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Abstract 

A recent approach for solving sparse triangular systems of equations on mas- 
sively parallel coniputers employs a factorization of the triangular coefficient matrix 
to obtain a representation of its inverse in product form. The number of general 
communication steps required by this approach is proportional to the number 
of factors in the factorization. The triangular matrix cau be symmetrically per- 
muted to minimize the number of factors over suitable classes of permutations, and 
thereby the complexity of the parallel algorithm can be minimized. Algorithms for 
minimizing the number of factors over several classes of permutations have been 
considered in earlier work. 

Let F = L+LT denote the symmetric filled matrix corresponding to a Cholesky 
factor L ,  and let CF denote the adjacency graph of F .  In this paper we consider the 
problem of minimizing the number of factors over all permutations which preserve 
the structure of G F .  The graph model of this problem is to partition the vertices 
GF into the fewest transitively closed subgraphs over all perfect elimination order- 
ings while satisfying a certain precedence relationship. The solution to  this chordal 
graph partitioning problem can be described by a greedy scheme which eliminates 
a largest permissible subgraph at each step. Further, the subgraph eliminated at 
each step can be characterized in terms of lengths of chordless paths in the cur- 
rent elimination graph. This solution relies on several results concerning transitive 
perfect elimination orderings introduced in this paper. We describe a partitioning 
algorithm with O(lVl + /El)  time and space complexity. 

Keywords: chordal graph, directed acyclic graph, massively parallel comput- 
ers, partitioned inverse, perfect elimination ordering, sparse triangular solution, 
transitive closure, transitive perfect elimination ordering 
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1. Introduction 

We consider a graph partitioning problem which arises in the development of a pnr- 
titioned inverse approach to  the solution of sparse triangular systems of equations on 
highly parallel computers. On such machines it is advantageous to  compute the solution 
to  a lower triangular system L s  = b by matrix-vector multiplication := L-lk when 
there are several systems (not al l  available a t  the same time) involving the matrix L to  
be solved. This is due to the fact that  there is much more parallelism to be exploited 
in the multiplication approach than in the conventional substitution algorithm. If we 
can find a factorization L = IIf=, Pi, where each factor P; has the property that P, and 
<-' have the same nonzero structure, then L-* = II:==,P;-' can be represented in a 
space-efficient manner, storing the t factors .P$-' in the space required for L. Further- 
more, the vector s can be computed as a sequence of t matrix-vector multiplication 
steps, exploiting parallelism fully within each step. 

The number of factors t in the factorization of L is an important measure since 
it is proportional to  the number of (expensive) router communication steps required 
by the parallel algorithm based on this approach; hence it is a good predictor of the 
running time of triangular solution on highly parallel machines like the Connection 
Machine CM-2. It has been recognized that the triangular matrix can be symmetrically 
permuted to  minimize the number of factors, and hence several strategies for minimizing 
t over appropriate permutations of L have been considered in previous work [2,11]. 

Minimizing t over all  symmetric permutations of L for which the permuted ma- 
trix remains lower triangular gives rise to  a directed acyclic graph (DAG) partitioning 
problem 121. After introducing some notation, we discuss this problem in some detail, 
after which we proceed with a description of the closely related partitioning problem 
addressed in this paper. 

Let Gd = (V, F )  be the directed graph of the matrix L with vertices V = (1, .. . , n} 
corresponding to the columns of L and edges E = { ( j ,  i) : i > j and # O}. The 
edge ( j ,  i) is directed from the lower numbered vertex j to  the higher numbered vertex 
i. It follows that G d  is a directed acyclic graph (DAG). If there exists a directed 
path from a vertex j to  another vertex i in Gd, then j is a predecessor of i, and i is a 
successor of j. An ordering of Gd is any bijection from V to the set {1,2,. . . , [VI}. A 
topological ordering is any ordering that , for every predecessor-successor pair, numbers 
the predecessor with a lower number than that received by the successor. Note that 
the initial ordering imposed on Gd by L is a topological ordering. 

V ,  let l'x E F be the set comprising every edge from a vertex in 
Iz to  any vertex in the graph. The edge su6gruph induced by F' is the subgraph of Gd 
with edge set F' and vertex set consisting of all vertices which are endpoints of these 
edges. (We will refer to  this as the edge subgraph induced by X.) A directed graph is 
transitively closed, or more briefly transitive, if the existence of edges (u, v) and (v, w) 
implies the existence of edge ( u ,  w). 

Given a set X 

We can now give a precise statement of the DAG partitioning problem: 

Problem 1. Given a DAG Gd, find an ordered partition R, 
vertices such that 

Rz < - .  < Rt of its 
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1 .  for every 2: E V ,  if v E Ri then all predecessors of v belong to R,, . . . , El; ,  

2. the edge subgraph induced by each R; is transitively closed, arid 

3. t is minimum over all partitions that satisfy the first two properties. 

Problem 1 can be solved in O(lVl IFI) time and O(IF1) space when L is an arbi- 
trary lower triangular matrix, or is obtained from the sparse LU factorization of an 
unsymmetric coefficient matrix [2]. However, if L is a Cholesky factor of a symmetric 
positive definite matrix, then there is a more efficient O(lV1) time and space parti- 
tioning algorithm [ll]. We consider this latter case in more detail now since it will be 
helpful in describing the graph partitioning problem considered in this paper. 

Let A be a symmetric positive definite matrix whose nonzeros are algebraically 
independent, and let E' = L + LT denote the symmetric filled matrix corresponding 
to its Cholesky factor L .  Then GF, the adjacency graph of F ,  is a chordal graph.' 
The ordering a : V -+ (1,. . . , /VI} of the vertices of G that corresponds to  the order 
in which the unknowns in the linear system are eliminated is a perfect eliiriination 
ordering ( P E O )  of G. In the case of sparse symmetric factorization, because G is a 
chordal graph, the transitive reduction of Gd (a data structure called the elimination 
tree [SI) can be used to  obtain an extremely efficient O(lVl) time and space algorithm 
for solving the chordal DAG partitioning problem [ll]. The only other data  required 
are the outdegrees of the vertices in G d ,  which are either already available or easily 
computed. 

Further details on DAG partitioning problems connected with highly parallel al- 
gorithms for the solution of sparse triangular systems and computational results from 
a Connection Machine CM-2 implementation may be found in the papers [2.11]. The 
partitioned inverse approach has been shown to be normwise but not componentwise 
forward and backward stable when a certain scalar, which can be loosely described 
as a growth factor, is small; this scalar is guaranteed to  be small when L is well- 
conditioned [5]. A comprehensive survey of the partitioned inverse approach to  highly 
parallel sparse triangular solution is provided in [l]. 

The more general chordal graph partitioning problem addressed in this paper arises 
when we consider a larger class of elimination orderings for Cholesky factorization 
(thereby potentiaUy reducing 1 further). Given the matrix A ,  we may compute an ap- 
propriate ordering in two steps: First, we compute the filled graph GF for a Cholesky 
factor L by means of a primary fill-reducing ordering; then we compute a secondary 
reordering that minimizes the number of factors t in the triangular matrix over all 
reorderings of A that  preserve the structure of the filled graph GF.  The computed or- 
dering is then applied to  the coefficient matrix A before the factorization is computed. 
When there are several systems to  be solved involving the same triangular matrix, the 
use of an ordering for factorization that has been optimized for efficient parallel trian- 
gular solution is justified. This two-step approach is similar t o  that used to  compute 
the Jess and Kees ordering for parallel sparse Cholesky factorization [6,9]. 

'Definitions of some technical terms will be deferred until later in the paper. 
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Given a chordal graph G = (V ,E)  with vertices numbered in a P E O ,  we can 
associate a DAG Gd with G by directing each edge in E from the lower-numbered 
vertex to  the higher-numbered vertex. The more general chordal graph partitioning 
problem may be stated as follows. 

Problem 2. Given a chordal graph G = (V, E ) ,  compute a PEO,  the associated DAG 
Gd, and an ordered partition R1 4 R2 4 . ..: Rt of its vertices such that 

1. for every v E V, if w E Ri then all predecessors of  v belong to R1,. . . , Ri, 
2. the edge subgraph induced by each R; is transitively closed, and 

3. t is minimum over all partitions that satisfy the first two properties for some 
DAG G d ,  where G d  ranges over all DAGS obtained from PEOs  of G in the 
manner described above. 

In this paper we introduce an O(lVl + IEI) algorithm for solving Problem 2. Our 
solution, which we discuss briefly now, involves the lengths of certain chordless2 paths 
in G. A vertex w is an interior vertex of a path if it lies on the path and is not an 
endpoint of the path. Observe that any vertex v is either an interior vertex on some 
chordless path in the graph, or else it is an endpoint of every chordless path on which 
it lies. In the former case, let X(v) denote the length of the longest chordless path in 
G which includes w in its interior. (Note that X(v) 2 2 for all such vertices.) In the 
latter case, let X(v) = 1. The vertices w E V for which X(v)  = 1 or X(v) = 2 have 
certain properties which will play a crucial role in our solution to  Problem 2. Section 2 
introduces a few of these properties. 

From among all solutions to Problem 2, choose one for which IRll is as large as 
possible. In Section 3 we show that R1 is the unique set consisting of vertices v which 
satisfy X(v) 5 2, and also satisfy X(u) 5 2 for all u E udj[v] such that {u} U udj[u]  C 
{v} U a d j [ ~ ] . ~  This characterization moreover can be applied recursively to obtain the 
largest possible partition member 12; in the reduced graph G \ ( I 2 1  U - . U &-I). As 
we shall see in Section 4, we can solve Problem 2 by using a simple greedy scheme 
that eliminates a t  the i-th step a maximum cardinality set B, from the reduced graph. 
This greedy scheme is based on concepts associated with transitive perfect elimination 
orde'rings of subgraphs of G which are introduced in this paper. 

The remainder of the paper is concerned with the expansion of this greedy scheme 
into an efficient algorithm for solving Problem 2. Section 5 develops two ideas needed 
for efficient implementation of the high-level scheme. Further details needed to  realize 
our goal of an S(/Vl  + ] E l )  implementation are given in Section 6. A few concluding 
remarks are given in Section 7. 

2A path is chordless if no edge in G joins two nonadjacent vertices on the path. 
3The set ad j [v ]  contains all vertices joined to v by an edge in G. 
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2. Chordless paths and an adjacency set partition 

Assume G = ( V , E )  is a connected chordal graph,4 and let the '*length" parameters 
X(v), v E V ,  be as defined in Section 1. Figure 2.1 displays a chordal graph for which 
X(a) = X ( b )  = X(c) = X(d)  = 1, X ( e )  = 2, and X(f) = X(g) = 3. It is interesting to  
note that the simplicial vertices5 of the graph are a ,  6 ,  c ,  and d :  precisely the vertices 
for which A(.)  = 1. We formalize the result suggested by this observation later in this 
section. 

Figu c3 2.1: Chord 
X ( f )  = X(g) = 3. 

1 graph with X(a) = X(b) = X(c) = X(d)  = 1, A ( e )  = 2, and 

The following concepts will be used to  define an interesting partition of a d j [ v ]  in the 
case where A(.) 5 2. The neighborhood of a vertex v is denoted by nbd[v] := { v } U a d j [ v ] .  
A vertex u adj[v]  is said t o  be indistinguishable from v if nbd[u] = nbd[v]; the set of 
neighbors indistinguishable from v will be denoted by adjO[v].  A vertex u E adj[v]  is 
said t o  strictly outmatch v if nbd[u] c nbd[v]. The set of vertices that strictly outmatch 
v will be written adj-[v];  the set of vertices strictly outmatched by z1 will be written 
adj+[v].  Finally, let adj*[v]  consist of the vertices u E adj[v]  for which nbd[u]  and 
nbd[v] are incomparable. Some of these relationships in Figure 2.1 are: a E adj-[e] and 
e E adj+[a]; b E udj- [e ]  and e E adj+[b]; e E adj-[f] and f E ad j+[e] .  There are no 
pairs of indistinguishable vertices in Figure 2.1. 

It is worth noting that some of these ideas have already played an important role in 
sparse matrix computations. In particular, vertex indistinguishability and outmatching 
play an interesting and vital role in eficient implementations of the minimum degree or- 
dering heuristic [4]; vertex indistinguishability also plays a critical role in the subscript 
compression scheme introduced by Sherman [12] and in improving the time-efficiency 
of the symbolic factorization step [3]. 

The reader may easily verify that the sets a d j - [ v ] ,  ad jO[v] ,  ad j+[v] ,  and ud j*[v]  forin 
a partition of adj[v] .  The following result shows that the vertices v E V for which 
X(v)  5 2 are precisely those vertices for which adj -[v] ,  a d j O [ ~ ] ,  and adj+[v] form a 
partition of udj[u]  (;.e., adj*[v] = 0). Before reading the proof, the reader may find it 
helpful to verify the result for the graph in Figure 2.1. 

'A graph is chordal if every cycle containing more than three edges has a chord (i.e.,  an edge joining 

5A vertex v E V is simplicial if the vertices of adj[v]  induce a complete subgraph of G (i.e.,  a d j [ v ]  
two non-adjacent vertices on the cycle). 

is a clique in G). 



Lemma 1 (Adjacency-Partition Lemma). The sets udj-[v] ,  ud jO[u ] ,  and udj+[v] 
form a partition ofadj[v] if and only if A(.) 5 2. 

Proof: We first prove the “only if” part by contraposition. Assume that adj-[w], 
udjo[v], and udj+[v] do not form a partition of udj[v]. It follows then that there exists 
a vertex u E adj*[v] ,  and thus we can choose w, E nbd[u] - nbd[v] # 0 and w, E 
nbd[v] - nbd[u] # @. Note that wu, u, v, and wy are necessarily distinct, and moreover 
[w,, u, v, w,,] is a path in G. Since (w,, u )  and (u, w,) clearly are not edges in G, the 
only other possible chord for the path is (wu, w,,). If, however, w, were joined to w, by 
an edge in G, then [w,, u, o, w,, w,] would be a chordless cycle of length four, contrary 
to  the chordality of G. It then follows that [wu, u, v, w,] is a chordless path in G, and 
consequently we have X(v) 2 3. 

We now prove the “if” part of the result, also by contraposition. Suppose X(v) 5 3, 
so that there exists a chordless path [u,  TI, w, x] of length three in G with v in the 
interior. Clearly, u E nbd[v] - nbd[w] and 2 E 7 2 b d [ ~ ]  - nbd[u], whence tu f udj*[v]. 
It follows that udj - [v ] ,  adjo[w], and udj+[v] do not form a partition of udj[v] ,  thereby 
giving us the result. 8 

The vertices v f V for which X(v) 5 2 play a key role throughout the rest of the 
paper. The following properties of these vertices will be useful in later proofs. The 
reader may find it useful to confirm that the result holds for the vertices u, b, c, d, and 
e in Figure 2.1. 

Lemma 2. 1. X(v) = 1 if and only if v is simplicial; in which case adjj-[v] = 0. 

2. If X(v) = 2, then ludj-[o]l 2 2 and for every vertex u E udj-[v] there exists a 

Proof: For the first statement we prove both directions by contraposition. If A(.) _> 
2, then o is an interior vertex of some chordless path in G, say [u,v,w]. Whereas 
u,  w f adj[v] and (u, w) 4 E ,  it follows that udj[v] is not complete in G, whence v is 
not simplicial in G. Now assume o is not simplicial in G. Since udj[v] is not complete 
in G, we can choose u, w E udj[o] for which (u, w) E .  The chordless path [ i t ,  v, w3 in 
G ensures that X(v) 2 2. To prove the last part of the first statement, assume that v 
is simplicial, so that nbd[u] is complete in G. It follows that nbd[v] nbd[w] for every 
vertex w E udj[v], whence udj-[v] = 0. 

To prove the second statement, assume that X(v) = 2, and let [u, v, 21’1 be a chordless 
path in G of length two with v in the interior. It follows from the Adjacency-Partition 
Lemma that u belongs to  one and only one of the sets udjj-[v], udjo[v],  or udj+[v]. Since 
u’ E nbd[v] - nbd[v], it follows that u f udj-[v]. By the same argument, 71‘ E ndj- [v]  
too, whence 1udj-[~1]1 2 2, as required. To prove the last part of the second statement, 
again assume that A(7i) = 2; moreover, let u E udjj-[v] f 0, so that nbd[u] c nbd[v]. 
Choose a vertex u’ E nbd[v] - nbd[v] # 0. Clearly u’ adj[u], whence it follows that 
u’ 4 udjo[v] U adj+[v],  and thus u’ E udj-[v]. This concludes the proof. 1 

Here, also for later use, we verify that each of the sets udjO[u] U ad j+[v ] ,  o E V ,  is 
complete (i.e., pairwise adjacent) in G. 

vertex u‘ E udj-[v] for which (ti, u’) # E.  

Lemma 3. The vertex set ndjO[v] U udj+[v] is compkte in G for each w E V .  
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Proof: 
w‘ E adj[w], whence nbd[v] is complete in G. a 

Let v E V ,  and choose w, w’ E adjO[v]  U adj+[v].  Since nbd[v] 5 n b d [ w ] ,  clearly 

3. Transitive perfect elimination orderings 

3.1. Definitions and notation 

An ordering of G is a bijection 

(Y : v -+ {1 ,2 , .  . . , n} ,  

where n := IVI. For any vertex v of an ordered graph, let the monotone adjacency set 
of v be defined by 

madj[v] := {w E adj[v]  I a ( w )  > a(v)}. 
A perfect elimination ordering ( P E O )  of G is any ordering of G such that  madj[v] is 
complete in G for every vertex v E V .  

In this paper we will be interested in perfect elimination orderings that are “partially 
specified” in the following sense. An incomplete ordering o f G  relative to  a vertex set 
X V is a mapping 

(Y:v-+ {172,  . . . , I  x ~ - 1 7 ] x ~ , n + l }  

such that a restricted to X is a bijection from X t o  {1,2, .  . . , [ X I }  and a(.) = n + 1 for 
each vertex v E V - X .  For convenience we shall refer t o  such an incomplete ordering 
of G as an ordering o f G ( X ) .  Whenever X = V ,  clearly the “incomplete” ordering 
is an ordering of G. A perfect elimination ordering of G ( X )  is an ordering of G ( X )  
such that madj[v]  is complete in G for every vertex v E X .  (We emphasize that G ( X )  
does not refer t o  the subgraph induced by the vertex set X ,  and that in the previous 
sentence madj[v]  is complete in the graph G and not in the subgraph induced by X . )  
Note that any incomplete P E O  can be “completed” into a Y E 0  of G. 

Unless G is a complete graph, there are some sets X C V for which there exists no 
PEO of G( X ) .  The following result identifies every vertex set X V for which there 
exists a PEO of G ( X ) .  

Proposition 1 (Shier [13]). Let X V .  There exists a PEO of G ( X )  if and only 
if the vertices of every chordless pa.th in G joining two vertices in V - X are included 
i n V - X .  

A transitive ordering of G ( X )  is any ordering of G ( X )  for which the following 
property holds: If a(.) < a(.) < Q ( W )  and ( u , v ) , ( v , w )  E E, then ( u , ~ )  E E .  
Note that the vertices u and v are necessarily taken from X (because ~ ( u )  < a ( v )  < 
n + l), while the vertex w may be taken from either X or V - X .  A transitive perfect 
elimination ordering ( T E O )  of G ( X )  is any ordering of G ( X )  that  is both a PEO of 
G ( X )  and a transitive ordering of G ( X ) .  Any vertex set X C_ V for which there exists 
a T E O  of G ( X )  shall henceforth be called a T-set of G. 



- 7 -  

Due to  the additional transitivity condition, the collection of T-sets of G is generally 
much smaller than the collection of vertex sets X C V for which merely a PEO of G ( S )  
exists. For example, while there exists a PEU of G(V)  for every chordal graph G, it 
is not the case that there exists a TEO of G(V)  for every chordal graph G. On the 
contrary, V is not a T-set for most chordal graphs G = (V, E ) .  Indeed, any chordal 
graph G for which V is a T-set is also a member of another major class of perfect 
graphs known as comparability graphs.6 In other words, if a chordal graph G is not 
also a comparability graph, then V is not a T-set of G. Note, however, that  a graph G 
can be both a chordal graph and a comparability graph without possessing a TEO of 
G ( V ) .  That  is, there exist graphs which are both chordal and comparability graphs, 
but for which the set of transitive orderings is disjoint from the set of perfect elimination 
orderings. An example is P4, the path on four vertices. 

Though V is not a T-set for most chordal graphs G = ( V , E ) ,  T-sets nevertheless 
exist for any chordal graph G. For example, consider the vertex set X = Sinzc: # 8, 
where SimG is the set of simplicial vertices of G. It is easy to  verify that any ordering 
of G ( X )  is a TEO of G ( X ) ,  and hence X is a T-set of G. 

3.2. The T-set of maximum cardinality 

In this subsection we show that G has a unique maximum-cardinality T-set R,  and 
that this set is given by 

R = {v E V I X(v) 5 2, and X(u) 5 2 for every u E adj-[v]}. (3.1) 

More specifically, we will show that (a) the vertex set R is a T-set of G, and (b) for 
any T-set R of G we have fi C R. (The reader can, with some care, verify that these 
two statements hold for the graph in Figure 2.1 ( R  = { a , b , c , d , e } ) .  

Toward that goal, we first characterize the TEOs of G(R). The outmatching re- 
lation on V is the key concept needed t o  obtain the result. Henceforth, for any pair 
of vertices u , v  E V ,  we shall write u 4 v if u E adj -[v] ,  or equivalently, u 4 v if 
nbd[u] C nbd[v]. The relation 4 clearly imposes a strict partial order on the vertex 
set. An ordering a of G ( X )  is consistent with the partial order 4 if u -i v implies 
that  a(.) < a(v) .  The following result says that the TEOs of G(R)  are precisely the 
orderings of G(R)  that  are consistent with the partial order 4. 

Theorem 3.1 (TEO Theorem). An ordering (Y of G(R)  is a TEO of G(B)  if and 
only if CY is consistent with the partial order 4. 

Proof: First we show that any ordering N of G(R) that  is consistent with the partial 
order 4 is a PEO of G(R). Let a be any ordering of G(R)  for which a(.) < a ( v )  
whenever u 4 v. From (3.1) and the Adjacency-Partition Lemma, it follows that for 
each vertex v E R the sets adj-[v], udjo[v], and udj+[v] form a partition of udj[v]. 
Furthermore, our assumption that a is consistent with the partial order -.: implies that  
for each vertex v E R, the set madj[v] includes no vertices from udj-[v],  and hence 

6An arbitrary graph G = (V, E )  is a comparability graph if there exists a transitive ordering of 
C(V); each comparability graph is associated in a natural way with a finite partially ordered set. 
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contains only vertices from adjo(v]  U adj+[v].  From Lemma 3 it follows that madj[v]  is 
complete in G for every every vertex v E R, and a is therefore a PEO of G(R) .  

Next we show that any ordering a of G ( R )  that  is consistent with the partial order 
4 is also transitive, and hence a T E O  of G(R).  Assume the ordering 0 of G(R)  is not 
transitive. There exist then vertices u,  v E R and w E V such that a ( u )  < a(.) < a ( w ) ,  
(u ,  v), ( u ,  w) E E ,  and (u,  w) E .  From (3 .1)  and the Adjacency-Partition Lemma, it 
follows that adj-[,u], adjo[v] ,  and adj+[v] form a partition of adj[v].  Consequently, since 
u , w  f adj[v] and (u ,  w) # E ,  we have I L , W  E adj-[v] .  Since a(.) < a ( w ) ,  the ordering 
Q clearly is not consistent with the partial order 4 ,  and thus we have proven the “if” 
part of the result. 

To complete the proof, we show that any T E O  of G ( R )  is consistent with the partial 
order 4. Let a be any ordering of G(R)  that  is not consistent with i, Then for some 
vertex v E R there exists a vertex u E adj-[v] such that a(.) < a(.). Now by (3 .1)  and 
Lemma 2, X(v)  = 2 and moreover there exists a vertex w E adj -[v] ,  w + u,  that  is not 
adjacent t o  u. If Q ( W )  < a ( v ) ,  then we have a ( w )  < a(w) < a ( u ) ,  ( w , v ) , ( v , u )  E E ,  
and ( w , ~ )  # E ,  whence a is not a transitive ordering of G(R) .  If on the other hand 
a(w)  > a ( v ) ,  then u,  w E madj[v] and ( 2 0 ,  v) E ,  whence a is not a PEO of G(R) .  In 
either case, N is not a ?’EO of G(R) ,  and this concludes the proof. 

That the vertex set R is a T-set of G follows immediately from the T E O  Theorem. 
We now show that any T-set of G is contained in R. 

Theorem 3.2. For any T-set R of G, we have R 
Proof: To prove the result it suffices t o  show that for every vertex v E V - R there 
exists no T-set that  contains v. We therefore choose a vertex E V - R and consider in 
turn the following two mutually exclusive cases, at least one of which must hold true: 

R. 

1. X(v)  2 3.  

2. X(v)  = 2, but X(u) 2 3 for some vertex u E adj-[v] .  

Assume first that  X(v)  >_ 3, and let [u ,v ,w ,x ]  be a chordless path of length three 
in G with v in the interior. Let a moreover be any PEO of G ( k )  where E R. It 
suffices to  show that a is not a transitive ordering of G(&). Since v E k, we have 
a(.) # ( ~ ( w ) ;  there are, therefore, two cases to  consider. Consider first the case where 
a(.) < Q ( W ) ~  Since a is a PEO of G ( k ) ,  it follows that a ( u )  < a(.) < a(20). Such 
an ordering cannot be a transitive ordering of G ( k )  because ( u ,  v), (v, w) E E ,  but 
(u ,w)  # E .  Now consider the case where a ( w )  < a(.). Since a is a PEO of G ( k ) ,  it 
follows that a(2) < ~ ( u I )  < a(.). Such an ordering cannot be a transitive ordering of 
G ( k )  because (2, w), (w, v) E E ,  but (2, v) $2 E .  

Now suppose that A(.) = 2, but A ( u )  2 3 for some vertex u E udj-[v].  Again 
let a be any PEO of G ( k )  where v E A; it again suffices to  show that a is not a 
transitive ordering of G ( k ) .  First, by the argument in the preceding paragraph it is 
impossible for a to be a transitive ordering of of G(2)  if u E R, and thus we assume 
that u R ;  that  is, we assume that a(.) = IZ + 1. By Lemma 2, there exists another 
vertex tu E adj-[v]  such that (w,  u )  # E .  Note that [u, v ,  w ] is a chordless path in G. 
Since a ( v )  < a(.) = n + 1, we must have a(w) < a(.) < a ( u )  in order for a t o  be 
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a PEO of G ( k ) .  Such an ordering however cannot be a transitive ordering of G ( k )  
because (w, u ) ,  ( u ,  u) E E ,  but ( w ,  u> # E.  This concludes the proof. 1 

4. A greedy scheme for the chordal partitioning problem 

We can partially reduce the graph G by choosing a T-set of G and removing the 
vertices in R from G in the order specified by a T E O  of G ( k ) ;  we then complete the 
reduction of G to the null graph by applying this process recursively to the reduced 
graph G \ R. 

Suppose the graph G is reduced to the null graph after the removal of t distinct 
T-sets, each ordered by a T E O .  Define G1 := G, and let Gz,G3,. . ., Gt+l be the 
sequence of reduced graphs obtained a t  the end of each “block” elimination step. (Note 
that Gt+l is the empty graph.) Let R1, k2, . . . , R, be the sequence of T-sets, so that R, 
is removed from G, by a ?‘EO of G%(&) t o  obtain the reduced graph G;+l = G; \ R;. 
We shall refer to any vertex set partition AI,  &, . . ., Rt obtained by this process as 
a T-partition of V G ; ~  we shall refer to  any YE0 of G generated by this process as a 
compound T E O  of G with respect to the T-paxtition R l ,  R z ,  . . . , fit. 

Note that the solution to Problem 2 consists of a compound T E O ,  along with 
its associated T-partition and DAG, for which t ,  the number of members in the par- 
tition, is as small as possible. Let T ( G )  be the minimum value t for which there 
exists a T-partition R l ,  R2,. . . , Rt of V i .  Consider a greedy approach for generating a 
T-partition of V by eliminating the T-set of maximum cardinality at  each major step, 
as shown in Figure 4.1. We let R1, Rz,  . . . , Rt be the T-partition of I ~ G  obtained by 
this process. For the graph in Figure 2.1, the T-partition obtained by this process has 
members R1 = { a , b , c , d , e }  and R2 = {f,g}. 

i +-- 1; 
GI +- G; 
while G; # 0 do 

Let R; be the maximurn-cardina.lity T-set of Gi; 
Compute G;+1 +-- G; \ R;, 

i t i t l ;  
with R; removed in a TEO of G;(R;); 

end while 

Figure 4.1: Greedy partitioning scheme for which each R; is the maximum-cardinality 
T-set of G;. 

It is not difficult to  show that this process obtains a minimum-cardinality T-partition 

‘Henceforth we will incorporate the graph into our notation as a subscript when needed. For 
example, if G has been reduced to G,,  we might write VG,, X G , ( U ) ,  a d j ~ , [ v ] ,  etc. to distinguish these 
items from the corresponding items for a different graph. 
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of VG, and hence a solution to Problem 2. First we show that r ( H )  5 r (G)  for any 
induced subgraph H of G, after which the main result of this section can be obtained 
by a simple induction argument. 

Lemma 4. For any induced subgraph H of G, we have r ( H )  5 r ( G ) .  

Proof: Let k l ,  R 2 , .  . . , R, be a T-partition of VG, and let a be a compound T E O  of 
G with respect t o  AI, R2,. . . , R,. Consider the subgraph EI of G induced by X V 
and the unique ordering p of W that  is consistent with a in the sense that P(u )  < P ( D )  
whenever u,  D E X and a(.) < a(.). Now, for every vertex v E X we have m a d j ~ [ v ]  5 
mUdjG[v],  with m a d j ~ [ v ]  complete in G. It follows therefore that r n u d j ~ [ v ]  is complete 
in H for every vertex v E X,  whence p is a PEO of H .  

Let R1, R2,. . ., Rt be the partition of X defined by fi, = Rl f l  X, 1 5 i 5 t .  To 
prove the result it suffices t o  show that ,kl is a compound T E O  of H with respect 
t o  k1, &, . . . , f i t .  Clearly, ,B is a “block” ordering of VH,  consecutively numbering 
the vertices in fit before numbering next those in In the previous paragraph 
we showed that /3 is a PEO of H .  To complete the proof, it suffices to  show lliat 
/? restricted to  k,  is a transitive ordering of H8(kt). Toward that end, assume that 
u , v  E R,, w E X ,  p(u)  < p ( v )  < /?(tu), and ( u , v ) , ( v , w )  E E H .  It follows that 
11,  D E R, ,  a(u) < a(.) < a ( w ) ,  and ( u ,  v), (D ,  w) E EG. Since cy is a compound TEO of 
G with respect t o  the T-partition kl, R a ,  . . . , &, we have (u, w) f EG,  which in turn 
implies that  ( 1 4 ,  w) E E H ,  thereby giving us the result. @ 

Theorem 4.1. The greedy partitioning scheme in Figure 4.1 generates a minimum- 
cardinality T-partition of VG. 
Proof: We prove the result by induction on n = IVGI. Clearly, the result is true for 
n 5 2. Let G be a graph with n 2 3 vertices, and assume the greedy scheme produces a 
minimum-cardinality T-partition for any graph with fewer vertices. Let k1, R 2 ,  . . . , Rs 
be a T-partition of VG for which s = r(G),  and let R1, Ra, . . . , Rt be the T-partition of 
Vc: generated by the greedy scheme in Figure 4.1. Clearly r (G)  = s I t ;  thus t o  prove 
the result it suffices to  show that t 5 s. 

Since the greedy scheme applied to  G processes the reduced graph G \ R1 precisely 
as it does when applied directly to  G \ R1, it follows by the induction hypothesis that  
R,, R3, . . . , Rt is a minimum-cardinality T-partition of VG - R1, and thus we have 
t - 1 = r(G\ R1). Now, Theorem 3.2 implies that  R 1  C R1, whence G \ R1 is an 
induced subgraph of G \ R l .  Whereas &, R 3 , .  . . , R, is a T-partition of VG - i t , ,  it 
follows by Lemma 4 that 

In consequence we have t 5 s as required. @ 

5. Computing a maxiinurn-cardinality T-set 

This section introduces an algorithm for computing the maximum-cardinality T-set R 
and a T E O  of G(R).  The algorithm removes one simplicial vertex after another from 
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the graph so that upon termination the vertices of R have been eliminated and the 
order in which they were eliminated is a T E O  of G(R) .  Using this algorithm, Section G 
presents the implementation details needed for a linear-time implemeiitation of the 
greedy scheme in Figure 4.1. 

The algorithm introduced in this section is based on two simple ideas. As the algo- 
rithm eliminates simplicial vertices from the graph, new simplicial vertices appear in 
the reduced graph. The first, and most important, idea incorporated into the algorithm 
is a technique for determining whether or not a “candidate” simplicial vertex in the 
reduced graph is a member of R and hence should be eliminated. Let R denote the set 
of vertices that have been eliminated thus far by the algorithm, and let v be the next 
simplicial vertex examined as a candidate for elimination. We will show that,  within 
the context of our algorithm, v E R if and only if 

To enable the test in (5.1) to accurately distinguish members from non-members of 
R,  the order in which the candidate simplicial vertices are examined must be carefully 
prescribed. The second idea incorporated into the algorithm deals with this issue. Let 
degG(v)  be the degree of a vertex v in G (Le., l a d j ~ [ v ] l ) .  At each step, the algorithm 
chooses as the next vertex to examine for elimination a candidate simplicial vertex u 
for which degG(u) is minimum. Whenever u E adjE[v],  we have iabdc[u] C nbdc[v],  
whence degG(u) < dcgG(v). We therefore incorporated this particular ordering of the 
candidates into the algorithm to  enforce examination of the vertex u E adj,[v] 6efor.e 
examination of v, so that whenever the algorithm finally tests whether or not a vertex v 
satisfies (5.1), it will have already examined, and if called for, eliminated, every member 

We have incorporated these two ideas into the algorithm shown in Figure 5.1. The 
algorithm collects the eliminated vertices in the set 8. The set C contains the candidate 
simplicial vertices belonging to the current elimination graph. Initially C = Sinzc. As 
the  computation proceeds each “suc~essful’~ candidate is eliminated from both the 
graph and the set C. When elimination of a successful candidate z, results in a new 
simplicial vertex w in the reduced graph, the algorithm places 20 in C where it will be 
examined later for possible elimination. 

Before proving the algorithm correct we examine how it processes the graph shown 
in Figure 2.1. Initially, C = S i m ~  = { a , b , c , d } .  It is trivial to  verify that each of 
these vertices will pass the test for inclusion in when it is finally examined by the 
algorithm. (It can be proven formally using Lemma 2 and the Adjacency-Partition 
Lemma). The vertex d (degree one in G) will be removed first, whereupon the newly 
simplicial vertex g will be added to  the candidate set C. The vertices a ,  b ,  and c, 
each of degree two in G, will be removed next in succession. Observe that after the 
removal of these vertices, e has become simplicial and f remains non-simplicial, whence 
C = {e,g}. The algorithm will next examine either e or g for inclusion in A. (Both are 
of degree three in G.) No matter which is examined first, g will fail the test because the 
vertex f E ndj&[g] remains uneliminated, and e will pass the test because the vertex 
f E udj&[e] is the only neighbor of e in the reduced graph. The vertex f (degree five in 

of adj&]. 
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H t G; R + 0; C t Simc; 
while  C # 0 do 

Choose u E C for which d e g ~ (  u )  is minimum; 
c + c - {v}; 
if U d j G [ V ]  - R c adjg[u] u a d j ~ [ u ]  then 

H' + H \ {v}; R +- R U {v}; 
for w E SimHt - S i m ~  do 

e n d  fo r  
(7 t c u {w}; 

w +- IZ'; 
end if 

end while  

Figure 5.1: High-level algorithm for computing the maximum-cardinality T-set R and 
a T E O  of G(R) .  Upon termina.tion, R = R and the elimination sequence is a TEO of 

G(R) .  

G) becomes simplicial upon the removal of e, but upon examining it the algorithm will 
reject it for membership in R because the vertex g E ,d j&[f]  remains uneliminated. 
The algorithm thus terminates with R = R = { a ,  b ,  c ,  d,  e} as required. 

While the primary purpose of the following result is t o  prove the algorithm correct, 
it also shows that the minimum degree among the candidates is non-decreasing as 
the algorithm proceeds. This property of the algorithm provides the implementation 
presented in Section G with efficient access to the minimum-degree members of C. 

Theorem 5.1. The set of vertices R removed by the algorithm in Figure 5.1 is precisely 
the maximum cardinality T-set R. Furthermore, the order in which the vertices are 
removed is a T E O  of G(R)  and the minimum degree among the vertices o€C is non- 
decreasing as the algorithm proceeds. 

Proof: Let R be the set of vertices removed by the algorithm. We first show that I? C 
R. Toward that end, let R denote the set of vertices already selected for elimination at  
some point during the computation, and let v be the next vertex selected for elimination. 
To prove that k C R, it suffices to  prove the following: if R 2 R,  then v E R. 

Let fi a.nd v be as stated above, and consider a vertex u E a d j c [ v ]  n R. Since 
u E R 2 R ,  by (3.1) we have XG(U) 5 2, and thus by the Adjacency-Partition Lemma 
the sets n d j ~ [ u ] ,  adjg[u] ,  and adj&[u] form a partition of U d j G [ U ] .  It follows that u 
belongs to  one of the three sets adj,Jv],  a d j g [ v ] ,  and adj&[v].  Now consider a vertex 
w E UdjG[v] - fi. Since v passes the test for inclusion in 8, it follows that w E 
adj&[v] U adj&[v] .  We have therefore shown that adjG[v], a d j k [ v ] ,  and adj&[v] form 
a partition of adjG[v] ,  whence X,(v) 5 2 by the Adjacency-Partition Lemma. Since 
u d j ~ [ v ]  - C adj;[v] U adj&[v],  we have ad&[w] C R C R; hence, by (3.1), XG(U) 5 2 
for each vertex u E adj,[v]. It follows by (3 .1)  then that  v E R, giving us R C R as 



- 13 - 

required. This concludes the first part of the proof. 
is not properly contained 

in R.  By way of contradiction assume that  fi c R. Choose v E R-  k for which d e . g ~ ( ~ )  
is minimum. We first show that adj&[v] E 8. Consider a vertex u E nd jc [u ] .  By (3 .1) ,  
XG(U) 5 2; moreover, since 21 E R and adj,[u] c adj&[v], it follows by (3 .1)  that  u E R. 
From n b d c [ u ]  C n b d ~ [ v ]  we have degc(u) < degc(v), and thus by the niininiality of 
degc(v)  among the vertices of R excluded from k, it follows that u E 8, thereby giving 

Let R be the set of vertices already selected for elimination by the algorithm 
immediately  after the lust vertex of u d j J v ]  has been selected for inclusion in k so 
that  we have adjc[v] E R .  It follows by applying the Adjacency-Partition Leinnia to  
w E R that  a d j J v ] ,  ad j$[u] ,  and ad j&[v]  form a partition of ad jc[v] ,  and thus we have 
u d j ~ [ w ] - k  C_ adj&[u]Uadj&[v] .  In consequence, z1 is simplicial in the reduced graph G\k 
(by Lemma 3) and also henceforth satisfies the test for inclusion in R.  Observe that  
the algorithm has not yet examined v for inclusion in R, because degc(u) < d e g c ( v )  
for any vertex u E a d j ~ [ v ] ,  and moreover u becomes simplicial in the reduced graph 
no later than 21 does. The algorithm therefore eventually examines v sonietime after 
eliminating the last member of a d j ~ [ ~ ]  and includes it in R ,  despite our assumption t o  
the contrary. From this contradiction we conclude that k = R. 

To conclude the argument, note that the test for inclusion in R ensures that  for 
every vertex w E h = R the vertices of adj5C.l precede v in the elimination sequence. 
The elimination sequence is therefore, by the TEO Theorem, a ?‘EO of G( a). Finally, 
note that the test for inclusion in R also ensures that  degG(w)  > degc;(v) for each new 
simplicial vertex w resulting from the elimination of v. In consequence, the rninimuni 
degree among the vertices in C is non-decreasing, which concludes the proof. 

We now complete the proof that  k = R by showing that  

us udj,[v] c R.  

6. Implementing the greedy scheme 

Repeated application of the algorithm in Figure 5.1 to  a chordal graph gives us an 
algorithm that implements the greedy partitioning scheme in Figure 4.1. With careful 
attention t o  certain implementation details, we can obtain an algorithm whose runtime 
is linear in the number of vertices and edges in the chordal graph. 

Two implementation issues in particular must be successfully dealt with in order 
to  achieve a linear-time algorithm. First, we need an efficient technique for detecting 
new simplicial vertices (i.e., the vertices w E S i m H l  - SimH in Figure 5.1). Liu and 
Mirzaian [9] showed how t o  use a previously computed PEO and certain vertex degree 
information in the graph to  devise a simple and efficient test for simpliciality. We 
briefly discuss this test in Section 6.1. 

Second, we need an efficient way to  implement the test for membership of a candi- 
date simplicial vertex in R. Note that  straightforward determination of whether or not 
a vertex v satisfies (5.1) would require examination of the set adjc[w] for each vertex 
w E a d j ~ [ v ]  - R,  which is far too costly. We show in Section 6.2 that judicious use of 
vertex degree information leads t o  a simple and efficient test that  is equivalent to  (5.1). 

Other implementation issues are fairly straightforward and will be dealt with when 



- 14 - 

we look a t  the detailed algorithm in Section 6.3. In Section 6.4 we show that the 
time-complexity of the algorithm is O(lVl + /E l ) .  

6.1. An efficient test for simpliciality 

In their efficient implementation of the Jess and Kees reordering algorithm, Liu and 
Mirzaian [9] address the issue of how to determine when a vertex has become simplicial 
in the reduced graph. Their approach requires a perfect elimination ordering ,8 of the 
chordal graph. Throughout the rest of Section 6 we will often subscript the vertices with 
their position in this PEO; that  is, we will let VG = (01, v2,. . . , wn}, where P ( u , )  = j 
for 1 5 j 5 n. Note that a PEO can be computed in (3()TTI + / E l )  t ime using the 
maximum cardinality search algorithm [14]. 

For each vertex wj, let fj be the index given by 

and let m d e g c ( v j ) ,  the monotone degree of wj, be given by 

The following result is Theorem 3.5 in Liu and Mirzaian [9]. 

Proposition 2 (Liu and Mirzaian [9]). Wehavevj E S i m ~  ifand o i i l y i f d e g G ( v j )  = 
mde!?G(Vjj 1- 

In order to  use the simpliciality test of Proposition 2, the algorithm will main- 
tain the degree values degH(v j )  and rndegH(vj )  in the variables d e g ( v j )  and m d e g ( v j )  
respectively, where E1 is the current reduced graph. 

6.2. An efficient test for membership in R 

As noted earlier, a naive implementation of the test in (5.1) is far too expensive to  
lead to a linear-time implementa.tion. The following result provides us with an efficient 
alternative to  (5.1). 

Proposition 3. Suppose the algorithm in Figure 5.1 is currently testing the simplicial 
vertex v E C for elimination, and let R be the set of vertices removed from G thus far 
by the algorithm. We then have (5.1) if and only if 

InbdG[zl] - 81 = Inbdc[v] - &I for every u E nbdG[v] n R .  (6.1) 
Proof: Let v and be as stated, and choose a vertex u E nbdc[v] n R .  Because u was 
simplicial in the reduced graph from which it was removed, it follows that nbdc[u] - R 
is complete in G. Since v belongs t o  the clique nbdc[u] - R ,  the following statement 
holds true: 
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Assume that (6.1) holds. I t  follows then from (6.2) that  

nbdG[u]  - R = nbdG[v] - R for every u E nbdG[z!] n 2. 

Choose a vertex w E a d j ~ [ u )  - 2. To show that (5 .1)  holds, it suffices to  show that 
nbdG[v] n b d c [ w ] .  Let 2 E nbdc[v]. If z belongs to the clique n b d ~ [ v ]  - R from which 
w was taken, clearly 2 E nbdG[w] as required. If on the other hand 2 E nbdG[V]n&, then 
from (6.3) we have w E nbdc[v] - R = n b d ~ [ z ]  - k ,  whence z E nbdG[W], completing 
the first half of the argument. 

Now assume that (5.1) holds, and choose a vertex u f nbdG[v]  n k.  To show that 
(6.1) holds, it suffices (by (6.2)) t o  show that 

Clearly, v belongs to  both sets. Let w # w belong to  n b d ~ [ v ]  - R. It follows by (5.1) 
that  w E adj&[v] u udj&[w]. In consequence, nbdG[V] C nbdG[W]; hence u E n b d c [ w ] ,  
and thus w E nbdc[u] - k, which completes the proof. I 

To test for (6.1), our algorithm must accurately maintain the variable deg(u) = 
Jad j~ [v ]  - kl for elinziraated vertices 11 E R as well as uneliniinated vertices u E VG - &. 

6.3. Implement at ion details 

The algorithm introduced in Figure 6.1 (along with Figures 6.2, 6.3, and 6.4) imple- 
ments the greedy scheme introduced in Figure 4.1. That is, it genemtes the minimum- 
cardinality T-partition R1,  Rz, . . ., R t ,  where each partition member R, is the unique 
maximum-cardinality T-set of the reduced graph Gi = G \ (R1 U - - -  U R+1}, and it 
also generates a compound TEO of G with respect t o  the T-partition R1, Rz, . . . , Rt. 
For efficient access to the candidate simplicial vertex of smallest degree in G,, the algo- 
rithm maintains a collection of sets C[q (1 5 d 5 n) ,  where C[d] contains the current 
candidate simplicial vertices w for which d e g G , ( w )  = d. We now discuss other details 
of the implementation. 

Initialization for the algorithm is performed by the procedure INITIALIZE shown 
in Figure 6.2. This procedure initializes SI to Simc (see Proposition a) ,  each candidate 
set C[q to the empty set, and each marker variable mark(v3)  t o  an  appropriate integer 
value. The various values taken on by the marker variables murk(v3) during the course 
of the algorithm have the meanings given below: 

( 0 if w-j has been eliminated during an earlier major step 
1 if wj has been eliminated during the current major step 
2 if vj is simplicial, but not yet chosen for elimination 
3 if wj is not yet simplicial, 

r n U T k ( V j )  = 

where each major step is a single iteration of the main while loop. 
An iteration of the main while loop in Figure 6.1 removes the vertices of the 

maximum-cardinality T-set Ri from the reduced graph Gi, generating a T E O  of Gi(Ri) 
as the elimination sequence for the set. Note that the set S; = Simc, is available at the 
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Input: A chordal graph G = ( V , E ) ;  for each vertex v, E 1;. deg(v,) (= degG(2;.)), 

mdeg(v,) (= md€gG(?I , ) ) ,  and a d j ~ [ v , ] ,  sorted in ascending order by the numbers 
assigned by the initial PEO. 
Output: Upon termination, R l ,  Rz ,  . . . , Rt is precisely the minimum-cardinality 
T-partition R1, Rz, . . . , Rt, where each partition member R, is the maximum- 
cardinality T-set of the reduced graph G, = G \ (81 U ... U &-I}. The PEO cr 
(computed in Figure 6.4) is a compound T E O  of G with respect to the T-partition 

Ri, R2,. e ,  Rt. 

 INITIALIZE(^^&(*), C[*] ,  SI); /*Figure 6.2*/ 
T -0 ;  i c- 1; G1 + G; U + V ;  
while G; # 0 do 

dmax - 0; dmin + [VI; 
for vj E Si do 

d m a r  + max{ dmax 7 deg( vj)} ; 
dmin + min{dmin, d e g ( v j ) } ;  
C[deg(vj>I + C[de.!?(vj)I U {vj}: 

end for 
for u j  E U do olddeg(vj) +- deg(v j )  end for 

while dmin 5 d,,, do 
Rz +- 0; s;+1 +- 0; u +- 0; 

for each vertex v j  E C[dm;n] do 

if IN-TSET(V~) = 1 then 

else 

end if 

C[dmiia] + C[dmi,l - {q}; 
/*Figure 6.3*/ 

ELIMINATE(V~);  /*Figure 6.4*/ 

S + l  +-- s;+1 u {q}; 

end for 
while C[dmbn] = 0 and dmin 5 d,,, do 

end while 
dnin +- &in + 1; 

end while 

for vj E R; do mark(v j )  c- 0 end for 
Gi+l +- G; \ R, ;  i +- i + 1; 

end while 

Figure 6.1: Detailed implementation of scheme in Figure 4.1. 
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procedure I N I T I A L I Z E ( ~ U T ~ ( + ) ,  C[*], SI) 
s1 + 0; 
for d E {1,2,. . . , n}  do C[d] c- 8 end for 
for j E {1,2 ,..., n}  do 

if d e g ( v j )  = m d e g ( c j J )  then 

else mnrk(vj)  t 3; end if 
mark(v,) + 2; SI + SI  u {q}; 

end for 

Figure 6.2: Initialization procedure: initializes data  structures for main while loop. 

boolean function IN-TSET(V~) 
IN-TSET + 1; 
for each vertex vk E adjc[vj] do 

if murk(vk) = 1 and deg(zrk) # deg(v j )  + 1 then 

end if 
IN-TSET t 0; 

end for 

Figure 6.3: Boolean function that tests for membership in the maximum-cardinality 
T-set R;.  
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procedure ELIMINATE(W,) 
marb(v,)  +- 1; A* c- ri, u {v,}; u c- u - {v3}; 
T +- T + 1; a(.,) - r ;  
for each vertex vk E a d j G [ v ~ ]  in ascending order do 

deg(  Uk) +- W v k )  - 1; 
if m a r k ( v k )  2 2 then 

Update fk if necessary; U c U U {vk}; 
if I;  < j then rndeg(vk)  c rndeg(vk)  - 1: 
if d e g ( v k )  = m d e g ( v f k )  and naark(vk) = 3 then 

m a r k ( v k )  t 2; 
C[olddeg(vk)] +- C[oZddeg(vk)]  u {vk}; 

dma, +- max{dm,,, Olddeg(vk));  
end if 

end if 
end for 

Figure 6.4: Elimination procedure: updates data  structures to  reflect the selection of 
vj for elimination. 

beginning of the i-th iteration. The first for loop computes the minimum and iliaximum 
degrees encountered among the vertices of SzrnG, (d,,, and d m z n ,  respectively), and 
also places each simplicial vertex v, in the appropriate candidate set C [ d e g ~ , ( w , ) ] .  The 
algorithm maintains the degree value degG,(v,) in the variable olddeg( v3). 

The second for loop updates oZddeg(v,) for each vertex v3 whose degree was reduced 
during the preceding major step. To do this efficiently, the algorithm maintains a set 
U ,  which contains every uneliminated vertex whose degree has been reduced during 
the current major step. 

As long as there remain candidate simplicial vertices t o  be processed, the algorithm 
examines those of minimum degree in G, (i.e., those in C[d,,,]). For each vertex 
v, E C[d,,,], the boolean function IN-TSET (see Figure 6.3)  uses the current degree 
information t o  determine if v, satisfies the test for elimination given in (6 .1) .  In Fig- 
ure 6 .3 ,  note that 

If v j  is not t o  be eliminated a t  this step, the algorithm then places v j  in the set 
of simplicial vertices Si+l, where it will be processed (and eliminated) during the next 
iteration of the main while loop. Otherwise, the procedure shown in Figure 6.4 selects 
wj for elimination and updates the current T-set k, and the relevant marker and degree 
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variables. More specifically, while the degree variables of the neighbors of vJ are up- 
dated, new simplicial vertices detected in adjc[v,] - Rz (sec Proposition 2)  are placed 
in the appropriate candidate set. The set U of uneliminated vertices whose degrees 
have been reduced is also updated. 

Note that the procedure ELIMINATE must process the members of n d j ~ [ v , ]  in as- 
cending order by their numbering in the initial PEO. This is needed to enable efficient 
updating of the parameters fk  and to  ensure that the values nzdeg(vk)  have been cor- 
rectly updated before they are used in simpliciality tests. In Figure 6.4, we have not 
shown the details of how fk is updated. Efficient access to  fk can be obtained by main- 
taining a pointer to  the first vertex in the ordered list adjc;[vk] that  has not yet been 
chosen for elimination. If fk = j ,  where vJ is the vertex just chosen for elimination, 
then a d j ~ [ v k ]  must be searched to  the right of vJ for the new first uneliminated vertex, 
and the pointer must be adjusted accordingly. 

After the algorithm examines v, for possible elimination, it then increases dmin if 
necessary. That dmin cannot possibly decrease during the course of a major step was 
shown in Theorem 5.1. After computing R% (= B E ) ,  the algorithm then eliminates k ,  
from the graph and marks each vertex of A, as eliminated from the graph. 

Finally, observe that the algorithm in Figure 6.1 correctly implements the greedy 
scheme in Figure 4.1 follows immediately from the fact that  each iteration of the main 
while loop implements the algorithm in Figure 5.1. 

6.4. Complexity analysis 

In this section we verify that the algorithm in Figure 6.1 runs in time proportional to  
IVl + [El. Recall that  the algorithm in Figure G . 1  requires 

1. a PEO of G, and 

2. sorted adjacency lists so that neighbors can be processed in ascending order by 
their labels in the PEO.  

The first can be obtained in O(lVl + IEI) time using the maximum cardinality search 
algorithm [14]; the second can be obtained in O(lVl + / E l )  time by careful application 
of a bin sort. It is worth pointing out that  in our application, the PEO and sorting can 
be obtained as a by-product of the symbolic factorization step, and thus are available 
at no extra cost in computation time. (For further details consult Liu [7].) 

The total work associated with the procedure INITIALIZE is clearly proportional to 
!VI. Because S; c 8; at each major step i, the total work pprformed by the for loop 
that distributes the members of 5’; among the candidate sets is also proportional to  /VI. 
Each vertex is eliminated from the graph once, and thus the work associated with the 
procedure ELIMINATE is 13(lVI + / E ( ) .  Note that each vertex is eliminated either by 
the major step during which it first becomes simplicial or by the next major step. As 
a result, each vertex is examined for possible elimination no more than twice, and con- 
sequently the work associated with the boolean function IN-TSET is also O(lr/l + IEI). 
For each vertex vi E U whose “old” degree is updated by the algorithm at major step 
i -t 1, we have vJ E adjGl[2)k] for some vertex vk E I?;; that  is, t o  each vertex 2)j E 
there corresponds one or more edges which were removed from the graph during the 
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previous major step i. In consequence, the total work spent updating the variables 
olddeg(v,) (1 5 j 5 n )  is 13(IVI + / E l ) .  

Finally, we consider the work expended by the while  loop that updates d,,,,. 
During any given iteration of the main while  loop, the work performed updating d,,,, 
is bounded above by the maximum of degG(V) over all vertices w examined for possible 
elimination during the step. Since each vertex is examined for possible elimination no 
more than twice during the course of the algorithm, it follows that the total work spent 
updating is O(lVl + IEI). From this and the foregoing observations, it follows 
that the time complexity of the algorithm in Figure 6.1 is O( (VI t IEI). Note that the 
space complexity is also O(lVl + [El) .  

7. Concluding remarks 

In this paper we have developed an O(lVl + [ E l )  algorithm for solving the graph parti- 
tioning problem stated as Problem 2 in Section 1. Two new ideas-TEOs and T-sets- 
enabled us to  devise a simple greedy scheme that solves Problem 2. We then provided 
a high-level description of an algorithm for computing a maximum-cardinality T-set 
R,  along with the required 7'EO of G(R) .  Careful implementation provides us with a 
detailed O(lVl + [El)  algorithm that implements the greedy scheme, and thus solves 
Problem 2. 

The approach taken in this paper has the virtue of simplicity and provides insight 
into the essential features of this fairly involved graph partitioning problem. A forth- 
coming paper [lo] will present an implementation of a variant of the greedy scheme 
in Figure 4.1 that  processes a clique tree representation of G, rather than the conven- 
tional representation by adjacency lists. The new clique tree algorithm makes use of 
some interesting new concepts about separators in the clique intersection graph of the 
chordal graph. 
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