
sentence madj[v] is complete in the graph G and not in the subgraph induced by X .)
Note that any incomplete P E O can be “completed” into a Y E 0 of G.

Unless G is a complete graph, there are some sets X C V for which there exists no
PEO of G(X) . The following result identifies every vertex set X V for which there
exists a PEO of G (X) .

Proposition 1 (Shier [13]). Let X V . There exists a PEO of G (X) if and only
if the vertices of every chordless pa.th in G joining two vertices in V - X are included
i n V - X .

A transitive ordering of G (X) is any ordering of G (X) for which the following
property holds: If a(.) < a(.) < Q (W) and (u , v) , (v , w) E E, then (u , ~) E E .
Note that the vertices u and v are necessarily taken from X (because ~ (u) < a (v) <
n + l), while the vertex w may be taken from either X or V - X . A transitive perfect
elimination ordering (T E O) of G (X) is any ordering of G (X) that is both a PEO of
G (X) and a transitive ordering of G (X) . Any vertex set X C_ V for which there exists
a T E O of G (X) shall henceforth be called a T-set of G.

- 7 -

Due to the additional transitivity condition, the collection of T-sets of G is generally
much smaller than the collection of vertex sets X C V for which merely a PEO of G (S)
exists. For example, while there exists a PEU of G(V) for every chordal graph G, it
is not the case that there exists a TEO of G(V) for every chordal graph G. On the
contrary, V is not a T-set for most chordal graphs G = (V, E) . Indeed, any chordal
graph G for which V is a T-set is also a member of another major class of perfect
graphs known as comparability graphs.6 In other words, if a chordal graph G is not
also a comparability graph, then V is not a T-set of G. Note, however, that a graph G
can be both a chordal graph and a comparability graph without possessing a TEO of
G (V) . That is, there exist graphs which are both chordal and comparability graphs,
but for which the set of transitive orderings is disjoint from the set of perfect elimination
orderings. An example is P4, the path on four vertices.

Though V is not a T-set for most chordal graphs G = (V , E) , T-sets nevertheless
exist for any chordal graph G. For example, consider the vertex set X = Sinzc: # 8,
where SimG is the set of simplicial vertices of G. It is easy to verify that any ordering
of G (X) is a TEO of G (X) , and hence X is a T-set of G.

3.2. The T-set of maximum cardinality

In this subsection we show that G has a unique maximum-cardinality T-set R, and
that this set is given by

R = {v E V I X(v) 5 2, and X(u) 5 2 for every u E adj-[v]}. (3.1)

More specifically, we will show that (a) the vertex set R is a T-set of G, and (b) for
any T-set R of G we have fi C R. (The reader can, with some care, verify that these
two statements hold for the graph in Figure 2.1 (R = { a , b , c , d , e }) .

Toward that goal, we first characterize the TEOs of G(R). The outmatching re-
lation on V is the key concept needed t o obtain the result. Henceforth, for any pair
of vertices u , v E V , we shall write u 4 v if u E adj -[v] , or equivalently, u 4 v if
nbd[u] C nbd[v]. The relation 4 clearly imposes a strict partial order on the vertex
set. An ordering a of G (X) is consistent with the partial order 4 if u -i v implies
that a(.) < a(v) . The following result says that the TEOs of G(R) are precisely the
orderings of G(R) that are consistent with the partial order 4.

Theorem 3.1 (TEO Theorem). An ordering (Y of G(R) is a TEO of G(B) if and
only if CY is consistent with the partial order 4.

Proof: First we show that any ordering N of G(R) that is consistent with the partial
order 4 is a PEO of G(R). Let a be any ordering of G(R) for which a(.) < a (v)
whenever u 4 v. From (3.1) and the Adjacency-Partition Lemma, it follows that for
each vertex v E R the sets adj-[v], udjo[v], and udj+[v] form a partition of udj[v].
Furthermore, our assumption that a is consistent with the partial order -.: implies that
for each vertex v E R, the set madj[v] includes no vertices from udj-[v], and hence

6An arbitrary graph G = (V, E) is a comparability graph if there exists a transitive ordering of
C(V); each comparability graph is associated in a natural way with a finite partially ordered set.

- 8 -

contains only vertices from adjo(v] U adj+[v]. From Lemma 3 it follows that madj[v] is
complete in G for every every vertex v E R, and a is therefore a PEO of G(R) .

Next we show that any ordering a of G (R) that is consistent with the partial order
4 is also transitive, and hence a T E O of G(R). Assume the ordering 0 of G(R) is not
transitive. There exist then vertices u, v E R and w E V such that a (u) < a(.) < a (w) ,
(u , v), (u , w) E E , and (u, w) E . From (3 .1) and the Adjacency-Partition Lemma, it
follows that adj-[,u], adjo[v] , and adj+[v] form a partition of adj[v]. Consequently, since
u , w f adj[v] and (u , w) # E , we have I L , W E adj-[v] . Since a(.) < a (w) , the ordering
Q clearly is not consistent with the partial order 4 , and thus we have proven the “if”
part of the result.

To complete the proof, we show that any T E O of G (R) is consistent with the partial
order 4. Let a be any ordering of G(R) that is not consistent with i, Then for some
vertex v E R there exists a vertex u E adj-[v] such that a(.) < a(.). Now by (3 .1) and
Lemma 2, X(v) = 2 and moreover there exists a vertex w E adj -[v] , w + u, that is not
adjacent t o u. If Q (W) < a (v) , then we have a (w) < a(w) < a (u) , (w , v) , (v , u) E E ,
and (w , ~) # E , whence a is not a transitive ordering of G(R) . If on the other hand
a(w) > a (v) , then u, w E madj[v] and (2 0 , v) E , whence a is not a PEO of G(R) . In
either case, N is not a ?’EO of G(R) , and this concludes the proof.

That the vertex set R is a T-set of G follows immediately from the T E O Theorem.
We now show that any T-set of G is contained in R.

Theorem 3.2. For any T-set R of G, we have R
Proof: To prove the result it suffices t o show that for every vertex v E V - R there
exists no T-set that contains v. We therefore choose a vertex E V - R and consider in
turn the following two mutually exclusive cases, at least one of which must hold true:

R.

1. X(v) 2 3.

2. X(v) = 2, but X(u) 2 3 for some vertex u E adj-[v] .

Assume first that X(v) >_ 3, and let [u ,v ,w ,x] be a chordless path of length three
in G with v in the interior. Let a moreover be any PEO of G (k) where E R. It
suffices to show that a is not a transitive ordering of G(&). Since v E k, we have
a(.) # (~ (w) ; there are, therefore, two cases to consider. Consider first the case where
a(.) < Q (W) ~ Since a is a PEO of G (k) , it follows that a (u) < a(.) < a(20). Such
an ordering cannot be a transitive ordering of G (k) because (u , v), (v, w) E E , but
(u ,w) # E . Now consider the case where a (w) < a(.). Since a is a PEO of G (k) , it
follows that a(2) < ~ (u I) < a(.). Such an ordering cannot be a transitive ordering of
G (k) because (2, w), (w, v) E E , but (2, v) $2 E .

Now suppose that A(.) = 2, but A (u) 2 3 for some vertex u E udj-[v]. Again
let a be any PEO of G (k) where v E A; it again suffices to show that a is not a
transitive ordering of G (k) . First, by the argument in the preceding paragraph it is
impossible for a to be a transitive ordering of of G(2) if u E R, and thus we assume
that u R ; that is, we assume that a(.) = IZ + 1. By Lemma 2, there exists another
vertex tu E adj-[v] such that (w, u) # E . Note that [u, v , w] is a chordless path in G.
Since a (v) < a(.) = n + 1, we must have a(w) < a(.) < a (u) in order for a t o be

- 9 -

a PEO of G (k) . Such an ordering however cannot be a transitive ordering of G (k)
because (w, u) , (u , u) E E , but (w , u> # E. This concludes the proof. 1

4. A greedy scheme for the chordal partitioning problem

We can partially reduce the graph G by choosing a T-set of G and removing the
vertices in R from G in the order specified by a T E O of G (k) ; we then complete the
reduction of G to the null graph by applying this process recursively to the reduced
graph G \ R.

Suppose the graph G is reduced to the null graph after the removal of t distinct
T-sets, each ordered by a T E O . Define G1 := G, and let Gz,G3,. . ., Gt+l be the
sequence of reduced graphs obtained a t the end of each “block” elimination step. (Note
that Gt+l is the empty graph.) Let R1, k2, . . . , R, be the sequence of T-sets, so that R,
is removed from G, by a ?‘EO of G%(&) t o obtain the reduced graph G;+l = G; \ R;.
We shall refer to any vertex set partition AI, &, . . ., Rt obtained by this process as
a T-partition of V G ; ~ we shall refer to any YE0 of G generated by this process as a
compound T E O of G with respect to the T-paxtition R l , R z , . . . , fit.

Note that the solution to Problem 2 consists of a compound T E O , along with
its associated T-partition and DAG, for which t , the number of members in the par-
tition, is as small as possible. Let T (G) be the minimum value t for which there
exists a T-partition R l , R2,. . . , Rt of V i . Consider a greedy approach for generating a
T-partition of V by eliminating the T-set of maximum cardinality at each major step,
as shown in Figure 4.1. We let R1, Rz, . . . , Rt be the T-partition of I ~ G obtained by
this process. For the graph in Figure 2.1, the T-partition obtained by this process has
members R1 = { a , b , c , d , e } and R2 = {f,g}.

i +-- 1;
GI +- G;
while G; # 0 do

Let R; be the maximurn-cardina.lity T-set of Gi;
Compute G;+1 +-- G; \ R;,

i t i t l ;
with R; removed in a TEO of G;(R;);

end while

Figure 4.1: Greedy partitioning scheme for which each R; is the maximum-cardinality
T-set of G;.

It is not difficult to show that this process obtains a minimum-cardinality T-partition

‘Henceforth we will incorporate the graph into our notation as a subscript when needed. For
example, if G has been reduced to G,, we might write VG,, X G , (U) , a d j ~ , [v] , etc. to distinguish these
items from the corresponding items for a different graph.

- 10 -

of VG, and hence a solution to Problem 2. First we show that r (H) 5 r (G) for any
induced subgraph H of G, after which the main result of this section can be obtained
by a simple induction argument.

Lemma 4. For any induced subgraph H of G, we have r (H) 5 r (G) .

Proof: Let k l , R 2 , . . . , R, be a T-partition of VG, and let a be a compound T E O of
G with respect t o AI, R2,. . . , R,. Consider the subgraph EI of G induced by X V
and the unique ordering p of W that is consistent with a in the sense that P(u) < P (D)
whenever u, D E X and a(.) < a(.). Now, for every vertex v E X we have m a d j ~ [v] 5
mUdjG[v], with m a d j ~ [v] complete in G. It follows therefore that r n u d j ~ [v] is complete
in H for every vertex v E X, whence p is a PEO of H .

Let R1, R2,. . ., Rt be the partition of X defined by fi, = Rl f l X, 1 5 i 5 t . To
prove the result it suffices t o show that ,kl is a compound T E O of H with respect
t o k1, &, . . . , f i t . Clearly, ,B is a “block” ordering of VH, consecutively numbering
the vertices in fit before numbering next those in In the previous paragraph
we showed that /3 is a PEO of H . To complete the proof, it suffices to show lliat
/? restricted to k, is a transitive ordering of H8(kt). Toward that end, assume that
u , v E R,, w E X , p(u) < p (v) < /?(tu), and (u , v) , (v , w) E E H . It follows that
11, D E R, , a(u) < a(.) < a (w) , and (u , v), (D , w) E EG. Since cy is a compound TEO of
G with respect t o the T-partition kl, R a , . . . , &, we have (u, w) f EG, which in turn
implies that (1 4 , w) E E H , thereby giving us the result. @

Theorem 4.1. The greedy partitioning scheme in Figure 4.1 generates a minimum-
cardinality T-partition of VG.
Proof: We prove the result by induction on n = IVGI. Clearly, the result is true for
n 5 2. Let G be a graph with n 2 3 vertices, and assume the greedy scheme produces a
minimum-cardinality T-partition for any graph with fewer vertices. Let k1, R 2 , . . . , Rs
be a T-partition of VG for which s = r(G), and let R1, Ra, . . . , Rt be the T-partition of
Vc: generated by the greedy scheme in Figure 4.1. Clearly r (G) = s I t ; thus t o prove
the result it suffices to show that t 5 s.

Since the greedy scheme applied to G processes the reduced graph G \ R1 precisely
as it does when applied directly to G \ R1, it follows by the induction hypothesis that
R,, R3, . . . , Rt is a minimum-cardinality T-partition of VG - R1, and thus we have
t - 1 = r(G\ R1). Now, Theorem 3.2 implies that R 1 C R1, whence G \ R1 is an
induced subgraph of G \ R l . Whereas &, R 3 , . . . , R, is a T-partition of VG - i t , , it
follows by Lemma 4 that

In consequence we have t 5 s as required. @

5. Computing a maxiinurn-cardinality T-set

This section introduces an algorithm for computing the maximum-cardinality T-set R
and a T E O of G(R). The algorithm removes one simplicial vertex after another from

- 11 -

the graph so that upon termination the vertices of R have been eliminated and the
order in which they were eliminated is a T E O of G(R) . Using this algorithm, Section G
presents the implementation details needed for a linear-time implemeiitation of the
greedy scheme in Figure 4.1.

The algorithm introduced in this section is based on two simple ideas. As the algo-
rithm eliminates simplicial vertices from the graph, new simplicial vertices appear in
the reduced graph. The first, and most important, idea incorporated into the algorithm
is a technique for determining whether or not a “candidate” simplicial vertex in the
reduced graph is a member of R and hence should be eliminated. Let R denote the set
of vertices that have been eliminated thus far by the algorithm, and let v be the next
simplicial vertex examined as a candidate for elimination. We will show that, within
the context of our algorithm, v E R if and only if

To enable the test in (5.1) to accurately distinguish members from non-members of
R, the order in which the candidate simplicial vertices are examined must be carefully
prescribed. The second idea incorporated into the algorithm deals with this issue. Let
degG(v) be the degree of a vertex v in G (Le., l a d j ~ [v] l) . At each step, the algorithm
chooses as the next vertex to examine for elimination a candidate simplicial vertex u
for which degG(u) is minimum. Whenever u E adjE[v], we have iabdc[u] C nbdc[v],
whence degG(u) < dcgG(v). We therefore incorporated this particular ordering of the
candidates into the algorithm to enforce examination of the vertex u E adj,[v] 6efor.e
examination of v, so that whenever the algorithm finally tests whether or not a vertex v
satisfies (5.1), it will have already examined, and if called for, eliminated, every member

We have incorporated these two ideas into the algorithm shown in Figure 5.1. The
algorithm collects the eliminated vertices in the set 8. The set C contains the candidate
simplicial vertices belonging to the current elimination graph. Initially C = Sinzc. As
the computation proceeds each “suc~essful’~ candidate is eliminated from both the
graph and the set C. When elimination of a successful candidate z, results in a new
simplicial vertex w in the reduced graph, the algorithm places 20 in C where it will be
examined later for possible elimination.

Before proving the algorithm correct we examine how it processes the graph shown
in Figure 2.1. Initially, C = S i m ~ = { a , b , c , d } . It is trivial to verify that each of
these vertices will pass the test for inclusion in when it is finally examined by the
algorithm. (It can be proven formally using Lemma 2 and the Adjacency-Partition
Lemma). The vertex d (degree one in G) will be removed first, whereupon the newly
simplicial vertex g will be added to the candidate set C. The vertices a , b , and c,
each of degree two in G, will be removed next in succession. Observe that after the
removal of these vertices, e has become simplicial and f remains non-simplicial, whence
C = {e,g}. The algorithm will next examine either e or g for inclusion in A. (Both are
of degree three in G.) No matter which is examined first, g will fail the test because the
vertex f E ndj&[g] remains uneliminated, and e will pass the test because the vertex
f E udj&[e] is the only neighbor of e in the reduced graph. The vertex f (degree five in

of adj&].

- 12 -

H t G; R + 0; C t Simc;
while C # 0 do

Choose u E C for which d e g ~ (u) is minimum;
c + c - {v};
if U d j G [V] - R c adjg[u] u a d j ~ [u] then

H' + H \ {v}; R +- R U {v};
for w E SimHt - S i m ~ do

e n d fo r
(7 t c u {w};

w +- IZ';
end if

end while

Figure 5.1: High-level algorithm for computing the maximum-cardinality T-set R and
a T E O of G(R) . Upon termina.tion, R = R and the elimination sequence is a TEO of

G(R) .

G) becomes simplicial upon the removal of e, but upon examining it the algorithm will
reject it for membership in R because the vertex g E ,d j&[f] remains uneliminated.
The algorithm thus terminates with R = R = { a , b , c , d, e} as required.

While the primary purpose of the following result is t o prove the algorithm correct,
it also shows that the minimum degree among the candidates is non-decreasing as
the algorithm proceeds. This property of the algorithm provides the implementation
presented in Section G with efficient access to the minimum-degree members of C.

Theorem 5.1. The set of vertices R removed by the algorithm in Figure 5.1 is precisely
the maximum cardinality T-set R. Furthermore, the order in which the vertices are
removed is a T E O of G(R) and the minimum degree among the vertices o€C is non-
decreasing as the algorithm proceeds.

Proof: Let R be the set of vertices removed by the algorithm. We first show that I? C
R. Toward that end, let R denote the set of vertices already selected for elimination at
some point during the computation, and let v be the next vertex selected for elimination.
To prove that k C R, it suffices to prove the following: if R 2 R, then v E R.

Let fi a.nd v be as stated above, and consider a vertex u E a d j c [v] n R. Since
u E R 2 R , by (3.1) we have XG(U) 5 2, and thus by the Adjacency-Partition Lemma
the sets n d j ~ [u] , adjg[u] , and adj&[u] form a partition of U d j G [U] . It follows that u
belongs to one of the three sets adj,Jv], a d j g [v] , and adj&[v]. Now consider a vertex
w E UdjG[v] - fi. Since v passes the test for inclusion in 8, it follows that w E
adj&[v] U adj&[v] . We have therefore shown that adjG[v], a d j k [v] , and adj&[v] form
a partition of adjG[v] , whence X,(v) 5 2 by the Adjacency-Partition Lemma. Since
u d j ~ [v] - C adj;[v] U adj&[v], we have ad&[w] C R C R; hence, by (3.1), XG(U) 5 2
for each vertex u E adj,[v]. It follows by (3 .1) then that v E R, giving us R C R as

- 13 -

required. This concludes the first part of the proof.
is not properly contained

in R. By way of contradiction assume that fi c R. Choose v E R- k for which d e . g ~ (~)
is minimum. We first show that adj&[v] E 8. Consider a vertex u E nd jc [u] . By (3 .1) ,
XG(U) 5 2; moreover, since 21 E R and adj,[u] c adj&[v], it follows by (3 .1) that u E R.
From n b d c [u] C n b d ~ [v] we have degc(u) < degc(v), and thus by the niininiality of
degc(v) among the vertices of R excluded from k, it follows that u E 8, thereby giving

Let R be the set of vertices already selected for elimination by the algorithm
immediately after the lust vertex of u d j J v] has been selected for inclusion in k so
that we have adjc[v] E R . It follows by applying the Adjacency-Partition Leinnia to
w E R that a d j J v] , ad j$[u] , and ad j&[v] form a partition of ad jc[v] , and thus we have
u d j ~ [w] - k C_ adj&[u]Uadj&[v] . In consequence, z1 is simplicial in the reduced graph G\k
(by Lemma 3) and also henceforth satisfies the test for inclusion in R. Observe that
the algorithm has not yet examined v for inclusion in R, because degc(u) < d e g c (v)
for any vertex u E a d j ~ [v] , and moreover u becomes simplicial in the reduced graph
no later than 21 does. The algorithm therefore eventually examines v sonietime after
eliminating the last member of a d j ~ [~] and includes it in R , despite our assumption t o
the contrary. From this contradiction we conclude that k = R.

To conclude the argument, note that the test for inclusion in R ensures that for
every vertex w E h = R the vertices of adj5C.l precede v in the elimination sequence.
The elimination sequence is therefore, by the TEO Theorem, a ?‘EO of G(a). Finally,
note that the test for inclusion in R also ensures that degG(w) > degc;(v) for each new
simplicial vertex w resulting from the elimination of v. In consequence, the rninimuni
degree among the vertices in C is non-decreasing, which concludes the proof.

We now complete the proof that k = R by showing that

us udj,[v] c R.

6. Implementing the greedy scheme

Repeated application of the algorithm in Figure 5.1 to a chordal graph gives us an
algorithm that implements the greedy partitioning scheme in Figure 4.1. With careful
attention t o certain implementation details, we can obtain an algorithm whose runtime
is linear in the number of vertices and edges in the chordal graph.

Two implementation issues in particular must be successfully dealt with in order
to achieve a linear-time algorithm. First, we need an efficient technique for detecting
new simplicial vertices (i.e., the vertices w E S i m H l - SimH in Figure 5.1). Liu and
Mirzaian [9] showed how t o use a previously computed PEO and certain vertex degree
information in the graph to devise a simple and efficient test for simpliciality. We
briefly discuss this test in Section 6.1.

Second, we need an efficient way to implement the test for membership of a candi-
date simplicial vertex in R. Note that straightforward determination of whether or not
a vertex v satisfies (5.1) would require examination of the set adjc[w] for each vertex
w E a d j ~ [v] - R, which is far too costly. We show in Section 6.2 that judicious use of
vertex degree information leads t o a simple and efficient test that is equivalent to (5.1).

Other implementation issues are fairly straightforward and will be dealt with when

- 14 -

we look a t the detailed algorithm in Section 6.3. In Section 6.4 we show that the
time-complexity of the algorithm is O(lVl + /E l) .

6.1. An efficient test for simpliciality

In their efficient implementation of the Jess and Kees reordering algorithm, Liu and
Mirzaian [9] address the issue of how to determine when a vertex has become simplicial
in the reduced graph. Their approach requires a perfect elimination ordering ,8 of the
chordal graph. Throughout the rest of Section 6 we will often subscript the vertices with
their position in this PEO; that is, we will let VG = (01, v2,. . . , wn}, where P (u ,) = j
for 1 5 j 5 n. Note that a PEO can be computed in (3()TTI + / E l) t ime using the
maximum cardinality search algorithm [14].

For each vertex wj, let fj be the index given by

and let m d e g c (v j) , the monotone degree of wj, be given by

The following result is Theorem 3.5 in Liu and Mirzaian [9].

Proposition 2 (Liu and Mirzaian [9]). Wehavevj E S i m ~ ifand o i i l y i f d e g G (v j) =
mde!?G(Vjj 1-

In order to use the simpliciality test of Proposition 2, the algorithm will main-
tain the degree values degH(v j) and rndegH(vj) in the variables d e g (v j) and m d e g (v j)
respectively, where E1 is the current reduced graph.

6.2. An efficient test for membership in R

As noted earlier, a naive implementation of the test in (5.1) is far too expensive to
lead to a linear-time implementa.tion. The following result provides us with an efficient
alternative to (5.1).

Proposition 3. Suppose the algorithm in Figure 5.1 is currently testing the simplicial
vertex v E C for elimination, and let R be the set of vertices removed from G thus far
by the algorithm. We then have (5.1) if and only if

InbdG[zl] - 81 = Inbdc[v] - &I for every u E nbdG[v] n R . (6.1)
Proof: Let v and be as stated, and choose a vertex u E nbdc[v] n R . Because u was
simplicial in the reduced graph from which it was removed, it follows that nbdc[u] - R
is complete in G. Since v belongs t o the clique nbdc[u] - R , the following statement
holds true:

- 15 -

Assume that (6.1) holds. I t follows then from (6.2) that

nbdG[u] - R = nbdG[v] - R for every u E nbdG[z!] n 2.

Choose a vertex w E a d j ~ [u) - 2. To show that (5 .1) holds, it suffices to show that
nbdG[v] n b d c [w] . Let 2 E nbdc[v]. If z belongs to the clique n b d ~ [v] - R from which
w was taken, clearly 2 E nbdG[w] as required. If on the other hand 2 E nbdG[V]n&, then
from (6.3) we have w E nbdc[v] - R = n b d ~ [z] - k , whence z E nbdG[W], completing
the first half of the argument.

Now assume that (5.1) holds, and choose a vertex u f nbdG[v] n k. To show that
(6.1) holds, it suffices (by (6.2)) t o show that

Clearly, v belongs to both sets. Let w # w belong to n b d ~ [v] - R. It follows by (5.1)
that w E adj&[v] u udj&[w]. In consequence, nbdG[V] C nbdG[W]; hence u E n b d c [w] ,
and thus w E nbdc[u] - k, which completes the proof. I

To test for (6.1), our algorithm must accurately maintain the variable deg(u) =
Jad j~ [v] - kl for elinziraated vertices 11 E R as well as uneliniinated vertices u E VG - &.

6.3. Implement at ion details

The algorithm introduced in Figure 6.1 (along with Figures 6.2, 6.3, and 6.4) imple-
ments the greedy scheme introduced in Figure 4.1. That is, it genemtes the minimum-
cardinality T-partition R1, Rz, . . ., R t , where each partition member R, is the unique
maximum-cardinality T-set of the reduced graph Gi = G \ (R1 U - - - U R+1}, and it
also generates a compound TEO of G with respect t o the T-partition R1, Rz, . . . , Rt.
For efficient access to the candidate simplicial vertex of smallest degree in G,, the algo-
rithm maintains a collection of sets C[q (1 5 d 5 n) , where C[d] contains the current
candidate simplicial vertices w for which d e g G , (w) = d. We now discuss other details
of the implementation.

Initialization for the algorithm is performed by the procedure INITIALIZE shown
in Figure 6.2. This procedure initializes SI to Simc (see Proposition a) , each candidate
set C[q to the empty set, and each marker variable mark(v3) t o an appropriate integer
value. The various values taken on by the marker variables murk(v3) during the course
of the algorithm have the meanings given below:

(0 if w-j has been eliminated during an earlier major step
1 if wj has been eliminated during the current major step
2 if vj is simplicial, but not yet chosen for elimination
3 if wj is not yet simplicial,

r n U T k (V j) =

where each major step is a single iteration of the main while loop.
An iteration of the main while loop in Figure 6.1 removes the vertices of the

maximum-cardinality T-set Ri from the reduced graph Gi, generating a T E O of Gi(Ri)
as the elimination sequence for the set. Note that the set S; = Simc, is available at the

- 1 6 -

Input: A chordal graph G = (V , E) ; for each vertex v, E 1;. deg(v,) (= degG(2;.)),

mdeg(v,) (= md€gG(?I ,)) , and a d j ~ [v ,] , sorted in ascending order by the numbers
assigned by the initial PEO.
Output: Upon termination, R l , Rz , . . . , Rt is precisely the minimum-cardinality
T-partition R1, Rz, . . . , Rt, where each partition member R, is the maximum-
cardinality T-set of the reduced graph G, = G \ (81 U ... U &-I}. The PEO cr
(computed in Figure 6.4) is a compound T E O of G with respect to the T-partition

Ri, R2,. e , Rt.

 INITIALIZE(^^&(*), C[*] , SI); /*Figure 6.2*/
T -0 ; i c- 1; G1 + G; U + V ;
while G; # 0 do

dmax - 0; dmin + [VI;
for vj E Si do

d m a r + max{ dmax 7 deg(vj)} ;
dmin + min{dmin, d e g (v j) } ;
C[deg(vj>I + C[de.!?(vj)I U {vj}:

end for
for u j E U do olddeg(vj) +- deg(v j) end for

while dmin 5 d,,, do
Rz +- 0; s;+1 +- 0; u +- 0;

for each vertex v j E C[dm;n] do

if IN-TSET(V~) = 1 then

else

end if

C[dmiia] + C[dmi,l - {q};
/*Figure 6.3*/

ELIMINATE(V~); /*Figure 6.4*/

S + l +-- s;+1 u {q};

end for
while C[dmbn] = 0 and dmin 5 d,,, do

end while
dnin +- &in + 1;

end while

for vj E R; do mark(v j) c- 0 end for
Gi+l +- G; \ R, ; i +- i + 1;

end while

Figure 6.1: Detailed implementation of scheme in Figure 4.1.

- 1’7-

procedure I N I T I A L I Z E (~ U T ~ (+) , C[*], SI)
s1 + 0;
for d E {1,2,. . . , n} do C[d] c- 8 end for
for j E {1,2 ,..., n} do

if d e g (v j) = m d e g (c j J) then

else mnrk(vj) t 3; end if
mark(v,) + 2; SI + SI u {q};

end for

Figure 6.2: Initialization procedure: initializes data structures for main while loop.

boolean function IN-TSET(V~)
IN-TSET + 1;
for each vertex vk E adjc[vj] do

if murk(vk) = 1 and deg(zrk) # deg(v j) + 1 then

end if
IN-TSET t 0;

end for

Figure 6.3: Boolean function that tests for membership in the maximum-cardinality
T-set R;.

- 18 -

procedure ELIMINATE(W,)
marb(v,) +- 1; A* c- ri, u {v,}; u c- u - {v3};
T +- T + 1; a(.,) - r ;
for each vertex vk E a d j G [v ~] in ascending order do

deg(Uk) +- W v k) - 1;
if m a r k (v k) 2 2 then

Update fk if necessary; U c U U {vk};
if I; < j then rndeg(vk) c rndeg(vk) - 1:
if d e g (v k) = m d e g (v f k) and naark(vk) = 3 then

m a r k (v k) t 2;
C[olddeg(vk)] +- C[oZddeg(vk)] u {vk};

dma, +- max{dm,,, Olddeg(vk));
end if

end if
end for

Figure 6.4: Elimination procedure: updates data structures to reflect the selection of
vj for elimination.

beginning of the i-th iteration. The first for loop computes the minimum and iliaximum
degrees encountered among the vertices of SzrnG, (d,,, and d m z n , respectively), and
also places each simplicial vertex v, in the appropriate candidate set C [d e g ~ , (w ,)] . The
algorithm maintains the degree value degG,(v,) in the variable olddeg(v3).

The second for loop updates oZddeg(v,) for each vertex v3 whose degree was reduced
during the preceding major step. To do this efficiently, the algorithm maintains a set
U , which contains every uneliminated vertex whose degree has been reduced during
the current major step.

As long as there remain candidate simplicial vertices t o be processed, the algorithm
examines those of minimum degree in G, (i.e., those in C[d,,,]). For each vertex
v, E C[d,,,], the boolean function IN-TSET (see Figure 6.3) uses the current degree
information t o determine if v, satisfies the test for elimination given in (6 .1) . In Fig-
ure 6 .3 , note that

If v j is not t o be eliminated a t this step, the algorithm then places v j in the set
of simplicial vertices Si+l, where it will be processed (and eliminated) during the next
iteration of the main while loop. Otherwise, the procedure shown in Figure 6.4 selects
wj for elimination and updates the current T-set k, and the relevant marker and degree

- 19 -

variables. More specifically, while the degree variables of the neighbors of vJ are up-
dated, new simplicial vertices detected in adjc[v,] - Rz (sec Proposition 2) are placed
in the appropriate candidate set. The set U of uneliminated vertices whose degrees
have been reduced is also updated.

Note that the procedure ELIMINATE must process the members of n d j ~ [v ,] in as-
cending order by their numbering in the initial PEO. This is needed to enable efficient
updating of the parameters fk and to ensure that the values nzdeg(vk) have been cor-
rectly updated before they are used in simpliciality tests. In Figure 6.4, we have not
shown the details of how fk is updated. Efficient access to fk can be obtained by main-
taining a pointer to the first vertex in the ordered list adjc;[vk] that has not yet been
chosen for elimination. If fk = j , where vJ is the vertex just chosen for elimination,
then a d j ~ [v k] must be searched to the right of vJ for the new first uneliminated vertex,
and the pointer must be adjusted accordingly.

After the algorithm examines v, for possible elimination, it then increases dmin if
necessary. That dmin cannot possibly decrease during the course of a major step was
shown in Theorem 5.1. After computing R% (= B E) , the algorithm then eliminates k ,
from the graph and marks each vertex of A, as eliminated from the graph.

Finally, observe that the algorithm in Figure 6.1 correctly implements the greedy
scheme in Figure 4.1 follows immediately from the fact that each iteration of the main
while loop implements the algorithm in Figure 5.1.

6.4. Complexity analysis

In this section we verify that the algorithm in Figure 6.1 runs in time proportional to
IVl + [El. Recall that the algorithm in Figure G . 1 requires

1. a PEO of G, and

2. sorted adjacency lists so that neighbors can be processed in ascending order by
their labels in the PEO.

The first can be obtained in O(lVl + IEI) time using the maximum cardinality search
algorithm [14]; the second can be obtained in O(lVl + / E l) time by careful application
of a bin sort. It is worth pointing out that in our application, the PEO and sorting can
be obtained as a by-product of the symbolic factorization step, and thus are available
at no extra cost in computation time. (For further details consult Liu [7].)

The total work associated with the procedure INITIALIZE is clearly proportional to
!VI. Because S; c 8; at each major step i, the total work pprformed by the for loop
that distributes the members of 5’; among the candidate sets is also proportional to /VI.
Each vertex is eliminated from the graph once, and thus the work associated with the
procedure ELIMINATE is 13(lVI + / E () . Note that each vertex is eliminated either by
the major step during which it first becomes simplicial or by the next major step. As
a result, each vertex is examined for possible elimination no more than twice, and con-
sequently the work associated with the boolean function IN-TSET is also O(lr/l + IEI).
For each vertex vi E U whose “old” degree is updated by the algorithm at major step
i -t 1, we have vJ E adjGl[2)k] for some vertex vk E I?;; that is, t o each vertex 2)j E
there corresponds one or more edges which were removed from the graph during the

- 20 -

previous major step i. In consequence, the total work spent updating the variables
olddeg(v,) (1 5 j 5 n) is 13(IVI + / E l) .

Finally, we consider the work expended by the while loop that updates d,,,,.
During any given iteration of the main while loop, the work performed updating d,,,,
is bounded above by the maximum of degG(V) over all vertices w examined for possible
elimination during the step. Since each vertex is examined for possible elimination no
more than twice during the course of the algorithm, it follows that the total work spent
updating is O(lVl + IEI). From this and the foregoing observations, it follows
that the time complexity of the algorithm in Figure 6.1 is O((VI t IEI). Note that the
space complexity is also O(lVl + [El) .

7. Concluding remarks

In this paper we have developed an O(lVl + [E l) algorithm for solving the graph parti-
tioning problem stated as Problem 2 in Section 1. Two new ideas-TEOs and T-sets-
enabled us to devise a simple greedy scheme that solves Problem 2. We then provided
a high-level description of an algorithm for computing a maximum-cardinality T-set
R, along with the required 7'EO of G(R) . Careful implementation provides us with a
detailed O(lVl + [El) algorithm that implements the greedy scheme, and thus solves
Problem 2.

The approach taken in this paper has the virtue of simplicity and provides insight
into the essential features of this fairly involved graph partitioning problem. A forth-
coming paper [lo] will present an implementation of a variant of the greedy scheme
in Figure 4.1 that processes a clique tree representation of G, rather than the conven-
tional representation by adjacency lists. The new clique tree algorithm makes use of
some interesting new concepts about separators in the clique intersection graph of the
chordal graph.

Acknowledgement

The third author would like to t h m k Professor Joseph Liu for the guidance and en-
couragement he received when he was a student a t York University.

8. References

[l] F. L. Alvarado, A. Pothen, and R. S. Schreiber. Highly parallel sparse triangu-
lar solution. Technical Report CS-92-51, Computer Science, University of Wa-
terloo, Waterloo, Ontario, Canada, N2L 3G1, Oct. 1992. To appear in Sparse
Matrix Computations: Graph Theory Issues and Algorithms, J. A. George and
J. R. Gilbert and J. W. H . Liu (eds.), Springer Verlag. (IMA volumes in Mathe-
matics and its Applications).

[2] F. L. Alvarado and R. S. Schreiber. Optimal parallel solution of sparse triangular
systems. SIAM J. Sci. Stat. Comput., t o appear, 1992.

- 21 -

[3] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1951.

[4] J. A. George and J. W. I?. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 3l:l-19,1989.

[5] N. J. Higham and A. Yothen. The stability of the partitioned inverse approach to
parallel sparse triangular solution. Technical Report CS-92-52, Computer Science,
University of Waterloo, Oct. 1992. Submitted to SIAM J . Sci. Stat. Comput.

[6] J. G . Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse
matrices for parallel factorization. S U M J. Sci. Stat. Comput., 6:1146-1173, Nov.
1989.

[7] J. W. H. Liu. Reordering sparse matrices for parallel elimination. Parallel Com-
puting, 11:73-91, 1989.

[8] J. W. H. Liu. The role of elimination trees in sparse factorization. S I A M J . hfut.
Anal. Appl., 11: 134-172, 1990.

[9] J. W. 11. Liu and A. Mirmian. A linear reordering algorithm for parallel pivoting
of chordal graphs. SIAM J . Disc. Math., 2:lOO-107, 1989.

[lo] 3. W. Peyton, A. Pothen, and X. Yuan. A clique tree algorithm for partitioning
a chordal graph into transitive subgraphs. Work in preparation, 1992.

[ll] A. Pothen and F. L. Alvarado. A fast reordering algorithm for parallel sparse
triangular solution. SIAM J . Sci. Stat. Co,mput., 13:645-653, 1992.

[12] A. H. Sherman. On the efficient solution of sparse systems of linear and nonlinear
equations. PhD thesis, Yale University, 1975.

[13] D. R. Shier. Some aspects of perfect elimination orderings in chordal graphs.
Discr. Appl. Math., 7:325-331, 1984.

[14] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs. SIAM J . Cornput., 13:566-579, 1984.

- 23 .

ORNL/TM-12270

INTERNAL DISTRIBUTION

1. B.R. Appleton
2-3. T.S. Darland

4. E.F. D'Azevedo
5. J.M. Doriato
6. J.J. Dongarra
7. G.A. Geist
8. M.R. Leuze
9 . E.G. Ng

10. C.E. Oliver
11-15. B.W. Peyton
16-20. S.A. Raby

21. C.H. Romine
22. T.H. Rowan

23-27. R.F. Sincovec
28-32. R.C. Ward

33. P.H. Worley
34. Central Research Library
35. ORNL Patent Office
36. K-25 Appl Tech Library
37. Y-12 Technical Library
38. Lab Records Dept - RC

39-40. Laboratory Records Dept

EXTERNAL DISTRIBUTION

41. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

42. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

43. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

44. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

45. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, T X 77252-2189

46. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

47. Edward 8. Barsis, Computer Science and Mathematics, P.O. Box 5800, Saiidia
National Laboratories, Albuquerque, NM 87185

48. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL GO439

49. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

50. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

51. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

52. James C. Browne, Department of Computer Science, University of Texaq, Austin,
TX 78712

- 24 -

53. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

54. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

55. John Cavallini, Deputy Director, Scientific Computing Staff, Applied Mathemati-
cal Sciences, Office of Energy Research, U.S. Department of Energy, Washington,
DC 20585

56. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

57. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

58. Jagdish Chandra, Army Research Ofice, P.O. Box 12211, Research Triangle Park,
NC 27709

59. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada N1G 2W1

60. Melvyn Cinient, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

61. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

62. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

63. Andy Conn, IBM T. J . Watson Research Center, P.O. Box 218, Yorktowii Heights,
NY 10598

64. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

65. Jane K. Cullum, IBM T. J . Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

66. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

67. George J . Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

68. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 3261 1-2024

69. John J . Doming, Department of Nuclear Engineering Physics, Thornton Wall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

70. Iain Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11
OQX, England

71. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

72. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

- 25 -

73. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

74. Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

75. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, ETA Division, P.O. Box 24346, MS-71,-20 Seattle, WA 08124-0346

76. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse university, Syracuse, NY 132444100

77. Paul Frederickson, Los Alamos National Laboratory, Center for Research on Par-
allel Computing, MS B287, Los Alamos, NM 87545

78. Fred N. Fritsch, L-316, Computing and Mathematics Research Division, Lawrence
Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550

79. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

80. K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

81. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

82. Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

83. David M . Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

84. C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ
08540

85. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

86. J . Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

87. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

88. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

89. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA

90. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011

91. Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

92. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, T X 77042-3020

93. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL

94551-0969

61801-2300

- 26 -

94. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

95. Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M I 3 9PL, England

96. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

97. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

98. Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

99. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2111, Canada

100. Lennart Johnson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142- 1214

101. Harry Jordan, Department of Electrical and Computer Engineering. University of
Colorado, Boulder, CO 80309

102. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Urnea, Sweden

103. Malvyn 11. Kalos, Cornell Theory Center, Engineering and Theory Center Rldg.,
Cornell University, Ithaca, NY 14853-3901

104. Hans Kaper, Mathematics and Computer Science Division, Argoniie National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

105. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

106. Robert J . Keel Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

107. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, T X 77001

108. Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

109. Richard Lau, Office of Naval Research, Code I l lhlA, 800 Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

110. Alan J . Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

111. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

112. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

113. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

114. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

- 2 i -

115. John G. Lewis, Boeing Computer Services, P.O. Bos 24346, BI/S 7L-%1, Seattle,
CVA 98124-0346

116. Jing Li, IhISL Inc., 2500 Park West Tower One, 2500 City \Yest Blvd., Houston,
TX 77042-3020

117. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of T,ondon, Mile End Road,
London E l 4NS, England

118. Arno Liegmann, c/o ETH Rechenzentruni, Clausiusstr. 55, CH-SO92 Zurich,
Switzerland

119. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

120. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

121. Franklin Luk, Department of Computer Science, Amos Eaton Building - #131,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590

122. Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

123. Consuelo Maulino, Universidad Central de Venezuela, Escuela de Coniputacion,
Facultad de Ciencias, Apartado 47002, Caracas 1041-A, Venezuela

124. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

125. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E.
California Blvd., Pasadena, CA 91125

126. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

127. Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

128. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

129. James M. Ortega, Department of Applied Mathematics, Thornton Ball, University
of Virginia, Charlottesville, VA 22901

130. Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

131. Chris Paige, McGill University, School of Computer Science, McConnell Engineer-
ing Building, 3480 University Street, Montreal, Quebec, Canada I33A %A7

132. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

133. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

134. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

135. Dan Pierce, Boeing Computer Services, P.O. Box 24346, M/S 7L-21 Seattle, WA
98124-0346

- 28 -

136. Robert J . Plemmons, Departments of Mathematics and Computer Science, Ros
731 1 , Wake Forest University, iVinston-Salem, NC 27109

137. Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

138-142. Alex Pothen, Computer Science Department, University of \\'aterloo, Waterloo,
Ontario, Canada N2L 3G1

143. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

144. Giuseppe Radicati, IBM European Center for Scientific and Engineering Cornput,-
ing, via del Giorgione 159, 1-00147 Roma, Italy

145. John K. Reid, Numerical Analysis Group, Central Computing Departnient, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

146. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

147. John R. Rice, Computer Science Department, Purdue University. West Lafayette,
IN 47907

148. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

149. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

150. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

151. Axel Ruhe, Dept. of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

152. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

153. Ahmed H . Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

154. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

155. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

156. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

157. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

158. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, T X 75275

159. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

160. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

- 29 -

161. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, C h
94035

162. Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East hve., L-
316, P.O. Box 808 Livermore, CA 94551

163. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P.O.
Box 1892, Houston, T X 77251

164. G . W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

165. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

166. Philippe Toint, Dept. of Mathematics, University of Naniur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

167. Bernard Touraricheau, LIP, ENS-Lyon, 69364 Lyon cedes 07, France

168. Henk van der Vorst, Dept. of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

169. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

170. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Colunibia V6T
1W5, Canada

171. Udaya B. Vemulapati, Dept. of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

172. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

173. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, TX 77084

174. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

175. Robert P. Weaver, 1555 Rockmont Circle, Boulder, CO 80303

176. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O.
Box 1892, Houston, TX 77251

177. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-265, Los Alamos, NM 87545

178. Margaret Wright, Bell Laboratories, GOO Mountain Avenue, Murray Hill, NJ
07974

179. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

180-184. Xiaoqing Yuan, IBM Canada Lab, 1150 Eglinton Avenue, North York, Ontario,
Canada M3C 1H7

185. Guodong Zhang, CONVEX Computer Corporation, 3000 Waterview Pkwy, P.O.
Box 833851, Richardson, T X 75083-3851

- 30 -

186. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

187. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Ofice, P.O. Box 2001 Oak Ridge, T N
37831-8600

188-197. Ofice of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

